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Onset of poly-spike complexes in a

mean-field model of human EEG and its

application to absence epilepsy.

By Frank Marten, Serafim Rodrigues, Oscar Benjamin, Mark P.
Richardson(*) and John R. Terry

Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1TR
(*) Institute of Psychiatry, King’s College London, Camberwell, SE5 8AF

In this paper we introduce a modification of a mean-field model used to describe
the brain’s electrical activity as recorded via Electroencephalography (EEG). The
focus of the present study is to understand the mechanisms giving rise to dynamics
observed during absence epilepsy, one of the classical generalized syndromes. A
systematic study of data from a number of different subjects with absence epilepsy
demonstrates a wide variety of dynamical phenomena in the recorded EEG. In
addition to the classical spike and wave activity, there may be poly-spike and wave,
wave-spike or even no discernible spike-wave onset during seizure events. The model
we introduce is able to capture all of these different phenomena and we describe the
bifurcations giving rise to these different types of seizure activity. We argue that
such a model may provide a useful clinical tool for classifying different sub-classes
of absence epilepsy.

Keywords: Absence Epilepsy, spike-wave, human EEG, mathematical

modelling, bifurcations

1. Introduction

Epilepsy is the commonest serious primary brain disease affecting 380,000 people
in the UK, with 30,000 new cases per year. Epilepsy carries significant mortality
(Cockerell et al. 1994) and morbidity (Buck et al. 1994) as well as reduced qual-
ity of life (Devinsky et al. 1995). A recent National Sentinel Audit revealed an
annual mortality in the UK of >2000 cases per year. Epilepsy has high costs, esti-
mated at £1.93billion per year in the UK in 1994 (Cockerell et al. 1994). The focus
of the present paper is on a class of primary generalized seizures, called absence
seizures, which typically affect children and young adolescents. The term ‘absence’
arises from the clinical presentation of these seizures whereby cognitive abilities
are lost, often resulting in brief periods of behavioural arrest (or absences). When
monitoring subjects with epilepsy using electroencephalography (EEG), dynami-
cally evolving patterns may be observed in cortical electrical activity; the classical
pattern associated with absence seizures is an approximately 3Hz spike and wave
discharge that is synchronous across all channels of activity. However, closer inspec-
tion of EEG recorded from different subjects (for example Hrachovy & Frost 2006)
demonstrates a number of different dynamical phenomena, for example poly-spike
and wave discharges and wave-spike discharges, in addition to the classical spike-
wave profile (see Figure 1). Previous theoretical work by Breakspear et al. (2006),
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2 Frank Marten et al.

Rodrigues et al. (2006) and Rodrigues et al. (2007), has focussed on understand-
ing the transitions from healthy states to the classical spike and wave discharge,
demonstrating that oscillatory behaviour (the wave part of the complex) arises as a
result of a Hopf bifurcation upon increasing excitatory connections between cortex
and thalamus. Further increasing this parameter, gives rise to the spike due to the
appearance of an inflection point in the vector field. In addition, these previous
studies have demonstrated the predictive and descriptive validity of a mean-field
approach for modelling a wide range of healthy states as well as generalized seizures
in humans (Breakspear et al. 2006). Studies of EEG recordings collected during ab-
sence seizures lend themselves naturally to this approach, since during an absence
seizure there exists a hypersynchronous state that entrains populations of neurons
to the same dynamic activity.

In the present work, we introduce a mean-field model of cortico-thalamic inter-
actions and examine mechanisms by which transitions from healthy states to those
observed from a number of different absence seizures can occur. Two model param-
eters are indicated to be crucial in this respect. One is the parameter that governs
the strength of excitatory cortical-thalamic interactions, which has been demon-
strated to be crucial in our previous studies. The other parameter is a time-delay
that we introduce to describe the different time-scales of interactions for GABAA

and GABAB receptors in the specific relay nuclei. We demonstrate that this delay is
crucial in determining the number of spikes per cycle during seizure activity in the
model and that the excitatory coupling plays a role in the transition from healthy
to seizure dynamics. It is natural to consider such interactions as several human and
animal studies of absence seizures have implicated abnormalities in cortico-thalamic
loops in the generation of seizure activity (Crunelli & Leresche 2002).

Our work is motivated by a desire to elucidate potential mechanisms for the
onset of seizure activity which could in turn inform novel experimental and clinical
approaches to studying epilepsy, for example the potential to develop seizure pre-
diction algorithms based on bifurcation tracking of parameters of interest that could
provide an alternative approach to the standard one based on signal processing (see
Mormann et al. 2005 for a review).

2. Clinical data

The data presented in this paper came from a database of 48 seizures from 20 sub-
jects, who were part of a consecutive series having absence seizures during routine
outpatient EEG investigation. EEG data were obtained using conventional clinical
equipment (mention make and model of each EEG system and sampling rates here).
Standard silver-silver chloride disk electrodes attached to the scalp were used, and
electrode placement followed the Maudsley variant of the international 10-20 sys-
tem. EEG recordings typically lasted about 1 hour, with periods of wakefulness
with eyes open and closed, as well as drowsiness and sleep in some patients. At-
tempts were made in all cases to provoke seizures using hyperventilation and photic
stimulation (stroboscopic stimulation at a range of frequencies). All EEG data were
reviewed by a trained Clinical Encephalography Technician, who identified spike-
wave discharges for further analysis here.

In addition to EEG data, medical records were reviewed to establish the epilepsy
syndrome according to the classification of the International League Against Epilepsy
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Onset of poly-spike complexes 3

(1989). In each case, patients were assigned to one of the four syndromes: childhood
absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy, generalised
tonic-clonic seizures on awakening. Althought these syndromes are clearly-defined
in terms of age of onset, other seizure types experienced by the patient and other
clinical criteria, there is considerable overlap between these syndromes. Although
absence seizures are seen more often in children than adults, persistent of absence
epilepsy from childhood into adulthood is well-recognised, as is de novo adult-onset
(Trinka 2005). The patients studied here had an age range 3 to 65.

A typical absence is a non-convulsive epileptic seizure. It consists of a sudden,
brief impairment of consciousness accompanied by a generalized, synchronous, bi-
lateral, 2.54-Hz spike and slow-wave discharge seen on EEG, and followed by abrupt
recovery (Crunelli & Leresche 2002). Typical absence seizures occur in several dif-
ferent idiopathic generalised epilepsy syndromes, and detailed phenomena during
the absence seizure may vary between syndromes and between patients, for example
in duration and accompanying motor features such as myoclonic jerks of limbs or
eyelids. The ictal EEG usually shows a single spike followed by a wave, but may
show polyspikes. The discharges are traditionally regarded as synchronous across
all channels and usually bilateraly symmetrical. Typically the spike-wave discharge
frequency is highest at the start of the burst and falls through the seizure. As well as
interindividual variability in EEG and in clinical presentation, there is considerable
variability in response to drug treatment (Duron et al. 2005).

3. Mathematical description

(a) The mean-field model

In order to model EEG-activity from patients with absence seizures, we inves-
tigate neural dynamics in two distinct brain regions, namely the thalamus and the
cerebral cortex. The motivation for this approach is that thalamocortical interac-
tions are found to play an essential role in the generation of this (poly)spike-wave
EEG-activity. A variety of experimental evidence is summarized in section 8.1 of
Destexhe & Sejnowski (2001). The model that we present may be thought of as a
mean-field, neural-mass model. It describes the dynamics of large interacting groups
of neurons, which are referred to as neural masses. The model arises as a result of
merging a number of theoretical viewpoints:

1. The pioneering work of Lopes da Silva et al. (1974) and Freeman (1975), who
developed equations of motion, describing the behaviour of neural masses,
based upon detailed experimental studies.

2. Differences in the time scales of activation / inactivation due to GABAA/B

receptors in the thalamus as described in Figures 5.8 and 5.9 in the book of
Destexhe & Sejnowski (2001).

3. Incorporation of the cortico-thalamic loop, shown in studies (Destexhe &
Sejnowski 2001) to be important in the generation of sleep spindles and ab-
normal seizure activity.

4. The wave-like equation for the propagation of cortical activity, as described
by Jirsa & Haken (1996).
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4 Frank Marten et al.

Merging these approaches together, we consider an extension of an existing
mean-field approach, employed in previous studies (Breakspear et al. 2006 and
Rodrigues et al. 2006), consisting of both cortical and thalamic components. The
thalamic component is assumed to consist of two neural masses; an excitatory mass
of specific relay nuclei (s), and an inhibitory mass of reticular nuclei (r). Similarly,
the cortical component incorporates both a mass of excitatory pyramidal cells (e)
and inhibitory interneurons (i).

Each of the neural masses (e,i,s,r) is described by three dynamical variables: its
average membrane potential Va(r, t), the average firing rate ςa(r, t) and the axonal
field φa(r, t) at position r and time t. The subscript (a) is used to refer to each of
the different masses. These variables obey the following dynamical rules:
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Equation (3.1) describes changes in the average membrane potential Va of a
neural mass, under incoming post-synaptic potentials Pa. Secondly, equation (3.2)
describes the average firing rate of the mass. If Va exceeds a threshold θa, the
neural mass fires action potentials with an average rate ςa. The sigmoidal shape
of ςa ensures that the firing rate never exceeds a maximum value Qmax

a . This is
crucial, because real neurons cannot fire infinitely quickly. A third equation (3.3),
describes propagation of action potential-fields φa via axons of the neural mass.
Axonal fields influence other neural masses via synaptic connections, hence they
can lead to new post-synaptic potentials P (r, t).

In Figure 2, we present a schematic of all the connections within the mean-field
model. We view the cortex as one compartment, with axonal connections to and
from the two thalamic subcompartments. Excitatory connections via fields φe, φs

are displayed as arrows, while inhibitory connections φr are given by lines with dots.
Specific relay nuclei also receive sensory input φn, which is modeled as a constant
field in our research. Incoming synaptic fields φa, received by each compartment,
are assumed to be linearly summed in the dendritic tree (Robinson et al. 2002),
hence:

Pa(r, t) =
∑

b

νabφb(r, t), (3.4)

for neural mass (a), where νab are coupling constants for the average strength of
synaptic connections, which closes the set of rules of the mean-field model.

A further change from previous studies is the nature of the delay. In the present
work, we are motivated by the studies of Destexhe & Sejnowski (2001) and in-
troduce two connections φr(t) and φr(t - τ) from reticular nuclei to specific relay
nuclei. These connections are designed to represent inhibitory GABAA and GABAB

synapses. Since GABAB functions via second messenger processes, its post-synaptic
currents develop on a slower time scale than the currents of GABAA (Figures 5.8
and 5.9 in Destexhe & Sejnowski 2001). Hence, we expect that if thalamic neurons
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Onset of poly-spike complexes 5

fire, the GABAB mediated connection to specific relay nuclei will be delayed with
respect to GABAA. In research by Coombes et al. (2002), a similar delay was ob-
tained as follows: the wave-like equation (3.3) is derived from an integral between
the firing rate ςa(r, t) and a synaptic kernel. Depending on the particular synapse
modeled, this integral can lead to a delay in the right-hand side of equation (3.3).
Combining this with equation (3.4), and the computations in appendix A, gives a
delayed connection φr(t - τ).

In summary, equations (3.1-3.4) are the theoretical framework of our research.
Since such a large system of DDEs is computationally expensive, it is desirable
to make some simplifications. First of all, cortical inhibitory interneurons are rel-
atively sparce compared to pyramidal cells (a ratio of 4:1 in favour of pyramidal
cells). Excitatory (e) neurons are believed to be the main source of EEG, hence
we approximate Vi ≈ Ve and ςi ≈ ςe (Robinson et al. 2002). Furthermore, γa

represents a ratio between an axonal velocity, and a typical length scale for axonal
propagations. Since inhibitory neurons only have short range projections, compared
to excitatory neurons (Robinson et al. 1997, 2002), we effectively have γi,r → ∞. A
similar argument, explained in Rodrigues et al. (2008), can be used to approximate
γs → ∞.

In Robinson et al. (2002), it is shown that removing the time-derivative in the
right-hand side of (3.3) does not influence the numerical results, hence it can be
dropped for all neural masses. If we combine this with γi,r,s → ∞, equation (3.3)
reduces to φi,r,s = ςi,r,s. Excitatory cortical neurons (e) can not be approximated
this way. However, because we model a generalized seizure, with global cortical
activity, we neglect the spatial dependence of fields and voltages in our model.
The above approximations reduce our model to a system of 8 first order delay
differential equations, given in appendix A. By making this reduction, our model
becomes computationally more tractable.

(b) Numerical methods

Large systems of delay differential equations, like our model (A.2), can produce
a variety of complex dynamics. In our case, we are especially interested in 2-4Hz
periodic solutions, which resemble EEG-activity during absence seizures. First of
all, numerical integrators can be used to obtain time series of the model (A.2).
The results can be qualitatively compared to EEG-traces of patients. Numerical
integration is performed through a fourth order Adams-Bashforth scheme, adjusted
to model delay differential equations (Baker et al. 1994).

Secondly, since we wish to understand the onset, change and termination of
absence seizure dynamics, and in particular the onset and termination of (poly)spike
patterns, we employ the Matlab package DDE-BIFTOOL (Engelborghs et al. 2001)
to find and continue branches of these solutions, as parameters of the model are
varied. A further package PDDE-CONT (Szalai 2005) is also used in instances
where continuing branches of periodic solutions becomes intractable using Matlab.

4. Results

Our results are presented in two sections: In the first section, we demonstrate that
the mean-field model can produce periodic patterns that closely resemble EEG-
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data recorded during human absence seizures. We considered a database of 48
seizures and observed that as well as the classical single spike and wave per cycle,
the dynamics in many seizures consisted of multiple (poly)spikes per cycle. We
illustrate that in the model, the formation of spikes occurs as a result of inflection-
points in the solutions of our mean-field equations. Moreover, the existence of these
inflection-points can be studied using one-parameter bifurcation diagrams.

We extend these results in the second section, using the numerical continuation
packages described previously to track bifurcations and the birth of inflection-points
in our model. This generalizes our previous analysis by providing a detailed under-
standing of the mechanisms leading to the onset and deformation of (poly)spike
patterns. We proceed to link these results back to time-series data simulated from
the model and draw a comparison between the model and clinical data from our
absence seizure database.

(a) EEG and Model: time series and bifurcations

Previous research relating mean-field models and absence seizures has focused
on reproducing single spike and wave patterns (Breakspear et al. 2006, Rodrigues et
al. 2006), an example of which is given in Figure 1(a), that are classically associated
with absence seizures. More general polyspike patterns, such as the ones displayed
in Figure 1(b,c), have been studied in only limited cases (Wendling et al. 2002). Our
aim is to build on this research, and explain the mechanisms that cause the onset of
such polyspike activity, which we observe frequently in our absence seizure database.
The approach we follow extends the earlier research of Rodrigues et al. (2006). In
this work it was shown that the coupling strength νse, between pyramidal cells in
the cortex and specific cells in the thalamus, is a crucial parameter for observing
the onset of spike-wave activity.

As the model we consider is a modification of that considered in these earlier
studies, our starting point will also be to focus on the parameter νse, with the main
variable of interest being φe(t). We recall that this variable describes the axonal
fields of cortical pyramidal cells, which give the main contribution to EEG-signals.
Hence, we assume a functional relation between φe and the scalp EEG-voltage,
which to first approximation may be considered linear. However, we stress that
even in this simple case, the constant of proportionality is patient specific.

Bifurcation diagrams provide a systematic way to study the dynamics of φe(t).
Here, the aim is to find qualitative changes in φe under variations of the param-
eter νse, for example, transitions from ‘healthy’ steady-state neuronal activity to
‘seizure’ (poly)spike-wave patterns. We construct the diagrams by integrating the
system of delay equations (A.2) as described in section 3. During the integration, all
model parameters are kept fixed to the values in Table (1). Once finished, we add
a small increment δ to the value of νse. Equations (A.2) are then integrated again,
with the previous solution as initial condition. This procedure is repeated hundreds
of times. During each step, we record the local maxima and minima of φe(t) and
plot them against νse. For the GABAB coupling, we choose a delay τ = 100 ms.
This represents the order of magnitude of rise and decay-time of GABAB currents
(Destexhe & Sejnowski 2001, Figures 5.8 and 5.9). The bifurcation diagram is shown
in Figure 3(a).

The dynamics we find are similar to past investigations (Rodrigues et al. 2006).
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Onset of poly-spike complexes 7

For νse < 1.48 × 10−3 V s we observe that the system (A.2) resides in a steady-
state. Thus all of its eight variables are constant in time including φe(t). This
can be compared to clinical EEG-data before the seizure occurs, see arrows from
Figure 3(a) to (b). Under normal conditions EEG signals are noisy patterns around
a steady state average voltage. At νse ≈ 1.48×10−3 V s we find the onset of a ∼3Hz
oscillation, through a Hopf-bifurcation. The emanating two curves in the diagram
represent its local maxima and minima. Some patients develop similiar oscillatory
EEG-signals at the onset of absence seizures (Rodrigues et al. 2006). Their patterns
do not contain any spikes and just consist of ∼3Hz sine-like oscillations.

An interesting change is observed at νse ≈ 1.66 × 10−3 V s. It seems like φe(t)
undergoes a second bifurcation at this point. However, a closer look at the time
series reveals that the solution developed a small local maximum, through an in-
flection point. An example is sketched in Figure 3(c). This maximum develops into
the familiar spike, which characterizes spike-wave patterns. This is by no means a
period doubling bifurcation; the stability and period of the solution do not change
along νse ≈ 1.66×10−3 V s. Rather, this point represents a local deformation of the
periodic solution profile (Rodrigues et al. 2008). We term this a ‘ghost-bifurcation’,
since it mimics the shape of a bifurcation in our diagram.

Ghost-bifurcations have been observed in past research (Rodrigues et al. 2006,
Figure 1), where the classification of the solution was left undetermined. The dia-
grams in these investigations always displayed at most one single ghost-bifurcation,
which led to the classic spike-wave profiles. An interesting new feature of our present
model is the occurence of a second ghost-bifurcation at νse ≈ 1.8 × 10−3 V s. This
corresponds to the appearance of a double spike-wave solution. In real patient EEG,
such patterns can also develop during an absence seizure (arrow to Figure 3(b)).
Based on these observations, we wish to address the following questions: how many
spikes can appear in the solutions of our model? Is their existence related the de-
layed GABAB coupling? And what happens to φe(t) as νse is increased further?

(b) Continuation in two parameters

The analysis presented in the previous section has demonstrated that the cou-
pling between cortex and specific, νse, is a crucial parameter in this model. Increases
in νse lead to the onset of seizure dynamics, as well as transitions from single spike
and wave to polyspike solutions. Recent numerical studies of mean-field models of
the general form presented in this paper have demonstrated that the delay τ also
plays a crucial role in the observance of spikes. For example, in the absence of the
delay only a transition to oscillatory behaviour via a Hopf bifurcation was observed,
without spikes arising (Rodrigues et al. 2008). Similarly, we do not observe spikes
arising in time-series produced from the model for values of τ < 0.04 suggesting
that the delay is again significant in the generation of spike and wave solutions.
To investigate this further, we employ two parameter continuation, where we study
νse and the delay τ simultaneously. This method allows us to draw 2-dimensional
curves of (ghost)bifurcations in a (νse, τ) parameter plane.

These diagrams, also known as activity-maps, are extremely important. The bi-
furcation curves are boundaries between different dynamical regions of the model,
such as ‘healthy’ regions, where the model exhibits steady-state solutions, and
‘seizure’ regions, where the model produces polyspike patterns. In previous re-
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search (Wendling et al. 2002), similar activity-maps were obtained by simulating
EEG-activity on a two-parameter grid. We extend this method using the numerical
continuation-tools discussed in section 2. This technique is more useful for creating
activity-maps, since finding the boundaries of a parameter-region is more efficient
than finding the entire region step by step and calculates the boundary to a higher
resolution. We also wish to find curves of ghost-bifurcations in the (νse, τ)-plane.
Standard continuation methods are not appropriate in this case as the branch of
solutions here does not correspond to a standard bifurcation. To overcome this, we
employ a special detection-method to find inflection points (this approach was first
used in Rodrigues et al. 2008).

Figure 4 shows the activity maps obtained. Panel (a) displays various bifurca-
tion curves, computed for our mean-field model (A.2). In panel (b), we performed
the same computation for the original corticothalamic model, which has been dis-
cussed in the works of Breakspear et al. (2006) and Rodrigues et al. (2006, 2008).
Exemplars of the solution profiles produced by each model demonstrate the need
to consider modifications of the model. In the original model, although multiple
inflection points exist they do not develop into spikes as is the case for the model
studied in this paper (which we return to in due course). The main difference be-
tween the two approaches is the incorporation of the delay τ . Whereas we propose
in the present study a delay to describe the slow GABAB -synapse, the model in
(b) assumed that the delay arises due to synaptic transmission times for signals
travelling between cortex and thalamus.

In both panels we find a single curve of Hopf-bifurcations (HB) and various
ghost-bifurcations, given by solid black curves. We also find period doubling (PD)
and saddle node bifurcations of limit cycles (SL), given by dashed and solid red
curves respectively. Their significance will be discussed below. Different regions in
Figure 4, bounded by (ghost)bifurcations, are marked by various shades of blue.
The Hopf-curves define the transition from the model’s steady state (lightest blue)
into periodic solutions (darker blue). In both Figures, we find that an increase in
delay τ leads to a decrease in the value of νse at the Hopf-bifurcation (HB). Thus
if the delay in both models is increased, a weaker coupling strength νse is required
to initiate oscillatory behaviour. If τ is decreased below τ ≃ 0.04 in panel (a) or
τ ≃ 0.02 in panel (b), we end up in a region where both models do not support
spike-wave solutions.

Other features of Figure 4(a) and (b) are qualitatively different; in panel (a) we
find a clear relation between the GABAB delay τ and the number of spikes observed.
An increase of τ leads to a stepwise increase of the number of spikes. The spiking
regions are separated by black curves of ghost-bifurcations. Crossing such a curve
means that a spike is added or removed from the model-solution. Conversely, panel
(b) displays a different scenario. There exists a region of spike waves between νse ≈

3.8× 10−3 V s and νse ≈ 6.2× 10−3 V s. Around τ ≈ 0.08 s, another region labeled
“2 Spike-wave” exists, bounded by a curve of ghost-bifurcations. The solution φe(t)
contains a wave, followed by a small spike, a plateau of constant φe, and a larger
spike. A similar region can be seen at (νse = 3 × 10−3, τ = 0.16). The original
corticothalamic model is mainly capable of qualitatively reproducing single spike-
wave solutions.

If τ is fixed and νse is increased in Figure 4, eventually one of the red branches
will be crossed. This implies that the (poly)spike solutions either lose stability via a
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period doubling bifurcation (PD) or vanish completely in a saddle-node bifurcation
(SL). A detailed analysis of the period doubling bifurcations in Figure 4(b) is given
in the recent work of Rodrigues et al. (2008). It was found that small isles of stable
periodic solutions and small chaotic regions exist, on the right of the (PD)-curve.
We have found similar dynamics in panel (a). These small regions of more complex
dynamics are beyond the scope of the present study and remain under investigation.

How can we relate the activity-map in Figure 4(a) back to time-series of our
mean-field model? Figure 5 provides a schematic overview. Panels (a1-c1) consist
of two parts: the top part is a small section taken from Figure 4(a). Below each
section, we display a bifurcation diagram in νse. As an example, in panel (a1), we
display a subsection of Figure 4(a) around τ = 0.06 s. Hence, if the delay of the
slow GABAB coupling is fixed at 0.06 s, and we increase νse stepwise, the diagram
in the lower part of (a1) is obtained. In all panels (a1-c1), φe(t) develops into
periodic 2-4 Hz (poly)spike patterns, which eventually destabilize via saddle-node
(SL) or period doubling (PD) bifurcations. The latter bifurcation occurs in a tiny
window of parameter-space, and is followed by an even tinier chaotic attractor.
These features could only be captured by DDE-BIFTOOL and not our numerical
integrator. Past the (SL) and (PD) points, φe(t) then converges to a steady state
φe = 250 s−1. This steady state, which coexists with all the periodic solutions of
our model, corresponds to the maximal neuronal firing-rate at ςa = Qmax

a .
Some of the various periodic (poly)spike patterns of φe(t) are given in Figure 5

(a2-c2). For example, the time series in panels (a2) correspond to a fixed connection-
delay τ = 0.06 s, and from top to bottom, νse = 0.0017, 0.002 and 0.0024 V s.
Similarly, panels (b2) and (c2) correspond to τ = 0.10 s and τ = 0.16 s, where
νse = 0.0017, 0.002, 0.0026 V s and νse = 0.0016, 0.00165, 0.002 V s from top to
bottom respectively. These time series correspond to sections of the bifurcation
diagrams in panels (a1-c1). We find that an increase of GABAB delay not only
results in more spikes, but also a decrease in frequency. At τ = 0.06 we find patterns
with a frequency of approximately 3 Hz. For τ = 0.10 and τ = 0.16 the frequency
decreases to 2.3Hz and 1.8Hz respectively. The first two frequencies lie in the range
of absence-seizure EEG, of which the main frequency-component is situated between
2 and 4Hz respectively.

Our final step is, to make a link between the above mentioned time series,
and real patient EEG-data. Some examples are shown in Figure 6. In section 3 we
pointed out that φe can be approximated to be linearly related to EEG-voltages. An
often used convention, is that the constant of proportionality is taken to be negative
(Robinson 2005). Column (a) shows EEG traces from our seizure database, taken
from 3 different patients with childhood absence epilepsy. Column (b) displays var-
ious time-traces of our model, using the activity map in Figure (4) to determine
parameter regimes. In each case we find an interesting qualitative agreement be-
tween model and data, suggesting that there is significant variation in the value
of the delay τ between patients. It remains an important question to interpret the
biophysical meaning of such a variation.

5. Discussion

The work presented in this paper was motivated by a desire to understand the
mechanisms responsible for transitions between different types of seizure activity
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observed in EEG recordings from human subjects with absence seizures. Studying
a database of 48 seizures from 20 subjects, we observed not only the classical single
spike and wave activity, but a wide variety of polyspike and wave solutions (up to
three spikes per cycle). Building on our earlier work in this area (Breakspear et
al. 2006, Rodrigues et al. 2006) we isolated the transition to single spike and wave
activity, identifying an inflection point in the system dynamics as causing the spike
in the model (Rodrigues et al. 2008). Subsequently we investigated the addition
of further spikes per cycle, but observed that successive inflection points occurring
in the original model of Robinson et al. (2002) did not accurately reproduce data
recordings from human subjects (see Figure 4(b)).

Consequently we developed a modified cortico-thalamic model, which incorpo-
rated differences in GABAergic channels in the connections between inhibitory and
excitatory thalamic neuronal populations. Studying the transitions in this model,
using a combination of bifurcation theory and numerical continuation methods, we
were able to map out in (νse, τ)-space branches of inflection points giving rise to
different numbers of spikes per cycle. These activity maps demonstrate that the
delay plays a crucial role in these transitions. A Hopf bifurcation was observed to
give a transition between healthy activity and oscillatory behaviour preceding the
onset of spike and wave activity. From the analysis of the model we were able to ob-
tained time-series from our model that mimics those recorded from human subjects
(Figure 5). In this regard a further important question is to understand the mecha-
nisms that control the frequency of oscillations within each window corresponding
to solutions with different numbers of spikes. We are currently investigating this
phenomena and the results will be presented elsewhere.

These findings also suggest a number of hypotheses of potential clinical rel-
evance that should be investigated. First the onset of the seizure in our model
corresponds to the transition between steady-state and oscillatory activity, rather
than the onset of spike-wave behaviour. This suggests that clinical symptoms of
absence seizures may occur before the observation of spike-wave activity in EEG
recordings. This could potentially be investigated using a continuous performance
task in human subjects with absence seizures, such as following a moving trace on
a screen. Secondly, the variation in delay between patients as observed when fit-
ting model time-series to data, suggests that it is important to establish a mapping
between macroscopic models and microscopic parameters. Finally, the techniques
presented here provide a means for predicting when a seizure might occur, by es-
timating and tracking parameters of the model implicated in seizure onset from
clinical data. Techniques for the tracking of bifurcations from experimental data
have recently been proposed and validated in an electronic circuit by Sieber and
Krauskopf (2008) and techniques based on this approach may have validity in this
case. This would provide an alternative method for seizure prediction then more
traditional methods based on signal processing (Mormann et al. 2005).
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A. The delay model

We briefly illustrate how our mean field model is derived, using the theory and
approximations in section 3. Recall that we model 4 neural masses (e,i,s,r), described
by the laws in equations (3.1-3.3) and the connection scheme in Figure 2, which
should be combined with equation (3.4).

The following simplifications have been made: we neglect any spatial depen-
dence, hence the Laplacian in equation (3.3) vanishes for all neural masses, and con-
sequently Va, φa, ςa only depend on time. In addition, we neglect the time-derivative
in the right-hand side of this equation. The local approximations γi,s,r ≈ 0 reduce
equation (3.3) to φi,s,r(t)= ςi,s,r(t). We point out that excitatory cortical neurons
(e) cannot be approximated in this way, hence their fields φe follow:

1

γ2
e

[

∂2

∂t2
+ 2γe

∂

∂t
+ γ2

e

]

φe(t) = ςe(t). (A.1)

For convenience, we assume that the firing rates ςa(t) of all 4 neural masses have
the same parameters, hence we omit the (a)-labels in Qmax

a , θa and σa, and write
ςe,i,s,r(t)= ς(Ve,i,s,r(t)).

We reduce our model further, by assuming the symmetry Vi = Ve. This allows
us to neglect the voltage variable Vi alltogether, and write the field φi = ς(Ve(t)).
Using all these approximations, we have effectively 4 variables left: the 3 voltages
Ve,s,r(t) and the excitatory cortical field φe(t). The voltages follow equation (3.1),
while the field φe(t) follows equation (A.1). The variables are coupled together via
equation (3.4) and the scheme in Figure 2. Because of the second order derivatives,
we can rewrite our model as an 8-dimensional first order system.

We point out that the difference in GABAA,B synapses from reticular (r) to
specific relay (s) neurons are modeled via a time delay. Thus, neural mass (s)
receives a post-synaptic potential Ps = νseφe(t)+νsnφn(t)+νA

srφr(t)+νB
srφr(t−τ).

Combining this with all other approximations, the final model becomes:



























































d
dtφe(t) = y(t),
d
dty(t) = γ2

e [−φe(t) + ς(Ve(t))] − 2γey(t),
d
dtVe(t) = z(t),
d
dtz(t) = αβ [−Ve(t) + νeeφe(t) + νeiς(Ve(t)) + νesς(Vs(t))] − (α + β)z(t),
d
dtVs(t) = w(t),
d
dtw(t) = αβ

[

−Vs(t) + νsnφn + νseφe(t) + νA
srς(Vr(t)) + νB

srς(Vr(t − τ))
]

,

−(α + β)w(t),
d
dtVr(t) = v(t),
d
dtv(t) = αβ [−Vr(t) + νreφe(t) + νrsς(Vs(t))] − (α + β)v(t).

(A.2)
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Table 1. Parameter values for the model

Quantity Description Value

θ Threshold of membrane potential, before cell fires. 0.015 V

σ Standard deviation of firing rate. 0.006 V

Qmax Average maximum firing rate. 250 s−1

γe Average ratio between pulse velocity and axon range. 100 s−1

α Receptor offset time constant. 50 s−1

β Receptor offset time constant. 200 s−1

τ Time delay, due to slow GABAB synapse. varies

νsn Subthalamic coupling strength. 20e-4 V s

νee Excitatory corticocortical coupling strength. 10e-4 V s

νei Inhibitory corticocortical coupling strength. -18e-4 V s

νes Specific thalamic to cortical coupling. 17e-4 V s

νse Cortical to specific thalamic coupling. varies

νA,B
sr GABAA,B thalamic relay to specific thalamic coupling. -8e-4 V s

νre Cortical to thalamic relay nuclei coupling. 0.5e-4 V s

νrs Specific thalamic to thalamic relay coupling. 5e-4 V s
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Figure 1. EEG-recordings of 3 different patients with childhood absence epilepsy (CAE); (a)
A typical spike-wave oscillation. (b) During a seizure, the EEG-profile can show additional
spikes. (c) A similar EEG-recording as in (b). We again observe a polyspike-wave pattern,
however it is difficult to discern whether the spikes are leading the wave or vice-versa.
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Figure 2. Overview of the corticothalamic model. Neuronal populations consist of
e=excitatory cortical; i=inhibitory cortical; s=specific relay and r=reticular nuclei. Pop-
ulations s and r are coupled by a fast GABAA and a slow GABAB connection, the latter
is indicated by (t − τ ).. Synaptic weights between populations of different types are rep-
resented by ee, re etc.
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Figure 3. (a) Bifurcation-diagram in φe, obtained by varying the cortex-to-thalamus cou-
pling parameter νse. (b) The onset of a seizure from Human EEG-data. Whilst the arrows
between panel (a) and (b) are not meant for direct comparison of the bifurcation diagram
and EEG, we stress that qualitative features of the diagram can be found in real patient
data. This suggests that ramping up the parameter νse is responsible for the transition to
seizures in the model. (c) The onset of a spike-wave occurs through an inflection-point
(arrow). We term this point “ghost bifurcation”, note that it does not change the stability
or period of the solution.
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Figure 4. Illustrating two-parameter continuation performed in the (νse,τ)-plane. Panel (a)
shows the results for the cortico-thalamic model considered in this paper. As a comparison,
we present the same plot for the original model considered in Breakspear et al. (2006) in
panel (b). In both cases, transitions from steady-state to periodic orbits are mediated by
a curve of Hopf-bifurcations (HB). Subsequently orbits can develop spikes via inflection
points (black-curves), that eventually turn unstable via period-doubling (PD) or disappear
in saddle-node bifurcations of limit cycles (SL), see red dashed and red solid curves. Notice
that the solution profiles in the original model do not replicate the polyspike solutions
observed in the clinical data.
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Figure 5. Panels (a1-c1) display a comparison between two-parameter continuation from
Figure 4(a) and one-parameter bifurcation diagrams in νse. From top to bottom, the values
of τ in these diagrams are 0.06, 0.10 and 0.16 s respectively. Panels (a2-c2) display time
series of our model. They correspond to the one-parameter diagrams in (a1-c1), and are
computed for fixed values of νse. From top to bottom, νse =0.0017, 0.002 and 0.0024 V s;
νse = 0.0017, 0.002, 0.0026 V s and νse =0.0016, 0.00165, 0.002 V s respectively.
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Figure 6. A qualitative comparison between human EEG-data and our corticothalamic
model. Column (a) contains EEG-recordings from 4 different patients with an absence
seizure. From top to bottom, the first 3 patients are diagnosed with childhood absence
epilepsy (CAE), while the patient in the lower panel is diagnosed with juvenile absence
epilepsy (JAE). Column (b) displays time series from our model.
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