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Abstract

We present rigorous results concerning the existence and stability of limit cycles in a macroscopic

model of neuronal activity. The specific model we consider is developed from the Ki set methodology,

popularized by Walter Freeman. In particular we focus on a specific reduction of the KII sets, denoted

RKII sets. We analyse the unfolding of supercritical Hopf bifurcations via consideration of the normal

forms and centre manifold reductions. Subsequently we analyse the global stability of limit cycles

on a region of parameter space and this is achieved by applying a new methodology termed Global

Analysis of Piecewise Linear Systems. The analysis presented may also be used to consider coupled

systems of this type. A number of macroscopic mean-field approaches to modelling human EEG

may be considered as coupled RKII networks. Hence developing a theoretical understanding of the

onset of oscillations in models of this type has important implications in clinical neuroscience, as

limit cycle oscillations have been demonstrated to be critical in the onset of certain types of epilepsy.

PACS: 87.10.+e, 87.19.-j, 87.18.-h 05.45.-a

Keywords: human EEG; mathematical modelling; macroscopic population model; normal forms; global

stability; limit cycle oscillations; epilepsy

1 Introduction

We consider a population model that represents the aggregate activity of an ensemble of neurons within

a neural region, for example a cortical column containing interacting inhibitory and excitatory neurons.
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The type of model that we consider was discussed by Freeman [1, 2], where they were used to model

a series of experimental observations, and are denoted the Ki set hierarchy, where i = {0, I, II, III}.
At each level of the hierarchy the complexity of the topology increases and the type of connections

allowed between excitatory and inhibitory are well specified. The K0 set is the most basic and simplest

component in the hierarchy consisting of three parts, resembling biologically a real neuron. Specifically,

K0 sets model a neuronal ensemble forming part of a cortical column within which all neurons share the

same physiological and functional properties. They receive spatial inputs (dendrites) which are weighted

and summed. Further they include a soma where spikes are produced, however the internal dynamics

(the transmembrane potential of a neuron) follows a linear time invariant system with second order

dynamics, meaning that the voltage response of each population in the model has finite rise and decay

times. This is in contrast to other firing-rate models such as that introduced by Wilson and Cowan [3]

in which voltages are represented by a first order differential equation. The output is then shaped

by a nonlinear saturating function, that essentially provides a measure of the relationship between the

transmembrane potential and an averaged neuronal firing rate.

On the next level of the hierarchy, a KI set is formed by two K0 sets and defines the coupling relationship

between them. However, this structure allows populations to be only either exclusively excitatory or

inhibitory and no auto-feedback is allowed. Subsequently, a KII set consists of two KI sets (or four

KO sets). KII networks can function as an encoder of signals or as an auto-associative memory [1, 4].

Mathematically, KII sets may have several fixed points and can also have limit cycle attractors depending

on the parameters of the system and the initial conditions. At the final level of the hierarchy is the

KIII set. These KIII networks may have different layers of KII sets representing for example different

anatomical regions of the mammalian brain. As an example, a computational KIII network designed

to model the olfactory system has been studied by Heng-Jen et al. [5]. The KIII network may have

strange attractors and positive Lyapunov exponents, consequently exhibiting chaotic oscillations [4, 6].

A complete understanding of the total hierarchy would represent the knowledge to mimic and predict

EEG signals and thus comprehend brain functioning at the macroscopic level [2].

Much of Freeman’s work presents extensive studies of KII and KIII networks from a signal processing

perspective and consequently an understanding of network dynamics is still incomplete. The complexity

of these sets is such that analytical results are scarce and a full analysis of KIII networks is beyond

current techniques. However, some interesting results towards this goal have been presented in [7],

where analysis is made possible by considering a non-symmetric sigmoid function with derivative equal

to one at the equilibrium point, thus simplifying the overall analysis. A further interesting study by Xu
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and Principe [8] also employs a non-symmetric sigmoid, but considers a subset of the KII set, denoted

RKII models. These are a simplification of a KII set consisting of two KI-type sets but each containing

two different neurons, excitatory and inhibitory, (note that KI sets have either excitatory or inhibitory

but not both). Further, an RKII set does not have recurrent coupling within a population. This work

motivates the present study with the objective to understand RKII sets without the restriction of a

non-symmetric sigmoidal function.

It is important to recognise the fundamental differences between a model determined via observations

of the neural-mass and those developed by considering populations of individual neurons, where the

dynamics of each individual neuron is described by biophysical models [9]. In the latter case, physiological

quantities such as ionic currents can be determined from experiments and incorporated directly, whereas

in the former case these appear only in an average sense. Not only this, but in the case of biophysical

models, these currents determine the complex behaviour, i.e. firing-rate patterns. Whereas, in the case

of neural-mass or lumped models [10] it is the interactions between the populations that give rise to

complex dynamics, that may be observed at macroscopic scales (e.g. EEG). Interestingly despite these

approaches being at opposite extremes, both have been shown to replicate experimentally recording

dynamics. For example, in the work presented in [11, 12], a macroscopic model derived from Freeman

mass-action approach was shown to mimic the transitions observed in clinically recorded data from

subjects with petit-mal seizures. In particular, the transition from healthy dynamics to seizures was

heralded by the occurrence of a limit-cycle oscillation in the recorded EEG. An RKII set with two

hierarchical levels would give us the ability to understand transitions of this type. Results for RKII

networks with three hierarchical levels would offer insight into studies related to connections of three

areas of the brain, for example interactions of cortical, thalamic and basal ganglia (striatum) and

could shed light on the understanding of complex partial seizures [13]. Our previous work [12] gave

some analytical insight to the nature of spike-wave morphology observed in generalised seizures, but to

further develop analytical results and consequently understand the full dynamical properties of an RKII

network (or even higher level networks) it is necessary to pursue another direction of study.

Confining ourselves to a single RKII set is a first step towards a future understanding of interactions

between multiple regions. Thus, the purpose of the present work is to identify and analyse limit cycles

generated in an RKII set and possibly refine or map the dynamic equation for each population to the

microscale (i.e. biophysical models), so as to better describe the mechanisms of oscillations arising from

an ensemble of neurons. In fact, we have conducted a preliminary work that demonstrates under certain

assumptions how to map these equations onto a reduced conductance-based model [14]. This contrasts
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with first-order neural field models, such as those of Wilson and Cowan [3], where the activity of a

neuronal population is represented by a single-state variable. This describes the proportion of neurons

becoming active per unit time. The rise time of the population is assumed to occur infinitely quickly with

only a finite delay, so that the firing rate of the action potentials of the neuronal population is governed

by a first order differential equation. Such models may be derived directly from Hodgkin-Hoxley type

formulations.

The focus of our present work is on the existence and stability of limit cycles in neural-mass models.

We achieve this by developing a linear stability theory and contrast this with numerical continuation

results obtained using XPPAUT [15]. We then consider analytically the unfolding of the bifurcations

by using normal forms to give sufficient conditions for the existence of limit cycles and to study global

stability of these oscillations. Global stability is in general a difficult problem to address. It is typically

only in special cases that it is possible to find, for example, Lyapunov functions guaranteeing global

stability of fixed points and even more harder to prove global stability of limit cycles. To understand the

global properties of the limit cycles of the RKII set we consider a piecewise linear version of the system

and prove global stability for a restricted region of the parameter space. To this end, we use a recent

formalism termed, Global Analysis of Piecewise Linear Systems [16].

2 Description of the model

The specific choice of the model equations we consider arise out of the thalamic modules of a neural

mass model used to study human EEG [11]. The model is a reduction of a cortico-thalamic model by

Robinson et al. [17, 18], which is essentially derived from the work of Freeman [1], Lopes da Silva [19] and

incorporates a wave-like equation for propagation of cortical activity developed by Jirsa and Haken [20].

Parameters of the model were chosen to lie within physiological estimates, as described in [18]. A

schematic of the model is shown in Fig. 1(a), which represents an ensemble of interacting inhibitory

and excitatory neurons and is defined in the following way:





d2

dt2
Vs(t) + (α+ β) d

dt
Vs(t) + αβVs(t) = αβ(νsrς[Vr(t)] + νsnφn)

d2

dt2
Vr(t) + (α+ β) d

dt
Vr(t) + αβVr(t) = αβνrsς[Vs(t)]

(1)

where νsr ∈ R
−, νrs ∈ R

+, νsn ∈ R
+
0 and

ς[Va(t)] =
Qmax

a

1 + exp

(
− π√

(3)

Va(t)−θa

σa
)

)
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is a unipolar sigmoidal function illustrated in Fig. 1(b) that represents the relationship between the

transmembrane potential Va (commonly expressed as wave amplitude) and the axonal firing rate ς(Va)

(which is often referred to as the pulse density). Without loss of generality, in the language of the work

of Robinson and others, a = {r, s} refers to the reticular nuclei (an inhibitory neuronal population)

and the specific relay nuclei (an excitatory neuronal population) respectively. However these could

represent any excitatory and inhibitory neuronal ensembles. The variable Va represents averaged post-

synaptic dendritic potentials as would be evaluated by extracellular measurements of EEGs. Here, the

second order equations model a relationship between the induced transmembrane voltage Va(t) and the

incoming dendritic impulses. The parameters α and β are constants representing the inverse rise and

decay times parameterising the response to these impulses. The conversion of pulse density ς(Va) to a

wave amplitude is implicit in the synaptic weights νsr and νrs. Note that these synaptic weights can not

be measured directly, either experimentally or by other means, and consequently can only be inferred

indirectly through the modeling process, i.e. it is an indirect measure of the synaptic transmission.

The neuronal ensembles can be driven by an external signal, for example noise φn, but here we restrict

ourselves to a constant time invariant signal (which can be either off or on), future work will also

consider periodic signals to complement our results obtained in [12]. The relevant parameters values of

the given model are provided in Table 1.

3 Stability analysis

In this section we provide an overview of the results concerning linear stability analysis. We perform a

bifurcation analysis of the model, examining the possible types of dynamics of the thalamic RKII set.

We also demonstrate necessary conditions on the parameters of the model for stability of a limit cycle

oscillation.

Using appropriate substitutions, we re-write system (1) as four coupled first order ODEs:





d
dt
Vs(t) = w(t),

d
dt
w(t) = −αβVs(t) − (α+ β)w(t) + αβ(νsrς[Vr(t)] + νsnφn)

d
dt
Vr(t) = v(t),

d
dt
v(t) = −αβVr(t) − (α+ β)v(t) + αβνrsς[Vs(t)].

(2)

The stability of the equilibrium points of this first order system may be be analysed by ensuring that

the linearised version of (2) satisfies the Hartman-Groβman theorem [21]. Consequently, we consider
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the Jacobian matrix of (2):

J =




0 1 0 0

−αβ −(α+ β) αβνsrς
′

[V ⋆
r ] 0

0 0 0 1

αβνrsς
′

[V ⋆
s ] 0 −αβ −(α+ β)



, (3)

where V ∗
s and V ∗

r are the values of Vs and Vr at some equilibrium point and ς
′

[Va] = d
dVa

ς(Va) (i.e.

the derivative of ς(Va) with respect to the transmembrane potential). The equilibrium state being

determined by setting the RHS of system (2) equal to 0, thus giving:





Vs = νsrς[Vr] + νsnφn,

Vr = νrsς[Vs],
(4)

the eigenvalues of which are given by the roots of the characteristic equation:

λ =
−(α+ β) ±

√
(α− β)2 ± 4iαβ

√
|νsrνrs|ς ′ [V ⋆

r ]ς ′ [V ⋆
s ]

2
. (5)

It is apparent that there exist two complex conjugate pairs of eigenvalues, with one pair trailing the

other (by which it is meant the real part is less). Furthermore, the real part of the eigenvalues is defined

as

Re(λ) =
1

2

[
−(α+ β) ±

√
2

2

√√
(α− β)4 + (4αβ)2|νsrνrs|ς ′ [V ⋆

r ]ς ′ [V ⋆
s ] + (α− β)2

]
.

A Hopf bifurcation will occur when Re(λ) = 0. The form of this expression makes verifying this

condition difficult and a more convenient treatment is to use the Lienard-Chipart criterion (derived from

the more familiar Routh-Hurwitz Theorem) [22]. Using this criterion we derived in [12] the same result

obtained by Xu and Principe [8], obtaining the following hyperbolic curve in the |νsrνrs| parameter

space:

|νsrνrs| >
1

ς ′ [V ∗
r ]ς ′ [V ∗

s ]

(α+ β)2

αβ
(6)

A graphical representation of which is shown in Fig. 2(a). It is important to note that the right hand

side of (6) is also a function of νsr and νrs, implying a nonlinear dependence on |νsrνrs|. If condition

(6) is satisfied then the equilibrium has a transition from a stable to unstable equilibrium state, via

an apparent supercritical Hopf bifurcation. This may be proven analytically by considering the normal

forms of (2) which we develop in section 4, or by evaluating the coefficients of curvature [23, 24].
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In the following discussion we analyse system (2) for the autonomous case, as the case when the system

is driven by a time invariant signal, may be considered as a transformation of the coordinate system,

describing the transition to instability in each scenario. The nullclines of the system may be calculated

from (4) and an illustrative example is presented in Fig. 2(b). We observe that the system has a unique

equilibrium state since ς(V ) is a monotone increasing function. Furthermore, the equilibrium state can

be either in the first or the fourth quadrant of the state space (Vr, V s), depending on the strength of

the external input νsn. Detailed discussion of the results concerning the bifurcations of the system when

driven by an external signal will be published elsewhere.

As discussed previously, in the autonomous case the equilibrium is in the fourth quadrant of the state

space (Vr, Vs). Further, from Xu and Principe [8] we have the following properties of the equilibrium

state:

i) V ∗
s is a decreasing function with respect to both νrs and |νsr|, that is, dV ∗

s

dνrs
≤ 0 and dV ∗

s

d|νsr| ≤ 0

ii) V ∗
r is an increasing function with respect to νrs but decreasing with respect to |νsr|, i.e, dV ∗

r

dνrs
≥ 0

and dV ∗

r

d|νsr | ≤ 0

From these properties, we may define a local region (since finding a global region is analytically in-

tractable) for which the stability condition (6) is satisfied and hence gives rise to a transition between

a stable equilibria and a stable limit cycle. For condition (6) to hold true it is necessary that if |νsrνrs|
increases then 1/(ς

′

[V ∗
r ]ς

′

[V ∗
s ]) should decrease to a minimum in order to satisfy the inequality. In

other words, ς
′

[V ∗
r ]ς

′

[V ∗
s ] should be maximized. One way to define the region is by noticing that the

equilibrium is in the fourth quadrant and by tuning the parameters νrs and νsr according to Properties

(i) and (ii) it is possible to find a lower and upper bound for V ⋆
s and V ⋆

r . For instance, if we have that

both Vs < θ and Vr < θ then the only form to maximise ς
′

[V ∗
r ]ς

′

[V ∗
s ] is to first fix νsr = ν⋆sr and then

increase νrs until condition (6) is satisfied. Note that increasing νrs decreases V ⋆
s . A similar stability

curve was obtained by Ilin and Kozma in [?], whom considered both an RKII set and a KII set. The

case of a KII set merely resulted in a shifting of the hyperbolic curve in the total parameter space.

3.1 Numerical continuation

We further investigated the behaviour of the RKII model numerically using the software package XPPAut

[15], both to examine the many interesting dynamical features of the model and also to verify the

analytical findings. Consequently, our first investigation was to examine the (νsr, νrs) parameter space
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and compare these results with our analytical finding (6). Here, an unexpected result was to observe

that the stability curve in (νsr, νrs) parameter space was more far reaching than that expressed by

condition (6). In addition to the hyperbolic curve described by condition (6), there was also a fold

point on the same branch in parameter space. To obtain this branch numerically, we first found a Hopf

bifurcation point and we then perform a two parameter continuation, depicted in Fig. 3.

The notation used is the same as the software package XPP to denote special points, i.e Supercritical

Hopf (HB) and Fold or Limit point (LP). Starting at any point on the (νsr, νrs) curve, for example HB1,

and then by varying only νrs, we observe in the bifurcation diagram (Va, νrs) that the system will have

periodic orbits with increasing amplitude. This amplitude however decreases when the parameter νrs

increases. An example of such a scenario is depicted in Fig. 4(a). Conversely, if we start at HB1 and vary

the parameter νsr by increasing it, we find the upper branch of the (νrs, νsr) curve emanating from the

fold LP1. Thus, the resulting diagram will have periodic orbits that have an increasing and subsequently

decreasing amplitude until convergence at a second Hopf point. This latter idea is illustrated in Fig. 4(b).

The values for HB1, HB2 and LP are provided in Table 2.

The existence of a fold point in the (νsr, νrs) parameter space suggests that the parametric curve

depicted in Fig. 3 is globally parabolic with the vertex given by the fold point (LP1) and locally hyperbolic

as described by condition (6). The difference between these two curves (Fig. 2 and Fig. 3) is because

to plot (6) we had to fix V ⋆
s and V ⋆

r so it is only a local representation.

4 Normal form calculation for an RKII set

In the previous sections we investigated the linearised flow of the RKII model and defined necessary

conditions for local stability. In this situation varying the control parameters of the model will not

change the structural stability of the system. However, in our numerical study we found that for some

parameter regimes the RKII set exhibits a limit cycle, i.e. a structural change in the flow. The change

or bifurcation in general occurs where linear stability yields an instability, that is, through the implicit

function theorem the solution cannot be continued smoothly because the Jacobian becomes singular.

In general, when the eigenvalues have zero real part the question on how to relate the flow of the

linear version of a system with its nonlinear counterpart is non-trivial. Fortunately, in this case, one can

address whether the nonlinear system posses a manifold having similar properties to the linear space

spanned by the centre eigenspace and this can be answered by using the centre manifold theory. We

proceed by calculating the centre manifold of this system. Furthermore, through linear stability analysis
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only necessary conditions for the appearance of a supercritical Hopf bifurcation were made possible.

However, according to [23, 24] it is also necessary to demonstrate that the curvature coefficient ([24],

Eq. (6.1.4)) is nonzero, which provides a sufficient condition for the Hopf bifurcation to occur. The

sign of the curvature determines the local stability and if positive (negative) indicates it is a supercritical

(subcritical) bifurcation. In general, the expansion of the curvature coefficient becomes complicated for

high dimensional systems.

Alternatively, calculation of the normal forms allows studying the vector field locally in some neighbour-

hood. This is achieved through an iterative procedure, either simplifying or identifying the nonlinear

terms from the Taylor approximation of the vector field that correspond to the observed dynamics. From

this method we can determine the minimal set of equations describing the flow and indirectly providing

the specific coefficients for the Hopf bifurcation. Once the reduced set of equations has been determined

then, for example, an option of study is to consider the coupling of the reduced nonlinear equations

and look for dynamical features observed in the full system of (i.e. without normal forms) coupled RKII

sets. In the present study we lay the foundations for this future work, by presenting these calculations

in the thalamic subsystem case.

To perform this calculation, we follow the methodology of Iooss and Adelmeyer [25] which allows

calculation of the normal forms, as well as the centre manifold reduction in one unique step. This

technique was initially proposed by Elphick [26], where it was shown that it is always possible to find a

near identity coordinate transformation that maps the centre space to the hyperbolic space and one can

then incorporate this transformation directly into the normal form. This methodology differs from other

techniques in that it does not expand the vector field directly. Instead, it assumes that the structure

of the reduced vector field on the centre manifold is known. The Ansatz of the reduced vector field

and the near identity transformation are inserted into the Homological operator and from this form

the coefficients for the centre manifold of the reduced vector field may be evaluated. This permits

minimal computational steps, when compared for example to the Birkhoff normal form transformations

considered in [27].
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4.1 Notation

The kth order multivariate Taylor series expansion for P ∈ Ck(Rn × R
m; Rn) may be represented

concisely using the following formula:

P (z, ν) =
∑

ψ∈Γn

χ∈Λm

P
|χ|
|ψ| [z

ψ, νχ] + O(|z||ψ| + |ν||χ|), (7)

where z ∈ R
n, and ν ∈ R

m is the set of parameters. The multi-index sets are defined by

Γn = {(ψ1, ψ2, · · · , ψn)|ψi ∈ {0, 1, 2, · · · }}, (8)

Λn = {(χ1, χ2, · · · , χn)|χi ∈ {0, 1, 2, · · · }},

where the order of the polynomial is defined by the order of the multi-index |ψ| = ψ1 +ψ2 + · · ·ψn and

|χ| = χ1 +χ2 + · · ·χn = k. P|ψ|[z
ψ , νχ] is a |ψ|-linear map on z and |χ|-linear map on the parameters,

where zψ = zψ1
1 · · · zψn

n and νψ = νχ1
1 · · · νχm

m . In coordinates, the i-th component is defined as follows

(P
|χ|
|ψ| (z

ψ, νχ))i =
∑

|ψ|+|χ|=k
(pχψz

ψνχ)i (9)

where pχψ represents the polynomial coefficients expressed by

pχψ =
1

(ψ1! · · ·ψn!)(χ1! · · ·χm!)

[(
∂

∂z1

)ψ1

· · ·
(

∂

∂zn

)ψn
(

∂

∂ν1

)χ1

· · ·
(

∂

∂νm

)χm

]

|(x,ν)=(0,0)

The above representations gives a clearer illustration of the k-linear map property of the Taylor expansion.

This provides a more abstract means for using the Taylor expansion to derive the normal forms.

4.2 Setup and Statement

Consider the RKII model (1) in the following form

ẋ = F (x, ν) x ∈ R
4, ν ∈ R

2, (10)

where x = (Vs, w, Vr , v). ν = (νsr, νrs) are the only parameters we allow to vary and the vector field

F ∈ Ck(R4,R2) for large enough k. To simplify the complexity of the calculation, we may rewrite

system (1) by first considering a linear change of variables that shifts the Hopf bifurcation, say (x∗, ν∗),

to zero and then expand the vector field around (x̂, ν̂) = (0, 0). Setting the linear change of variables

to x̂ = x−x∗ and ν̂ = ν− ν∗ and substituting appropriately into equations (1) we obtain the following

˙̂x = F (x̂, ν̂) (11)
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where now F (0, 0) = 0, and further by expanding the vector field with respect to x̂ we determine:

˙̂x = J(x̂) +N(x̂), N = O(|x̂|(x̂, ν̂)), (12)

where J is the Jacobian (3) and N denotes the nonlinear terms. Specifically for the Hopf bifurcation

we expect to have in the Taylor expansion, terms that depend both linearly on the coordinates and also

on the control parameters, where these terms result in the following

N1,0
1 (x̂) =




0

αβ ∂ς[V
⋆
r ]

∂cVr

ν̂srV̂r

0

0




, N0,1
1 (x̂) =




0

0

0

αβ ∂ς[V
⋆
s ]

∂cVs

V̂sν̂rs



.

The subscript (1) indicates derivative with respect to x̂ and the superscript (1, 0) and (0, 1) denotes

derivative with respect to ν̂sr and ν̂rs respectively. Equally, the expansion of N should have terms that

are cubic in the coordinate space, but independent of the parameters. Thus we have the subsequent

expansions

N0
2 (x̂1, x̂2) =

1

2!




0

αβν∗sr
∂2ς[V ⋆

r ]

∂cVr
2 V̂r,1V̂r,2

0

αβν∗rs
∂2ς[V ⋆

s ]

∂cVs
2 V̂s,1V̂s,2




, N0
3 (x̂1, x̂2, x̂3) =

1

3!




0

αβν∗sr
∂3ς[V ⋆

r ]

∂cVr
3 V̂r,1V̂r,2V̂r,3

0

αβν∗rs
∂3ς[V ⋆

s ]

∂cVs
3 V̂s,1V̂s,2V̂s,3




where N0
3 is the third order expansion with respect to x̂ and the superscript zero indicates no dependence

on the parameters ν̂. The computation of the coefficients of the cubic terms N3
0 depends indirectly on

the quadratic coefficients N2
0 shown above. At a Hopf bifurcation, condition (6) becomes an equality

and substituting this into (5), we can determine the following four eigenvalues





λ1,2 = ±i√αβ
λ3,4 = −(α+ β) ± i

√
αβ

, (13)

and the associated eigenvectors can be evaluated for one of the conjugate pairs, obtaining:

Ei
√
αβ =








−ν∗sr
∂ς[V ⋆

r ]

∂ cVr

(α+β) v̂

−ν∗sr
∂ς[V ⋆

r ]

∂ cVr
i
√
αβ

(α+β) v̂

−i
√
αβ

αβ
v̂

v̂




: v̂ ∈ C





= Span








−ν∗sr ∂ς[V
⋆
r ]

∂cVr

αβ

−ν∗sr ∂ς[V
⋆
r ]

∂cVr

i
√
αβαβ

−i√αβ(α+ β)

(α+ β)αβ








(14)
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E−(α+β)+i
√
αβ =








ν∗sr
∂ς[V ⋆

r ]

∂ cVr
(1−i(α+β)

√
αβ)

(α+β)((α+β)2+αβ) v̂

i
√
αβν∗sr

∂ς[V ⋆
r ]

∂ cVr

(α+β) v̂

−(α+β)−i
√
αβ

(α+β)2+αβ
v̂

v̂




: v̂ ∈ C





= Span








ν∗sr
∂ς[V ⋆

r ]

∂cVr

(1 − i(α+ β)
√
αβ)

i
√
αβν∗sr

∂ς[V ⋆
r ]

∂cVr

((α + β)2 + αβ)

−((α+ β) + i
√
αβ)(α+ β)

(α+ β)((α + β)2 + αβ)








(15)

The linearly invariant centre space is spanned by Ei
√
αβ and its corresponding conjugate eigenvector

(i.e a two dimensional manifold) which we denote by E0 = span{e0, ē0} and the linearly invariant

hyperbolic space spanned by the remaining two eigenvectors, we denote by Eh = span{eh, ēh}. Note

also that R
4 = Eh ⊕ E0. According to the centre manifold and normal form arguments [25], there

exists a neighbourhood I ∈ R
2 around 0 and a neighbourhood U ∈ R

4 around 0 and a smooth map

h ∈ Ck(E0 × R
2;Eh) with the following properties:

1. h(0, 0) = 0 and Dzh(0, 0) = 0 for z ∈ E0

2. For ν̂ ∈ I, the manifolds M0(ν̂) = {(z, h(z, ν̂))|z ∈ E0} are locally invariant to system (11) and

contain all solutions of the RKII set near to x̂ = 0, ∀ t ∈ R and the map satisfies Dzh(z, ν̂)ż = ẏ,

where z ∈ E0 and y ∈ Eh.

3. According to the normal form theory [25] it is possible to determine a polynomial G ∈ Ck(E0 ×
R

2;Eh), with G(0, 0) = 0, DzG(0, 0) = 0 such that by a near identity coordinate transformation

x̂ = z + h(z, ν̂), z ∈ E0 the system (12) may be normalized to:

ż = Jz +G(z, ν̂), G = O(|z||(z, ν̂)|). (16)

In this particular instance, using the assumption that the flow on the centre manifold is locally periodic,

the presence of the Hopf bifurcation implies that equation (16) has a known form. In particular the

Jacobian, J of system (1) on the centre manifold has simple eigenvalues ±i√αβ. Using complex

notation we can express the centre manifold in the following way

E0 = {z = Ze0 + Z̄ē0 |Z ∈ C} (17)
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Where Z and Z̄ are the coordinates on the manifold and it follows that the normalized flow is given by




Ż = i
√
αβZ + ZQ(|Z|2, ν̂sr, ν̂rs) + O(|Z|2k+3)

¯̇Z = −i√αβZ̄ + Z̄Q̄(|Z|2, ν̂sr, ν̂rs) + O(|Z|2k+3)
, (18)

where Q(|Z|2, ν̂sr, ν̂rs) is a complex polynomial of degree k in |Z|2 with Q(0, 0) = 0 that depends

smoothly on the control parameters (ν̂sr, ν̂rs). In particular, by expanding ZQ(|Z|2, ν̂sr, ν̂rs) using (7)

we obtain:

ZQ(|Z|2, ν̂sr, ν̂rs) = g1,0
1,0 ν̂srZ + g0,1

1,0 ν̂rsZ + · · · + g0
2,1Z

2Z̄ + · · · + g1,0
2,1 ν̂srZ

2Z̄ + · · · (19)

where we search for the coefficients g1,0
1,0 6= 0, g0,1

1,0 6= 0 and g0
2,1 6= 0. To simplify the equations we

reformulate in terms of polar coordinates:

Z = reiφ, r ∈ R
+, φ ∈ R/2πZ

Substituting into equation (18) results in the following




eiφ dr
dt

+ ireiφ dφ
dt

= i
√
αβreiφ + g1,0

1,0 ν̂srre
iφ + g0,1

1,0 ν̂rsre
iφ + g0

2,1r
3eiφ + h.o.t

eiφ dr
dt

− ireiφ dφ
dt

= i
√
αβreiφ + g1,0

0,1 ν̂srre
iφ + g0,1

0,1 ν̂rsre
iφ + g0

1,2r
3eiφ + h.o.t

(20)

Note that proving persistence of periodic solutions is beyond the scope of this work and hence we ignore

higher order terms. Solving the above equations (20) with respect for dr
dt

and dφ
dt

we get





dr
dt

=
g
1,0
1,0+g1,0

0,1

2 ν̂srr +
g
0,1
1,0+g0,1

0,1

2 ν̂rsr +
g02,1+g01,2

2 r3

dφ
dt

=
√
αβ +

g
1,0
1,0−g

1,0
0,1

2i ν̂srr +
g
0,1
1,0−g

0,1
0,1

2i ν̂rsr +
g02,1−g01,2

2i r2
(21)

We introduce the following constants cr10 =
g
1,0
1,0+g1,0

0,1

2 ⇔ Re(g0,1
1,0), ci10 =

g
1,0
1,0−g

1,0
0,1

2i ⇔ Im(g1,0
1,0), cr01 =

Re(g0,1
1,0), c

i
01 = Im(g0,1

1,0), c
r
12 = Re(g0

1,2) and ci12 = Im(g0
1,2). Since the above equations (21) are

now decoupled we can first solve for r and by quadrature solve for φ. Furthermore in equation (21),

dr
dt

defines the normal form for either the supercritical (subcritical) pitchfork bifurcation dependent on

whether the sign of cr12 is positive (negative) respectively and the equilibrium points are given by

r∗ = ±
√
ν̂srcr10 + ν̂rscr01

cr12
, r∗ = 0 (22)

In particular we search for non-trivial, stable states and these are satisfied for small (ν̂sr, ν̂rs) parameters,

providing
ˆνsrc

r
10+ ˆνrsc

r
01

cr12
> 0 which implies that the vector field admits in a small neighbourhood about

0 ∈ R
2 a unique periodic orbit with radius r∗. Substituting r∗ into dφ

dt
we obtain a stable solution φ∗

which describes the phase of the orbit and consequently the solution is locally a periodic limit cycle

defined by Z = r∗eiφ
∗t with period T = 2π√

αβ
.
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4.3 Computation of the normal form

The derivation of the Homological equation is given for completeness in Appendix A.1. From the

operator, we can determine the coefficients of the Taylor expansion of the reduction function h ∈
Ck(E0 ×R

2;Eh) and the coefficients of the polynomial G ∈ Ck(E0 ×R
2;Eh). We define the operator

as follows:

Jh(z, ν̂) −Dz[h(z, ν̂)](Jz) = G(z, ν̂) −N(z + h(z, ν̂), ν̂) +Dz[h(z, ν̂)](G(z, ν̂)), (23)

where the Ansatz is defined by





h(z, ν̂) =
∑

ψ∈Γn

|ψ|>2
χ∈Λm

hχψ[zψ, ν̂χ] = hχ|ψ|=2z
ψ ν̂χ + hχ|ψ|=3z

ψ ν̂χ + · · · ,with h = O(|z||(z, ν̂)|)

G(z, ν̂) =
∑

ψ∈Γn

|ψ|=2n+1
n∈N
χ∈Λm

(|ψ|,|χ|)6=(1,0)

Gχψ[zψ, ν̂χ] = g
|χ|=1
|ψ|=1z

ψ ν̂χ + gχ|ψ|=3z
ψ ν̂χ + · · · ,with G = O(|z|(|z|2, ν̂)|)

N(x̂, ν̂) =
∑

ψ∈Γn

|ψ|>2
χ∈Λm

Nχ
ψ [x̂ψ, ν̂χ] = Nχ

|ψ|=2x̂
ψνχ +Nχ

|ψ|=3x̂
ψν̂χ + · · · ,with N = O(|x̂||(x̂, ν̂)|)

(24)

We commence by first identifying terms in equation (24) of the same order in both the coordinates and

the control parameters, i.e. (ẑ,ν̂), and replace these in the homological equation (23). For terms that

are linear in z and linear in the control parameters, that is, O(zν̂) we obtain the following first order

homological operator

Jh1
1(z, ν̂) −Dz[h

1
1(z, ν̂)](Jz) = G1

1(z, ν̂) −N1
1 (zν̂). (25)

Expanding and evaluating the individual terms in equation (25) and then grouping those of the same

order (for details of the calculation see Appenidx §A.2) gives rise to the following four equations





(J − i
√
αβI)h1,0

1,0 = g1,0
1,0e0 −N1,0

1 (e0)

(J − i
√
αβI)h0,1

1,0 = g0,1
1,0e0 −N0,1

1 (e0)

g1,0
0,1 = ḡ1,0

1,0

g0,1
1,0 = ḡ0,1

0,1

. (26)

From equation (26) we need to obtain g1,0
1,0 and g0,1

1,0 , which are the first order coefficients of the

normal form. However, the operator (J − i
√
αβ) is not invertible. Hence, for a solution h1,0

1,0 or h0,1
1,0

to exist, the right-hand side must belong to Range(J − i
√
αβI). However, Range(J − i

√
αβI) =

Ker(J∗ + i
√
αβI)⊥, where J∗ is the adjoint operator of J . Hence, equation (26) has a solution if the
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inner product of the right hand side with f̄0 is zero, where f̄0 is the adjoint dual base of e0 and with

the following form

f̄0 =




−αβν∗rs
∂ς[V ⋆

s ]

∂ cVs
((α+β)2+αβ)

−αβ(α+β)+i
√
αβ(α+β)2

ν∗rs
∂ς[V ⋆

s ]

∂ cVs
(αβ−i

√
αβ(α+β))

−((α+β)2+i
√
αβ(α+β))

−i√αβ
1




. (27)

Thus to obtain the coefficients g1,0
1,0 and g0,1

1,0 we project every term of equation (26) onto the following

space Ker(J∗ + i
√
αβI)⊥, which corresponds to applying the following procedure





< (J − i
√
αβI)h1,0

1,0, f̄0 >= g1,0
1,0 < e0, f̄0 > − < N1,0

1 (e0), f̄0 >

< (J − i
√
αβI)h0,1

1,0, f̄0 >= g0,1
1,0 < e0, f̄0 > − < N0,1

1 (e0), f̄0 >
(28)

where < · , · > denotes the inner product of two vectors. Using the facts that for any vectors a, b ∈ C

then < Ja, b >=< a, J∗b > and < λa, b >=< a, λ̄b > (where J is the linear operator, J∗ the adjoint

operator and λ an eigenvalue), then the left hand side of equation (28) equates to < h1,0
1,0, (J

∗ +

i
√
αβI)f̄0 >= 0 and < h0,1

1,0, (J
∗ + i

√
αβI)f̄0 >= 0. Hence we have that

g1,0
1,0 =

< N1,0
1 (e0), f̄0 >

< e0, f̄0 >

⇔ −
(αβ)2ν∗rs

∂ς[V ⋆
s ]

∂cVs

∂ς[V ⋆
r ]

∂cVr

4αβ(α + β) + i
√
αβ(α+ β)2

ν̂sr, (29)

and for the other coefficient we also have

g0,1
1,0 =

< N0,1
1 (e0), f̄0 >

< e0, f̄0 >

⇔ −
(αβ)2ν∗sr

∂ς[V ⋆
s ]

∂cVs

∂ς[V ⋆
r ]

∂cVr

4αβ(α + β) + i
√
αβ(α+ β)2

ν̂rs. (30)

For the above coefficients g1,0
1,0 and g0,1

1,0 we are only interested in the real parts, which corresponds to

a negative value in both cases. To evaluate higher order terms of the normal form, in this case the

cubic terms, it turns out that we first need to resolve terms that are quadratic in the coordinates of the

centre space and that have no dependence on the parameters ν, (i.e O(Z2)). This becomes clearer as

the calculations progresses.

Thus by reducing the homological operator to quadratic terms we obtain the following

Jh0
2(z) −Dz [h

0
2(z)](Jz) = −N0

2 (z, z). (31)
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From equation (31) we can determine the following coefficients (for details of this calculation see

section§A.3): 



h0
2,0 = −(J − 2i

√
αβ)−1N2(e0, e0)

h0
1,1 = −J−1N2(e0, ē0)

h0
0,2 = ¯h0

2,0

(32)

thus we have,

h0
2,0 =

−(αβ)2νsr
2!det(J − 2i

√
αβ)

H, (33)

where

H =




(−3αβ + 2i
√
αβ(α + β))[−(α + β)2 ∂

2ς[V ⋆
r ]

∂cVr
2 ] + (αβ)2(ν∗sr)

2ν∗rs
∂2ς[V ⋆

s ]

∂cVs
2 (∂ς[V

⋆
r ]

∂cVr

)3

(αβ)(α + β)2 ∂
2ς[V ⋆

r ]

∂cVr
2 [4(α + β) + 6i

√
αβ] + 2i

√
αβ(αβ)2(ν∗sr)

2ν∗rs
∂2ς[V ⋆

s ]

∂cVs
2 (∂ς[V

⋆
r ]

∂cVr

)3

−αβ(α+ β)2ν∗rs
∂ς[V ⋆

s ]

∂cVs

∂2ς[V ⋆
r ]

∂cVr
2 + αβν∗rsν

∗
sr
∂2ς[V ⋆

s ]

∂cVs
2 (∂ς[V

⋆
r ]

∂cVr

)2)[−3αβ + 2i
√
αβ(α + β)]

−2i
√
αβ(αβ)(α + β)2ν∗rs

∂ς[V ⋆
s ]

∂cVs

∂2ς[V ⋆
r ]

∂cVr
2 − 2(αβ)2ν∗rsν

∗
sr
∂2ς[V ⋆

s ]

∂cVs
2 (∂ς[V

⋆
r ]

∂cVr

)2[2(α + β) + 3i
√
αβ]




,

and det(J − 2i
√
αβ) = 3αβ(((α2 +β2) +αβ) + 4i

√
αβ(α+β)). For the other coefficient we have the

following

h0
1,1 =

(αβ)2ν∗sr
2![(α + β)2 + αβ]




(α+ β)2 ∂
2ς[V ⋆

r ]

∂cVr
2 + (αβ)∂

2ς[V ⋆
s ]

∂cVs
2 (∂ς[V

⋆
r ]

∂cVr

)3ν∗rs(ν
∗
sr)

2

0

ν∗rs[(α + β)2 ∂ς[V
⋆
s ]

∂cVs

∂2ς[V ⋆
r ]

∂cVr
2 + (αβ)ν∗sr

∂2ς[V ⋆
s ]

∂cVs
2 (∂ς[V

⋆
r ]

∂cVr

)2]

0



. (34)

Having evaluated the quadratic coefficients we may now resolve terms that are cubic in the coordinates

of the centre space and that have no dependence on the control parameters, which are precisely the

coefficients for the unfolding of a Hopf bifurcation. Reducing the homological operator to cubic terms

we obtain the following:

Jh0
3(z) −Dz[h

0
3(z)](Jz) = G0

3 − 2N0
2 (z, h0

2(z)) −N3(z, z, z). (35)

By expanding the individual terms in the homological operator and grouping the terms of the following

order Z2Z̄, ZZ̄2,Z3 and Z̄3 we obtain four equations (details of the calculations can be found in section

§A.4). However, for the Hopf bifurcation we can restrict to those equations that depend on ZZ̄2, Z2Z̄,

giving the following:




(L− i
√
αβI)h0

2,1 = g0,0
2,1e0 − 2N0

2 (ē0, h
0,0
2,0) − 2N0

2 (e0, h
0,0
1,1) − 3N0

3 (e0, e0, ē0)

g0,0
1,2 = ḡ0,0

2,1

(36)
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From equation (36) we need to evaluate g0,0
1,2 and g0,0

2,1 . Again noting that the operator (J − i
√
αβI)

is not invertible we employ the same procedure as performed for the first order terms, that is, to apply

the inner product to all the terms of equation (36) with the adjoint dual base of e0 which we denoted

then by f̄0. Hence we obtain the following:

< (L− i
√
αβI)h0

2,1, f̄0 > = g0,0
2,1 < e0, f̄0 > −2 < N0

2 (ē0, h
0,0
2,0), f̄0 > −2 < N0

2 (e0, h
0,0
1,1), f̄0 >

− 3 < N0
3 (e0, e0, ē0), f̄0 > . (37)

The left hand side of equation (37) equates to < (L−i√αβI)h0
2,1, f̄0 >⇔< h0

2,1, (J
∗+i

√
αβI)f̄0 >= 0,

thus resulting in the following cubic coefficient for the Hopf bifurcation

g0,0
1,2 =

2 < N0
2 (ē0, h

0,0
2,0), f̄0 > +2 < N0

2 (e0, h
0,0
1,1), f̄0 > +3 < N0

3 (e0, e0, ē0), f̄0 >

< e0, f̄0 >
(38)

Once again, we are only interested in the real part, resulting in the following:

cr12 = Re(g0,0
1,2) = − (αβ)3ν∗srν

∗
rs(c1 + c2 + c3)

2!3[(α2 + αβ + β2)2 + 16αβ(α + β)2][(α+ β)2 + αβ][(α + β)2 + αβ](α + β)
,(39)

where c1 corresponds to

c1 = 2((α + β)2 + αβ)

(
2(αβ)2(α+ β)3ν∗rsν

∗
sr(
∂2ς[V ⋆

r ]

∂V̂r
2 )2(

∂ς[V ⋆
s ]

∂V̂s
)2

+ 6(ν∗sr − 1)(αβ)2(α+ β)2
∂ς[V ⋆

r ]

∂V̂r

∂2ς[V ⋆
r ]

∂V̂r
2

∂2ς[V ⋆
s ]

∂V̂s
2

+ (αβ)2(ν∗sr)
3ν∗rs(−6(αβ)2 + (α+ β)2)(

∂2ς[V ⋆
s ]

∂V̂s
2 )2(

∂ς[V ⋆
r ]

∂V̂r
)4

+ ν∗sr(α+ β)4((α+ β)2 + 15αβ)[
∂ς[V ⋆

r ]

∂V̂r
− ∂ς[V ⋆

s ]

∂V̂s
]

)
,

and the constant c2:

c2 = 12αβν∗sr [(α
2 + αβ + β2)2 + 16αβ(α + β)2]

(
ν∗rs

∂2ς[V ⋆
r ]

∂V̂r
2

∂ς[V ⋆
s ]

∂V̂s

[
(α+ β)2

∂ς[V ⋆
s ]

∂V̂s

∂2ς[V ⋆
r ]

∂V̂r
2

+ αβν∗sr
∂2ς[V ⋆

s ]

∂V̂s
2 (

∂ς[V ⋆
r ]

∂V̂r
)2

]
+
∂2ς[V ⋆

s ]

∂V̂s
2

∂ς[V ⋆
r ]

∂V̂r

[
(α+ β)2

∂2ς[V ⋆
r ]

∂V̂r
2

+ αβ(ν∗sr)
2ν∗rs

∂2ς[V ⋆
s ]

∂V̂s
2 (

∂ς[V ⋆
r ]

∂V̂r
)3

])
.

Finally the constant c3 has the following form

c3 = 12[(α2 + αβ + β2)2 + 16αβ(α + β)2]((α + β)2 + αβ)

(
(α+ β)2

∂3ς[V ⋆
r ]

∂V̂r
3

∂ς[V ⋆
s ]

∂V̂s

+ αβ(ν∗sr)
2 ∂

3ς[V ⋆
s ]

∂V̂s
3 (

∂ς[V ⋆
r ]

∂V̂r
)3

)
.
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Since α and β are both positive, ν∗sr is negative and so is the sum of c1, c2 and c3, we can conclude that

cr12 is negative. This implies that the system exhibits a supercritical Hopf bifurcation, confirming the

numerical results of section 3.1. Furthermore, the reduction function h(z) is composed by the quadratic

coefficients h0
2,0, h

0
1,1 and h0

0,2.

5 Global analysis of limit cycles in the piecewise linear model

Having used the normal forms to determine analytically local stability results, we now progress to consider

global stability of limit cycles. A piecewise linear version of system (1) is formulated and global stability

for a restricted region of the parameter space is proven. The approach chosen to study global properties

of the limit cycle is developed from the theory, Constructive Global Analysis of Hybrid Systems [16]. The

formalism is based on Piecewise Linear Systems (PLS) which are characterized by three components; a

set of affine linear systems; a switching rule to switch among them, which depends on present values of

x and possibly on past values of the state and switching surfaces consisting of hyper-planes of dimension

n− 1 defined respectively as:




ẋ = Aαx+Bα, x ∈ R
n

α(x) ∈ {1, · · · ,M}
SJ = {x|CJx+ dj = 0}, j = {1, · · · , N}

(40)

This work only considers switching rules that only depend on the present values of the state x. In

such case the state space is partitioned into M (possibly unbounded) sets called cells defined as Ui =

{x|α(x(t)) = i} with i = {1, · · · ,M} such that Ui ∩ Uj = ∅, i 6= j. Altogether there are M × N

boundaries. In each cell, Ui, the system dynamics is given by a linear system ẋ = Aix+Bi. A solution

of (40), is a function (x(t), α(x(t))) satisfying (40), where x(t) is simply the flow of the affine system

within a cell and α(x(t)) is piecewise constant. t is the switching time of a solution of (40) if α(t) is

discontinuous a t. This paper assumes that existence of solution is always guaranteed for any initial

condition (see [28] for conditions on existence of solutions for PLS). Unlike linear systems that only

have a single equilibrium point, PLS may exhibit multiple equilibrium points and/or limit cycles. Our

focus is to determine the conditions that give rise to limit cycles on the piecewise linear version of the

RKII set and to show global stability of these oscillations. In particular the existence of limit cycles of

a PLS is given by the following proposition (see details of the proof in [16]):

Proposition 1 (Existence of Limit Cycles for PLS). Consider the PLS. Suppose that there exists a limit

cycle γ with k switches per cycle and with period t∗ = t∗1 + t∗2 + · · · + t∗k > 0. Then the following
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conditions hold:

gk(t
∗
1, . . . , t

∗
k) = Ck(I − Ek . . . E1)

−1

[
k−1∑

i=1

Ek . . . Ei+1(Ei − I)zi + (Ek − I)zk

]
− dk = 0,

where Ei = eAit
∗

i and zi = A−1
i Bi. The periodic orbit is governed by system 1 on [0, t∗1), and the by

the system i on [t∗1 + · · · + t∗i−1, t
∗
1 + · · · + t∗i ), i = 2, . . . , k. Furthermore, the periodic solution γ can

be obtained with the initial condition x∗0 ∈ Sk

x∗0 = (I − Ek . . . E1)
−1

[
k−1∑

i=1

Ek . . . Ei+1(Ei − I)zi + (Ek − I)zk

]
.

Global stability can be determined by showing that system trajectories are globally contracting to a

fixed point on the switching surfaces. This is made possible by the study of impact maps. To make

things clear consider system (40) where we only analyse locally the flow from switching surface S1

to S2. Let both S1 and S2 be defined on the boundaries of subset of cell U ∈ R
n and the linear

time invariant system ẋ = A0x + B0, x ∈ U is allowed to have stable, unstable or pure imaginary

eigenvalues. Define the departure set Sd1 ⊂ S1 where any trajectory starting at Sd1 satisfies x(t) ∈ S2,

for some finite switching time t ≥ 0, and x(τ) ∈ U∗ on [0, t], where U∗ is the closure of U (i.e

U∗ = U ∪ {x|x is a limit point U}). Let the arrival set Sa2 ⊂ S2 be the set of those points x2 = x(t),

that is, the image of Sd1 . Any point belonging to the switching surface x1 ∈ Sd1 and x2 ∈ Sa2 can be

parameterised in their respective hyperplanes. For that, let x1 = x∗1 + ∆1 and x2 = x∗2 + ∆2, where

x∗1 ∈ S1, x
∗
2 ∈ S2 and ∆1, ∆2 are any vectors such that ∆1 ∈ Sd1 − x∗1 and ∆2 ∈ Sa2 − x∗2. In this case

C1∆1 = C2∆2 = 0. The impact map then reduces to the study of a map from ∆1 to ∆2. However,

since the map is multi-valued (i.e. the same initial condition ∆1 can have multiple switching times) the

following definition is introduced (see [16] for details):

Definition 1 (Expected switching times). Let x(0) = x∗1 +∆1. Define t∆1 as the set of all times ti ≥ 0

such that the trajectory x(t) with initial condition x(0) satisfies C2x(ti) = d2 and x(t) ∈ U∗ on [0, ti].

Define also the set of expected switching times of the impact map from ∆1 ∈ Sd1 −x∗1 to ∆2 ∈ Sa2 −x∗2

as

T = {t|t ∈ t∆1,∆1 ∈ Sd1 − x∗1}.

In general a map between switching surfaces is nonlinear, however a map induced by a linear time

invariant flow, can be represented as linear transformation analytically parameterized by a scalar function
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of the state (in this case the switching times t∆i
) and this is given by the following Theorem (proven

in [16]):

Theorem 1 (Impact Map). Assume C2x
∗
1(t) 6= d2 for all t ∈ T . Define the transition function as





H(t) = eAt + (x∗1(t) − x∗2)w(t), H(t) : R → R
n−1,

w(t) = C2e
At

d2−C2x
∗

1(t) .

Then, for any ∆1 ∈ Sd1 − x∗1 there exists a t ∈ T such that the impact map is given by

∆2 = H(t)∆1,

such t ∈ t∆1 is the switching time associated with ∆2.

From the above theorem it is clear that ∆1 is a nonlinear function of ∆2. However, fixing the switching

time t determines the set of points x∗1 + ∆1 ∈ S0 such that every point in that set has a switching

time t. In this view the map is linear. Furthermore, the set of points Sd1 that have a switching time

t is a convex subset of a linear manifold of dimension n − 2 which is denoted as St and defined as

St = {t|t ∈ t∆1, x
∗
1 + ∆1 ∈ Sd1}. Note that since the impact map is multi-valued, a point Sd1 may

belong to more than one set St. Also as t ∈ T changes, St covers every single point of Sd1 , i.e

Sd0 = {x|x ∈ St, t ∈ T }. Finally note that the above theorem states that a trajectory cannot intersect

the switching surface S2 for all t ∈ T . It is then possible to prove global stability by constructing surface

quadratic Lyapunov functions V1 and V2 on the switching surfaces Sd1 and Sa2 and then showing that

the impact maps from Sd1 to Sa2 are quadratically stable. This is made possible by demonstrating the

following global stability theorem for impact maps is satisfied (see proof in [16]):

Theorem 2 (Stability of impact map). Define

R(t) = P1 −H(t)TP2H(t) − 2(g1 −H(t)T g2)wt + wTt (α1 − α2)wt (41)

The impact map from ∆1 ∈ Sd1 − x∗1 to ∆2 ∈ Sa2 − x∗2 is quadratically stable if and only if there exist

P1, P2 > 0 and g1, g2, α1,α2 such that

R(t) > 0 St − x∗1, (42)

for all expected switching times t ∈ T .

Thus, if the above piecewise linear system (40) exhibits a limit cycle (i.e. having trajectories from S1

to S2 and in turn from S2 to S1) then it is first necessary to determine SuLF on S1 and S2. Once the
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quadratic functions are determined it is easy to show that the limit cycle is stable or not by applying

Theorem (2) which proves that the impact maps S1 to S2 and from S2 to S1 are contracting. In other

words, the trajectories contract to a global stable fixed point in the hyper-planes.

5.1 Analysis of piecewise linear RKII set

In the following sections we will present results for a piecewise linear version of the RKII model (1).

The model (1) can be reformulated in the form of a LTI system where usually the model is essentially

separated into linear and nonlinear terms and can be re-written in the following form





ẋ = Ax+Bu

y = Cx+Du

where x = (Vs, w, Vr, v). The matrix A contains only linear terms, while B contains the coefficients of

the nonlinear and the forcing terms, in the case of model (1), u corresponds to the sigmoidal functions.

y = Cx+Du denotes the output equation where for this case we have D = 0 (the feed matrix). The

matrix A is defined as follows:

A =


 Ã 0

0 Ã


 , Ã =


 0 1

−αβ −(α+ β)




Note thatA is invertible and all the eigenvalues lie in the left half plane. The definition of matrixB and u,

and consequently the switching surfaces will depend on the specific form of the piecewise approximation

of the nonlinear functions. Here we will first investigate the approximation of the saturating function

ς[Va(t)] by a Heaviside function. The original saturating function is unipolar (i.e. it assumes only

positive values), but for the purpose of this discussion and generality we will neglect this limitation and

will assume that it may also attain negative values. Thus we define the Heaviside function as follows:

u = Θ(y − θ) =





a y ≤ θ,

b otherwise

where we assume that (a, b, θ) ∈ R. Since we have saturating functions dependent on the dynamic

variables Vs and Vr we can define an approximation for each function independently, thus allowing for

more general results. Further, we define two switching surfaces (one for each function), by allowing the

LTI flow from lower asymptote (a) to the upper asymptote (b) of the Heaviside function. Hence, the
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complete formulation is as follows:




ẋ = Ax+ B̃0ũ0 + B̃1ũ1 + B̃2ũ2 ⇔ Ax+Bu

y = C0x

y = C1x

where C0 = [0, 0, 1, 0]T , C1 = [1, 0, 0, 0]T and

ũi = Θi(y − θi) =





ai y ≤ θi,

bi otherwise

with i = {0, 1} and the vector u = [ũ0, ũ1, ũ2]
T . Note ũ2 is due to the φn term in system (1) and here

we consider a constant term, φn = 1. The matrix B is then defined as

B =




0 0 0

αβνsr 0 αβνsn

0 0 0

0 αβνrs 0



.

Since A is invertible, the equilibrium of ẋ = Ax+Bu can be readily evaluated as x∗ = −A−1Bu and

has the following form

x∗ =




νsrũ0 + νsnũ2

0

νrsũ1

0




where

A−1 =


 Â 0

0 Â


 , Â =




−(α+β)
αβ

−1
αβ

1 0




A schematic of the reformulated model is depicted in Fig. 5.

Furthermore the two switching surfaces (hyperplanes in R
3) are defined as follows

S0 = {x ∈ R
4 : C0x = θ0} and S1 = {x ∈ R

4 : C1x = θ1}

Since we have two switching surfaces it means that the projection onto the (Vs, Vr) state space is

divided into four regions, where the dynamics of each region is governed by a separate system of the

form ẋi = Ax + Bui with i ∈ {1, 2, 3, 4}. We denote each of these by Systemi. Fig. 6 depicts the

above and from this we can derive the conditions for the existence of a globally stable limit cycle.
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The existence of a limit cycle depends on several different factors, for example whether or not the matrix

A for each system is stable or not, and in which region the equilibrium of each system lies. Depending

on the location of the equilibrium points, the model may give rise to rich and complicated dynamics

and even chaotic behavior. Finally the initial conditions also play an important role. If the matrix A of

each system is stable then a limit cycle can occur if each system has an equilibrium point in a different

region. That is, for example, System1 (in the third quadrant) must not have its equilibrium in the

third quadrant. If System1 contains its equilibrium elsewhere (except region 3), then the LTI flow will

intersect a hyperplane S0 or S1 at some finite time moment t∗ when the governing equations of some

other system will take over (in this case either system 2 or 4) and the same scenario could repeat until

a closed trajectory is formed. However, it is important to note that this scenario does not guarantee a

limit cycle as the system can be chaotic. On the other hand, if matrix A was unstable it could happen

that all systems have equilibrium points in their own region, however the overall model posseses a limit

cycle, since they would be unstable equilibrium and so depend on the initial conditions.

In general, solving the existence conditions for limit cycles can be hard (as it involves exponential

matrices and transcendental equations), however using proposition (1) allows for example to simulate

the system and obtain switching times and intersection points when the trajectory traverses a switching

surface. This information then permits verification of the stability of a limit cycle. For our model in

particular, we have that matrix A is stable (having all its eigenvalues on the left half plane), thus all of

the four systems are stable. However, the equilibrium state of each system lies in a different region, due

to the different vectors ui, with i ∈ {1, 2, 3, 4}. For ease of derivation of the limit cycle conditions we

denote Bui as simply Bi.

Making use of Fig. 6 we can state the following necessary conditions for the appearance of the limit

cycles:

Proposition 2. The switching surfaces S0 and S1 (governed respectively by the equations of the

hyperplanes C0x and C1x) divide the state space (Vs, Vr) into four regions, each of which having an

independent LTI flow xi = Ax+Bi with i ∈ {1, 2, 3, 4}. Since A is a stable matrix, then the existence

of a globally stable limit cycle is only true if the following necessary conditions are satisfied:

1. System 1: −C0A
−1B1 > θ0 or −C1A

−1B1 > θ1 = { νrsa1 > θ0 or usra0 + φnνsn > θ1 }

2. System 2: −C0A
−1B2 > θ0 or −C1A

−1B2 < θ1 = { νrsb1 > θ0 or νsra0 + φnνsn < θ1 }

3. System 3: −C0A
−1B3 < θ0 or −C1A

−1B3 < θ1 = { νrsb1 < θ0 or νsrb0 + φnνsn < θ1 }
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4. System 4: −C0A
−1B4 < θ0 or −C1A

−1B4 > θ1 = { νrsa1 < θ0 or νsrb0 + φnνsn > θ1 }

To study the local and global stability of a limit cycle we select from the numerical results of section

3.1, a region of interest in parameter space. Without lose of generality, we choose a band centered in

HB1 (see Table 2) with small variations in the parameter νsr and the parameter νrs is allowed to vary

freely. In this parameter window we verify that the dynamic variable Vr is always positive and gradually

turns its dynamics from sub-threshold to supra-threshold as νrs is increased (where the threshold in the

nonlinear function is θ). Note, there are numerous ways for determining a reasonable approximation to

the nonlinear function. For example, one easy way is to generate the time series of the dynamic variables

and use those as input to the nonlinear functions. Thus, the method allows us to determine what region

of the nonlinear function space is being visited. The approximation chosen for Vr in this parameter

regime is a Heaviside function with parameters (a0, b0, θ0) = (0, 250, 0.015), for this case θ0 coincides

with the threshold of the sigmoidal function. Conversely Vs has only sub-threshold dynamics occupying

mostly the lower asymptote of the nonlinear function. As we have seen, the sigmoidal function considered

here is very steep indeed and a small variation in the input has dramatic changes in the output, so the

approximation must be chosen carefully. Since Vs lies mostly on the lower asymptote we could use a

function of the form u(t) = max{0, Cx + θ1}, where C is some vector. However, for the purpose of

demonstrating global stability a simpler function will suffice. A reasonable choice is a Heaviside with

the parameters (a1, b1, θ1) = (0, 250,−0.015). As an example, we present a simulation using a matlab

code we developed using the symbolic math toolbox (see Fig 7).

The code uses the ideas discussed where then a limit cycle is generated and the switching times and

the Poincaré surface coordinates are determined. Here the code is run with the initial conditions

x∗0 = [0, 0, 0, 0]T and with the control parameters fixed to (νsr, νrs,νsn) =(-0.008, 0.006, 0). We

observe a limit cycle in the clock-wise direction where we can easily interpret the results using the

derived necessary conditions from Proposition 1. In this simulation System2 in the second quadrant

starts running and its trajectory tends towards its equilibrium point which lies in the first quadrant. As

it evolves, a switch occurs at S0 where then System1 takes over and the same scenario for the other

systems repeats as the limit cycle develops. The code is run long enough until the switching times

reaches a tolerance (|t∗i − t| < TOL, where TOL is some time parameter). The switching times and

Poincaré surface coordinates are stored in Table 3.
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5.2 Limit Cycle γ with period t∗

Here we make use of the proofs for the existence of limit cycles given by proposition (1) which provides

an algorithm to derive the analytical solution of the trajectory of a limit cycle. From the numerical

simulation we observe that the trajectory φ(t) of the limit cycle γ traverses each switching surface Sk

with k ∈ {0, 1} twice, in a sequential manner. We here denote Sik as the subsection of a switching

surface Sk where the trajectory first intersects it and t∗i as the time moment of the intersection, where

i = j mod 4, with j ∈ N
+
0 . For example, S0

0 is the subsection of the switching surface S0 where the

trajectory traverses it at time instant t∗0 (since it is a limit cycle we consider t∗0 = t∗4 since t∗i = t∗j mod 4).

Hence the limit cycle γ starting at the some initial condition x∗i ∈ Sik has period t∗ = t∗1 + t∗2 + t∗3 + t∗4

and satisfies:

i φ(t∗1) = x∗1 ∈ S1
1

ii φ(t∗1 + t∗2) = x∗2 ∈ S2
0

iii φ(t∗1 + t∗2 + t∗3) = x∗3 ∈ S3
1

iv φ(t∗1 + t∗2 + t∗3 + t∗4) = x∗4 ∈ S0
0

where each Systemi has a solution of the following form

x(t)i = eAt(x0 +A−1Bi) −A−1Bi.

From proposition (1) the piecewise trajectory φ(t) is governed by the following switching conditions





g0(t
∗
1, t

∗
2, t

∗
3, t

∗
4) = C0x

∗
0 − θ0 = 0

g1(t
∗
1, t

∗
2, t

∗
3, t

∗
4) = C1x

∗
1 − θ1 = 0

g2(t
∗
1, t

∗
2, t

∗
3, t

∗
4) = C0x

∗
2 − θ0 = 0

g3(t
∗
1, t

∗
2, t

∗
3, t

∗
4) = C1x

∗
3 − θ1 = 0
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where C0 and C1 are the output matrix (describing the hyperplanes) defined in the previous section and

the periodic solution of the piecewise linear approximation is obtained with any of the initial conditions:

x∗0 = (I − eA(t∗4+t∗3+t∗2+t∗1))−1

[
eA(t∗4+t∗3+t∗2)(eAt

∗

1 − I)A−1B1 + eA(t∗4+t∗3)(eAt
∗

2 − I)A−1B2

eAt
∗

4(eAt
∗

3 − I)A−1B3 + (eAt
∗

4 − I)A−1B4

]
,

x∗1 = (I − eA(t∗1+t∗4+t∗3+t∗2))−1

[
eA(t∗1+t∗4+t∗3)(eAt

∗

2 − I)A−1B2 + eA(t∗1+t∗4)(eAt
∗

3 − I)A−1B3

eAt
∗

1(eAt
∗

4 − I)A−1B4 + (eAt
∗

1 − I)A−1B1

]
,

x∗2 = (I − eA(t∗2+t∗1+t∗4+t∗3))−1

[
eA(t∗2+t∗1+t∗4)(eAt

∗

3 − I)A−1B3 + eA(t∗2+t∗1)(eAt
∗

4 − I)A−1B4

eAt
∗

2(eAt
∗

1 − I)A−1B1 + (eAt
∗

2 − I)A−1B2

]
,

x∗3 = (I − eA(t∗3+t∗2+t∗1+t∗4))−1

[
eA(t∗3+t∗2+t∗1)(eAt

∗

4 − I)A−1B4 + eA(t∗3+t∗2)(eAt
∗

1 − I)A−1B1

eAt
∗

3(eAt
∗

2 − I)A−1B2 + (eAt
∗

3 − I)A−1B3

]
.

5.3 Local stability of Limit cycle γ

The local stability of the limit cycle can be verified by considering a Poincaré map, P, from some point

x∗i ∈ Sik, to the point when the trajectory returns to Sik. i.e P : Sik → Sik and then verifying that

the Jacobian of the map has all its eigenvalues inside the unit disc. The Jacobian of the map P is

derived by considering small perturbations in time and space in each intermediate switching surface and

then neglecting higher order terms. The results presented in [16] is a particular case of the well known

results for Local stability of limit cycles for smooth systems which uses the characteristic multipliers to

determine their stability. As such we will not detail this discussion and refer the reader to [16] for a

comprehensive discussion. The Jacobian, W, of a piecewise linear system is given by the composition

of all the intermediate perturbations within each switching surface and is defined as W = W3W2W1W0

where,

Wi =

(
I − viCk

Ckvi

)
eAt

∗

i .
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Here vi = Ax∗i +Bi and k = i mod 2. Substituting the values from Table (3) we get

W =




5.47e-4 2.71e-06 9.58e-03 4.79e-05

-2.73e-2 -1.36e-04 -4.79e-01 -2.39e-03

0 0 0 0

2.64e-05 1.31e-07 4.62e-04 2.31e-06




which does indeed have all its eigenvalues inside a unit disc. We therefore conclude that the limit cycle

is locally stable.

5.4 Global stability of limit cycle γ

The fundamentally new concept introduced in Constructive Global Analysis of Hybrid Systems [16] is

to infer global dynamical properties of a system through finding quadratic Lyapunov functions on the

switching surfaces. Earlier studies [29, 30] had proposed continuity of the Lyapunov functions along the

switching surfaces and this result lead to the idea that the intersection of two Lyapunov functions at a

switching surfaces (one from each side) defined a unique quadratic Lyapunov function on the switching

surface. It is then demonstrated in [16] that a quadratic Lyapunov function on the switching surface

in a PLS denoted Quadratic Surface Lyapunov Function (SuLF) exists and that SuLF (as opposed to

searching for Lyapunov functions in the state space) is sufficient to efficiently analyse global stability

of limit cycles. This follows since a PLS behaves linearly inside a region (partitioned state space). In

order to analyse PLS using SuLF it is first necessary to define impact maps from one switching surface

to the next and by combining all the impact maps associated with the PLS it is possible to infer global

stability. Here we can define an impact map associated to the LTI flow in each of the four regions.

Following Theorem (1) we define:

Hi(t) = eAt + (x∗i (t) − x∗i+1)wi(t)

and for each region i the following

w0(t) =
C1e

At

θ1 − C1x
∗
0(t)

, w1(t) =
C0e

At

θ0 − C0x
∗
1(t)

w2(t) =
C1e

At

θ1 − C1x∗2(t)
, w3(t) =

C0e
At

θ0 − C0x∗3(t)

where (i, k) have been defined above. For every impact map i define for a given initial condition in Sik

a set of all expected switching times ti ∈ Ti. Then for any ∆i ∈ Sik − x∗i there exist a set of expected

switching times ti ∈ Ti such that the impact maps are given by

∆i+1 = Hi(ti+1)∆i
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where each ti is the switching time associated to each perturbation ∆i. Furthermore, parameterising

the impact map with ti defines the set of initial conditions Skti ∈ Sik in a given switching surface that

have the same switching time. This set of initial conditions Skti is a convex subset of a linear manifold

of dimension n− 2 (in our case an R
2 surface). To show that these four impact maps are contracting

in some sense, define a SuLF on each Sik given by

Vi(x) = xTPix− 2xT gi + αi.

Global asymptotically stability of the limit cycle follows if there exists Pi > 0 (Positive definite), gi, αi,

such that

Vi+1(∆i+1) < Vi(∆i) ⇔ Vi(∆i) + Vi+1(Hi(ti+1)∆i) > 0 ∀∆i ∈ Sik − x∗i

The above inequality is computationally hard, however using the fact that the maps from one switching

surface to the next are linear in Skti and that as ti ranges over Ti, Skti covers every point in Sik it is

possible to define approximations with a set of LMI (Linear Matrix Inequalities) [31]. We choose to

use the conservative condition given by Theorem (2) which is computationally very efficient. Thus

equivalently, the limit cycle is globally asymptotically stable if there exist Pi > 0 and gi, βi = αi−αi+1

such that




Ri(ti+1) = Pi −HT
i (ti+1)Pi+1Hi(ti+1) − 2(gi −HT

i (ti+1)gi+1)wi(ti+1) + wTi (ti+1)βiwi(ti+1)

Ri(ti+1) > 0 on Skti − x∗i for all expected switching times ti ∈ Ti.

Furthermore, parameterising the impact map by a switching time corresponds to defining a linear oper-

ator H : R
n−1 → R

n−1. In view of that, while ∆i are vectors in R
n the impact maps have solutions

restricted to the hyperplanes in R
n−1. Consequently this allows to define basis for the switching surfaces

where then each vector ∆i ∈ Sik can be expressed as linear combination of the basis ∆i = Πiδi (with

Πi being the basis and δi ∈ R
n−1). An easy choice for the basis is the orthogonal complements to Ci,

i.e Πi ∈ C⊥
i . It then follows that the last LMI condition can be rewritten as





Ri(ti+1) = Qi − F Ti (ti+1)Qi+1Fi(ti+1) − 2(ρi − F Ti (ti+1)ρi+1)ωi(ti+1) + ωTi (ti+1)ψiωi(ti+1)

Ri(ti+1) > 0 on Skti − x∗i for all expected switching times ti ∈ Ti,
(43)

where Qi = ΠT
i+1PiΠi, Fi(t) = ΠT

i+1Hi(t)Πi, ρi = ΠT
i+1giΠi, ψi = ΠT

i+1βiΠi and ωi(t) = ΠT
i+1wi(t)Πi.

Since the systems within a single region are linear then simple candidates for the quadratic surface

coefficients are ρi = 0 and ψi = 0. The final aspect to note about condition (43) is that it defines an

infinite set of LMI for all ti ∈ Ti. Computationally to overcome this difficulty it is necessary to grid

28



this set in order to obtain a finite subset of expected switching times t−i = t0i < t1i < · · · < tji = t+i ,

for some j ∈ N. To compute the above conditions we implement a set of matlab routines using the

IQCβ toolbox [32]. The objective being to find Qi > 0 and to confirm that (43) is satisfied for all

switching times [t−i , t
+
i ] by plotting the minimum eigenvalue of (43) on [t−i , t

+
i ], and thus showing that

this is indeed positive definite. We find that the largest switching time sets for which (43) are satisfied

were T1=[5.71e-2, 7e-2], T2=[1e-2, 2.5e-2], T3=[2.2e-3, 8.85e-3] and T4=[1.5e-2, 6.4e-2] which can be

confirmed in the following Fig. 8. In particular for the switching times presented in Table 3 we have the

following positive definite matrices.

Q1 =




3.63 1.38e-2 0

1.38-2 8.97e-1 0

0 0 2.39e-1


 , Q2 =




2.33e-01 0 0

0 4.88 -2e-01

0 -2e-01 9.17e-01




Q3 =




1.61 -1.61e-02 0

-1.61e-02 3.16e-01 0

0 0 2.54e-02


 , Q4 =




2.37e-03 0 0

0 2.49 4.22e-03

0 4.22e-03 7.75e-02


 .

Having found that positive definite matrices exist, satisfying Theorem (2) we have proved that the piece-

wise linear approximation considered is globally asymptotically stable. Other piecewise approximations

could have been used but the approximation we considered is sufficient to prove global stability. Note

that global stability can equally be proven for this PLS system with time invariant inputs by applying

the same procedure. For this case in particular a more straightforward approach could be used by first

applying a coordinate transformation. Having proven global stability of the limit cycle for a subset of

the control parameters, it leaves us with the question on how to get a suitable approximation for the

nonlinear functions that permits an analysis of the system for the complete parameter range. Clearly,

consideration of a higher order piecewise approximations will increase the accuracy of the system, whilst

also increasing the computational complexity of the LMIs, which does not seem to be necessary. Nat-

urally an interesting extension of this work would be to determine the simplest partition of the state

space (Vs, Vr) that permits the global analysis of the limit cycle for the whole parameter domain.
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6 Conclusions and future work

In this paper, we have considered theoretical and computational insights into the dynamics of an RKII

set, which is to our knowledge the first such rigourous presentation of the existence and stability of limit

cycles in a model of this type. Using normal forms and the theory of centre manifolds we were able to

extract the coefficients of the Hopf bifurcations, confirming their supercritical nature which we observed

computationally in section 3.1. Subsequently we considered a suitable piecewise linear reduction of

the RKII set, demonstrating global stability of the limit cycle in this case. A drawback of the chosen

approximation is that it was only valid on a subset of the total parameter space and consequently future

work should consider a more systematic partitioning of the sigmoidal function, that is, a greater number

of partitions of the state space, which would envisage having the effect of smoothing out the observed

limit cycle. However, numerical simulations demonstrated that the limit cycle lived in a very restricted

region of the state space. Therefore, increasing the number of partitions arbitrarily may well introduce

redundancy into the problem whilst increasing the complexity of the calculations. With regards to the

biological relevance, the sigmoidal curve originally considered in the model was fitted from clinical data,

thus the curve may be considered as some approximation that is representative of the data. On the

other hand, sigmoidal curves (Frequency-Current or F-I curves) based on single neuron models, for

example Hodgkin-Huxley, are obtained by averaging over piecewise smooth firing rate functions for each

individual neuron, an approach commonly used to derive firing-rate/neural field models. Noise in the

system smoothes out the average F-I curve and makes the final positioning of the curve somewhat

arbitrary and therefore the particular partitioning is only an approximation. Determining the particular

partitioning was done by numerically observing that the limit cycle lived in a restricted region of the

state space for the parameter values considered and selecting an approximation that partitioned this

region. Future work will be to consider extensions of the piecewise linear approximations to enable study

of a wider region of parameter space, as well as developing techniques for studying coupled RKII sets

and synchronization between them. Further extensions to this work will also consider robustness and

performance to guarantee finite gain L2 stability, in particular for RKII set with periodic inputs. This

will allow to complement the results obtained in [12, 11] to better understand the genesis of epilepsy.

Finally the strength of this new methodology suggests the potential towards understanding the total

Ki set hierarchy and giving hope in understanding human EEG and brain dynamics at the meso and

macroscopic levels.
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A

For completeness we provide here additional material relating to the calculation of the normal forms:

A.1 Derivation of the Homological Equation

The normal form/centre manifold methodology introduced by Iooss and Adelmeyer [25] is based on the

homological operator. The theory states that the transformation of some vector field to a normal form is

possible by the following near identity coordinate transformation x̂ = z+h(z, ν̂), where x̂ = (z, y) ∈ R
n

with z a vector on the centre manifold (i.e from equation (17) z = Ze0 + Z̄ē0), y a vector on the

hyperbolic space and ν̂ ∈ R
n the control parameters. To illustrate this, consider the following vector

field

ˆ̇x = Jx̂+N(x, ν̂), (44)

where J is the linear operator (note that Iooss and Adelmeyer consider the Jacobian) and N ∈ Ck(Rn×
R
m; Rn) contain the nonlinear terms. The objective is to transform (44) to a normal form on the centre

space having the following structure:

ż = Jz +G(z, ν̂), (45)

where G ∈ Ck(Rn × R
m; Rn). First, apply the derivative operator to the near identity transformation

which gives rise to:

ˆ̇x = ż +Dz[h(z, ν̂)](ż). (46)

Applying (44) to the above equation (46) results in

ż +D1[h(z, ν̂)](ż) = Jx̂+N(x̂, ν̂). (47)

Again, introducing the identity transformation into the above equation (46) generates

ż +D1[h(z, ν̂)](ż) = Jz + Jh(z, ν̂) +N(z + h(z, ν̂), ν̂). (48)

Finally applying (45) to the previous derivation (48) and rearranging terms we obtain the homological

operator:

Jh(z, ν̂) −Dz[h(z, ν̂)](Jz) = G(z, ν̂) −N(z + h(z, ν̂), ν̂) +Dz[h(z, ν̂)](G(z, ν̂)).
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A.2 Derivation of the O(1) normal form coefficients

The terms that depend linearly on the parameters and coordinates give rise to a homological operator

with the following form:

Jh1
1(z, ν̂) −Dz[h

1
1(z, ν̂)](Jz) = G1

1(z, ν̂) −N1
1 (zν̂).

Since z = Ze0 + Z̄ē0 and in our case the control parameters are ν̂ = (ν̂sr, ν̂rs) then we have the

following expansion for h1
1

h1
1 = h1,0

1,0νsrZe0 + h0,1
1,0νrsZe0 + h1,0

0,1νsrZ̄ē0 + h0,1
0,1νrsZ̄ē0. (49)

Applying the linear operator J to the above equation (49) results in

Jh1
1 = Jh1,0

1,0ν̂srZe0 + Jh0,1
1,0ν̂rsZe0 + Jh1,0

0,1ν̂srZ̄ē0 + Jh0,1
0,1ν̂rsZ̄ē0. (50)

Also apply the multivariate derivative operator Dz to equation (49) to obtain




DZ [h0
2(z, ν̂)] = h1,0

1,0ν̂sre0 + h0,1
1,0ν̂rse0

DZ̄ [h0
2(z, ν̂)] = h1,0

0,1ν̂srē0 + h0,1
0,1ν̂rsē0

. (51)

The term Jz in the homological equation equates to:

Jz = J(Ze0 + Z̄ē0)

⇔ ZJ(e0) + Z̄J(ē0)

⇔ i
√
αβZe0 − i

√
αβZ̄ē0. (52)

The expansion of the polynomial G1
1 has the following form

G1
1 = g1,0

1,0 ν̂srZe0 + g0,1
1,0ν̂rsZe0 + g1,0

0,1 ν̂srZ̄ē0 + g0,1
0,1 ν̂rsZ̄ē0 (53)

and the nonlinear term N1
1 is the following

N1
1 = ν̂srZN

0,1
1 (e0) + ν̂rsN

0,1
1 Z̄(ē0). (54)

Finally substituting equations (50),(51),(52),(53) and (54) into the homological operator and then

equating terms of the same order gives rise to the following four equations:




(J − i
√
αβI)h1,0

1,0 = g1,0
1,0e0 −N1,0

1 (e0),

(J − i
√
αβI)h0,1

1,0 = g0,1
1,0e0 −N0,1

1 (e0),

g1,0
0,1 = ḡ1,0

1,0 ,

g0,1
1,0 = ḡ0,1

0,1 .

(55)
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Here we only consider g1,0
1,0 and g1,0

0,1 and to evaluate these coefficients we apply to the individual terms

of the first two equations of (55) the inner product with the adjoint dual basis of e0 and here we denote

it as f̄0. Hence we obtain the following:





g1,0
1,0 < e0, f̄0 >=< N1,0

1 (e0), f̄0 >,

g0,1
1,0 < e0, f̄0 >=< N0,1

1 (e0), f̄0 >,
(56)

where the operator < ., . > denotes the inner product of two vectors and < a, b >= a∗b, where a, b ∈ C

and a∗ is the complex conjugate transpose of vector a and f̄0 is given by equation (27) (refer to the

main text), thus

< e0, f̄0 >= αβ[2(α + β) − (αβ)] + i(α+ β)[
√
αβ(α+ β) + αβ] (57)

and

N1,0
1 (e0) =




0

−αβ ∂ς[V ⋆
r ]

∂cVr

i
√
αβ(α+ β)ν̂sr

0

0




, N0,1
1 (e0) =




0

0

0

−(αβ)2ν∗sr
∂ς[V ⋆

s ]

∂cVs

∂ς[V ⋆
r ]

∂cVr

ν̂rs.




A.3 Derivation of the O(2) normal form coefficients

From the order 2 homological equation we may extract the coefficients h2
0. The equation is written in

following form

Jh0
2(z) −Dz[h

0
2(z)](Jz) = −N0

2 (z, z)

Using the same steps as applied to the order one coefficients and by first performing the Taylor expansion

for h(z) of order 2 in z and no dependence on parameters we get

h0
2 = h0

2,0Z
2 + h0

1,1ZZ̄ + h0
0,1Z̄

2. (58)

Applying the linear operator J to equation (58) we get

Jh0
2 = Jh0

2,0Z
2 + Jh0

1,1ZZ̄ + Jh0
0,1Z̄

2. (59)

Also we apply the multivariate derivative operator Dz to equation (58) to obtain





DZ [h0
2(z)] = 2h0

2,0Z + h0
1,1Z̄

DZ̄ [h0
2(z)] = h0

1,1Z + 2h0
0,2Z̄

. (60)
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Since Jz = [i
√
αβZ,−i√αβ]T and then by combining with (60) results in the following:

Dz[h
0
2(z)](Jz) = 2h0

2,0i
√
αβZ2 − 2h0

0,2i
√
αβZ̄2. (61)

For the nonlinear term N0
2 , we use the bilinear property of the Taylor expansion for second order terms,

which then N0
2 equates to:

N0
2 (z, z) = N0

2 (Ze0 + Z̄ē0, Ze0 + Z̄ē0) ⇔ Z2N(e0, e0) + 2ZZ̄N(e0, ē0) + Z̄2N(ē0, ē0). (62)

Substituting (52), (58), (61) and (62) back into the homological equation and grouping terms of the

same order we get: 



(J − 2i
√
αβI)h0

2,0 = −N2(e0, e0)

Jh0
1,1 = −N2(e0, ē0)

(J + 2i
√
αβI) ¯h0

2,0 = −N2(ē0, e0)

. (63)

Note that the eigenvalues of J include ±i√αβ, so the operator (J − ηI) is invertible for η 6= ±i√αβ,

thus allowing to determine the coefficients h0
2,0 , ¯h0

2,0 and h0
1,1. Where the inverse of the linear operator

J at the bifurcation point is given by

J−1 =




− α+β
((α+β)2+αβ)

− 1
((α+β)2+αβ)

−
νsr(α+β)

∂ς[V ⋆
r ]

∂ cVr

((α+β)2+αβ)
−

νsr
∂ς[V ⋆

r ]

∂ cVr

((α+β)2+αβ)

1 0 0 0

−
νrs(α+β)

∂ς[V ⋆
s ]

∂ cVs

((α+β)2+αβ) −
νrs

∂ς[V ⋆
s ]

∂ cVs

((α+β)2+αβ) − α+β
((α+β)2+αβ) − 1

((α+β)2+αβ)

0 0 1 0




, (64)

and also at the Hopf bifurcation point we have

(J − 2i
√
αβ)−1

Column 1
=

1

det(J − 2i
√
αβ)




−7αβ(α + β) + 2i
√
αβ((α + β)2 − 3αβ)

αβ(−2i
√
αβ(α+ β) − (α+ β)2 + 3αβ)

αβνrs
∂ς[V ⋆

s ]

∂cVs

(α+ β + 2i
√
αβ)

αβνrs
∂ς[V ⋆

s ]

∂cVs

(−4αβ + 2i
√
αβ(α+ β))



, (65)

(J − 2i
√
αβ)−1

Column 2
=

1

det(J − 2i
√
αβ)




−3αβ + 2i
√
αβ(α+ β))

−αβ(4(α + β) + 6i
√
αβ)

αβνrs
∂ς[V ⋆

s ]

∂cVs

2i
√
αβνrs

∂ς[V ⋆
s ]

∂cVs



, (66)
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(J − 2i
√
αβ)−1

Column 3
=

1

det(J − 2i
√
αβ)




αβνsr
∂ς[V ⋆

r ]

∂cVr

(α+ β + 2i
√
αβ)

αβνsr
∂ς[V ⋆

r ]

∂cVr

(−4αβ + 2i
√
αβ(α+ β))

−7αβ(α + β) + 2i
√
αβ((α2 + β2) − αβ)

αβ(3αβ − (α+ β)2 − 2i
√
αβ(α+ β))



, (67)

(J − 2i
√
αβ)−1

Column 4
=

1

det(J − 2i
√
αβ)




αβνsr
∂ς[V ⋆

r ]

∂cVr

αβνsr
∂ς[V ⋆

r ]

∂cVr

2i
√
αβ

−3αβ + 2i
√
αβ(α+ β)

−2αβ(2(α + β) + 3i
√
αβ)



, (68)

where det(J − 2i
√
αβ) = 3αβ(((α2 + β2) + αβ) + 4i

√
αβ(α+ β)).

Furthemore we have the following bilinear terms

N0
2 (e0, e0) =

1

2!




0

−(αβ)2(α+ β)ν∗sr
∂2ς[V ⋆

r ]

∂cVr
2

0

(αβ)3ν∗rs(ν
∗
sr)

2 ∂
2ς[V ⋆

s ]

∂cVs
2 (∂ς[V

⋆
r ]

∂cVr

)2



, (69)

N0
2 (e0, ē0) =

1

2!




0

(αβ)2(α+ β)2ν∗sr
∂2ς[V ⋆

r ]

∂cVr
2

0

(αβ)3ν∗rs(ν
∗
sr)

2 ∂
2ς[V ⋆

s ]

∂cVs
2 (∂ς[V

⋆
r ]

∂cVr

)2



, (70)

A.4 Derivation of the O(3) normal form coefficients

From the order 3 homological equation, we may extract the coefficients that are cubic in the coordinates

of the centre space and independent of the control parameters, that is, here ZO(|Z|2). The operator

takes the following form:

Jh0
3(z) −Dz[h

0
3(z)](Jz) = G0

3 − 2N0
2 (z, h0

2(z)) −N3(z, z, z). (71)

The third order Taylor expansion of h(z) gives the following:

h0
3 = h0

3,0Z
3 + h0

2,1Z
2Z̄ + h0

1,2ZZ̄
2 + h0

0,3Z̄
3. (72)
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In same way as for order one and two coefficients, we apply the linear operator J to equation (72).

Also, applying the differential operator Dz to (72) we obtain





DZ [h0
3(z)] = 3h0

3,0Z
2 + 2h0

2,1ZZ̄ + h0
1,2Z̄

2

DZ̄ [h0
3(z)] = h0

2,1Z
2 + 2h0

1,2ZZ̄ + 3h0
0,3Z̄

2
. (73)

Then by combining (73) and (52) this gives rise to

Dz[h
0
3(z)](Jz) = i

√
αβ(3h0

3,0Z
3 + h0

2,1Z
2Z̄ − h0

1,2ZZ̄
2 − 3h0

0,3Z̄
3). (74)

In this case we have the nonlinear term N0
2 and its derivation is as follows:

N0
2 (z, h0

2(z)) = N0
2 (Ze0 + Z̄ē0, h

0
2,0Z

2 + h0
1,1ZZ̄ + h0

0,2Z̄
2)

⇔ N0
2 (e0, h

0
2,0)Z

3 +N0
2 (e0, h

0
1,1)Z

2Z̄ +N2(e0, h
0
0,2)ZZ̄

2

+ N0
2 (ē0, h

0
2,0)Z̄Z

2 +N0
2 (ē0, h

0
1,1)ZZ̄

2 +N2(ē0, h
0
0,2)Z̄

3. (75)

Equally for the third order of the same nonlinearity we have:

N0
3 (z, z, z) = N0

3 (e0, e0, e0)Z
3 + 3N0

3 (e0, e0, ē0)Z
2Z̄

+ 3N0
3 (e0, ē0, ē0)ZZ̄

2 +N0
3 (ē0, ē0, ē0)Z̄

3. (76)

The expansion for the cubic terms of the normal form G has the following structure:

G0
3 = g0,0

2,1Z|Z|2e0 + g0,0
1,2Z̄|Z|2ē0 (77)

⇔ g0,0
2,1Z

2Z̄e0 + g0,0
1,2ZZ̄

2ē0. (78)

Substituting (52), (72), (74), (75), (76) and (78) back into the homological equation of order 3 and

grouping terms of the same order we obtain





(L− i3
√
αβI)h0

3,0 = −2N0
2 (e0, h

0
2,0) −N0

3 (e0, e0, e0),

(L+ i3
√
αβI)h0

0,3 = −2N0
2 (ē0, h

0
0,2) −N0

3 (ē0, ē0, ē0),

(L− i
√
αβI)h0,0

2,1 = g0,0
2,1e0 − 2N0

2 (ē0, h
0,0
2,0) − 2N0

2 (e0, h
0,0
1,1) − 3N0

3 (e0, e0, ē0),

(L+ i
√
αβI)h0

1,2 = g0,0
1,2 ē0 − 2N0

2 (e0, h
0,0
0,2) − 2N0

2 (ē0, h
0,0
1,1) − 3N0

3 (e0, ē0, ē0).

(79)

Here we only evaluate g0,0
1,2 and g0,0

2,1 . To solve them we can apply to the last two equations of (79) the

inner product with the adjoint dual basis of e0 which we denote as f̄0. Thus we have the following:





g0,0
2,1 < e0, f̄0 >= 2 < N0

2 (ē0, h
0,0
2,0), f̄0 > +2 < N0

2 (e0, h
0,0
1,1), f̄0 > +3 < N0

3 (e0, e0, ē0), f̄0 >

g0,0
1,2 = ḡ0,0

2,1

(80)
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where < e0, f̄0 > is given by equation (57) in section §A.2, and

N0
2 (e0, h

0
1,1) =

−(αβ)3(ν∗sr)
2ν∗rs

4[(α+ β)2 + αβ]
N11 (81)

N11 =




0

i
√
αβ(α+ β)∂

2ς[V ⋆
r ]

∂cVr
2 [(α + β)2 ∂ς[V

⋆
s ]

∂cVs

∂2ς[V ⋆
r ]

∂cVr
2 + αβν∗sr

∂2ς[V ⋆
s ]

∂cVs
2 (∂ς[V

⋆
r ]

∂cVr

)2)]

0

αβ ∂
2ς[V ⋆

s ]

∂cVs
2

∂ς[V ⋆
r ]

∂cVr

[(α + β)2 ∂
2ς[V ⋆

r ]

∂cVr
2 + αβν∗rs(ν

∗
sr)

2 ∂
2ς[V ⋆

s ]

∂cVs
2 (∂ς[V

⋆
r ]

∂cVr

)3]



.

Furthermore

< N0
2 (e0, h

0
1,1), f̄0 > =

−(αβ)2(ν∗sr)
2ν∗rs

4[(α+ β)2 + αβ]

(
ν∗rs

∂ς[V ⋆
s ]

∂V̂s

∂2ς[V ⋆
r ]

∂V̂r
2

[
(α+ β)2

∂ς[V ⋆
s ]

∂V̂s

∂2ς[V ⋆
r ]

∂V̂r
2

+ (αβ)ν∗sr
∂2ς[V ⋆

s ]

∂V̂s
2 (

∂ς[V ⋆
r ]

∂V̂r
)2)

]
+
∂2ς[V ⋆

s ]

∂V̂s
2

∂ς[V ⋆
r ]

∂V̂r

[
(α+ β)2

∂2ς[V ⋆
r ]

∂V̂r
2

+ (αβ)νrs(νsr)
2 ∂

2ς[V ⋆
s ]

∂V̂s
2 (

∂ς[V ⋆
r ]

∂V̂r
)3

])
. (82)

The next term equates to the following

N0
2 (ē0, h

0
2,0) = − (αβ)4(ν∗sr)

2ν∗rs
4det(J − 2i

√
αβ)

M20, (83)

where M20 is the subsequent matrix
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,

which then applying the inner product with f̄0 results in
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2 (ē0, h

0
2,0), f̄0 > = − (αβ)4(ν∗sr)

2ν∗rs
4det(J − 2i

√
αβ)

(
−(αβ)ν∗rs

∂2ς[V ⋆
r ]

∂V̂r
2

∂ς[V ⋆
s ]

∂V̂s

[
(α+ β)2

∂2ς[V ⋆
r ]

∂V̂r
2

∂ς[V ⋆
s ]

∂V̂s

+ νsr
∂2ς[V ⋆

s ]

∂V̂s
2 (

∂ς[V ⋆
r ]

∂V̂r
)2[3αβ + 2i

√
αβ(α+ β)]

]

+
∂2ς[V ⋆

s ]

∂V̂s
2

∂ς[V ⋆
r ]

∂V̂r
(3αβ + 2i

√
αβ(α+ β))

[
−(α+ β)2

∂2ς[V ⋆
r ]

∂V̂r
2

+ (αβ)2(ν∗sr)
2ν∗rs

∂2ς[V ⋆
s ]

∂V̂s
2 (

∂ς[V ⋆
r ]

∂V̂r
)3

])
(84)

40



For the third order nonlinearities we have

N0
3 (e0, e0, ē0) = − 1

3!
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Figure 1: a)Thalamic neuronal population based on Freeman’s neural activity mathematical formulation.

The model is usually denoted RKII as it is a reduction of the standard KII set, in that it is a special case

where the functional topology is such that only an excitatory/inhibitory interaction is considered. The

excitatory neuron population is denoted the specific relay while the inhibitory population is termed the

reticular. The synaptic strengths are νsr < 0 and νrs > 0. The external forcing φn is an external signal

but here we only consider a time invariant signal and where νsn ≥ 0. b) The neurons (inhibitory and

excitatory) are coupled by a unipolar sigmoidal, which transforms the neurons transmembrane potential

Va (generally expressed as wave amplitude) into firing rate ς(Va) (termed pulse density), i.e voltage-

frequency relation. Note the scale of the x-axes and y-axes (-0.03,0) to (0.07, 250). This is related to

the averaging performed over a mm3 of neural tissue, which is a highly nonlinear mechanism.
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Figure 2: a) Illustrating the stability condition (6) in the parameter space |νsrνrs|. In this case, the

values of the fixed point is given by V ∗
s = −0.01222 and V ∗

r = 0.005962. The curve is hyperbolic,

giving a stable and an unstable region. This transition from stable to unstable defines the branch in

parameter space where a supercritical Hopf bifurcation occurs. b) Illustrative example of the nullclines

of system (2) in the state space (Vs, Vr). Since the sigmoidal curve is monotonic, there exists a unique

equilibrium point for a fixed set of parameters. The equilibrium can either be in the first or fourth

quadrant of the state space (Vs, Vr) depending on the level of the strength of external input νsn.
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Figure 3: Illustrated is a two parameter branch of Hopf bifurcations in the (νsr, νrs) parameter space

. A numerical continuation finds extra structure in this parameter space. The lower part of the curve

confirms the hyperbolic nature of the (νsr, νrs) parameter space given by Eqn (6), however there is

additionally a fold point (LP1). From this fold point, two Hopf bifurcations are born, both supercritical

(HB1) and (HB2). All values of the special points depicted are given in Table (2).
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Figure 4: a) Plotted is a bifurcation diagram (Vs,νrs) for the autonomous case. Commencing from HB1

where νsr = −0.0008 and varying νrs, the amplitude of the periodic orbits appearing from HB1 gradually

augment to a maximum but never decays. This characteristic can be verified by examining the previous

Fig. 3, since it is a parabolic curve, if the system starts from HB1 with νsr fixed and simultaneously

varying νrs then the system never intersects a section of the (νsr, νrs) curve. The labeled points of

interest have their actual values laid in table (2). b) Illustrating the bifurcation diagram (Vs,νsr) where

νrs = 0.0894 (fixed). Starting from HB1 and varying νsr the amplitude of the Hopf grows to a maximum

and then decays until it finds HB2. Note the extra unstable fixed points starting from HB1 and moving

up diagonaly until it gains stability. The point where it gains stability is very close to the fold point LP1.

This point was numerically unstable and XPP found it difficult to follow the Hopf bifurcation close to

LP1. The special points marked in the figures have their corresponding values stored in table (2).
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Figure 5: Illustrating the piecewise approximations applied to the original model. The nonlinear terms

are approximated and seen as driving terms to the LTI system and since the system also includes a time

invariant signal thus three vectors representing inputs to the system are defined (ũ0, ũ1, ũ2). Two most

relevant hyper-planes are defined as C0x and C1x for which the systems solutions will intersect them.
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Figure 6: The figure shows the state space (Vs, Vr) and how the hyperplanes situate in this projection

space. The hyperplanes are defined as C0x and C1x which are orthogonal to one another and which are

denote as the switching surfaces S0 and S1 respectively. Each subspace is defined by an independent

LTI flow of the form ẋ = Ax + Bu, where all the four systems differ in how the vector u is defined.

The vectors are defined as ui = [ũ0, ũ1, ũ2]
T , with i ∈ {1, 2, 3, 4}. The values assumed by ũ0 and

ũ1 are related to where Systemi situates with respect to the Heaviside function thresholds θ0 and θ1

respectively and here ũ2 = φn = 1.
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Figure 7: Simulation of the four systems of each partition of the state space and with the initial condition

x∗0 = [0, 0, 0, 0]T . The control parameters are set to νsr = −0.008, νrs = 0.006 and νsn = 0 which

corresponds to the Hopf bifurction point HB1 (see Table 2). System2 starts running and its trajectory

is towards its equilibrium point which lies in the first quadrant and a switch occurs at S0. in the first

quadrant System3 takes over a moves towards its own equilibrium on the fourth quadrant and a second

switch occurs at S1. For the other two final systems (4 and 1) identical scenario occurs, where System1

has its equilibrium on the second quadrant and System4 on the third quadrant. Note that if S1 was

slightly shifted upwards then the limit cycle condition would no longer be satisfied and the limit cycle

would vanish. Thus this also explains the generation of the Hopf bifurcation HB1.
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Figure 8: SuLF for all the four impact maps are stable. Each plot shows the minimum eigenvalue of (43)

on the respective sets of switching times Ti for each impact map. The eigenvalues of (43) are always

positive for Ti (feasible) meaning that a positive definite matrix always exists and thus a SuLF for each

impact map exists and is stable. In this way it is shown that the limit cycle is globally asymptotically

stable.
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Quantity Description Values

θ Threshold of membrane potential before a cell fires. 0.015 V

σ Standard deviation of neuron firing probability,versus cell mem-

brane potential.

0.006 V

Qmax Mean maximum firing rate of a cell. 250 s−1

α Receptor offset time constant (inverse of decay time of poten-

tial produced at synapse).

50 s−1

β Receptor onset time constant (inverse of inverse rise time of

potential produced at synapse).

200 s−1

νsn Subthalamic signal strength. 20e-4 V s

νsr Coupling strength between reticular and specific relay neurons. -8e-4 V s

νrs Coupling strength between specific relay and reticular neurons. 6e-4 V s

Table 1: Typical parameter values for the model.
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Label Type Vs Vr νsn νsr νrs

LP1 Fold point from which two Hopf are

born.

−0.008262 0.01026 0 −0.0001714 0.04654

HB1 Supercritical Hopf. −0.01222 0.005962 0 −0.0008 0.0894

HB2 Supercritical Hopf. −0.009158 0.01504 0 −7.28e − 5 0.0894

Table 2: The relevant critical points.
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Switching times Poincaré surface coordinates

t∗1 = 5.8e-02 x∗1 = [-1.48e-02, 7.41e-01, 8.39e-04, -4.19e-02]T

t∗2 = 1.6e-02 x∗2 = [-1.38e-02, 6.88e-01, 1.57e-02, 1.87e+01]T

t∗3 = 3.0e-03 x∗3 = [-1.58e-02, -2.5e+00, 7.01e-02, 3.42e+01]T

t∗4 = 6.3e-02 x∗4 = [-1.90e-01, -5.15e-01, 1.45e-02, -7.25e-01]T

Table 3: Switching times and coordinates for all the four systems.
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