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Abstract

We study the organization of mixed-mode oscillations (MMOs) in the Olsen model
for peroxidase-oxidase reaction. This model is a four-dimensional slow-fast system, but
it does not have a clear split into slow and fast variables. A numerical continuation
study shows that the MMOs appear as families in a complicated bifurcation structure
that involves many regions of multistability. We show that the small-amplitude oscil-
lations of the MMOs arise from the slow passage through a (delayed) Hopf bifurcation
of a three-dimensional fast subsystem, while large-amplitude excursions are due to a
global reinjection mechanism. To characterize these two key components of MMO
dynamics geometrically we consider attracting and repelling slow manifolds in phase
space. More specifically, these objects are surfaces that are defined and computed
as one-parameter families of stable and unstable manifolds of saddle equilibria of the
fast subsystem. The attracting and repelling slow manifolds interact near the Hopf
bifurcation, but also explain the geometry of the global reinjection mechanism. Their
intersection gives rise to canard-like orbits that organize the spiralling nature of the
MMOs.

1 Introduction

The peroxidase-oxidase (PO) reaction is a famous biochemical experiment that displays non-
linear dynamics, including bistability and chaos. In the experimental set-up two substrates,
reduced nicotinamide adenine dinucleotide (NADH) and oxygen from a N2/O2 gas phase
are pumped at a constant rate into a reaction mixture containing horseradish peroxidase.
The enzyme peroxidase acts as a catalyst to oxidise NADH via molecular oxygen. The net
overall reaction is given by

O2 + 2NADH + 2H+ → 2H2O + 2NAD+,

1



2 The geometry of mixed-mode oscillations in the Olsen model

Table 1: Values of the parameters of the Olsen model (1)–(4)
k1 k2 k3 k4 k5 k6 k7 k−7 k8 α

0.34 250 0.035 20 5.35 10−5 0.8 0.1 0.825 1

but it is known that the reaction is a branched chain reaction that involves at least two
intermediate free radicals. There is no universally agreed mathematical model for this reac-
tion, but the simplest model involves the two substrates O2 denoted A and NADH denoted
B and two free radicals X and Y . This four-dimensional model was introduced by Degn,
Olsen and Perram in [9] and later modified by Olsen [28] to include the possibility for chaotic
dynamics. It is now known as the Olsen model and it is given by the differential equations

Ȧ = −k3ABY + k7 − k−7A, (1)

Ḃ = α(−k3ABY − k1BX + k8), (2)

Ẋ = k1BX − 2k2X
2 + 3k3ABY − k4X + k6, (3)

Ẏ = −k3ABY + 2k2X
2 − k5Y. (4)

Here, we introduced the parameter α for the purposes of this paper and normally α = 1.
The other nine parameters are reaction rates. We remark that k6 in equation (3) is a small
parameter that accounts for the spontaneous (slow) formation of free radicals; if k6 = 0 then
the reaction does not start in a real experiment. The parameter k1 is linearly related to the
enzyme concentration and typically serves as the main bifurcation parameter; also k5 and
k2 have been used as bifurcation parameters [1].

The PO reaction has been studied extensively since the middle of the 1960s [32] and a
range of interesting dynamical phenomena have been observed. In particular, the experiment
can exhibit mixed-mode oscillations (MMOs), that is, periodic motion that consist of both
small- and large-amplitude oscillations. The Olsen model is remarkably good at reproducing
all experimental observations, although numerical studies have also been based on more
detailed higher-dimensional models. Numerical studies (by means of simulation of the model
equations) particularly focused on bistability of steady states and/or (mixed-mode) periodic
orbits [3, 20, 21, 22, 29, 30]. Different scenarios have been proposed to explain possible
routes to chaos: break-up of invariant tori [21], cascades of period-doubling and period-
adding bifurcations [14, 30], and also homoclinic chaos [13]. All these different routes to
chaos are organized via sequences of MMOs.

The most interesting feature of the Olsen model is the fact that the dynamics of (1)–(4)
is slow-fast in nature, but the equations do not allow for a straightforward split into slow and
fast variables. As a result, it is very hard to extract the geometry that organizes the MMOs.
Observations from experiments and simulation have led to the generally accepted view that
B evolves on a slower timescale than the other reactants [22, 30]. In this paper we make use
of this property, which allows one to explained the dynamics of (1)–(4) by considering the
three-dimensional fast subsystem, where B is a parameter, that is, α = 0 in (2).

This paper is motivated directly by the work of Brøns and Krupa [5, 19] who considered
the Olsen model (1)–(4) with the parameter values given in Table 1 that are also used here.
With the exception of the value for k1, these parameters were all already proposed in [1, 28].
The main question is how MMOs arise in the Olsen model, and canard phenomena associated
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with folded singularities have been suggested as their source [5, 19]; see also [18]. We find
that the geometry of MMOs in the full system is organized by a strong contraction, followed
by slow passage through a delayed Hopf bifurcation of the fast subsystem; see section 3. The
actual period of a mixed-mode oscillation is determined by a reinjection mechanism that
brings the trajectory back to the vicinity of the Hopf bifurcation. The concepts of strong
contraction, slow passage through a Hopf bifurcation and a reinjection mechanism are also
identified in [23, 24] to explain the generation of MMOs in a three-dimensional system. The
added difficulty here is that the Olsen model is of dimension four. We remark that X is
known to be a particularly fast variable that is often eliminated from the equation via a
quasi steady-state assumption to simplify the analysis [11]. By contrast, we find that the
dynamics of X plays an essential role in the reinjection. Hence, the geometry of phase space
proposed here gives a truly four-dimensional insight.

Inspired by previous work [4, 7, 8, 31] on slow-fast dynamical systems in R
3 with two

slow variables, our main aim is to seek equivalents of locally attracting and repelling slow
manifolds that organize phase space. This approach is similar in spirit to [33], but we
cannot make use of an explicit splitting into slow and fast variables. The reduction methods
in [6] do not depend on an explicit splitting, but use the dominant time scales along the
attracting orbit to select a sequence of reduced models that are valid along finite time
segments. Our goal is to find a geometric split of phase space that suggests appropriate
reductions more globally and not only along an attractor. To this end, we first compute a
detailed bifurcation diagram of mixed-mode periodic orbits. As in [5, 19] we vary k5 as the
main bifurcation parameter, which corresponds to the rate at which Y is transformed into
a nonreactive product. The overall bifurcation structure we find consists of accumulating
isolas of different MMOs. In particular, we find numerous instances of coexisting mixed-
mode periodic attractors in the Olsen model (1)–(4), which to our knowledge has not been
reported before. We also show that the bifurcation structure (including multistability of
MMOs) does not change in an essential way when k6 = 0. We proceed by finding slow
manifolds as stable and unstable manifolds of saddle equilibria of the slow system, where
we make use of the fact that the (A, B)-plane is invariant for k6 = 0. The slow manifolds
we consider are two-dimensional surfaces that can be computed as one-parameter families of
suitable orbit segments; see also [17]. The attracting and repelling slow manifolds interact
in the vicinity of the delayed Hopf bifurcation, but extend throughout phase space so that
they capture the reinjection mechanism as well. The number of small oscillations during the
transition through the delayed Hopf bifurcation can be described by canard-like orbits.

This paper is organized as follows. In the next section we present a detailed bifurcation
diagram of mixed-mode periodic orbits in the bifurcation parameter k5, and we present
numerical evidence that this bifurcation structure persists also when k6 = 0. Section 3
focuses on the three-dimensional fast subsystem where α = 0, specifically on its equilibria
and their stability. This information is used in section 4 to define and compute attracting
and repelling slow manifolds. Canard-like orbits that describe the interaction of the two slow
manifolds are the subject of section 5. Finally, section 6 discusses the results with emphasis
on avenues for future work.
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Figure 1: Bifurcation diagram of (1)–(4) as a function of k5, where all other parameters are
as in Table 1. Panel (a) shows the overall bifurcation structure in the range k5 ∈ [0, 8] and
panel (b) an enlargement. Panels (c) and (d) show isolas of periodic orbits near k5 = 5.3 and
k5 = 4.8, respectively. Stable parts of branches are green and unstable ones red; branches
bifurcate at points of Hopf (H), saddle-node of limit cycle (SL), period-doubling (PD), and
torus (T ) bifucations.

2 Bifurcation structure of periodic orbits

As a starting point of our analysis, we determine (with the software package Auto [2])
the bifurcation diagram of the four-dimensional Olsen model (1)–(4) as a function of the
parameter k5. We first consider the values of the parameters in Table 1, and then show that
the bifurcation structure of periodic orbits persists for the limiting case where k6 = 0. In
particular, we find a considerable amount of multistability between different types of periodic
orbits.

2.1 Bifurcation diagram for standard parameter values

Figure 1 shows the bifurcation diagram of (1)–(4) when k5 is varied, where the value of
the variable A is used in the representation. All other parameters are as in Table 1 and, in
particular, k6 has its standard value of k6 = 10−5. Panel (a) illustrates the overall bifurcation
structure in the interval [0, 8]. A unique stationary solution of (1)–(4) is stable for low k5
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Figure 2: Pairs of coexisting attracting periodic orbits for k5 = 5.305 (a1)–(a3) and k5 =
4.713 (b1)–(b3) with all other parameters as in Table 1; compare with Figure 1. Panels
(a1)/(b1) show the respective two periodic orbits in (A, B, Y )-space, while (a2)/(b2) and
(a3)/(b3) show their time profiles.

and loses its stability at a supercritical Hopf bifurcation H at k5 ≈ 0.804. From the point H
emanates a branch of basic periodic orbits; they are initially stable and lose their stability
at k5 ≈ 0.828 in a torus (or Neimark-Sacker) bifurcation T . This branch of (now unstable)
periodic orbits undergoes a period-doubling bifurcation PD at k5 ≈ 0.954 and restabilizes
at a second period-doubling bifurcation PD at k5 ≈ 6.26; it exists stably until k5 ≈ 25.07
where a second (subcritical) Hopf bifurcation (not shown) marks the end of the oscillatory
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region for k5. The period-doubling point PD at k5 ≈ 6.26 is the starting point of a cascade
of period-doublings (for decreasing k5) of the family of basic periodic orbits. All (eventually
unstable) branches emerging from this period-doubling cascade can be continued to another
period-doubling cascade starting from the point PD at k5 ≈ 0.954.

What is more, we find a sequence of isolas (closed branches), which in turn give rise
to new cascades of period-doublings and further isolas. Note that finding isolas is rather
difficult because of the need to find an initial periodic orbit on the respective isola. We
managed to find six large isolas and three small isolas in total, by employing a combination
of systematic searching via numerical integration from suitable initial conditions and the
continuation of selected branches. In Figure 1(a) and (b) six large isola are shown; note that
it is hard to distinguish individual isolas due to the projection onto the (k5, A)-plane. The
first and largest isola extends from near the period-doubling cascade at k5 ≈ 6.26 all the
way to near the left-most period-doubling bifurcation PD at k5 ≈ 0.954. On this first isola
we find a period-doubling bifurcation PD at k5 ≈ 5.84, which in turn is the beginning of
a period-doubling cascade of stable periodic orbits; see Figure 1(b). Similarly, a new large
isola can be found near a period-doubling cascade of stable periodic orbits on a previous
large isola. All large isolas extend to very near the left-most period-doubling bifurcation
PD at k5 ≈ 0.954. Figure 1(c) and (d) shows that there are also small isolas, locally
near period-doubling cascades of large isolas. In both cases part of the isola corresponds
to attracting periodic orbits. The stable periodic orbits on small isolas lose their stability
either in saddle-node of limit cycle (SL) or in period-doubling bifurcations.

Importantly, stable segments on isolas are responsible for a considerable amount of
multistability between different periodic orbits in the Olsen model. Bistability between
coexisting stable fixed points has been reported in some experimental and simulation stud-
ies of the PO reaction [3, 30] but, to our knowledge, coexisting stable MMOs have not been
found previously in the Olsen model. Figure 2 shows two example of pairs of simultaneously
stable MMOs for k5 = 5.305 and k5 = 4.713, respectively. This choice of k5 corresponds to
the stable parts of the two small isolas in Figure 1(b) and (c), which overlap in k5 with stable
segments of two large isolas. The three-dimensional views of the pairs of periodic orbits in
(A, B, Y )-space in panels (a1)/(b1) are accompanied by time series of the variable A over
one period in panels (a2)/(b2) and (a3)/(b3); here the periodic orbits from the large isolas
appear in dark colors and those from the small isolas in light colors. The MMO pattern of
large and small oscillations per period shows that the (dark) orbits associated with the large
isolas have a less elaborate MMO pattern than the (light) orbits associated with the small
isolas.

2.2 The limiting case of k6 = 0

The standard value k6 = 10−5 is very small, so that it appears natural to make use of special
properties of system (1)–(4) for k6 = 0. The first step is, therefore, to check what happens
to the bifurcation structure of mixed-mode periodic orbits that we found in the previous
section if we replace k6 = 10−5 with k6 = 0.

Figure 3 confirms that one still finds all the richness of the underlying bifurcation struc-
ture for k6 = 0. Specifically, the bifurcation diagram in panel (a) has the same overall
structure and qualitative features as that for k6 = 10−5. The branch of equilibria and the
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Figure 3: Bifurcation diagram (a) of (1)–(4) for k5 ∈ [0, 8], where k6 = 0 and all other
parameters are as in Table 1; compare with Figure 1. Panels (b)–(d) are examples of pairs
of coexisting periodic attractors for k5 = 5.93, k5 = 6.0 and k5 = 6.82, respectively.

basic branch of periodic orbits that bifurcate from it at the Hopf point H are virtually un-
changed; compare with Figure 1(a). Furthermore, the isolas of mixed-mode periodic orbits
also persist and they accumulate in the same way near the left-most period-doubling point
PD. A difference is that the large islands and their stable parts extend further to the right,
past the right-most period-doubling bifurcation PD. The right endpoints of the large isolas
are saddle-node of limit cycle bifurcations that also determine one boundary of the stable
part of the isola. While the calculations are quite delicate, our numerical evidence suggests
that these points are increasingly sharp folds that appear to accumulate near {A = 8}. Over-
all, we still find multistability between different MMOs, but shifted towards larger values
of k5. Three examples of pairs of coexisting attracting orbits are shown in Figure 3(b)–(d).
The panels show in (A, B, Y )-space mixed-mode periodic orbits with a single large peak
and several small peaks (light color). Other mixed-mode periodic orbits coexist containing
a total of eight, two and one peaks, respectively (dark color). These smaller orbits can be
found by numerical continuation along the period-doubling cascade of basic periodic orbits.
Note that Figure 3(b) is for the standard parameter value of k5 = 5.35 as given in Table 1.
While the period-two orbit and the period-one orbit in panels (c) and (d) are stable, the
period-eight orbit in panel (b) is already unstable for k5 = 5.35. This agrees with the obser-
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Figure 4: Stable mixed-mode periodic orbits for k6 ∈ [0, 10−5, shown in (A, B, Y )-space (a),
in (log10(k6), A, Y )-space (b), as time series over one period (c), and in projection onto the
(A, B)-plane (d); the color changes gradually from light for k6 = 0 to dark for 10−5.

vation reported in [1] that the standard value of k1 lies very near the boundary of a region
of nonperiodic and chaotic oscillations (for both k6 = 10−5 and k6 = 0, and for k5 = 5.35).

Figure 4 shows stable mixed-mode periodic orbits of system (1)–(4) as a function of k6,
of which the individual panels show different representations. These stable orbits are found
by numerical integration from the previous attractor. Note that there is a single large peak
throughout, while the number of small oscillations of the orbit decreases with increasing k6;
see Figure 4(c) and (d). One finds stable mixed-mode periodic orbits up to k6 ≈ 8.95×10−6.
The final (darkest) periodic orbit in Figure 4 for k6 = 10−5 is actually very weakly unstable;
it has been found by continuation from the last stable orbit.

3 Bifurcations of the fast subsystem

The variable B evolves on a slower time scale than the other variables in the Olsen model (1)–
(4). Therefore, the bifurcations of the fast subsystem, the limit where B does not change
at all, are important for understanding the overall dynamics. The fast subsystem is given
by setting α = 0 in (2), which means that Ḃ = 0 so that B becomes a parameter in the
equations for A, X and Y .
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Figure 5: Bifurcation diagram of the fast subsystem, system (1)–(4) with α = 0 where B is
a parameter, for k6 = 10−5 (a) and k6 = 0 (b). Panels (a1)/(b1) show branches of equilibria
(A, B)-plane, which undergo saddle-node (S), Hopf (H) and transcritical (TC) bifurcations;
stable equilibria are represented by solid and unstable ones by dashed curves. Also shown is
the family Γ̂ of periodic orbits (green curve) that bifurcates form the Hopf point H . Panels
(a2)/(b2) show the equilibrium branches in (A, B, Y )-space together with the respective
mixed-mode periodic orbit from Figure 4 (which exists for α = 1). At the cyan line/plane
Σ⊥ the flow normal to the (A, B)-plane changes direction as indicated by the arrow symbols.

Figure 5 presents the bifurcation diagram of the fast subsystem for k6 = 10−5 and for
k6 = 0, respectively. Panels (a1)/(b1) show branches of equilibria and a bifurcating family

Γ̂ of periodic orbits in the (A, B)-plane. Panels (a2)/(b2) show the equilibria in (A, B, Y )-
space, where the mixed-mode periodic orbit from Figure 4 for k6 = 10−5 and k6 = 0 has been
superimposed. The direction of the flow towards and away from the (A, B)-plane changes
direction, as indicated by arrows in Figure 5, when the hyperplane Σ⊥ = {(A, B, X, Y ) |B=
k4/k1} is crossed. This condition follows from the Jacobian for (3)–(4) for X = Y = 0,
which has the two eigenvalues k1B − k4 and −k3AB − k5 (in the direction normal to the
(A, B)-plane) of which the latter is always negative. The B = k4/k1 ≈ 58.824 condition is
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exact for the case k6 = 0 in panels (b), where the (A, B)-plane is invariant, but still describes
the normal attraction/repulsion of the (A, B)-plane well for k6 = 10−5 in panels (a).

In Figure 5 there are several branches of equilibria. Those that are shown in black lie in
the physically relevant quadrant where the concentrations X and Y satisfy X ≥ 0, Y ≥ 0.
For the grey branches of equilibria, on the other hand, we have X < 0 or Y < 0. Although
only positive values for the reactants are physically relevant in the Olsen model, all equilibria
are interesting from the theoretical point of view, because they are important for the overall
behavior of the system. Notice also the degree of symmetry of the two types of equilibrium
branches with respect to Σ⊥.

For small positive k6 = 10−5, as in Figure 5(a1), there is a single black and a single
grey equilibrium branch. The black branch of physically relevant equilibria is stable where
it is practically horizontal near A = 8. This equilibrium loses its stability at a saddle-node
bifurcation S, which is characterized by a very sharp fold of the branch very close to Σ⊥.
The branch continues towards lower values of B and, after a second saddle-node bifurcation
S at B ≈ 31.775, regains stability in the subcritical Hopf bifurcation H at B ≈ 49.234.
The bifurcating family Γ̂ of unstable periodic orbits is shown in the bifurcation diagrams in
Figure 5(a1)/(b1) by plotting the extrema in A of the oscillations. The branch ends in a
homoclinic bifurcation when it reaches the saddle-equilibrium near A = 8. The practically
horizontal part near A = 8 of the grey branch of equilibria is initially unstable, changes
stability at a saddle-node bifurcation S (a sharp fold) very close to Σ⊥, and is then stable
until a Hopf bifurcation H . The branch remains unstable past a saddle-node bifurcation S
and a further Hopf bifurcation H . Since they are not physically relevant, we do not show
the families of periodic orbits that bifurcate from the grey branch of equilibria.

The bifurcation diagram for k6 = 0 in Figure 5(b1) is very similar: the different branches

of equilibria and the bifurcating family Γ̂ of periodic orbits appear to be identical. However,
there is a difference in the bifurcation structure of the equilibria near (A, B) = (8, 58.824).
Namely, for k6 = 0 the (A, B)-plane is invariant, and the two fold bifurcations merge into a
transcritical bifurcation (TC) that takes place exactly on the hyperplane Σ⊥. There is now
a single horizontal branch of equilibria, given by A = k7/k−7 = 8 and X = Y = 0. Hence
this entire branch is physically relevant and appears in black. The stability of the horizontal
branch is determined only by the direction of the flow normal to the invariant (A, B)-plane:
it is stable to the left of Σ⊥ (for B < k4/k1) and unstable to the right of Σ⊥ (for B > k4/k1).
Overall, we conclude that the situation for small positive k6 is qualitatively like that for
the special case k6 = 0, except that the transcritical bifurcation TC is unfolded into two
saddle-node bifurcations S.

The three-dimensional plots in Figure 5(a2)/(b2) of (A, B, Y )-space show what the bi-
furcation diagram of the fast subsystem means in terms of the dynamics of MMOs in the full
Olsen model, which features slow dynamics in B. Namely, also plotted are the respective
mixed-mode periodic orbits from Figure 4 for k6 = 10−5 and k6 = 0. These orbits show
that small oscillations arise near the Hopf bifurcation point H , while the entry of the region
to the right of Σ⊥ (for B > k4/k1) triggers the return back to the vicinity of H . Indeed,
the local and global aspects of MMOs are clearest for the case k6 = 0 in Figure 5(b2), on
which we concentrate now. The mixed-mode periodic orbit Γ in panel (b2) is composed of a
slow passage through the Hopf point H of the physically relevant equilibria: the trajectory
approaches the stable part of the branch in a spiralling fashion until H and then starts to
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spiral away from the now unstable branch of (black) equilibria. This part of Γ has all the
hallmarks of a classic delayed Hopf bifurcation [10, 25, 26]. Note that the number of small
oscillations towards the attracting equilibrium is about the same as that away from the un-
stable equilibrium after the Hopf bifurcation. At B ≈ 40.75 the trajectory moves away from
the branch of equilibria, where it closely follows the flow on the invariant (A, B)-plane. This
flow is the composition of an exponential approach of the horizontal equilibria in A with a
constant drift to larger values of B, given by

φ(t) =

([
A0 −

k7

k−7

]
e−k

−7t +
k7

k−7

, B0 + k8t

)
(5)

for initial condition (A0, B0). The part of Γ in the region where B < k4/k1, to the left of
Σ⊥, is attracted to the (A, B)-plane. After crossing Σ⊥ the trajectory initially still stays
close to the now unstable (A, B)-plane; this is another example of a delayed bifurcation. It
then makes a large excursion where it appears to follow the unstable direction of a saddle
equilibrium on the horizontal branch of equilibria for B > k4/k1. As a result, there is
reinjection back to a neighborhood of the attracting branch, and the process of slow passage
through the Hopf bifurcation repeats.

4 Slow manifolds of the Olsen model

Figure 5 already hints at how geometric properties of the flow of system (1)–(4) give rise to
MMOs. Our main goal now is to understand and illustrate this geometry in more detail by
considering and computing suitable attracting and repelling surfaces that organize the dy-
namics, where we concentrate on the case k6 = 0. This approach is motivated by our previous
studies of attracting and repelling slow manifolds near a folded node in a three-dimensional
phase space [7, 8]; see also [12, 31]. The difficulty here is that the Olsen model (1)–(4) is
of dimension four and lacks a clear separation of time scales, so that it is not immediately
clear which surfaces one should study. The main idea is to define surfaces in (A, B, Y )-space
as manifolds associated with stable and unstable directions of saddle equilibria, and to ex-
tend them in such a way that their interaction near the Hopf bifurcation H gives useful
information on the nature of MMOs in the full Olsen model. Our choice of attracting and
repelling surfaces is informed directly by the bifurcation structure presented in Figure 5.
Furthermore, it agrees with observations in [5, 19] of properties of the dynamics of (1)–(4)
in different parts of phase space.

We first consider the surface Sr

B
, which we will refer to as the repelling slow manifold.

It is defined as the one-parameter family of stable manifolds of the equilibria of the fast
subsystem (where α = 0) that lie between the left saddle-node bifurcation point S (of the
physically relevant equilibrium) and the plane Σ⊥ in Figure 5(b1). However, in system (1)–
(4) for α = 0 these saddle equilibria have two-dimensional stable manifolds. Therefore, we
make a further reduction step by a quasi steady-state approximation (QSSA). This technique
is standard in chemical dynamics [11] and assumes that a reactant reaches its equilibrium
value so fast that it can be considered, in first approximation, as constant. Hence, it can be
replaced by its equilibrium value, so that the phase space dimension is reduced by one. We
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apply QSSA to the variable X, which is then given by

X =
k1B − k4 +

√
(k1B − k4)2 + 8k2(3k3ABY + k6)

4k2

. (6)

The QSSA-reduced fast subsystem of the Olsen model is given by the equations (1) for
A and (4) for Y , where B is a parameter. For fixed B the stable manifold of the saddle
equilibrium of the QSSA-reduced fast subsystem lies in the (A, Y )-plane and is of dimension
one. It spirals onto the repelling equilibrium for B ∈ [31.775, 49.234] (between the left-most
saddle-node bifurcation S and the Hopf bifurcation H) and onto the repelling periodic orbit
for B ∈ [49.234, 54.779] (between the Hopf bifurcation H and the homoclinic bifurcation).
The repelling slow manifold Sr

B
is defined as the B-family of these one-dimensional stable

manifolds, and it can be thought of as organizing how an orbit leaves the vicinity of the
unstable equilibrium after the slow passage through the Hopf point H . The surface Sr

B
can

readily be computed as a one-parameter family of orbit segments starting on the respective
linear stable eigenspaces at a small distance from the saddle equilibria. This computation
was performed with the collocation routine of AUTO [2] by defining a suitable two-point
boundary value problem. Here the orbit segment that one continues in B can be specified
either by fixing its total integration time or by restricting its other endpoint to a suitable
section; see also [16, 17].

To define the surface Sa

B
, which we refer to as the attracting slow manifold, we consider

the family of unstable manifolds of the saddle-type horizontal equilibria for A = 8 and
B > k4/k1 in Figure 5(b1). In the slow subsystem, where B is a parameter, these equilibria
have one-dimensional unstable manifolds, so that this B-dependent family forms a two-
dimensional surface. (Hence, no further reduction with QSSA is needed.) Specifically, for
fixed B > k4/k1 the unstable manifolds lie in the (A, X, Y )-space and, after a first large
excursion, spiral towards the attracting equilibrium (for the same value of B). However,
since B does not change, this resulting surface of unstable manifolds stays to the right
of the plane Σ⊥ so that it does not reach the vicinity of the Hopf point H . Therefore, we
consider as the attracting slow manifold Sa

B
the family of one-dimensional unstable manifolds

in (A, B, X, Y )-space when B is allowed to vary, that is, when α = 1. This has the effect
that the two-dimensional surface Sa

B
, after a first large excursion towards the stable branch

is “pulled” through the vicinity of H by the slow drift in B. Hence, it interacts with the
repelling slow manifold Sr

B
as desired.

The computation of the surface Sa

B
is necessarily more involved than that of Sr

B
, but it can

also be performed in a two-point boundary value problem setup with the collocation routine
of Auto [2]. To set up the computation three steps are required, which are very similar
to those needed to compute a slow manifold near a folded node [7]. Throughout the entire
computation we consider (a sequence of) well-posed numerical boundary value problems,
so that existence and uniqueness of an isolated solution is guaranteed; see also [17]. The
first step consists of computing an orbit segment u that approximates the one-dimensional
unstable manifold in the fast subsystem (1)–(4) for α = 0 for a chosen fixed value B0 > k4/k1.
This can be achieved by requiring that the begin point u(0) lies at a small distance on
the linear unstable eigenspace of the saddle equilibrium and continuing in the integration
time T until the orbit is sufficiently close to the attracting equilibrium. The next step
is to “activate” the B-dynamics, which is achieved by continuation of u in the homotopy
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Figure 6: The attracting slow manifold Sa

B
(red) of system (1)–(4) for k6 = 0 (a), computed

up to the section Σ45. Panels (b) and (c) show the interaction of Sa

B
with the repelling slow

manifold Sr

B
(blue) in Σ45.

parameter α of (2) from 0 to 1 while keeping T fixed. As a result, the end point u(1) of the
orbit segment moves along the branch of attracting equilibria, meaning that u(1) lies in the
section ΣB(α) = {(A, B, X, Y ) |B = B(α)}. Hence, when α = 1 has been reached at the end
of this step, we have u(1) ∈ ΣB(1) for some B(1). The final step consists of moving the end
point u(1) to lie in a suitable section to the left of the Hopf point H , which we choose here
to be the section Σ45 = {(A, B, X, Y ) |B = 45.0}. This can be achieved by continuation in
the position B of the section ΣB from B = B(1) to B = 45.0, while requiring u(1) ∈ ΣB

and u(0) is fixed, and allowing T to vary. After this step the orbit segment u starts near the
horizontal saddle equilibrium (A, B, X, Y ) = (8, B0, 0, 0) and it ends in Σ45. Hence, a part
of interest of the two-dimensional surface Sa

B
is swept out by continuation in the position

B0 of the unstable equilibrium, while requiring that u(1) ∈ Σ45. Note that during this
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continuation the endpoint u(1) traces the one-dimensional intersection curve Sa

B
∩ Σ45.

Figure 6(a) illustrates the computation of Sa

B
(red surface) from the horizontal line of

saddle equilibria up to the section Σ45 (green plane). Also shown are the stable periodic
attractor Γ (thick green orbit) and the curves of equilibria of the fast subsystem (1)–(4) for
α = 0 represented as in Figure 5 in black (grey) for the admissible (nonadmissible) quadrant.
The very shape of the red surface Sa

B
emphasizes the three main phases organizing the

geometry of the associated mixed-mode periodic orbit Γ. Starting at maximal A, the family
of orbit segments forming the red surface Sa

B
first makes an excursion along the unstable

eigendirection of the trivial saddle equilibrium. Then, orbits are strongly attracted towards
the branch of stable equilibria of the fast subsystem and start spiralling around it while
approaching the Hopf bifurcation point. The computation allows a good visualization of the
slow passage through the Hopf point. Finally, the escape from the vicinity of the branch that
has become unstable past the Hopf point, is organized via a rapid increase of the variable
A. The periodic orbit Γ stays close to the invariant (A, B)-plane until, after crossing Σ⊥, A
is maximal again; see Figure 6(b). Also interesting from this picture are the different sheets
that Sa

B
develops in the vicinity of the escape region. These sheets correspond to successive

excursions with increasing Y -amplitude. This explains the spiral that one can observe as the
intersection of Sa

B
with the cross-section Σ45. Panels (b) and (c) focus on this intersection

curve Sa

B
∩ Σ45 together with the corresponding intersection of the repelling slow manifold

Sr

B
(blue curve). Panel (b) still gives a three-dimensional view of Γ, the equilibrium curves

of the fast subsystem and Sa

B
in Σ45; it also shows Sr

B
but it is difficult to get a precise

idea of the intersections of Sa

B
and Sr

B
in Σ45 due to the scaling. In order to understand

this interaction of attracting and repelling slow manifolds in section Σ45, panel (c) shows a
two-dimensional image of the intersection curves in section Σ45, enlarged in the region close
to the invariant (A, B)-plane where both curves spiral. The intersection curve of Sr

B
spirals

out from an unstable focus of the fast subsystem and that of Sa

B
winds around it one more

time after each one of the large excursions shaping the multiple sheets of the red surface
as observed in panel (a). The intersection points between Sa

B
and Sr

B
in Σ45 correspond to

very specific orbits that locally organize the geometry of MMOs. These special orbits are
described in the next section.

5 Canard-like orbits

By construction the attracting and repelling slow manifolds Sa

B
and Sr

B
allow us to illustrate

how the global dynamics of the Olsen model works by considering the geometry of these
surfaces only in (A, B, Y )-space. Starting from near a saddle equilibrium (8, B0, 0), the
trajectory closely follows the attracting slow manifold Sa

B
. That is, it makes a large excursion

into the region of positive Y , approaches the stable equilibrium and then slowly drifts along
it, finally passing the Hopf point H . Supposing that the trajectory reaches the section Σ45,
the dynamics away from the now unstable equilibrium is governed by the repelling slow
manifold Sr

B
. Namely, the orbit spirals around the equilibrium until it escapes through the

region between Sr

B
and the invariant (A, B)-plane. During this process the trajectory follows

in good approximation the flow φ of (5) on this plane. In particular, the trajectory drifts in
the B direction and towards the horizontal equilibria, while converging exponentially to the
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Figure 7: The curves Sa

B
and Sr

B
in Σ45 (a), and the surfaces Sa

B
and Sr

B
in (A, B, Y )-space

in between the sections Σ45 and Σ53. Also shown are five canard-like orbits ξ1–ξ5 that arise
from the intersection of Sa

B
and Sr

B
in Σ45.

(A, B)-plane until it crosses Σ⊥. The trajectory then slowly diverges away from the (A, B)-
plane. After some delay it makes the next large excursion back to the stable equilibrium,
where the jump-off point is near some other saddle equilibrium (8, B1, 0, 0). Note that for the
periodic orbit Γ in Figure 6 we have that B0 = B1. What is more, for the standard parameter
values and k6 = 0 the periodic orbit Γ is the only attractor, so that any trajectory converges
to Γ.

Figure 7 illustrates the local interaction of Sa

B
and Sr

B
in the vicinity of the Hopf bifurc-

ation H . Panel (a) shows the intersection curves of Sa

B
and Sr

B
with Σ45. These two curves



16 The geometry of mixed-mode oscillations in the Olsen model

40 50 60 70

−1.5

0

1.5

3

Ã
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Figure 8: Passage of the canard-like orbits ξ3–ξ5 through the vicinity of the delayed Hopf
bifurcation. Shown is the projection of ξ3–ξ5 onto the section Π = {(A, B, Y ) | Y =≈
0.00582B − 0.0911}, where the data is drawn relative to the curve of equilibria (which

lie in Π); also shown are the intersection curves of the family of periodic orbits Γ̂ (green) and
of the surfaces Sa

B
(red) and Sr

B
(blue) with Π; the vertical green line indicates the position

of the section Σ45.

spiral in opposite directions, and they intersect at five discrete points ξ1–ξ5. In analogy with
canard orbits near a folded node [8, 12, 31], we refer to the trajectories through these points
ξ1–ξ5 as canard-like orbits. Figure 7(b) shows the surfaces Sa

B
and Sr

B
, the canard-like orbits

ξ1–ξ5 and the periodic orbit Γ in between the sections Σ45 and Σ53. Notice that ξ1–ξ5 lie
on the attracting slow manifold Sa

B
, so that they are closely associated with the spiralling

nature of trajectories locally near the delayed Hopf bifurcation. For a clear understanding of
the different objects represented in this picture, we show the intersection curves of Sr

B
with

Σ45 and Σ53, but the repelling slow manifold Sr

B
itself is only computed up to the section

Π = {(A, B, Y ) | Y ≈ 0.00582B − 0.0911}, which locally contains the equilibrium branch.
Note that the canard-like orbits ξ1–ξ5 do not lie on Sr

B
. This is because we defined the

repelling slow manifold by considering the QSSA-reduced fast subsystem where B is a para-
meter. Hence, the ξ1–ξ5 depend on the choice of section, Σ45 in this case, which is why we
refer to them as canard-like. Nevertheless, and as is also shown in Figure 7(b), the canard-
like orbits locally define sectors of oscillations in this region of phase space, illustrating the
nature of small-amplitude oscillations due to the slow passage near the Hopf bifurcation.

How the canard-like orbits organize the dynamics more globally is further illustrated in
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Figure 8. The canard-like orbits ξ3–ξ5 are shown in projection onto the section Π, which
contains the Hopf bifurcation and (locally) the curve of equilibria. Also shown are curves of

intersection of Sa

B
and Sr

B
with Π, as well as the family Γ̂ of periodic orbits. To emphasize the

relative positions of objects, we plot their A-distance Ã to the curve of equilibria, represented
in Figure 8 as the B-axis. The vertical line is the section Σ45 that was used to define the
canard-like orbits ξ3–ξ5. The repelling slow manifold Sr

B
(computed for fixed B ∈ [45, 53])

intersects Π in curves that approach the union of the branch of unstable equilibria and the
family Γ̂ of periodic orbits, which are also unstable. By contrast, the intersection curves of the
attracting slow manifold Sa

B
with the section Π form a layered structure, which corresponds to

the multiple large excursions encountered in the transient dynamics of the system; compare
with Figure 6(a). Note that the ξ3–ξ5 lie in different sectors defined by Sa

B
∩ Π. Figure 8

shows that the number of oscillations during the slow passage through the Hopf bifurcation
changes by one from one canard-like orbit to the next: namely, ξ3 makes 7 rotations, ξ4

makes 6 rotations and ξ5 makes 5 rotations around the branch of equilibria. Hence, Figure 8
is evidence that canard-like orbits as introduced here indeed organize the rotations much
like canard orbits associated with a folded node.

6 Discussion and outlook

We investigated how MMOs arise in the Olsen model for peroxidase-oxidase reaction, which
is an ordinary differential equation for four reactants. We first presented a continuation
study of mixed-mode periodic orbits, which revealed a complicated bifurcation structure with
accumulating isolas and many regions of multistability between different types of MMOs. As
a bifurcation analysis of the three-dimensional fast subsystem showed, MMOs in the Olsen
model are characterized by a delayed Hopf bifurcation, which gives rise to small oscillations,
in combination with a global reinjection mechanism that is responsible for large amplitude
excursions. We then showed how (suitable parts of) attracting and repelling two-dimensional
slow manifolds can be defined and computed that allow one to understand and illustrate the
geometry that is responsible for MMOs. The main idea was to define the slow manifolds as
stable and unstable manifolds of saddle equilibria of different reductions of the Olsen model.
This approach allowed us to deal with the problem that it is of dimension four and the fact
that it lacks a clear split into slow and fast variables. The attracting and repelling slow
manifolds interact near the Hopf bifurcation of the fast subsystem, but also describe the
geometry of the global reinjection mechanism. The spiralling nature of MMOs during the
passage through the delayed Hopf bifurcation is locally organized by canard-like orbits.

The geometric numerical study presented here provides new insight into the nature of
MMOs of the Olsen model, which naturally leads to quite a number of question for future
research. First of all, we made use of the fact that the (A,B)-plane is invariant when the
parameter k6 is zero. However, as our bifurcation anlysis of mixed-mode periodic orbits for
the standard value of k6 = 10−5 indicates, this property does not appear to be crucial. Our
results suggest that the main global properties of the attracting and repelling slow manifolds
— their interaction near a delayed Hopf bifurcation and the global reinjection mechanism
— are preserved in a neighborhood of the standard parameter values. On the other hand,
the MMOs themselves depend quite sensitively on parameters, and this has to do with the
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exact local interaction of the slow manifolds near the Hopf bifurcation. The one-parameter
bifurcation diagrams of mixed-mode periodic orbits presented here appear to be organized
by an underlying global bifurcation of higher-codimension; specifically, the accumulation
of isolas with cascades of period-doublings may be due to a nearby homoclinic doubling
cascase [15, 27]. A natural next task is, therefore, a detailed bifurcation study of the mixed-
mode periodic orbits in several parameters. Such a study would also shed some light on how
the MMO patterns of large and small oscillations are organized.

Another question is how the global properties of the attracting and repelling slow man-
ifolds may change with parameters. One possibility is that the bifurcation diagram of the
equilibria of the fast subsystem changes in a codimension-two bifurcation, for example, a
Bogdanov-Takens, saddle-node Hopf or degenerate transcritical bifurcation. Therefore, it is
an interesting project to investigate how the delayed Hopf bifurcation and the global reinjec-
tion mechanism arise from the unfolding (in suitable parameters) of such codimension-two
bifurcations of the fast subsystem.

Finally, we expect that our geometric approach will be useful for the analysis of other
systems of moderate dimension whose slow-fast nature is not immediately obvious from the
governing equations. The key is to identify regions of phase space where the flow is driven
towards lower-dimensional slow manifolds, which hence, organize the dynamics locally and
connect globally to an overall geometric structure. This point of view is similar to that behind
the idea of reducing a slow-fast system to a hybrid system of lower-dimensional (return)
maps and connecting flows [6, 12]. The difference is that the reduction to (noninvertible)
maps “hardwires” the effect of dimension reduction in the fast limit, while we consider the
geometry of the (invertible) flow on the entire phase space. It would be an interesting
project to compare the two approaches by means of a case study. In particular, we believe
that numerical methods as implemented in [6] may be of help for identifying slow manifolds
in different regions of phase space.
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