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Summary. Safety and economy are primary concerns in the study of ground ma-
noeuvres for commercial aircraft, the ultimate goal being automation and optimisa-
tion of taxi operations. The application of mathematical and computer modeling to
this problem is beneficial due to the relative costs compared with actual tests. As an
example of utilising mathematical tools in the investigation of industrial problems
we make use of a computer model of a passenger aircraft to perform a bifurcation
analysis of turning solutions. In particular, we study how altering the longitudinal
centre of gravity position of an aircraft affects its ground dynamics.

1 Introduction

During the daily service of passenger aircraft there are operational parameters
that may vary considerably. Many of these parameters can have a significant
effect on the ground handling properties of the aircraft. Important parameters
include the loading of the aircraft in terms of passengers and fuel, runway and
taxiway conditions, and wear on important components such as the tyres. In
order to inform operational procedure it is important to understand how vari-
ation of these parameters affects the ground dynamics. Large costs associated
with performing ground (flight) tests motivates the use of mathematical and
computer modeling. In previous work a combination of flight test data and
low-order computer bicycle models were used to study the ground handling
properties of aircraft [4, 5], including the effect of tyre pressure on ground
handling [3]. A previous study by the authors utilised a SimMechanics model
to study the dynamics of aircraft on the ground under variation of thrust [7].
In this paper we use continuation analysis to perform a parameter study of a
mathematical model of a passenger aircraft. Specifically, we investigate the ef-
fect that the aircraft’s longitudinal centre of gravity position has on its ground
handling.

During taxiing to and from the airport terminal a passenger aircraft will
undertake various turning manoeuvres. Turns are made by applying a steering
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angle to the wheel and tyres of the nose gear while thrust from the engines
remains constant. Our approach is to study the ensuing dynamics in terms
of turning circle solutions of the system; their stability dictates whether a
particular manoeuvre can be made safely. Depending on the loading of pas-
sengers, luggage and fuel levels, the centre of gravity position of the aircraft
can vary considerably in day-to-day use. It is therefore of interest to treat
the centre of gravity position along the longitudinal axis of the aircraft as a
system parameter and to investigate changes in the turning dynamics under
its variation.

We use a fully parametrised mathematical model of a typical medium
sized single aisle passenger aircraft implemented in Matlab. The aircraft is
modeled as a tricycle with the airframe having three translational and three
rotational degrees of freedom. The equations of motion were obtained via
balancing forces and moments in each degree of freedom. Nonlinear effects
are included in the tyre model, depending on tyre load and slip angle, and in
the aerodynamic model, depending on velocity, angle of attack and slip angle
of the airframe. The steering angle δ and the centre of gravity position CG are
the free parameters in our analysis. The centre of gravity position is measured
as the percentage along the mean aerodynamic chord (MAC), taken from the
leading edge; negative values represent a position in front of the leading edge.

The tool used here is numerical continuation; specifically, we perform a
bifurcation analysis with the software package AUTO [1]. Continuation anal-
ysis is a powerful tool used to study steady-state solutions of dynamical sys-
tems [6], which are tracked under the variation of system parameters; during
computations solutions are monitored to detect bifurcations, which are qual-
itative changes in the dynamics [2, 8]. Identifying where bifurcations occur is
important because they may form boundaries of safe behaviour. The use of
continuation and bifurcation analysis to study ground manoeuvres is a com-
putationally inexpensive way of analyzing the dynamics under variation of
several parameters.

2 Bifurcation Analysis of Turning Solutions

We present a bifurcation analysis of aircraft turning solutions; the results are
represented as one-parameter and two-parameter bifurcation diagrams. In our
model fixed-radius turning circles correspond to steady-states of the system.
The analysis focuses on how (steady-state) turning circle solutions change
under variation of parameters. In the one-parameter study the CG position
is kept fixed and the steering angle δ is varied; solutions are plotted against
a state variable. In the two-parameter study we also vary CG and the results
are represented as a surface of solutions that describe the dynamics over the
entire range of δ and CG.
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Fig. 1: One-parameter bifurcation diagram in δ for CG = 35% with a single branch
of solutions; stable parts are black and unstable parts are grey. Changes in stability
occur at the bifurcation points L1−4 and H1−2. The maximum and minimum forward
velocity of a branch of periodic solutions between H1 and H2 are plotted in black.
Insets (a) and (b) show examples of the aircraft’s motion.

2.1 One-Parameter Study

Figure 1 shows a one-parameter bifurcation diagram in δ for CG = 35%,
where the forward velocity Vx of the aircraft is used as a measure of the
solution. A single branch of solutions initiates in the top left of the figure
and terminates in the top right; changes of stability occur at the limit point
bifurcations L1−4 and Hopf bifurcations H1−2. On the branch of solutions,
stable parts are black and unstable parts are grey. Periodic solutions exist
between H1 and H2 and their maximum and minimum velocities are plotted
as black curves. Qualitatively different types of behaviour can be observed
at the labeled points (a) and (b). The respective insets in Figure 1 show a
top down view of a CG-trace of the aircraft in the horizontal ground plane;
in (b) markers are drawn to scale and show the aircraft’s attitude along the
CG-trace.

At the initial point where δ = 0, the aircraft travels in a straight line
with a constant velocity of Vx = 70m/s due to constant thrust from the
engines. As steering is applied (δ > 0), the solutions represent fixed large
radius turns. For example, at (a) the aircraft follows a stable turning circle of
radius r ≈ 1.7km with a forward velocity of 63m/s. This type of solution with
a small steering angle, large radius turn persists from the initial point up to
the bifurcation L1; the radius of the turn decreases as L1 is approached. At the
bifurcation the turning moment generated by the nose gear tyres overcomes
the stabilising aerodynamic force generated by the tail fin of the aircraft [7].
When the steering angle is increased beyond L1, the aircraft loses velocity
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Fig. 2: Panel (a) shows a surface plot of solutions in (δ, Vx, CG)-space; stable solu-
tions are black and unstable solutions are grey. The loci of limit point bifurcations L

is the thick black curve and the locus of Hopf bifurcations H is the thick grey curve.
Panels (b) and (c) show two-dimensional projections of the bifurcation curves onto
the (δ, CG)-plane and (Vx, CG)-plane, respectively.

rapidly over a transient period and starts to follow a solution in the region
between the Hopf bifurcations H1 and H2. Hopf bifurcations are associated
with the onset of periodic motion [8]. In this case, passing a Hopf bifurcation
represents a change in which the aircraft attempts to follow a turning circle
that is too tight and, therefore, there is a loss of lateral stability associated
with the main landing gear tyres saturating. For example, at (b) the aircraft
attempts to follow an unstable turning solution with radius r ≈ 125m but loses
lateral stability, enters a spin and briefly travels backwards before coming to a
halt. The aircraft then moves off under constant thrust, repeating the motion
periodically relative to the unstable turning solution with a maximum and
minimum velocity of 20m/s and−10m/s, respectively. A detailed description
of this undesirable behaviour that persists between H1 and H2 is given in [7].
Between H2 and L4 high steering angle, small radius turns can be observed,
and between L3 and the end point at the top right high steering angle, large
radius turns can be observed for which the nose gear is almost perpendicular
to the direction of motion and, hence, is effectively dragged along the ground.

2.2 Two-Parameter Bifurcation Study

One-parameter continuation runs, as in Section 2.1, were computed over a
range of CG at discrete points. When plotted together in (δ, Vx, CG)-space
the individual bifurcation curves form a surface of solutions. Two-parameter
continuation was used to compute the loci of bifurcations continuously under
the variation of both δ and CG. Combining the results from these two com-
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putations into a single plot is an effective way of representing the behaviour
over the complete range of δ and CG in a single figure. Two-dimensional
projections of bifurcation curves show certain features more clearly.

Figure 2(a) shows the resulting surface plot of solutions in (δ, Vx, CG)-
space; again stable solutions are black and unstable solutions are grey.
Changes in stability occur at bifurcation curves on the surface. The curve
L of limit point bifurcations is represented by the thick black closed curves
and the curve H of Hopf bifurcations by the thick grey closed curve. The one-
parameter case discussed above represents a horizontal slice of Figure 2(a) at
CG = 35%. The bifurcations in Figure 1 lie on the locus curves in Figure 2(a),
L1, L2, L3 and L4 on L, and H1 and H2 on H .

Figures 2(b) and 2(c) show two-dimensional projections of the bifurcation
curves onto the (δ, CG)-parameter plane and the (Vx, CG)-plane, respectively.
In the (δ, CG)-parameter plane bifurcation curves bound regions with different
numbers of solutions, each with a specific stability. In the largest region, not
bounded by any of the bifurcation curves, a single stable turning circle solution
exists. In the region bounded by the Hopf bifurcation curve H a single unstable
turning circle solution exists and the attracting solution is a periodic motion
relative to this unstable turning circle, as was discussed in Section 2.1. In
the region bounded by the limit point bifurcation curve L two stable and
one unstable turning circle solutions exist. Figure 1 provides an example of
traversing each region in the parameter δ. A hysteresis loop results when
traversing the regions bounded by limit point curves in different directions.
The same data plotted in the (Vx, CG)-plane reveals the relative positions of
the bifurcation curves in terms of the forward velocity Vx.

Within the operational range of CG ∈ (10%, 40%), the laterally unstable
behaviour inside the region bounded by H in Figure 2 persists. However, for
CG < 15% (a forward position) no limit point bifurcations will be observed at
low steering angles as seen clearly in Figure 2(b). This means that the region of
laterally unstable dynamics could be approached more suddenly and at lower
velocities. Taking values of CG outside of the operational range (an extreme
forward or aft position) results in uniformly stable behaviour at low steering
angles, where intersections with L and H are not possible. In Figure 2(b) there
is a region for small δ < 3◦ to the left of L and H for which no bifurcations
occur. This bound does not change under variation of CG and could provide
a limit for steering angles used in high-velocity turns.

3 Conclusions

A comprehensive bifurcation analysis of a mathematical model of a typical sin-
gle aisle passenger aircraft was performed in terms of the steering angle and
the aircraft’s longitudinal centre of gravity (CG) position. A one-parameter
study in the steering angle illustrated different types of solutions and their
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bifurcations. These results were extended to a two-parameter study by com-
puting solution branches over a range of CG positions and tracking the loci
of the bifurcations continuously in the parameter plane. Combining the re-
sults gives a complete account of the possible turning dynamics of the aircraft
under variation of both parameters.

The results presented here reveal how changing an aircraft’s CG position
can affect its ground dynamics. Over the operational range of the CG position
there is a region of laterally unstable dynamics existing between two Hopf bi-
furcations. Depending on the CG position, this unsafe region of dynamics can
be approached in different ways at small steering angles. With an aft position
the region can be approached at high velocity by passing a limit point bi-
furcation, but with a forward position the solutions can be approached more
suddenly at a lower velocity by passing one of the Hopf bifurcations. Addi-
tionally, a steering angle of 3◦ was identified as an upper bound independent
of CG position for making stable high-velocity turns.

Ongoing work focuses on the sensitivity of the results presented here to
variation of the additional parameters, for example, the mass and thrust of
the aircraft. However, there are many other parameters that are of interest,
including the track-width of the main landing gears, runway conditions and
tyre properties. Physical phenomena associated with changes in qualitative
dynamics are also the subject of ongoing studies.
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