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ABSTRACT 
Personal Rapid Transit (PRT) systems are designed so that passengers usually travel 
together only by choice, but strangers may choose to share a vehicle at peak times, 
when the system is near capacity. By predicting whether and to what extent this ride 
sharing will occur, PRT planners can better estimate the impact on system capacity 
and passenger experience. This paper develops a model for ride sharing based on 
queueing theory and applies it to explain the relationships between vehicle 
occupancy, passenger queue length and passenger waiting time. The effects of 
multiple destinations, passengers who are unwilling to share and passengers arriving 
in preformed parties are considered. A case study is provided to show how the model 
can be applied to a simple point-to-point system; in this case study it appears 
possible to reduce the size of the vehicle fleet by at least 30%, while still maintaining 
a high level of service for passengers during peak times. 

1. INTRODUCTION 
A Personal Rapid Transit (PRT) system provides on-demand, non-stop transportation 
using compact, computer-guided vehicles running on a dedicated network of 
guideways. In normal operation, each vehicle carries an individual passenger or a 
small party traveling together by choice; each party (an individual is a party of one) 
travels directly from their origin to their destination, without sharing with other 
parties, stopping or changing vehicles. However, during peak times, the number of 
vehicles required to provide one vehicle per party may be prohibitively large. In this 
paper, we consider ride sharing, in which several parties may choose to share a 
vehicle. 

Previous work indicates that ride sharing can greatly reduce the number of vehicles 
needed to provide an acceptable level of service during peak times. Johnson (2005) 
reports that peak capacity for a given fleet size is roughly doubled, using a model 
with a single origin station and several equally likely destinations. He also discusses 
the passenger experience in the origin station and describes a station management 
strategy that facilitates ride sharing. Johnson's ride sharing model does not explicitly 
represent the passenger arrival process; instead, immediately after a passenger is 
served, a new passenger arrives to replace him, thus maintaining a queue of constant 
length. While this is analytically convenient, it is difficult to justify, and it limits the 
utility of the model for PRT planning, because the passenger arrival process is a 



crucial input in the planning process. Andréasson (2005) gives a good overview of 
the operational issues created by ride sharing, including the implications for 
passenger safety and security. He reports a similar increase in capacity in a full 
system simulation for a single case study. However, the paper does not explore how 
these results may be generalized to other systems. Also, both authors assume that all 
passengers who have the opportunity to share will choose to do so, which is a 
potentially misleading assumption. 

In this paper, we develop improved models for ride sharing in simple networks, 
discuss aspects of PRT system design and operation in the context of these models, 
and show how these models can be used in capacity planning. Section 2 explains a 
ride sharing model based on queueing theory, and section 3 shows how to use this 
model to explain the effect of ride sharing on system capacity; it also compares our 
results to those in the literature. A discussion of the effects of passengers who are 
unwilling to share follows in section 4, and section 5 explores the effects of larger 
non-separable parties on system capacity. Section 6 is a case study that shows how 
the models in this paper can be applied to a simple point-to-point system; it also 
deals briefly with the questions of how to operate stations to facilitate ride sharing 
and how to account for demand that changes with time. 

2. A QUEUEING THEORY MODEL FOR RIDE SHARING 
Consider a system with one origin and N destinations, where all passengers are 
traveling from the origin to one of the N destinations. When N = 1, this models a 
system of two stations or regions with dominant tidal demand from one to the other, 
like the point-to-point system studied in section 6. When N > 1, the model might 
describe traffic from a transit hub to several buildings, for example.  

Parties arrive at the origin station bound for destination i according to a Poisson 
process with rate λi, in parties / hour. Assuming these N arrival processes are 
independent, the aggregate arrival process is also a Poisson process, with rate 
λ = λ1 + … + λN. Upon arriving at the origin station, passengers queue in first-in-
first-out order, each waiting for a vehicle to serve them. There are s vehicles in the 
fleet, each of which can carry up to C parties with the same destination. Any vehicle 
can serve any destination, but it serves only one destination on a given trip; when a 
vehicle becomes available, the first party in the queue determines its destination, and 
up to C – 1 other waiting parties with the same destination can board. The vehicle 
then takes d hours to serve the group and return to the origin station; these service 
times could vary between destinations, but for simplicity we fix them all at d. Note 
that a vehicle cannot leave the origin when empty; it must wait for at least one party 
to board. The following approximations are implicit in this model; we revisit some of 
them later on in the sections indicated. 

A1. The service time d is approximately deterministic because it is dominated by 
the vehicle round trip transit time, from the origin to the destination and back 
to the origin; the true transit time also includes stochastic terms for passenger 
loading and unloading, and for delays due to network congestion, but these 
are less important when the origin and destination are reasonably far apart. 



A2. While the capacity of a vehicle is a constant number of passengers, the 
number of parties it can carry depends on the number of passengers per party, 
which is stochastic. For simplicity, we scale the mean passenger demand and 
the vehicle capacity into parties; if each vehicle seats 4 passengers, and we 
expect less than 1.33 passengers per party, we set C = 3 parties and scale the 
demand λ appropriately. This is only approximately correct (see section 5). 

A3. The system capacity is limited by the number of vehicles available. Another 
limiting factor that we do not consider is the station throughput at the origin; 
this is mainly a function of the number of berths in the station, so we 
effectively assume that the origin station is large. 

A4. The total party arrival rate λ is constant over time (but see section 6). 

A5. Once the first party in the queue has determined a vehicle's destination, 
parties with the same destination can share the vehicle, regardless of their 
position in the queue (but see section 6). 

A6. All parties who can share will choose to do so (but see sections 4 and 6). 

More formally, our model is known as an MN/DC/s queueing system, in the notation 
of Cromie and Chaudhry (1976) and Huang (2001), which is based on the standard 
Kendall notation. The MN refers to the Markovian (Poisson) arrival process with N 
destinations. The DC refers to the deterministic service times and bulk service rule, 
where each vehicle has capacity C. The s denotes the number of servers; that is, we 
treat each vehicle as a server. 

To our knowledge, there are no useful analytical results for the performance 
measures of the MN/DC/s queueing system, in the literature. Cromie and Chaudhry 
(1976) give useful analytical results for many performance measures of the M1/MC/s 
queueing system, in which service times are Markovian, rather than deterministic. 
While there is some variation in the service times, which we have neglected, using a 
Markovian service model introduces far more variation than is desirable; this is why 
we have not chosen an MN/MC/s queueing system as the basis for our analysis. Tijms 
(2006) gives useful approximations for the M1/D1/s system, but ride sharing is not 
allowed when C = 1. Even these analytical results are only suitable for computer 
calculation; we use them to validate the statistical properties of our simulations when 
N = 1 and C = 1. Huang et al. (2001) derive analytical results for an MN/MC/s 
queuing system, in the context of semiconductor manufacturing, but again they 
assume Markovian services, and they use a `largest batch first' service discipline that 
is not appropriate for our application. The value of the MN/DC/s model is as a 
theoretically sound starting point for further extensions. We rely on Monte Carlo 
simulation to obtain quantitative data on our models, but we note that these models 
are well-suited to computer implementation, so this is not an onerous limitation. In 
all of our figures, each point is the mean of ten runs of one million seconds each, 
unless otherwise noted. 

3. SYSTEM CAPACITY WITH RIDE SHARING 
We now apply our model to explore the effects of ride sharing on system capacity, 
which is the largest number of parties that the system can serve per hour. When the 



system is saturated, vehicles become available for service at rate µ = s / d vehicles 
per hour, and all vehicles operate at their full capacity, C, so the system capacity is 
µC parties per hour. That is, if the party arrival rate λ remains constant (assumption 
A4) at or above µC, the number of waiting parties grows without bound. So, for fixed 
fleet size s and service time d, increasing the vehicle capacity C results in a 
proportional increase in system capacity. Figure 1 shows this effect; when C = 1, no 
ride sharing is allowed, and the queue grows without bound as the arrival rate λ 
exceeds 110 parties/h. For C = 2, divergence is delayed until λ exceeds 220 parties/h. 
This increase in capacity is explained by an increase in mean vehicle occupancy, 
which approaches the vehicle capacity (C = 2), as λ exceeds 220 parties/h. 

 

Figure 1: Mean queue length and mean occupancy for fixed service time and fleet 
size, with increasing party arrival rate (d = 660s, s = 20 vehicles). 

This increase in mean vehicle occupancy requires an increase in mean queue length. 
When a vehicle becomes available, only those parties currently waiting in the queue 
can share with one another. If there are fewer than C parties (with the same 
destination) in the queue, then the vehicle makes that trip at less than full occupancy. 
The queue length fluctuates because of randomness in the arrival process, but high 
mean occupancy requires, on average, a standing queue. Moreover, as a consequence 
of Little's Law (Little 1961) for queueing systems, the mean party waiting time is 
directly proportional to the mean queue length; so, using larger vehicles increases 
system capacity at the cost of increased passenger waiting time. The degree to which 
ride sharing can increase capacity in practice thus depends on how much additional 
waiting time the passengers will accept; we return to this subject in section 6. 

Next, we consider systems with more than one destination and compare these results 
with the existing results in the literature (Johnson 2005). For simplicity, we assume 
that the demand is split evenly among the N destinations. Then, in a queue of a given 
number of parties, the number of parties that are bound for any particular destination 
is inversely proportional to N. Only parties with the same destination can share a 



vehicle, so for larger N, a longer queue is needed to achieve a given increase in the 
mean vehicle occupancy, and hence the system capacity. This suggests that ride 
sharing is most effective when the number of destinations is small. 

To quantify this, and for comparison with Johnson’s results, we refer to Figure 2, 
which shows a linear relationship between mean passenger waiting time and the 
number of destinations. Johnson also finds a linear relationship between mean 
waiting time and the number of destinations, but for a different ride sharing model. 
In Johnson's model, the arrival process is chosen so that the queue length is held 
constant at N + 1 parties, in order to make the model more tractable. The mean 
waiting time is then (N + 1)/(2µ), in our notation; that is, the constant of 
proportionality is fixed at 1/(2µ). Figure 2 shows that the constant of proportionality 
varies with the total arrival rate. In this sense, Johnson's results also hold in our 
model, for a limited number of arrival rates. It is also worth remarking that passenger 
waiting time increases considerably as the number of destinations grows; when 
λ = 180 parties/h and N = 1, passengers wait 0.4 minutes on average, but when N 
increases to 24, as in Johnson’s paper, this increases to 4.8 minutes. This indicates 
that ride sharing is less helpful for such a large number of destinations. 

 

Figure 2: Mean waiting time for fixed 
service rate and several total arrival rates, 
with increasing number of destinations 
(C = 3, d = 660s, s = 20). 

 

Figure 3: Savings in fleet size are 
sensitive to the percentage of parties that 
are willing to share 
(C = 3, d = 660s, N = 1). 

4. PASSENGER WILLINGNESS TO RIDE SHARE 
All ride sharing models that we are aware of (Johnson 2005; Andréasson 2005) allow 
parties to choose whether to ride share with other parties. These models also assume 
that all parties are willing to share (assumption A6), which is potentially misleading. 
There are many factors that can influence whether a party is willing to share; here, 
we restrict our analysis to waiting time, monetary incentives, and peer pressure. 



Another major factor is the station design; while this is largely below the resolution 
of our model, we return to it briefly in section 6. 

If passengers are rational, and they act to minimize their remaining waiting time, no 
sharing will occur. This is because the first party in the queue must consent to 
sharing their vehicle, something which gives them no waiting time benefit; once they 
have selected their destination, they can either choose to share, in which case they 
incur a small extra wait due to other passengers loading, or not to share, in which 
case they leave as soon as the vehicle arrives. Thus, although parties further back in 
the queue can usually reduce their remaining waiting time by sharing, the passenger 
at the front of the queue has no incentive (in terms of waiting time) to allow others to 
share his vehicle. 

There are, however, two mitigating factors. Firstly, we speculate that there is 
considerable peer pressure to allow sharing when in a crowded station; taking a 
private vehicle might be frowned upon by those left waiting in the queue. This effect 
can only be quantified by experiment. Secondly, the operator can adjust the fare 
policy to offer a monetary incentive for sharing. Suggestions include charging by 
vehicle rather than by person (Andréasson 2005), or giving a discount to those who 
are willing to share (Andréasson 2005; Johnson 2005). A more thorough analysis of 
such fare collection policies is required, but it is beyond the scope of this paper. We 
also note that some systems (in airports, for example) are operated without fares; in 
these systems, peer pressure is the only incentive for sharing. 

While further experiments and analysis are needed to properly answer these social 
engineering questions, our model can be modified to provide some sensitivity 
analysis. We consider the effect of varying a fixed probability w that a party is 
willing to share; so far, w has been 100%. This fixed probability is a fairly crude 
approximation, because it assumes that a party’s decision on whether or not to share 
is entirely intrinsic; in reality, it may depend in a complex way on the actions of 
other parties around them. For example, parties may see that a vehicle is filling up 
and become less willing to share, further preventing high occupancies. However, this 
assumption provides a reasonable starting point. 

Figure 3 shows the effect of w on the number of vehicles needed to ensure that 90% 
of parties wait less than 60s (see also section 6). For example, when 
λ = 180 parties/hr and w = 100%, the number of vehicles required is reduced by 46% 
(from 39 to 21, in the particular system under study). When w drops to 80%, the 
required fleet size is reduced by only 30% (to 27). We note that a small change in w 
when w is near 100% can significantly affect the required fleet size; that is, system 
capacity is quite sensitive to w. The main reason is that the probability of n parties 
sharing is wn, so achieving high vehicle occupancy (1 < n < C) requires a 
disproportionately longer queue as w decreases. 

5. THE EFFECT OF PARTY SIZES ON RIDE SHARING 
We have so far assumed that a vehicle can always carry up to three parties 
(assumption A2). In reality, party sizes will vary stochastically, allowing a possible 
conflict between the number of passengers arriving in a new party and the number of 



remaining empty seats in a vehicle. In this case, the arriving party will have to decide 
on whether to split up or stay together. The distribution of party sizes differs 
considerably between applications. For example, many of the parties in a theme park 
will be families, and each family would require their own vehicle; ride sharing would 
be less effective in this case. In most applications that the authors have considered, 
however, the vast majority of parties will be individuals or pairs. We now explore 
several relaxations of assumption A2 to assess its validity. 

We consider a model in which parties arrive according to a Poisson process, but, 
each time a party arrives, X passengers with the same destination join the queue; 
here, X is a random variable taking positive integer values. This is known as a 
compound Poisson process (Woodward 1994). The vehicle capacity in this model is 
defined to be S passengers, rather than C parties. The distribution of X would be 
based on the actual group size data for the application under study, but here we use a 
parameterized distribution. For simplicity, we still assume that party sizes cannot 
exceed vehicle capacity (no party has more than S passengers). We also note that in 
many applications, parties arrive by automobile, and so the party size is limited by 
the capacity of a typical automobile. These considerations lead us to define X by a 
binomial distribution with 
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where p = (G - 1)/(S - 1) and G is the mean party size. This means that a party 
consists of at least one passenger, accompanied by up to S - 1 additional passengers; 
each additional passenger occurs with probability p. In general, the group size 
distribution could vary between destinations, but we ignore this for the sake of 
simplicity. The distribution of X when G = 1.33 is computed in Table 1. 

X 1 2 3 4 
Pr(X = x) 0.705 0.261 0.032 0.001 
Pr(X ≤ x) 0.705 0.966 0.999 1.000 

Table 1: Distribution of group size X when mean group size G = 1.33. 

The cumulative density indicates a 97% chance of party size one or two, and our 
simulations indicate that this does not have a significant impact on the number of 
vehicles required to provide satisfactory service; assumption A2 is a reasonable 
approximation when G ≤ 1.33. This is the case for most applications. For mean party 
sizes up to G = 2, results are mainly the same, but when G = 3 there is a 70% chance 
of a party with size 2 or 3, and assumption A2 significantly overestimates the 
potential for ride sharing. 

6. POINT-TO-POINT PRT SYSTEM CASE STUDY 
We now apply our model to a simple but useful PRT system that connects two 
locations, where we assume that there is one station in each location and that the 
network layout and the peak demands are given. Our objective is to determine how 
many vehicles are needed in order to provide an acceptable level of service. The 
level of service is defined in terms of the 90th percentile of the party waiting time 
distribution; for example, service might be acceptable when 90% of parties arriving 



in the peak period wait less than 1 minute before boarding a vehicle. For each 
combination of peak demand and fleet size, the peak period is simulated 1000 times 
to build an accurate estimate of the waiting time distribution; we then choose the 
smallest fleet size that provides an acceptable level of service for all of the expected 
peak demands. 

We have so far assumed that the passenger demand λ  is constant (A4), but this is 
not usually true in peak periods. The party arrival rate will usually rise to a maximum 
and then fall off. It is straightforward to extend our model to capture this. We use the 
representative demand profiles shown in Figure 4, which were generated from 
Gaussian curves with “standard deviations” of 15 minutes for the AM peak and 30 
minutes for the PM peak. The AM peak is 2 hours long and is sharper and higher 
than the PM peak, which is 3 hours long. The simulator records waiting times for all 
passengers arriving in peak hours, and it terminates upon serving the last passenger 
that arrived during the peak. Waiting times for passengers who arrive after the peak 
are discarded; waiting times from the first two hours are also discarded, to reduce the 
importance of the simulator’s initial conditions (all vehicles begin at the origin, ready 
to serve passengers).  

 

Figure 4: Demand used for AM peak and PM peak simulations. 

We have also assumed that parties anywhere in the queue can share with one another 
(assumption A5). Whether this can be achieved in practice depends on how the 
stations operate; our assumptions about this are as follows. Each station contains a 
fixed number of berths, at which parties can load into or unload from vehicles. Each 
berth has a destination selection panel, with which a party tells the system where they 
are traveling to. This layout is typical of stations in the ULTra PRT system, 
developed by Advanced Transport Systems Ltd.; it differs from the station layout in 
(Johnson 2005), which separates destination selection from berths, but the following 
discussion suggests that our layout can also facilitate ride sharing. 



At low intensity, there will usually be some empty vehicles parked in the berths, 
waiting for passengers to arrive. Ride sharing is unlikely at low intensity, because 
parties will arrive, choose a berth, select their destination and then depart 
immediately on a waiting empty vehicle. However, at high demand there will usually 
be a queue of parties waiting for vehicles (section 2). We assume that the party at the 
head of the queue will go to a free berth, select their destination and wait there, while 
the other parties wait in first-in-first-out order. When a party selects their destination, 
they are asked whether they want to share (section 4); if they choose to share, their 
destination is displayed on a screen above their berth. Other parties with the same 
destination can then “jump the queue” to share a vehicle with that party. 

It is unlikely that the station process outlined above will be perfectly efficient 
(assumption A5). The apparent complexity of the human factors involved suggests 
that more work, including experimental work, is required in this area. For now, we 
examine what happens when parties can only communicate with their immediate 
neighbors in the queue; this assumption is intended to provide a lower bound on the 
likely level of interaction between parties in a station. When the “neighbors only?” 
column in Table 2 is “Y,” the parties can only share with their neighbors; otherwise, 
assumption A5 is in effect. 

To fix the remaining parameters, we set the vehicle capacity at C = 3 parties (see 
assumption A2 and section 5) and the vehicle round trip time at d = 660s (ten 
minutes travel plus one minute for passenger loading and unloading; see assumption 
A1).  Table 2 shows the predicted fleet sizes for several ride sharing scenarios. The 
“% willing to share” column corresponds to the probability of a party sharing, as 
defined in section 4. We consider two possible definitions of acceptable service, one 
where 90% of parties wait less than 1 minute, and another where 90% of parties wait 
less than 3 minutes. 

60s 180s
AM 0 53 47
AM 60 Y 44 36
AM 60 N 40 32
AM 80 Y 37 28
AM 80 N 34 25
AM 100 26 18
PM 0 45 41
PM 60 Y 37 31
PM 60 N 34 27
PM 80 Y 31 24
PM 80 N 29 21
PM 100 22 15

peak 
profile

% willing 
to share

neighbors 
only?

vehicles needed for "90% wait < ..."

Table 2: Fleet sizes for case study system under varying ride sharing assumptions. 



First, the AM peak consistently requires more vehicles than the PM peak, so the AM 
peak determines the fleet size. At the “90% wait < 60s” service level, the system 
requires 53 vehicles if no ride sharing is allowed, but only 26 vehicles under the most 
optimistic ride sharing assumptions; this is a 51% reduction, which is in line with 
other results in the literature (section 1). If a lower service level is acceptable, the 
savings can be greater; at the “90% wait < 180s” service level, and under the most 
optimistic ride sharing assumptions, the fleet size is reduced by 62%, from 47 
vehicles to 18 vehicles. This is because longer waiting times imply longer queue 
lengths, which in turn allow increased vehicle occupancy, as discussed in section 3. 

When not all parties are willing to share, or the communication between parties in 
the station is more limited, the savings due to ride sharing are reduced, but still 
significant. Assuming that 80% of parties are willing to share, and that parties are 
limited to sharing with their neighbors, the fleet size required to provide the higher 
service level is reduced by 30%, from 53 vehicles to 37 vehicles. The fleet size 
required to meet the lower service level is reduced by 40%, from 47 vehicles to 28 
vehicles. This is still a substantial reduction, but, as noted in section 4, these results 
are quite sensitive to the fraction of parties that are willing to ride share; when this 
drops to 60%, the corresponding reductions in fleet size are 17% and 23%. 

The number of extra vehicles required because of the “neighbors only” restriction is 
fairly small (on the order of 10%) in the system under study, because there is only 
one destination and most parties are willing to share. Its effect is larger when there 
are more destinations; if there are two equally likely destinations, a party with a 
given number of neighbors is only half as likely to find a suitable party to share with. 
Our model indicates that for a similar system with two destinations and the AM peak 
demand split evenly between them, 45 vehicles are required to provide 
“90% wait < 60s” when 80% of parties are willing to share; this is a 15% reduction 
from the number required when there is no ride sharing at all. When there are 
multiple destinations, the station signage and layout become much more important. 

7. CONCLUSIONS 
The aim of this paper was to establish a suitable model to analyze the effects ride 
sharing has on PRT system performance, and examine how station design and 
passenger behavior factors should be taken into account. To this end, we developed a 
model for ride sharing based on queueing theory, and although the model requires a 
number of assumptions (see section 2), we believe it is a sound basis for analysis, 
and it provides an alternative to anything found already in the literature. This model 
was then used to explain the relationship between occupancy and queue length in the 
presence of ride sharing, and to demonstrate the effect increasing the number of 
destinations has on these relationships, comparing our results with those in the 
current literature. 

A crucial issue seemingly ignored in previous studies is the willingness of passengers 
to rideshare; in both Johnson (2005) and Andréasson (2005) it is assumed that all 
parties are perfectly willing to share. As discussed in section 4, if all parties behave 
rationally and seek to minimize their waiting time, no ridesharing will occur as it is 



the decision of the party at the head of the queue whether to share or not, and they 
get no benefit from doing so. Whilst incentives such as peer pressure and monetary 
savings may increase the likelihood of ride sharing occurring, as the effect of 
unwillingness to share on the beneficial effects of ridesharing is quite pronounced 
(see figure 3), one must take this issue into account in any analysis. 

A factor which appears to have a much smaller effect is the arrival party size; 
although larger, non-separable parties reduce the mean vehicle occupancy, this 
reduction is only significant when the mean party size approaches three. Thus under 
our assumption of less than 1.33 passengers per party (assumption A2), this effect is 
negligible. 

In the case study of section 6, our models were applied to a point-to-point system to 
determine the required fleet size to provide an acceptable level of service. In order to 
more realistically approximate peak period behavior, we dropped the assumption of a 
constant demand (A4) and instead used the two profiles shown in figure 4, 
representing AM and PM peaks. The simulation results presented in table 2 reveal 
that it is the sharper and higher AM peak which determines the fleet size, and under 
most optimistic ride sharing assumptions, we find a 51% reduction in the number of 
vehicles required at the “90% wait < 60s” service level, consistent with the findings 
in other literature (section 1). 

What our results also show, however, is the reduction in savings one obtains if some 
passengers are unwilling to share, or the station isn’t properly designed to promote 
ridesharing. At the same service level, but only assuming 80% of parties are willing 
to share, and that parties are limited to sharing with their neighbors, the reduction in 
fleet size drops to 30% (from 51%), and if the willingness is further reduced to 60%, 
the saving on vehicles is only 17%. Generating an environment which encourages 
passengers to rideshare at busy times is thus very important for it to be effective in 
allowing for smaller fleet sizes.  

Facilitating the passenger’s ability to rideshare also plays a crucial role, as the final 
analysis of section 6 demonstrated; for a station with two equally likely destinations, 
a willingness to share of 80%, and neighbors only interactions, the fleet size was 
only reduced by 15% (rather than 30% in the single destination case). 

Thus the optimistic projections of a 50% reduction in fleet size requirements due to 
ride sharing need to be tempered by the observations that such a figure makes 
potentially unrealistic assumptions about passenger behavior and station design. In 
order to achieve a benefit anywhere close to this figure when there are multiple 
destinations, station design (signage and layout) needs to be carefully considered so 
as to both facilitate and provide sufficient incentives for ride sharing in PRT.  
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