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Abstract

Secretion is a fundamental cellular process involving the regulated
release of intracellular products from cells. Physiological functions
such as neurotransmission, or the release of hormones and digestive
enzymes, are all governed by cell secretion. Anomalies in the processes
involved in secretion contribute to the development and progression of
diseases such as diabetes and other hormonal disorders. To unravel
the mechanisms that govern such diseases, it is essential to under-
stand how hormones, growth factors and neurotransmitters are syn-
thesised and processed, and how their signals are recognized, amplified
and transmitted by intracellular signaling pathways in the target cells.
Here, we discuss diverse aspects of the detailed mechanisms involved
in secretion in light of mathematical models. The models range from
stochastic ones describing the trafficking of secretory vesicles to de-
terministic ones investigating the regulation of cellular processes that
underlie hormonal secretion. In all cases, the models are closely re-
lated to experimental results and suggest theoretical predictions for
the secretion mechanisms.

Key words:Mathematical Model, Vesicles, Bifurcation Analysis, Exo-
cytosis, Hormone Secretion
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1 Introduction

An important goal in cell biology is to understand how physiological function
is translated into signaling or secretion processes and vice-versa. We have se-
lected different aspects of the mechanisms involved in secretion and focus on
the development of mathematical models that can inform experiments and
help to understand the details of the underlying processes. Hormone secre-
tion is a complex process, which involves the packaging of the hormone in se-
cretory vesicles, transportation to the cell membrane and calcium-triggered
exocytosis. We present mathematical models of hormone secretion from a
range of cell types and focus on various steps of the secretion pathway. The
next section presents kinetic compartmental models of the insulin secretory
granules in pancreatic β-cells; it also serves as a framework for the following
sections. Section 3 introduces a stochastic model of the transportation of
single secretory granules. Finally, the regulation of the calcium concentra-
tion (the main signal for exocytosis and hormone release) in two types of
pituitary cells is studied in Section 4. We end with a short conclusion in
Section 5.

2 Modeling of insulin secretion

Pancreatic β-cells are responsible for secretion of insulin in response to ele-
vated plasma glucose levels, and the malfunctioning of these cells is a major
contributor to the development of diabetes. The β-cells show bursting elec-
trical activity and oscillatory calcium levels and insulin secretion. Mathe-
matical modeling has contributed significantly to the understanding of the
generation of these rhythmic patterns; for reviews, see [5,23]. However, sur-
prisingly little work has been done on modeling insulin secretion, which is the
actual task of the β-cell. Already in the 1970’s, Grodsky [15] and Cerasi et
al. [10], among others, did model the pancreatic insulin response to various
kinds of glucose stimuli, but these models were phenomenological due to the
limited knowledge of the β-cell biology at that time. Only recently has our
knowledge of the control of the movement and fusion of insulin granules in-
creased to a level where we have started to formulate mechanistically-based
models.

Grodsky [15] proposed that insulin was located in ”packets”, plausibly
the insulin containing granules, but also possibly entire β-cells. Some of
the insulin was stored in a reserve pool, while other insulin packets were
located in a labile pool, ready for release in response to glucose. The la-
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bile pool is responsible for the first phase of insulin secretion [15], while
the reserve pool is responsible for creating a sustained second phase. This
basic distinction has at least been partly confirmed when the packets are
identified with granules [12,22]. Moreover, Grodsky [15] assumed that the
labile pool is heterogeneous in the sense that the packets in the pool have
different thresholds with respect to glucose, beyond which they release their
content. This assumption was necessary for explaining the so-called stair-
case experiment, where the glucose concentration was stepped up and each
step gave rise to a peak of insulin. There is no supporting evidence for gran-
ules having different thresholds [21], but Grodsky [15] mentioned that cells
apparently have different thresholds based on electro-physiological measure-
ments. Later, Jonkers and Henquin [18] showed that the number of active
cells is a sigmoidal function of the glucose concentration, as assumed by
Grodsky [15] for the threshold distribution.

Recently, we showed how to unify the threshold distribution for cells with
the pool description for granules [24], thus providing an updated version of
Grodsky’s model, which takes into account more of the recent knowledge
of β-cell biology. An overview of the model is given in Fig. 1. It in-
cludes mobilization of secretory granules from a very large reserve pool to
the cell periphery, where they attach to the plasma membrane (docking).
The granules can mature further (priming) and attach to calcium channels,
thus entering the ’readily releasable pool’ (RRP). Calcium influx provides
the signal triggering membrane fusion, and the insulin molecules can then
be released to the extracellular space. We also included the possibility of
so-called kiss-and-run exocytosis, where the fusion pore reseals before the
granule cargo is released. For the mathematical formulation we united the
mobilized and docked pools in a single ’intermediate pool’ (Fig. 1b). The
glucose-dependent increase in the number of cells showing a calcium sig-
nal [18] was included by distinguishing between readily releasable granules
in silent and active cells. Therefore, the RRP is heterogeneous in the sense
that only granules residing in cells with a threshold for calcium activity be-
low the ambient glucose concentration are allowed to fuse. Hence, our model
provides a biologically-founded explanation for the heterogeneity assumed
by Grodsky [15] and it is able to simulate the characteristic biphasic insulin
secretion pattern in response to a step in glucose stimulation, as well as the
secretory profile of the staircase stimulation protocol.

Another property of the pancreas that was implicitly included in Grod-
sky’s model is so-called derivative control, i.e., the fact that the pancreas
senses not only the glucose concentration but also the rate-of-change. Mod-
eling of the whole body system has shown that this property is necessary
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Figure 1. (a) Overview of granule pools and assumed glucose control
points. Glucose ([G]) is assumed to control synthesis and mobilization. In
addition, glucose promotes calcium influx through voltage gated calcium
channels, which raises the intracellular calcium concentration ([Ca2+]i),
the trigger of exocytosis. For further details, see the main text. (b)
Schematic representation of the model [24]. The RRP has been divided
into readily releasable granules located in silent cells with no Ca2+ influx,
exocytosis and release (open circles) and readily releasable granules located
in triggered cells (filled circles). Insulin is released from fused granules
with rate constant independent of the glucose concentration and the
threshold for activity of the cell.
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for explaining data from in-vivo studies [30]. Derivative control arises from
the threshold hypothesis as explained by Grodsky [15] and in greater detail
by Licko [20]. We are currently investigating how derivative control arises
in our mechanistic model [24], and how the subcellular parameters relate to
those of the in-vivo model [30]. The aim is to be able to predict from in-
vivo measurements, for example, which steps of glucose stimulated insulin
secretion are impaired in diabetics. Such indirect knowledge of in-vivo β-cell
functioning is virtually impossible without a mathematical model.

Two recent models go into greater details with respect to the different
pools of granules in single cells [6, 11]. Both models include calcium, a ne-
cessity for coupling the granule model to models of bursting and calcium
handling. Furthermore, the inclusion of calcium provides a way of model-
ing all steps from glycolysis via calcium dynamics to exocytosis and insulin
release. Very recently, we extended the model by Chen et al. [11] by in-
cluding a highly calcium-sensitive pool (HCSP) of granules [37, 38]. This
allows us to connect recent imaging experiments with granule properties. It
has been suggested that two different mechanisms operate during the two
phases of biphasic insulin secretion, with transient first-phase secretion due
to exocytosis of docked granules and the second sustained phase largely due
to newcomer granules. We showed in [25] that the inclusion of an HCSP
naturally leads to insulin secretion mainly from newcomer granules during
the second phase of secretion, and found that the model is compatible with
data from single cells on the HCSP and from stimulation of islets by glu-
cose, including L- and R-type Ca2+ channel knock-outs, as well as from
Syntaxin-1A deficient cells.

The mechanisms underlying various patterns of bursting electrical activ-
ity in response to different glucose stimuli are increasingly better understood
with the use of mathematical models [5, 23]. The inclusion of a detailed
description of insulin granules now allows modeling of events closer to secre-
tion [6, 11, 24]. However, these models are based on data from rodents. It
has recently been realized that human β-cells and islets differ substantially
from rodent preparations [7,9]. Thus, to gain an understanding of the β-cell
in diabetes these models should be updated as soon as more knowledge on
human β-cells appears. Fridlyand et al. [14] studied the incretin effect on the
oscillatory behavior. An important extension would be to include the effect
of incretins on insulin secretion. One aim is to use the models to interpret
in-vivo data more accurately as outlined above. Another aim is to construct
insulin pumps that follow the dynamics of the natural pancreas more closely,
for example, with respect to derivative control and pulsatile secretion. For
such an ”artificial pancreas”, it would be important to include paracrine in-
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teractions between α-, β- and δ-cells in the models [28]. Modeling of β-cells
will likely move closer to clinical applications, where it can be expected to
play an important role, as it continues to do in the understanding of the
complex oscillatory phenomena observed in β-cells and islets.

3 Modeling Trafficking of Secretory Vesicles

Intracellular traffic and delivery of secretory granules to the plasma mem-
brane play an important role in the process of secretion [25, 32]. Using the
complex motion of vesicles, we estimate the vesicular exocytose rate, by
taking into account the cytoskeletal organization of the cell.

The mathematical framework developed in [33] for modeling trafficking
of membrane vesicles can naturally be extended to secretory granules. In
this framework the cytosolic cellular compartment is represented as a do-
main Ω, which is approximated by a ball of radius R. Vesicles are secreted
at the level of the Golgi apparatus and their movement can be seen as alter-
nating between pure Brownian motion and deterministic movement along
microtubules. For simplicity, we assume that microtubules emerge from the
center of the cell and are radially organized in a symmetric way, ending at
the cell surface. Although vesicles are of different sizes, we only consider
vesicles of a mean radius a. Furthermore, there are plenty of vesicles in the
cytoplasm (hundreds to thousands), but we neglect the fluctuation in their
number and assume that as soon as a vesicle fuses, another is generated at
the Golgi resulting in a constant supply of new vesicles. This assumption
allows us to keep the number of vesicles constant.

We estimate the delivery rate, that is, the rate at which vesicles reach
the cell surface, as follows. We evaluate the flux of vesicles to an exocy-
totic site ∂Ωa and use the narrow escape theory described in [16]. This
theory considers the mean time it takes a Brownian particle to arrive at a
small absorbing surface ∂Ωa, while the particle is reflected at the remain-
ing boundary. We approximate a vesicle as a round homogeneous sphere,
so that its free movement is modeled here by the overdamped limit of the
Langevin equation [26]. Furthermore, since a vesicle can also bind and then
drift along microtubules with a deterministic velocity, its global motion is
described by the stochastic rule

Ẋ =

{ √
2D ẇ, for X(t) free,

V (t) r, for X(t) bound,
(1)

where X(t) denotes the position and V (t) ≥ 0 is a time-dependent drift
velocity along microtubules directed toward the cell surface; we assume that
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Figure 2. (a) Schematic representation of the vesicles’ dynamics in the
cell body. (b) Sample membrane vesicle trajectories in a three-dimensional
cell produced by simulations of the homogenized version Eqn. (2) of the
model.

the velocity along the microtubule is constant. The term w stands for δ-
correlated standard white noise and r is the radial unit vector. In order to
obtain an explicit expression for the vesicular flux to the site of exocytosis, we
replace the vesicles’ dynamics given by Eqn. (1) with a stochastic equation
containing a steady-state drift φ(X),

Ẋ = ∇φ(X) +
√

2D ω̇. (2)

Here, φ is the potential per unit mass, which generates the flow field velocity
given by φ(X) = 1

γ (V r) and the diffusion constant is given by

D =
kB Tp

m γ
,

where m is the vesicle mass, γ the viscosity coefficient, Tp the temperature,
and kB is Boltzmann’s constant. By using the distribution of vesicles at
steady state, and the property that the surface of the exocytosis sites ∂Ωa is
small compared to the rest of the soma area, we compute the flux of vesicles
to ∂Ωa. Then the vesicles’ arrival rate, as derived in [33], is given by

κδ =
1

τ δ
=

δ ϑ

π
[

R2 − R D
ϑ + D2

ϑ

] e−∆E/D,
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where ∆E = φm − φ0. Note that, φ0 and φm are both achieved on the cell
surface, so ∆E = 0. Moreover, the contribution of the last two terms in the
denominator is negligible (it is around 1%). Hence, we get

κδ =
1

τ δ
≈ δ ϑ

π R2
. (3)

To derive this formula, the reader should keep in mind that the switching
dynamics of the vesicle described by Eqn. (1) has been coarse grained by
a stochastic equation with a radially constant drift given by Eqn. (2). We
describe this procedure in detail in [33] and conclude that the effective drift
ϑ captures the organization of the microtubules. Fig. 2 shows a schematic
view of the model in panel (a) and sample trajectories of secretory vesicles
in panel (b) produced by simulation of Eqn. (2).

4 Regulation of Calcium Concentration

in Endocrine Cells

Exocytosis of secretory vesicles [2, 17, 36] depends on elevations in intracel-
lular calcium concentration [Ca2+]i. In endocrine cells, the repetitive rises
(oscillations) in [Ca2+]i are accompanied by plateau-bursting electrical ac-
tivity. Depending on the cell type, however, the bursting patterns can be
rather distinct, leading to significant differences in the maximum levels of
Ca2+ during a burst of action potentials. For example, the large-amplitude
rapid spiking during the active phase of pancreatic β-cell bursts [1,3,17] can
easily be distinguished from the small-spike amplitude in the active phase
of pituitary cell bursters [34–36]. Furthermore, in contrast to pancreatic
β-cells, whose rhythmic patterns have been extensively studied — see [5]
for a review, — pituitary bursting is far less well understood. We discuss
below recent insights in the regulation of plateau-bursting electrical activity
in two types of pituitary cells, namely, somatotroph cells that secrete growth
hormone and lactotroph cells that secrete prolactin.

4.1 Somatotroph Cells

In pituitary somatotrophs, modulation of the large-conductance calcium-
sensitive potassium (BK) channels shows that decreasing the BK current,
which is achieved in the mathematical model by increasing the parameter
bBK, dramatically alters the duration of the active phase of the bursting
electrical activity [34]. This voltage sensitivity consequently results in a de-
creased level of [Ca2+]i that is ultimately associated with reduced hormonal
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Figure 3. The c-dependent family W s(eM) of one-dimensional stable
manifolds of the saddle points along eM. Panel (a) shows W s(eM) for
bBK = 0 and panel (b) for bBK = 0.15 along with the family eM of saddle
equilibria (green dashed line). The family W s(eM) is shown as a blue
gradient surface with two solid (blue) lines marking the bounding
manifolds. The orbit Γ is depicted as a solid (red) curve. Reproduced from
J. Nowacki, S. H. Mazlan, H. M. Osinga and K. T. Tsaneva-Atanasova,
The role of large-conductance Calcium-activated K+ (BK) channels in
shaping bursting oscillations of a somatotroph cell model, Physica D
(2009) c© 2009, with permission from Elsevier.

secretion. The duration of the active phase depends on the mechanism that
governs the termination of the plateau-bursting. Since blocking of BK chan-
nels does not significantly alter the underlying bifurcation diagram of the
fast subsystem [34, Fig. 5], it cannot be the mechanism behind the termi-
nation of the active phase. However, for the range of c that corresponds to
the active phase in [34, Fig. 5], we have coexisting (steady-state) attractors
eH and eL in the fast subsystem that correspond to the active and passive
phases, respectively. Therefore, the end of the active phase must be ex-
plained by the fact the trajectory Γ of the full system leaves the basin of
attraction of eH, thereby entering the basin of attraction of eL.

The two-dimensional object in the full (Vm, ndr, c)-space that separates
the two basins of attraction is formed by the family of one-dimensional
stable manifolds of points eM on the middle branch of saddle equilibria.
This family, denoted W s(eM), is a well-defined manifold, because the branch
of saddle points eM and their associated one-dimensional manifolds depend
smoothly on c. We compute W s(eM) via continuation of a one-parameter
family of two-point boundary value problems [19]. Figure 3 shows W s(eM) as
a blue gradient surface with the associated branch of equilibria eM marked
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by a dashed (green) line. Panel (a) shows the manifold for bBK = 0 and
panel (b) for bBK = 0.15. In both cases the corresponding orbit Γ is shown
as well (red curve).

Due to the presence of a homoclinic bifurcation for the fast subsystem,
the corresponding saddle equilibrium must have the upper branch of its
one-dimensional stable manifold fold over and connect back to this saddle
equilibrium. Since the family of manifolds depends smoothly on c, one ex-
pects to see the folding happen earlier, for smaller values of c, so that the
upper branch comes back below the corresponding saddle equilibrium and
folds exponentially flat onto the lower branch. The start of this process can
be observed in Fig. 3 as the darker shaded band running through the lighter
side of W s(eM), which is caused by the smaller steps taken in the numerical
continuation to capture the dramatic change of the one-dimensional mani-
folds here. While the expected folding of the manifolds does take place before
the homoclinic bifurcation, it happens only for a relatively small range of
c-values and there is little difference between the manifolds for bBK = 0 and
bBK = 0.15. This means that bBK has no noticeable influence on the shape
of the basin of attraction of active-phase equilibrium eH. Hence, the param-
eter bBK only influences the shape of the orbit Γ itself, such that its position
with respect to W s(eM) changes. Indeed, bBK has the effect of increasing
the amplitude of the oscilations of Γ during the active phase. This increase
causes Γ to lie closer to W s(eM) so that is crosses W s(eM) for increasingly
smaller values of c. As illustrated in Fig. 3, as soon as Γ crosses W s(eM), it
drops down to eL and the active phase ends.

4.2 Lactotroph Cells

Lactotrophs are the anterior pituitary cells that secrete the hormone pro-
lactin, which is involved in reproductive function and plays a role in immu-
nity and metabolism. Like somatotrophs, lactotrophs are electrically active;
they can generate spontaneous spikes or plateau bursts [36]. Calcium can
enter the cell during plateau bursts and trigger hormone secretion. Thus,
electrical activity plays an important role in basal hormone secretion. Mod-
ulators of prolactin secretion, such as estradiol and dopamine often target
potassium (K+ ) channels which affect the cell’s excitability and, in turn,
[Ca2+]i and prolactin secretion. Dopamine (in nanomolar concentration) in-
hibits lactotrophs, partly by opening several K+ channels which decreases
electrical activity [4]. However, low doses of dopamine (picomolar concentra-
tion) paradoxically stimulate prolactin secretion [8,13]. How can activation
of K+ channels increase [Ca2+]i and stimulate prolactin secretion? Van Goor
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Figure 4. In the absence of BK or A-type channels, the lactotroph model
is set to generate spontaneous spikes (left panels). Little Ca2+ enters the
cell during a spike and average [Ca2+]i is low. Addition of BK channels
transforms the activity pattern to bursting (middle panels), with an
increase in the average [Ca2+]i. Addition of the A-type channels also
switches the activity pattern to bursting, but does not increase average
[Ca2+]i. For details see [29].

et al. [35] showed that blocking the BK channels switches the pattern of so-
matotroph activity from bursting to spiking, correlated with a decrease in
[Ca2+]i. If a low dose of dopamine activates mostly BK or equivalent K+

channels, this could increase bursting and stimulate lactotrophs. For these
reasons we investigate the role of the BK channels in the electrical activity
of lactotrophs.

We built a model of a lactotroph cell based on a simple model for burst-
ing in pancreatic β-cells in [27]. That is, we adjusted the parameters of the
voltage-dependent Ca2+ and K+ channels of the β-cell model to match pa-
rameters measured in lactotrophs and added basic Ca2+ dynamics. We also
tuned the kinetics of the K+ channels so that the model is spiking, not burst-
ing. The addition of the BK channels, with fast voltage-dependent kinetics,
transforms the electrical activity pattern from spiking to plateau bursting
and increases [Ca2+]i; see Fig. 4. Adding more BK channels leads to longer
bursts and higher [Ca2+]i levels. Interestingly, this bursting activity has
the same properties as the activity obtained from models of somatotroph
cells [34,35], such as low-amplitude spiking during the active phase. Unlike
“classic” square wave bursting, where slow variations of [Ca2+]i switch the
system between a low steady state and a high, oscillatory (spiking) state,
bursting in somatotrophs and lactotrophs involve transitions between two
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steady states. The small-amplitude oscillations in the high state are due to
a relatively slow rate of convergence to the high steady state because [Ca2+]i
dynamics are not as “slow” as in square wave bursting.

Another type of channel that is expressed by lactotrophs and can be
modulated by dopamine is the A-type channel. It has fast voltage-dependent
activation like BK channels, but also inactivates when membrane potential
is maintained above rest. Adding A-type channels to the lactotroph model
also switches the activity pattern from spiking to bursting. Also, [Ca2+]i
levels are slightly increased for a moderate addition of A-type channels.
However, unlike for BK channels, adding more A-type channels leads to
decreased [Ca2+]i levels. Hence, BK and A-type channels act differently to
produce bursting: BK activation speeds up the total K+ current, leading
to stabilization of high voltage levels, which necessitates a higher [Ca2+]i
level to terminate the bursts. On the other hand, the A-type current is
mostly activated at lower voltage levels, which prevents spike/burst onset
until [Ca2+]i levels are sufficiently low [29]. Moreover, in the case of a
moderate addition of A-type channels, bursting can continue even when
[Ca2+]i is clamped at a fixed value [31]. This is a new type of bursting that
is not characterized by an obvious slow variable.

In summary, models of electrical activity in somatotrophs and lactotrophs
are relatively new, but they have already revealed new bursting behaviors,
for which some K+ currents can have stimulatory effects.

5 Conclusions

Due to the fact that hormonal secretion is a very complex physiological
process, modeling studies usually focus on a particular step or pathway
involved in this phenomenon. However, the ultimate goal of understanding
how the process works at a system’s level requires the combination of these
individual models and investigation of the complete system. A necessary first
step toward achieving this goal is bringing together researchers modeling the
mechanisms of secretion at different levels, from molecular to the level of the
organ.
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J. of Physiol. 444 (2002), no. 1, 43–51.

23. M.G. Pedersen, Contributions of mathematical modeling of beta cells
to the understanding of beta-cell oscillations and insulin secretion, J.
of Diabetes Sci. and Tech. 3 (2009), 12–20.

24. M.G. Pedersen, A. Corradin, G.M. Toffolo, and C. Cobelli, A sub-
cellular model of glucose-stimulated pancreatic insulin secretion, Phil.
Trans. R. Soc. A 366 (2008), no. 1880, 3525.

25. M.G. Pedersen and A. Sherman, Newcomer insulin secretory granules
as a highly calcium-sensitive pool, Proc. Natl. Acad. Sci. U S A 106

(2009), no. 18, 7432.

26. Z. Schuss, Theory and applications of stochastic differential equations,
J. Wiley, New York, 1980.

27. A. Sherman and J. Rinzel, Rhythmogenic effects of weak electrotonic
coupling in neuronal models, Proc. Natl. Acad. Sci. U S A 89 (1992),
no. 6, 2471–2474.

28. B. Soria, E. Andreu, G. Berna, E. Fuentes, A. Gil, T. León-Quinto,
F. Mart́ın, E. Montanya, A. Nadal, J.A. Reig, et al., Engineering
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