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Abstract. The ground dynamics of passenger aircraft are influenced by nonlinear characteristics of
components, especially aerodynamic surfaces and tyre properties. We present a mathematical model
of a mid-sized passenger aircraft that captures these effects and apply dynamical systems tools to its
study. Specifically, we present a two-parameter bifurcation analysis where we vary the steering angle
and taxiway friction coefficient as parameters. Solutions are represented as surfaces that allow us to
draw conclusions on the robustness of ground operations under varying operating conditions.

1 Introduction
The primary goal for commercial aircraft taxiing between terminal and runway is to do so quickly
and safely. The desire to understand how this can be achievedreliably motivates the study of aircraft
ground dynamics. Computer modeling can be used to gain useful insights into operational procedure
of existing aircraft and help with the design of future aircraft at relatively low cost. Indeed, computer
simulation has previously been used to study the dynamics ofaircraft on the ground; examples are, a
study of a linearised bicycle model [1] and a study of a model implemented in the multibody systems
package SIMPACK that includes nonlinear effects [2]. Nonlinearities play a significant role in the
dynamics of aircraft, specifically in components such as thetyres and aerodynamics. Therefore, in the
development of a computer model, it is important to incorporate and evaluate nonlinearities inherent in
the various components. A previous study by the authors [3] used a nonlinear model implemented in
the multibody systems package SimMechanics. In contrast toprevious work, the system was analysed
with tools from nonlinear dynamics, specifically, a bifurcation analysis was performed.

In order to improve computational efficiency and functionality with tools used for bifurcation analysis
we present here a fully mathematical description in the formof a tricycle model of a typical medium
sized single aisle aircraft in which the nose wheel is used for steering. The equations of motion are
given in terms of a set of ordinary differential equations, where the aircraft is modeled as a rigid body
with six degrees of freedom. The forces applied to the body bycomponents such as the tyres and
aerodynamics are modeled from real test data. The model has been fully validated against the well
established industry tested model used in our previous study [3].

To illustrate the use of nonlinear modeling and dynamical systems tools in the study of aircraft ground
dynamics we present a bifurcation analysis with the continuation package AUTO [4]. Specifically, we
investigate the effect that differences in taxiway surfacecondition have on the lateral stability of turning.
The results are presented in terms of two-parameter bifurcation diagrams in which the solutions are
represented as surfaces. The results confirm that turns madein low friction (wet) conditions can result
in a loss of lateral stability at lower velocities. However,at high velocities where aerodynamic effects
play a more significant role, we find that, counter intuitively, regions of stability may be extended in
low friction conditions.

2 The Model
The model presented and studied here was developed from an industry-tested SimMechanics model of
a typical medium sized single-aisle passenger aircraft used in a previous study [3]. The main differ-
ence between the two models is that here we do not include the effects of the aircraft’s oleos (shock
absorbers). We now give the equations of motion for the newlydeveloped mathematical model and
a brief overview of the modeling of individual components. The new model has been fully validated
against the existing SimMechanics model.

The aircraft modeled has a tricycle configuration in which the nose gear is used for steering. We
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Figure 1: Schematic diagram showing relative positions of force elementsF∗ acting on the airframe at
relative distancesl∗ from the CG-position (checkered circle); shown is the projection in the(x,z)-plane.

model the aircraft as a single rigid body with six degrees of freedom (DOF); three translational DOF
and three rotational DOF. Throughout this study we use one ofthe conventionally accepted coordinate
systems for aircraft. Specifically, the positive x-axis points towards the nose of the aircraft, the z-
axis is the downward normal to the (flat) ground and the y-axiscompletes the right-handed coordinate
system. This body coordinate system is assumed to coincide with the aircraft’s principal axes of inertia.
The equations of motion were derived from Newton’s Second Law by balancing either the forces or
moments in each DOF [5].

In Figure 1 the relative positions and directions of the force elements that act on the aircraft are shown
in a top-down view, the(x,z)-plane in the body coordinate system. This diagram illustrates how the
equations of motion are derived by balancing force elementsalong the x-axis and y-axis of the aircraft,
and moment elements about the z-axis of the aircraft. The remaining equations are obtained by the same
method but using different projections. The equations of motion for the velocities in the body-axis of
the aircraft are given as six ordinary differential equations:

m(V̇x +VzWy −VyWz) = FxT −FxR −FxL −FxN cos(δ )−FyN sin(δ )−FxA, (1)

m(V̇y +VxWz −VzWx) = FyR + FyL + FyN cos(δ )−FxN sin(δ )+ FyA, (2)

m(V̇z +VyWx −VxWy) = FzW −FzR −FzL−FzN −FzA, (3)

IxxẆx − (Iyy − Izz)WyWz = lyLFzL − lyRFzR − lzLFyL − lzRFyR − (4)

lzNFyN cos(δ )+ lzNFxN sin(δ )+ lzAFyA + MxA,

IyyẆy − (Izz− Ixx)WxWz = lxNFzN − lzNFxN cos(δ )− lzNFyN sin(δ )− (5)

lxRFzR − lzRFxR − lxLFzL − lzLFxL +

lzT FxT + lzAFxA + lxAFzA + MyA,

IzzẆz − (Ixx − Iyy)WxWy = lyRFxR − lyLFxL − lxRFyR − lxLFyL + (6)

lxNFyN cos(δ )− lxNFxN sin(δ )+ lxAFyA + MzA.

The mass of the aircraft is set tom = 45420kg, a light operating case, and we use principal moments
of inertiaIxx, Iyy andIzz that correspond to this mass. The steering angle is applied to the nose gear and
denotedδ . The velocities along each of the aircraft’s axes are given by V∗ and the rotational velocities
about the axes byW∗. A dot notation is used to show the first derivative with respect to time of these
states. The weight of the aircraft acting at the centre of gravity (CG) position is denotedFzW = mg
and is assumed to act along the z-axis in the aircraft body coordinate system because the pitch and
roll angles remain relatively small in this analysis. The thrust value used here isFxT = 28913N which
represents 13% of the maximum available thrust. The orthogonal force elements on each of the nose,
main right and main left tyres are denotedF∗N , F∗R andF∗L, respectively. The individual aerodynamic
force and moment elements act at the aerodynamic centre of the aircraft and are denotedF∗A andM∗A,
respectively. The thrust force is assumed to act parallel the x-axis of the aircraft and it is denoted
FxT . The dimensionsl∗ are shown to scale in Figure 1 to give an idea of the relative lengths between
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Figure 2: Panel (a) shows a surface plot of solutions in(δ ,Vx, µ̂)-space; stable solutions are black and
unstable solutions are grey. The curve of limit point bifurcationsL is the thick black curve and the curve
of Hopf bifurcationsH is the thick grey curve. Panels (b) and (c) show two-dimensional projections of the
bifurcation curves onto the(δ , µ̂)-plane and(Vx, µ̂)-plane, respectively.

components.

The tyre and aerodynamic models as used here have also been used in a previous study[3] and were
developed by a GARTEUR action group investigating ground dynamics [6]. Specifically, the lateral
forces on the tyres depend nonlinearly on the load on the tyreand its slip angle. The aerodynamic
forces depend nonlinearly on the aircraft sideslip angle, angle of attack and forward velocity; the model
is based on wind-tunnel data and results from computationalfluid dynamics.

3 Bifurcation Analysis of Turning Solutions
In our model fixed-radius turning circles correspond to steady-states of the system. The analysis focuses
on how (steady-state) turning circle solutions change under variation of parameters. The steering angle
δ and the percentage reduction in friction at the tyre-groundinterfaceµ̂ are varied as parameters. At
µ̂ = 0% the taxiway surface conditions are considered to be normal/dry and whenµ̂ is increased the
lateral force that can be generated by the tyres reduces. A value of µ̂ = 50% is considered to represent
a wet taxiway and the force that the tyres can generate reduces to 0 atµ̂ = 100%. The results are
represented as a surface of solutions that describes the dynamics over the entire range ofδ and µ̂ as
represented by a state variable, the longitudinal velocityof the aircraftVx.

One-parameter continuation runs inδ were computed for discrete values ofµ̂ . When plotted together
in (δ ,Vx, µ̂)-space the individual bifurcation curves form a surface of solutions. Two-parameter contin-
uation was used to compute the loci of bifurcations continuously under the variation of bothδ andµ̂.
Combining the results from these two computations into a single plot is an effective way of representing
the behaviour over the complete range ofδ and µ̂ in a single figure. Two-dimensional projections of
bifurcation curves show certain features more clearly.

Figure 2(a) shows the resulting surface plot of solutions in(δ ,Vx, µ̂)-space. Changes in stability occur
at bifurcation curves on the surface, namely along the curveL of limit point bifurcations and the curve
H of Hopf bifurcations. Hopf bifurcations are typically associated with the onset of periodic solutions
[7]. CrossingH into the unstable region represents a change where the aircraft will attempt to follow
a turning circle solution that is unstable (too tight) and, therefore, it loses lateral stability. The aircraft
follows a periodic motion relative to the unstable turning circle solution because constant thrust is
applied to the engines. Over this region in which periodic solutions exist, the velocity at which the
aircraft loses lateral stability is relatively low. Crossing the curveL for small steering angles also
results in a change in the type of solution that the aircraft attempts to follow. Approaching and passing
the curveL from the stable region to its left, which represents large radius turning solutions, results
in the aircraft attempting to follow a small radius solutioninstead (which is laterally unstable in this
case). Similarly, crossingL from the unstable region to its right results in the aircraftstarting to follow
a stable large radius turn. Therefore, there is a hysteresisloop as is typical in dynamical systems with
limit point bifurcations [7]. For large values of̂µ > 40% the stable region to the left ofL increases and



for µ̂ > 60% the dynamics become uniformly stable. This large reduction in the friction coefficient
results in the aerodynamics becoming the dominant effect onthe dynamics. Further details of the
different types of solution and the significance of passing the different bifurcations are given in [3].

Figures 2(b) and 2(c) show two-dimensional projections of the bifurcation curves onto the(δ , µ̂)-
plane and the(Vx, µ̂)-plane, respectively. The(δ , µ̂)-plane represents the bifurcation diagram in the
two parameters while the same data plotted in the(Vx, µ̂)-plane reveals the relative positions of the
bifurcation curves in terms of the forward velocityVx. Whenµ̂ = 0 the solutions are uniformly stable
under variation ofδ . As µ̂ is increased the solution branches intersect the bifurcation curvesL and
H. By taking parameter values that lie below these two curves the laterally unstable behaviour can be
avoided. Specifically, there is a region to the left ofL andH with δ < 3.5◦ and µ̂ < 40% for which
no unstable behaviour can occur. Therefore, a value ofδ = 3.5◦ can provide an upper bound on the
steering angle used in high velocity turns. Furthermore, the curveH can provide a guide for maintaining
stable manoeuvres at higher steering angles.

4 Conclusions
Details of the equations of motion for a new mathematical model were given. A comprehensive bifur-
cation analysis of this model of a typical single aisle passenger aircraft was performed in terms of the
steering angle and a parameter representing taxiway condition (the level of friction at the tyre-ground
interface). Solution branches were computed by varying thesteering angle as the continuation param-
eter at discrete values of the friction parameter. Loci of the bifurcations were tracked directly in the
parameter plane. Overall, our results give a complete account of the possible turning dynamics of the
aircraft under variation of both parameters.

The results presented here reveal how different taxiway conditions can affect the aircraft’s ground
dynamics. It was found that a reduction in the level of friction between the ground and the tyres can
lead to the existence of a region of laterally unstable dynamics associated with a Hopf bifurcation.
Limit point bifurcations were found to be associated with a hysteresis loop between high velocity large
radius solutions and lower velocity laterally unstable solutions. Additionally, a steering angle of 3.5◦

was identified as an upper bound when making stable high-velocity turns. Furthermore, with a large
reduction in the friction coefficient it was found that, counter intuitively, the region of stability for large
radius turns increases.

Ongoing work focuses on the sensitivity of the results presented here to variation of additional parame-
ters, for example, mass and thrust of the aircraft. However,there are many other parameters that are of
interest, including the track-width of the main landing gears, and tyre properties. Physical phenomena
associated with changes in qualitative dynamics are also the subject of ongoing studies.
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