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Abstract

We study a recently proposed somatotroph model that exhibits plateau bursting, a form
of electrical activity that is typical for this cell type. Wefocus on the influence of the large
conductance (BK-type)Ca

2+-activatedK+ current on the oscillations and duration of the
active phase. The model involves two different time scales,but a standard bifurcation anal-
ysis of the fast-time limit does not completely explain the behavior of the model,which is
subtly different from classical models for plateau bursting. In particular, the nullclines and
velocities of the fast variables play an important role in shaping the bursting oscillations. We
determine numerically how the fraction of open BK channels controls the amplitude of the
fast oscillations during the active phase. Furthermore, weshow how manifolds of the fast
subsystem are involved in the termination of the active phase.

Keywords: Bursting, Nullclines, Stable manifolds, Fast-slow analysis

1 Introduction

Plateau bursting is a common pattern of electrical activityin hormone-secreting cells. Typical
examples are the endocrine cells of the anterior pituitary gland, which are responsible for the
secretion of hormones that, in turn, regulate a variety of other glands in the body [1, 2]. All of
the anterior pituitary cells exhibitCa2+-dependent electrical activity that can vary significantly
between cell types, ranging from spiking to bursting with distinct duration of the depolarized
plateaus [1]. We focus on the behavior of a particular type ofpituitary cell, namely, the soma-
totroph cell which releases growth hormone. Experimental data [1, 2, 3, 4] demonstrate that
these cells fire plateau bursts of action potential (AP) associated with depolarization of the mem-
brane potential (Vm). In turn, these plateau bursts induceCa2+-signals with an amplitude that is
sufficient to trigger hormonal secretion [1, 2]. Clearly, a deeper insight into the mechanisms that
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govern the generation and duration of bursts of AP and concurrentCa2+ signals is an important
step toward a better understanding of secretory responses.

In order to address these questions we study the somatotrophcell model introduced by
Tsaneva-Atanasova et al. in [4]. This model is based on the classic Hodgkin-Huxley formal-
ism [5, 6] and, therefore, incorporates the main biophysical determinants of the behavior of
somatotrophs. Previous theoretical studies have focused on investigations of the effect of vari-
ous currents on the electrical activity in pituitary somatotrophs [4] as well as phase resetting [7].
Here, we concentrate on the underlying dynamics of plateau bursting. Therefore, it suffices to
study a simplified three-dimensional version of the model, which also allows for direct visual-
ization of the bursting behavior. According to some bursting classifications [8], the model in [4]
is an example of fold/subHopf bursting, also termed pseudo-plateau bursting [7]. Interestingly,
compared with previously published models of fold/subHopfbursters [7, 9, 10, 11], our model
is subtly different, because it features very small plateauoscillations. Moreover, its active phase
ends rather abruptly in a way that appears to be unrelated to the underlying bifurcation structure
of the fast subsystem.

The results in [4] suggest that the BK channels of the somatotroph cell play a key role in the
initiation and the duration of plateau bursting. Modeling studies of other pituitary cell types have
also shown that the magnitude of the BK current modulates theduration of plateau bursting [3,
10, 11]. Since BK channels are present in many cell types and influence a variety of cellular
functions by controllingCa2+-influx [1, 2, 12], it is essential to explore their role in shaping the
bursting oscillations.

In this paper we focus on the analysis of plateau-bursting oscillations in our model and the
role of BK channels in the control of this phenomenon. In the next section we introduce a
simplified version of the model in [4]. Section 3 presents a bifurcation analysis that is standard
for fast-slow systems [13] and has been applied extensivelyin previous studies of fold/subHopf
bursters [7, 9, 10, 11]. We demonstrate that the classical approach is unable to give a complete
explanation of the dynamics found in our model. In section 4 we apply other dynamical systems
techniques [14, 15], taking into account the effects of the nullclines and velocities of the fast
variables on the frequency and amplitude of the oscillations during the active phase of a burst. In
section 5 we address the question about the factors that determine the end of the active phase and
the influence of the BK channels on its duration. All numerical computations were done using
AUTO [16, 17] and XPP [18] and the visualizations were done inMatlab [19] with use of its
Matplotlib tool.

2 The model

The model in this paper is a reduced version of the model presented in [4] and consists of three
ordinary differential equations that describe the rates ofchange of the membrane potentialVm, the
delayed-rectifier activation gating variablendr that governs the fraction of openK+-channels, and
the intracellular concentration[Ca2+]i denoted byc. Here, we neglect the dynamics of theCa2+

concentration in the endoplasmic reticulum and assume thatit is constant atCaER = 167µM;
namely, during plateau bursting in the full model[Ca2+]ER oscillates with very small amplitude
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around an average value of about 167µM [4]. Hence, this is a reasonable assumption that allows
for a dimension reduction. The simplified equations are as follows:

dVm

dt
= −

1

Cm

Iionic(Vm, ndr, c), (1)

dndr

dt
=

ndr∞(Vm) − ndr

τndr

, (2)

dc

dt
= fβ(−α(ICaL

(Vm) + ICaT
(Vm)) − JPMCA(c))

+
1

vcell

(pER(CaER(Vm) − c) − JSERCA(c)). (3)

Model details as well as the values of the parameters used canbe found in the Appendix.
System (1)–(3) is an example of a fast-slow system; the variablesVm andndr change on

a considerably faster time scale thanc. A standard approach to analysize such systems is to
consider the singular limit where the slow variablec is assumed to be constant [13, 20]. In this
limit, equations (1) and (2) represent the so-called fast subsystem, which describes the dynamics
of the two variablesVm andndr, and the slow variablec is treated as a parameter.

3 Analysis of the model using the fast subsystem

Both experimental and theoretical results support the claim that BK channels have a large influ-
ence on the generation and duration of the active phase of plateau bursting in pituitary cells [3, 4].
Blocking of the BK-channels results in reduction of the BK-typeCa2+-activatedK+ current; see
equations (4)–(5) in the Appendix. In our model the fractionof blocked BK channels is ex-
pressed by the value of the parameterbBK. We consider bothbBK = 0 andbBK = 0.15, that is, the
model without any BK channels blocked and with 15% of the openBK channels blocked.

The bursting behavior of the model withbBK = 0 is shown in Fig. 1. Panel (a) shows a
time series of bothVm (blue) andc (red) that illustrates pseudo-plateau-bursting oscillations in
Vm characterized by an active (bursting) and a silent phase. During the silent phaseVm slowly
rises until it reaches a threshold level, which triggers thefiring of an action potential (AP). The
bursting activity results in an increase ofc, because during the active phase there isCa2+ influx
through voltage-gated calcium channels. Asc reaches a certain concentration, forbBK = 0 it
is c ≈ 1 µM, the active phase ends. In the model, this end is caused by the activation of BK
channels located further away from the voltage-gated calcium channels (BKFAR; see equation (5)
in the Appendix) that repolarize the membrane potential [4]and in this way control the level of
[Ca2+]i. The maximal rise ofCa2+ is determined by the number of active BK channels [4, 12].
Note that the duration of the active phase, which in Fig. 1(a)is marked by black dashed lines, is
significantly shorter than the duration of the silent phase.Hence, the rise inc is noticeably faster
than its decay.

The pseudo-plateau-bursting oscillations in panel (a) correspond to a globally attracting peri-
odic orbit of system (1)–(3). Figure 1(b) shows this periodic orbit, in projection onto the(c, Vm)-
plane, as the black closed curveΓ superimposed on the bifurcation diagram of the fast subsys-
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Figure 1: Bursting oscillations in system (1)–(3) withbBK = 0. Panel (a) shows the periodic
dynamics ofVm (blue) andc (red) versus time. The active phase is marked by black dashedlines.
Panel (b) shows this same periodic orbitΓ (black) overlaid on the bifurcation diagram of the
fast subsystem in the(c, Vm)-plane. The solid blue curves are branches of stable equilibria; the
dashed green line consists of saddle equilibria; dashed redlines show the maxima and minima
of the family of unstable periodic orbits that arises from the Hopf bifurcation point labeledH;
this family ends in a homoclinic bifurcation markedHC; labelsLP andSN indicate saddle-node
bifurcations.

tem (1)–(2). The bifurcation diagram of the fast subsystem (1)–(2) is formed by a Z-shaped
branch of equilibria and a family of unstable periodic orbits. The top part of the Z-shaped branch
(solid blue curve) is a familyeH of stable foci that loses stability at a subcritical Hopf bifurcation
markedH; this top part ends at a saddle-node bifurcation labeledSN. The bottom part of the
Z-shaped branch is a familyeL of stable nodes that also ends at a saddle-node bifurcation,which
is labeledLP; the middle branch (dashed green line) in between the two saddle-node bifurcations
is a familyeM of saddle equilibria. The family of unstable periodic orbits that emanates from the
subcritical Hopf bifurcation terminates in a homoclinic bifurcation ateM (labeledHC). In rela-
tion to the full system (1)–(3), the brancheH corresponds to the active phase andeL to the silent
phase.

The bifurcation diagram of the fast subsystem (1)–(2) is of fold/subHopf type [8] and it is
used to explain the behavior of the full system (1)–(3) as follows [13, 20]. The silent phase ofΓ
occurs along the stable brancheL. SinceVm is low, there is no influx of calcium andc decreases
due to efflux. Hence, the phase point tracingΓ approximately followseL until it reachesLP. The
decrease of calcium is accompanied by a gradual increase in the membrane potential, which leads
to depolarization that is necessary for the activation of voltage-gatedCa2+-channels. Indeed, the
bifurcation diagram of the fast subsystem predicts the thresholds ofVm andc that mediate the
transition from the silent to the active phase. As soon asVm increases beyond the critical value
at LP, the active phase begins, which is characterized by a rapid increase ofVm as the phase
point ofΓ moves up to the only remaining attractor on the brancheH. The rapid change leads to
an overshoot followed by several weaker oscillations alongeH. SinceVm is high alongeH, the
voltage-gatedCa2+-channels are open and[Ca2+]i starts to increase. Dynamically this means that
Γ crosses thec-nullcline and, thus, changes its direction of motion.
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Figure 2: Bursting oscillations in system (1)–(3) withbBK = 0.15. Panel (a) shows the periodic
dynamics ofVm (blue) andc (red) versus time. The active phase is marked by black dashedlines.
Panel (b) shows this same periodic orbitΓ (black) overlaid on the bifurcation diagram of the
fast subsystem in the(c, Vm)-plane. The solid blue curves are branches of stable equilibria; the
dashed green line consists of saddle equilibria; dashed redlines show the maxima and minima
of the family of unstable periodic orbits that arises from the Hopf bifurcation point labeledH;
this family ends in a homoclinic bifurcation markedHC; labelsLP andSN indicate saddle-node
bifurcations.

Continuing the argument, one expects that the active phase ends at the moment wheneH loses
stability, that is, at the Hopf bifurcationH, or perhaps at the homoclinic bifurcationHC. However,
in contrast to classical plateau-bursting (square-wave orfold/homoclinic) oscillators [6, 8, 21, 22]
and pseudo-plateau (fold/subHopf) bursters [7, 9, 10, 11],the oscillations take place away from
the family of periodic orbits. Hence, the Hopf and homoclinic bifurcations do not seem to play
a role at all in the termination of the active phase ofΓ. This same surprising behavior can also
be observed forbBK = 0.15 as is shown in Fig. 2. Here, the active phase consists of fewer
oscillations, but with larger amplitude. SettingbBK = 0.15 reduces the magnitude of the BK
current that is repolarizing in our model, which results in an increase of the rate of change ofVm;
see equation (1). As withbBK = 0, the active phase ends long before the Hopf or homoclinic
bifurcations. Note that the active phase, labeled by dashedlines in panel (a), is even shorter
than forbBK = 0 and ends at a smaller concentration ofCa2+, which only reaches the value of
c ≈ 0.7 µM. Another major difference between the two cases is the manner in whichΓ oscillates
during the active phase. ForbBK = 0 the oscillations lie mostly below the brancheH, while for
bBK = 0.15 the oscillations are always aroundeH.

The fact thatΓ oscillates at all during the active phase requires that the slow variablec

changes faster than the speed at whichΓ is attracted toeH. In order to establish the rate of
convergence, we compute the eigenvalues of the fast subsystem (1)–(2) for each value ofVm

along the Z-shaped branch of equilibria. Figure 3 shows the real (top row) and imaginary parts
(bottom row) of the eigenvalues for the casesbBK = 0 and bBK = 0.15 in the left and right
columns, respectively. Since the eigenvalues ofeL are mostly real with rather large negative real
parts, there are no oscillations in this region andΓ is sliding along the branch until it reaches
LP. Aproximately atLP the orbitΓ jumps toeH and enters the active phase. The familyeH are
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Figure 3: Eigenvalues of the fast subsystem withbBK = 0 (left column) andbBK = 0.15 (right
column) as a function ofVm along the Z-shaped branch of equilibriaeL, eM andeH; panels (a)
and (c) show the real parts and panels (b) and (d) the imaginary parts of the eigenvalues; the
dotted vertical lines mark the bifurcation pointsLP, SN andH, respectively.

stable foci and the eigenvalues along this branch are complex conjugate with negative real parts.
The transition ofΓ from eL to eH is marked by a large overshoot at the beginning of the active
phase determined by the magnitude of the eigenvalues at thisc value. Fig. 3 shows that the real
parts of the eigenvalues alongeH are smaller forbBK = 0.15, while the imaginary parts are the
same as forbBK = 0. Hence, the rate of convergence is weaker forbBK = 0.15, which causes the
difference in amplitudes of the oscillations during the active phase.

4 Oscillations during the active phase

Unfortunately, the analysis of the fast subsystem does not explain why the peaks of the plateau
oscillations are beloweH for bBK = 0, as illustrated in Fig. 1(b). The oscillations forbBK = 0.15
are clearly aroundeH, which is more in accordance with the theory [8]; see Fig.2(b). In fact, the
theory does not make any statements about this difference inoscillations, but they seem counter-
intuitive nonetheless. Let us study the nature of the oscillations in more detail by considering the
Vm-nullcline, which separates the regions of increasing and decreasingVm. We focus on the part
of the active phase after the first overshoot.

Figure 4 shows three-dimensional views of one oscillation of Γ (red curve) during the active
phase past the overshoot. Panel (a) shows an oscillation forbBK = 0 in the range
c ∈ [0.519, 0.679] µM and panel (b) shows an oscillation forbBK = 0.15 in the range
c ∈ [0.465, 0.669] µM. The Vm-nullcline is a surface in(Vm, ndr, c)-space, shown with a green
to yellow gradient, and there are three intersection pointswith this part ofΓ, indicated by red
dots. Note thatΓ has a local maximum or minum inVm precisely at these intersection points.
The (blue) point cloud is formed by trajectories of the fast subsystem (1)–(2), generated from
initial conditions onΓ. As expected, each trajectory converges to the brancheH of stable foci
(blue curve). Figure 4 reveals that the oscillatory nature of Γ is essentially the same, except
that the second crossing with theVm-nullcline for bBK = 0 in panel (a) happens beloweH, while
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for bBK = 0.15 in panel (b) the second crossing takes place aboveeH. More precisely, the be-
havior ofΓ is entirely in line with the theory. Let us illustrate this further by considering three
cross-sections in the(ndr, Vm)-plane of the phase space shown in Fig.4(a) forbBK = 0, namely,
at c = 0.541 µM, c = 0.559 µM and c = 0.578 µM; see Fig. 5. The trajectories of the fast
subsystem generated from initial conditionsγc on Γ (red dots) are drawn as solid (blue) curves
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and the cross-sections illustrate the different behavior depending on the position of the intial
condition relative to theVm-nullcline (green). Forc = 0.541 µM, the initial condition lies on
the right-hand side of theVm-nullcline and, at first,Vm decreases. Hence the trajectory of the
fast subsystem appears to move away from the attractor. Forc = 0.578 µM the initial condition
lies on the left-hand side of theVm-nullcline andVm starts to rise immediately. The cross-section
at c = 0.559 µM illustrates the transition between these two cases, wherethe trajectory of the
fast subsystem starts exactly on theVm-nullcline. SinceΓ has a maximum or minimum precisely
at these transition points, the change in the direction of motion satisfies the theory for the fast
subsystem, as well as forΓ.

The fact that the oscillations ofΓ during the active phase forbBK = 0.15 are able to reach the
upper part of theVm-nullcline surface in Fig. 4(b) means that, in contrast to the case forbBK = 0,
the oscillations reach thendr-nullcline. We illustrate this in Fig. 6(a) by plotting the entire active
phase past the first overshoot in(V̇m, ṅdr, c)-space, that is, in terms of the velocities of the fast
variablesVm andndr. The active phase forbBK = 0 (red curve) lasts five oscillations, while the
active phase forbBK = 0.15 (cyan curve) is much shorter and lasts only two oscillationsafter
the first overshoot. The horizontal (green) plane atV̇m = 0 is theVm-nullcline. Note that each
oscillation of the active phase both forbBK = 0 andbBK = 0.15 crosses theVm-nullcline twice.
This can most easily be seen in Fig. 6(b), where we plot the projection onto the(c, V̇m)-plane
with the Vm-nullcline shown as a dashed (green) line. The vertical (blue) plane atṅdr = 0 is
the ndr-nullcline. The active phase forbBK = 0.15 crosses thendr-nullcline also twice during
each revolution. However, forbBK = 0 the first two oscillations do not reach thendr-nullcline,
as is most clearly shown in the projection onto the(c, ṅdr)-plane in Fig. 6(c). In fact, the third
oscillation forbBK = 0 only just crosses thendr-nullcline; compare also with Fig. 1(b) where the
third oscillation after the overshoot barely goes around the brancheH.

Figure 6 indicates that thendr-nullcline plays an essential role in shaping the oscillations
during the active phase. Surprisingly, thendr-nullcline does not dependend onbBK or c at all.
That is, the level of[Ca2+]i, which is regulated by the value ofbBK, does not influence the position
of thendr-nullcline. Hence, the transition happens solely through the variation ofΓ. Since the
modulation of BK channel activity significantly affects theshape and duration of the active phase
it is of interest to obtain an estimate of the criticalbBK-value for which the active phase changes
from oscillating below to oscillation aroundeH. We define the moment of this transition as the
bBK-value for which the first oscillation ofΓ after the initial overshoot is tangent to thendr-
nullcline. This means thaṫndr = 0 at the peak of the second oscillation, whereV̇m = 0 for the
third time. Note that the conditioṅndr = 0 as well asV̇m = 0 means thatΓ will be tangent toeH.
We track the points along the active phase ofΓ whereV̇m = 0 numerically and continue the third
such point in the parameterbBK while monitoring the value oḟndr; the result is shown in Fig. 7.
If ṅdr < 0 then the first oscillation ofΓ after the overshoot will be beloweH. If ṅdr > 0 then
the second peak already lies aboveeH, so that most likely all oscillations of the active phase are
aroundeH. We determined numerically that the transition happens approximately atbBK = 0.07.
The time series ofΓ and the associated bifurcation diagram of the fast subsystem for this critical
valuebBK = 0.07 are shown in Fig. 8; compare also with Figs. 1 and 2.
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Figure 6: The active phase ofΓ past the first overshoot forbBK = 0 (red curve) andbBK =
0.15 (cyan curve) plotted in(V̇m, ṅdr, c)-space (a) along with projections onto the(c, V̇m)- and
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Figure 8: Bursting oscillations in system (1)–(3) withbBK = 0.07. Panel (a) shows the periodic
dynamics ofVm (blue) andc (red) versus time. Panel (b) shows this same periodic orbitΓ
(black) overlaid on the bifurcation diagram of the fast subsystem in the(c, Vm)-plane. The solid
blue curves are branches of stable equilibria; the dashed green line consists of saddle equilibria;
dashed red lines show the maxima and minima of the family of unstable periodic orbits that arises
from the Hopf bifurcation point labeledH; this family ends in a homoclinic bifurcation marked
HC; labelsLP andSN indicate saddle-node bifurcations.

5 The end of the active phase

Modulating the BK current not only affects the position of the oscillations in the active phase
relative to the equlibrium brancheH. Figures 1, 2, and 8 show that increasingbBK dramatically
alters the duration of the active phase. The active phase contains six oscillations forbBK = 0
and ends relatively close to the homoclinic bifurcationHC, but for bBK = 0.07 there are five
oscillations, and forbBK = 0.15 only three oscillations remain, while the end of the active phase
moves increasingly further away to the left ofHC. Note that the variation ofbBK has almost no
effect on the bifurcation diagram of the fast subsystem, so that this cannot be the mechanism
behind the termination of the active phase.
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Figure 9: Thec-dependent familyW s(eM) of one-dimensional stable manifolds of the saddle
points alongeM in betweenLP andHC. Panel (a) shows the manifold forbBK = 0 and panel (b)
for bBK = 0.15 along with the familyeM of saddle equilibria (green dashed line). The manifold
W s(eM) is shown as a blue gradient surface with two solid (blue) lines marking the bounding
manifolds atLP andHC. The orbitΓ is depicted as a solid (red) curve.

Since we have coexisting attractors for the range ofc that corresponds to the active phase,
the end of the active phase must be explained by the fact thatΓ leaves the basin of attraction
of eH, thereby entering the basin of attraction ofeL. The projection onto the(c, Vm)-plane of
the bifurcation diagram of the fast subsystem appears to indicate that the brancheM of saddle
equilibria separates the two basins of attraction. However, in the full (Vm, ndr, c)-space the sep-
aratrix is formed by the family of one-dimensional stable manifolds of the saddle points oneM.
This family, denotedW s(eM), is a well-defined manifold for saddle points oneM in between
the saddld-node bifurcationLP and the homoclinic bifurcation HC; note that the family of one-
dimensional stable manifolds continues to exist for pointson eM pastHC, but then the manifols
are no longer separating the basins of attraction.

We compute the familyW s(eM) via continuation of a one-parameter family of two-point
boundary value problems [23]. The manifoldW s(eM) is parametrized byc and the computation
effectively generates a family of orbit segments that startat a point on the (c-dependent) stable
eigenvector sufficiently close to the (c-dependent) saddle point oneM; we refer to [23, 24] for
details on the precise boundary conditions. The branches starting along the eigendirection with
positiveVm were computed up to arclength60 and those with negativeVm up to arclength10.
Figure 9 showsW s(eM) as a blue gradient surface with the associated equilibria oneM marked
by a dashed (green) line. Panel (a) shows the manifold forbBK = 0 and panel (b) forbBK = 0.15.
In both cases the corresponding orbitΓ is shown as well (red curve).

The manifoldsW s(eM) for bBK = 0 and bBK = 0.15 are quite similar. For low values of
c the surface is relatively straightforward with each one-dimensional manifold having one side
(the upper branch) extend toward−∞ and the other side extend toward+∞ for both Vm and
ndr. The first bounding manifold on this side is shown as a thick (blue) curve and corresponds to
the manifold at the moment of the saddle-node bifurcation (LP). The manifolds vary smoothly
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with c and, in fact, they hardly change initially asc increases. The other side ofW s(eM) is
bounded by the homoclinic bifurcation, which is again shownas a thick (blue) curve. Here,
the one-dimensional stable manifold of the corresponding saddle equilibrium oneM must have
its upper branch fold over and connect back to this saddle equilibrium. Since the family of
manifolds depends smoothly onc, one expects to see the folding happening slightly earlier,for
slightly smaller values ofc, so that the upper branch comes back below the correspondingsaddle
equilibrium and folds exponentially flat onto the lower branch, also extending to−∞ for both
Vm andndr. The start of this process can be observed in Fig. 9 as the darker shaded band running
through the lighter side ofW s(eM), which is caused by the smaller steps taken in the continuation
to capture the dramatic change of the one-dimensional manifolds here.

While the expected folding of the manifolds does take place before the homoclinic bifurca-
tion, it happens only for a relatively small range ofc-values and there is little difference between
the manifolds forbBK = 0 andbBK = 0.15. This means thatbBK has no noticeable influence on
the shape of the basin of attraction ofeH. Hence, similar to what was the case for the oscillations
below or aroundeH, the parameterbBK only influences the shape of the orbitΓ itself such that its
position with respect toW s(eM) changes. Indeed,bBK has the effect of increasing the amplitude
of the oscilations ofΓ during the active phase. This increase causesΓ to lie closer toW s(eM) so
that is crossesW s(eM) for increasingly smaller values ofc. As illustrated in Fig. 9, as soon asΓ
crossesW s(eM), it drops down toeL and the active phase ends.

Therefore, the behavior of system (1)–(3) can be explained using the fast subsystem (1)–(2),
but the bifurcation analysis must include the computation of the stable manifolds that bound the
basins of attraction ofeH andeL that represent the active and silent phases, respectively.As we
already noted earlier, the fast subsystem is, however, not noticeably affected when a fraction of
the BK channels is blocked. The parameterbBK only influences the amplitude ofΓ, which may
be inferred from inspecting the contraction rates along thebrancheH, but is extremely subtle. An
increase in amplitude causesΓ to oscillate closer toW s(eM) already for small values ofc, which
leads to the earlier termination of the active phase.

6 Conclusion

We performed a detailed analysis of a fast-slow single-compartment physiologically-based cell
model of fold/subHopf type. We used a reduced version of a somatotroph cell model by Tsaneva-
Atanasova et al. [4] that includes modulation of the BK channels, controlled by the parameter
bBK. As previously reported in [3, 4], blocking of the BK channels significantly influences the
model behavior. We considered the cases of no (bBK = 0) and 15% blocking (bBK = 0.15). In
order to understand fully the behavior of the bursting trajectories in our model we had to consider
dynamical systems techniques other than the classical bifurcation analysis of the corresponding
fast subsystem, where one considers the singular limit of stationary slow flow. We analyzed
the seemingly counterintuitive behavior of the plateau bursting taking place below the branch
of attracting equilibria of the fast subsystem that corresponds to the active phase. Furthermore,
we used continuation to compute the basin boundary of this branch of attracting equilibria of
the fast subsystem as a family of one-dimensional stable manifolds of saddle equilibria. Our
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computation showed that this surface marks the end of the active phase.
Despite the fact that our model exhibits a well-known fold/subHopf bifurcation structure for

the fast subsystem, the pseudo-plateau-bursting behavioris subtly different from that found in
other fold/subHopf bursting model systems [7, 9, 10, 11] andclearly different from the behavior
of classical square-wave (fold/Homoclinic) bursters [6, 8, 21, 22]. Most importantly, blocking of
BK channels does not significantly alter the underlying bifurcation diagram of the fast subsystem,
including the family of stable manifolds. However, it has a profound effect on the shape and
duration of the bursting oscillations during the active phase.

Given the importance of the rapid ionic activities in pituitary cells that set the levels of
[Ca2+]i [3, 4] and are instrumental for the regulation of hormone exocytosis [1, 2], it is im-
portant to identify key determinants of these activities. This is not merely of academic interest,
as it may have implications for the hormone release process via modulation of the intracellular
calcium levels. Indeed, changing the conductance of voltage-gatedK+ channels orKCa chan-
nels, such as the BK channel, changes the spike amplitude in the active phase of a burst as well
as its duration. This voltage sensitivity consequently results in a decreased level of[Ca2+]i that
is ultimately associated with reduced hormonal secretion [1]. Some effects of BK blockade and
natural variation of BK channel density were discussed in [4], and BK blockade was shown
to convert apparent pseudo-plateau bursting in pituitary somatotrophs to large-amplitude spik-
ing [3]. Similar effects are seen by varying the time constant of voltage-gatedK+ channels or
the conductance of voltage-dependentCa2+ channels (unpublished observations). Although the
emphasis here has been on the dynamical structures of the model, our results with regard to the
effect that blocking of the BK channels has on the shape and duration of the bursting active phase
oscillations could be interpreted in a broader context. They imply that any modification in the
currents underlying pseudo-plateau bursting that leads tothe increase in the rate of change of the
fast variables should result in shorter burst duration, provided that the bifurcation diagram of the
fast subsystem remains almost unchanged.

The general understanding of the mechanism involved in control of the behavior of secretory
anterior pituitary cells is very important, because these cells play a major role in the homeostasis.
Organized by the hypothalamus, the pituitary cells are releasing vital hormones. We focused our
interest on pituitary somatotrophs, which fire plateau-burst APs to generateCa2+ signals to trig-
ger the secretion of growth hormone. However, our analysis and techniques are also applicable
to other models of pituitary cells and broaden the tools for investigating their dynamics.

Acknowledgments

The authors thank Arthur Sherman and Joel Tabac for helpful discussions, and Thorsten Rieß
for his help with the formulation of the two-point boundary problem in AUTO [16, 17] for the
computation of the family of one-dimensional stable manifolds. JN was supported by grant
EP/E032249/1 from the Engineering and Physical Sciences Research Council (EPSRC), and
HMO by an EPSRC Advanced Research Fellowship grant. HMO is grateful for the support and
hospitality of Cornell University at which part of this workwas done.

13



References

[1] F. van Goor, D. Zivadinovic, A. J. Martinez-Fuentes, S. S. Stojilkovic, Dependence of
pituitary hormone secretion on the pattern of spontaneus voltage-gated calcium influx: cell-
type specific action potential-secretion coupling, Journal of Biological Chemistry 276 (36)
(2001) 33840–33846.

[2] S. S. Stojilkovic, H. Zemkova, F. van Goor, Biophysical basis of pituitary cell type-specific
Ca2+ signaling-secretion coupling, Trends in Endocrinology and Metabolism 16 (4) (2005)
152–159.

[3] F. van Goor, Y. X. Li, S. S. Stojilkovic, Paradoxical roleof large-conductance calcium-
activatedK+ (BK) channels in controlling action potential-drivenCa2+ entry in anterior
pituitary cells, Journal of Neuroscience 21 (16) (2001) 5902–15.

[4] K. Tsaneva-Atanasova, A. Sherman, F. van Goor, S. S. Stojilkovic, Mechanism of spon-
taneous and receptor-controlled electrical activity in pituitary somatotrophs: Experiments
and theory, Journal of Neurophysiology 98 (1) (2007) 131–144.

[5] A. L. Hodgkin, A. F. Huxley, A quantitative description of membrane current and its appli-
cation to conduction and excitation in nerve, Journal of Physiology 117 (4) (1952) 500–544.

[6] J. Keener, J. Sneyd, Mathematical Physiology, 2nd Edition, Springer-Verlag, New York,
2009.

[7] J. Stern, H. M. Osinga, A. LeBeau, A. Sherman, Resetting behavior in a model of burst-
ing in secretory pituitary cells: Distinguishing plateausfrom pseudo-plateaus, Bulletin of
Mathematical Biology 70 (1) (2008) 68–88.

[8] E. M. Izhikevich, Neural excitability, spiking, and bursting, International Journal of Bifur-
cation and Chaos 10 (6) (2000) 1171–1266.

[9] A. P. LeBeau, A. B. Robson, A. E. McKinnon, J. Sneyd, Analysis of a reduced model of
cortiocotroph action potentials, Journal of Theoretical Biology 192 (3) (1998) 319–339.

[10] J. Tabak, N. Toporikova, M. Freeman, R. Bertram, Low dose of dopamine may stimulate
prolactin secretion by increasing fast potassium currents, Journal of Computational Neuro-
science 22 (2) (2007) 211–22.

[11] N. Toporikova, J. Tabak, M. Freeman, R. Bertram, A-typeK+ current can act as a trigger
for bursting in the absence of a slow variable, Neural Computation 20 (2) (2008) 436–51.

[12] B. Fakler, J. P. Adelman, Control ofKCa channels by calcium nano/microdomains, Neuron
59 (6) (2008) 873–881.

14



[13] J. Rinzel, Bursting oscillations in an excitable membrane model, in B. D. Sleeman, R. J.
Jarvis (Eds.), Ordinary and Partial Differential Equations, Lecture Notes in Mathematics
Vol. 1151, Springer-Verlag, New York (1985), pp. 304–316.

[14] Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York,
1998.

[15] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry and Engineering, Perseus Books, 2001.

[16] E. J. Doedel, AUTO, a program for the automatic bifurcation analysis of autonomous sys-
tems, Congressus Numerantium 30 (1981) 265–384.

[17] E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Yu. A. Kuznetsov,
B. E. Oldeman, B. Sandstede, and X. J. Wang, AUTO-07P: Continuation and
bifurcation software for ordinary differential equations(2007); available via
http://cmvl.cs.concordia.ca/.

[18] B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide To
Xppaut for Researchers and Students, Society for Industrial and Applied Mathematics,
Philadelphia, 2002.

[19] MATLAB , The MathWorks Inc., Natick, MA (2008);http://www.mathworks.com

[20] N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univer-
sity Mathematics Journal 21 (1972) 193–226.

[21] R. Bertram, M. Butte, T. Kiemel, A. Sherman, Topological and phenomenological classifi-
cation of bursting oscillations, Bulletin of MathematicalBiology 57 (3) (1995) 413–439.

[22] A. L. Shilnikov, M. Kolomiets, Methods of the qualitative theory for the Hindmarsh-Rose
model: a case study. Tutorial, International Journal of Bifurcation and Chaos 18 (8) (2008)
2141–2168.

[23] B. Krauskopf, H. M. Osinga, Computing invariant manifolds via the continuation of orbit
segments, in B. Krauskopf, H. M. Osinga and J. Galán-Vioque(Eds.), Numerical Con-
tinuation Methods for Dynamical Systems: Path following and boundary value problems,
Springer-Verlag, New York (2007), pp. 117–154.

[24] B. Krauskopf, T. Rieß, A Lin’s method approach to findingand continuing heteroclinic
connections involving periodic orbits, Nonlinearity 21(8) (2008) 1655–1690.

15

http://cmvl.cs.concordia.ca/
http://www.mathworks.com


Appendix

In this appendix we provide the complete details of our model(1)–(3). The functional dependen-
cies are discussed in order below and the values of the parameters used for the model are given
in Table 1.

Equation (1) is a capacitance model ofVm, whereCm stands for the membrane capacitance
andIionic is the sum of ionic currents

Iionic = ICaL
(Vm) + ICaT

(Vm) + IKdr
(Vm, ndr) + IKir

(Vm)

+INS,Na(Vm) + IBKNEAR
(Vm) + IBKFAR

(Vm, c).

Here,ICaL
andICaT

areL- andT-type voltage-sensitiveCa2+-currents of the form

ICaL
(Vm) = gCaL

m2

CaL∞

(Vm)(Vm − VCa),

ICaT
(Vm) = gCaT

m2

CaT∞

(Vm)hCaT∞

(Vm)(Vm − VCa).

The corresponding activation and inactivation functions are given by

mCaL∞

(Vm) =
1

1 + exp
(

−(Vm−VmL
)

kmL

) ,

mCaT∞

(Vm) =
1

1 + exp
(

−(Vm−VmT
)

kmT

) and

hCaT∞

(Vm) =
1

1 + exp
(

Vm−VhT

khT

) .

The currentsIKdr
andIKir

are delayed-rectifier and inward-rectifier ofK+-currents, expressed as

IKdr
(Vm, ndr) = gKdr

ndr(Vm − VK) and
IKir

(Vm) = gKir
Kir∞(Vm)(Vm − VKir

).

The rate of change of the fraction of open delay-rectifierK+-channelsndr follows the dynamics
given by equation (2), with the steady-state function defined as

ndr∞
(Vm) =

1

1 + exp
(

−(Vm−Vn
dr

)

kn
dr

) .

The steady-state function forIKir
is given by

Kir∞(Vm) =
αir

αir + βir

,

where

αir(Vm) =
0.1

1 + exp[0.06(Vm − VKir
− 200)]

,

βir(Vm) =
3 exp[0.0002(Vm − VKir

+ 100)] + exp[0.1(Vm − VKir
− 10)]

1 + exp[−0.5(Vm − VKir
)]

.
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Table 1: Parameter values used in the simulations.
Parameter Value Parameter Value

gCaL
0.74 nS kmT

8 mV
gCaT

0.105 nS VhT
-56 mV

gKdr
3.85 nS khT

5 mV
gKir

15.75 nS Vndr
0 mV

gBKNEAR
0.55 nS kndr

8 mV
gBKFAR

10 nS kBK 10 mV
gNS,Na 0.1245 nS VBK0

0.1 mV
VCa 60 mV kshift 18
VK -80 mV kCabk

1.5 µM
VKir

-83 mV A 0.11
VNS,Na -20 mV f 0.0098
σN 0.002 pA pER 0.00015 s−1

τndr
0.09 s dcell 10 µm

VmL
-25 mV VPMCA 28 µM.s−1

kmL
12 mV KPMCA 0.08 µM

VmT
-45 mV kSERCA 0.025 µM.s−1

Cm 0.00314 mF CaER 167 µM

The currents of the BK channelsIBKNEAR
andIBKFAR

are located near and far from voltage-gated
Ca2+-channels; they are given by

IBKNEAR
(Vm) = (1 − bBK)gBKNEAR

bKNEAR∞

(Vm)(Vm − VK) and (4)

IBKFAR
(Vm, c) = (1 − bBK)gBKFAR

bKFAR∞

(Vm, c)(Vm − VK). (5)

The parameterbBK expresses the fraction of blocked BK channels. The steady-state functions for
these currents are

bKNEAR∞

(Vm) =
1

1 + exp
(

−(Vm−VBKNEAR
(Vm))

kBK

) and

bKFAR∞

(Vm, c) =
1

1 + exp
(

−(Vm−VBKFAR
(c))

kBK

) ,

where

VBKNEAR
(Vm) = VBK0

− kshift ln
CaDOM(Vm)

kCaBK

,

VBKFAR
(c) = VBK0

− kshift ln
c

kCaBK

and

CaDOM(Vm) = −A(ICaL
(Vm) + ICaT

(Vm)).
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Finally, INS,Na is a non-selective predominantlyNa+-current, given by

INS,Na(Vm) = gNS,Na(Vm − VNS,Na).

The parameterβ in equation (3) is the ratio of cell surface areaAcell and volumeVcell, ex-
pressed by

Acell = πd2

cell
andvcell =

πd3
cell

6
,

wheredcell is the diameter of the cell. The parameterα converts the calcium currents in (3) into
fluxes and is given by

α =
1

2FAcell

,

whereF is Faraday’s constant. The individualCa2+-fluxes due to theCa2+-ATP-pumps of the
plasma membrane and endoplasmic reticulum (ER) are

JPMCA(c) = VPMCA

c2

c2 + K2
PMCA

andJSERCA(c) = kSERCAc.
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