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Abstract

A review is presented of the one-parameter, nonsmooth bifurcations
that occur in piecewise-smooth dynamical system. Motivated by ap-
plications, a pragmatic approach is taken to defining ‘bifurcation’ as
a nonsmooth transition with respect to a codimension-one discontinu-
ity boundary in phase space. Only local bifurcations are considered,
involving equilibria or a single point of boundary interaction along a
limit cycle. Three classes of system are considered; involving either
state jumps, jumps in the vector field, or in some derivative of the vec-
tor field. A rich array of dynamics are revealed, involving the sudden
creation or disappearance of attractors, jumps to chaos, bifurcation
diagrams with sharp corners, and cascades of period adding. For each
kind of bifurcation identified, where possible, a normal form is given,
together with a canonical example and an application. The goal is
always to explain dynamics that may be observed in simulations.
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1 Introduction

Bifurcation analysis has shown considerable success in explaining, classi-
fying, and drawing analogies between the behaviour of dynamical systems
arising from a myriad of different application areas. A more or less complete
set of mathematical tools exist (e.g. [50, 1]), to describe bifurcations if the
system is sufficiently smooth. However many dynamical systems arising in
applications are nonsmooth; examples include the occurrence of impacting
motion in mechanical systems [7, 8], stick-slip motion in oscillators with
friction [69], switchings in electronic circuits [26, 4] and hybrid dynamics in
control systems [29, 79]. In all of these cases the assumptions behind most
of the results in bifurcation theory [50] for smooth systems are violated and
many new phenomena are observed.

Let us start with a motivating example. Figure 1 depics and experimen-
tal system where a free swinging pendulum is allowed to impact with a rigid
stop (see [67] and Ex. 4.5 for more details). This is a cannonical example of
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Figure 1: A schematic and a photo of the pendulum/impact barrier assem-
bly.

an impact oscillator, which have recieved a good deal of attention over the
last 30 years since the pioneering work by Peterka [66]. In this particular
study the table on which the pendulum rests is subjected to harmonic forc-
ing and the corresponding motion recorded under variation of the angular
position 6 of the stop. Furthermore, d(t) = Asin(wt) is the motion of the
support, L is the effective length of the pendulum arm, g is the gravity,



m is the mass, 0 is the angle of the pendulum and © is the out of plane
angle. Dissipation is included via a simple linear term k6 and a restitution
at impact. Figure 2(a) shows the experimental results of the position of
the pendulum at a fixed phase of the forcing, under gradual, quasi-static,
variation of the dimensionless frequency 7. Note several interesting features
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Figure 2: Experimental results for the impacting pendulum in Fig. 1, where
(a) depicts a bifurcation diagram of 0, which is plotted once per forcing
period, under frequency variation, (b) and (c) depicts delay plots of a period-
five orbit and chaotic motion, respectively. The parameter values are (a)
6 = 40°, (b) = 10° and n = 0.45 and (c) = 40° and 7 = 0.35.

of the dynamics. The most striking feature is the sudden transition around
1 = 0.44. This is where stable periodic motion is first observed to impact
with the stop in a so-called grazing bifurcation. This creates a band of
chaotic motion (Fig. 2(c)) where the amplitude range grows rapidly (seem-
ingly discontinously) with increasing 7. The analysis in this review will seek
to explain why we should expect to see such a transition, and other similar
phenomena when a non-smooth event occurs such as a grazing of a periodic
orbit. Moreover, further details of the dynamics can be explained using
the theory we shall review such as the observed ‘windows’ (intervals of 7-
values) in which there is stable periodic motion embedded within the chaos
(Fig. 2(b)). Here, there is a ‘period-adding’ sequence where the underlying
multitple of the forcing period of the attracting limit cycle increases by one
as 7 is reduced towards the grazing bifurcation value.

Finally, we remark that the dynamics created by such nonsmooth tran-
sitions can cause co-existence of different attractoes for the same parameter
values, with highly complex basins of attraction. Figure 3 shows just such
a case for a related impact oscillator, where again motion is depicted for a
fixed value of the forcing phase. This picture shows the angle and and angu-
lar velocity of the pendulum at times ¢ = 2k7/w, for k = 1,2,... and where



Figure 3: The domains of attraction of two stable periodic states (period-one
and period-six) for a simple forced impact oscillator.

w is the forcing frequency. The black regions correspond to initial conditions
that are attracted to a stable period-one orbit and the grey regions to initial
conditions attracted to a stable period-six orbit. See [56] for more details
on domain of attraction calculations of impacting systems.

Returning to the general theme of this review, we note that in recent
years there has been significant progress in identifying, classifying, unfold-
ing and applying novel kinds of bifurcation that are unique to nonsmooth
systems. Three problems emerge when trying to summarise this work and
put it in context. What do we mean by a piecewise smooth system?, what
do we mean by a bifurcation? and what do we mean by ‘codimension’ for
a nonsmooth systems? Each of these questions alone warrant significant in-
vestigation in their own right. This review shall therefore take a pragmatic
approach motivated by what is known to occur in applications. Lets take
each of these questions in turn.

First, what do we mean by a piecewise-smooth system? There are several
different formalisms for dealing with continuous-time nonsmooth systerms.
We mention that of hybrid systems, measure differential inclusions, com-
plementarity problems, and set value ordinary differential equations, see
e.g. [9, 43]. There is also a large literature for the dynamics of nonsmooth
discrete-time maps — so-called border-collision bifurcations [32, 63, 5, 3].
Here we shall focus on the continuous-time case, although as we shall see,
such nonsmooth mappings can arise as Poincaré maps when we study bifur-
cations of limit cycles. We will consider the simple paradigm of a piecewise
smooth (PWS) system. That is, a set of ordinary differential equations in



R”, where the phase space is partitioned into finitely many open sets S; in
which the system is smooth!:

j::f(xau)a JIERn, UERpa (1)

where
f(ma//'):E(xaﬂ) Vz €S CR", i=1...,n,

and each function F; is a smooth function of its argument. We shall also
assume each boundary ¥;; between regions S; and S; to be a smooth (n—1)-
dimensional manifold, allthough we shall also be interested in corners termed
by the intersections of two smooth ¥;;. Broadly speaking, different classes
of peicewise smooth systems can be classified according to what is allowed to
happen when the flow intersects the boundary ¥;;. Here we shall distinguish
three classes of systems:

1. Non-sliding PWS The simplest assumption is that, the boundary ¥;;
is never simultaneously attracting (or repelling) from both sides un-
der the dynamics, Hence all trajectories either cross ¥;; transversally,
or both vector fields are simultaneously tangent to it. See Fig. 4(a).
Hence no sliding motion constrained to Y;; can take place. Such sys-
tems naturally arise as models of second-order bilinear oscillators (Ex-
ample 2.1 below). This includes the case where the overall vector field
f is continuous and has discontinuity across 3 in its first or higher
derivative (PWS continuous). We also include in this class the the
case where the vector field is discontinuous across ¥;;, but the sys-
tem dynamics means that the grazing sets of vector fields F; and Fj
coincide, so that no sliding can occur.

2. Filippov PWS systems. In this case, F' is discontinuous across ¥ and
we allow the possibility that both flows in regions S; and S; have their
components normal to ¥;; of opposite sign. This implies the possible
existence of sliding flow inside the discontinuity surface ¥;; (along
the bold portion of the boundary illustrated in Fig. 4(b). For many
physical systems, this flow can be described by the Filippov convex
method

(Hy), Fj
(Hij),(Fj — F3) b @

F=AF+(1-)NF;, 0<\=

where H;; is a function whose zero set is ;5 [34], see Chapter 4 below.
Note that the flow corresponds with that in regions S; and S; when

1'We take ‘smooth’ to mean C” for r sufficiently large
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Figure 4: Sketches of the phase space of the three classes of system under
consideration; (a) non-sliding PWS, (b) Filippov and (c¢) impacting systems.

A =0 and A = 1 respectively, see Figure 4(b). Such models arise, for
example in models of dry friction oscillators and relay control systems
(see example 3.1 below).

3. Impacting systems. Finally, we consider the case where ¥;; is a hard
boundary, and the region S; is a forbidden region of phase space
(Fig. 4(c)). On the boundary, the continuous dynamics is replaced
by an instantaneous reset (or impact) map R.

:(;—)R(a:), .’L‘EZU.

Depending on the properties allowed for the map R, many different
dynamics may be seen. Much work in this area has been motivated
by the case of mechanical systems where the phase space is composed
of velocity and position variables and the the reset map acts to re-
verse the sign of a velocity variable at impact, see e.g. [66, 36], the
introductory example presenmted above, and sec. 4 below. Hence we
assume that the boundary ¥;; is divided into regions ¥;” where it is
attracting and E;L where it is repelling. The reset is then assumed to
tomap R : X, — Ej. More complex situations can arise in three
or more dimensions when motion under the dynamics can slide along
the (n — 2)-dimensional boundary between ¥_ and ¥.. Motivated by
mechanically impacting systems, we shall also restrict attention to the
simplest forms of reset maps, avoiding the extra complexity that can
arise in the case of impact with friction (e.g. [75]).

It is also possible to distinguish between the above three cases using



the concept of the degree of discontinuity. Using a concept widely used in
control theory, this degree can be thought of as the relative degree between
the state of the system z(¢) along a solution trajectory and a function which
describes the jump that occurs across the boundary ¥;;. Broadly speaking,
for an impacting system we say the degree is zero since the jump is on the
system state itself. By contrast, Filippov systems have degree one, since the
jump is on the vector field which is the time derivative of the solution state.
For PWS continuous systems, where the jump is on the kth-derivative of
the vector field, then the degree is k 4 1, since this is the number of times
one has to differentiate the jump to obtain a discontinuity in the state.
Note that there are other uses of relative degree in non-smooth mechanics,
for example between the system state and the Lagrange multiplier (A in
(2) above) required to maintain a constraint (e.g. [43]). Of course, many
systems may have the property that in different parts of their phase space
or at different parameter values, they may exhibit different dynamics from
the above list.

The second problem we face is to define what we mean by a bifurcation.
There are in essence two approaches to defining bifurcation in smooth sys-
tems; analytical or topological. In the analytical approach, bifurcation is
defined as the branching, folding or creation of additional paths of solutions
of a certain class within a bifurcation diagram, e.g. [44, 13]. In the topo-
logical sense, a bifurcation is a parameter value within a class of systems at
which the phase portrait is not structurally stable, e.g [42, 50]. A universal
unfolding (or topological normal form) of the bifurcation includes a minimal
number of terms and parameters to allow all possible structurally stable bi-
furcation diagrams to be seen at small values of the unfolding parameters.
The number of parameters necessary defines the codimension of the bifur-
cation. For nonsmooth systems, these concepts are problematical. In the
analytical approach, a small change in parameter can cause the instanta-
neous creation of a chaotic attractor together with infinitely many unstable
periodic orbits (see e.g. [5]). For the topological approach, we need a priori
to define a system topology. For example, does the topology allow a change
in the number or relative position of the number of discontinuity boundaries
3;; as a parameter varies, or a change in the degree of discontinuity of the
flow at those boundaries? For each class of nonsmooth system, there are
likely to be several different possible notions of bifurcation.

Rather than deal with these technical issues, we again take a pragmatic
approach. We are interested in describing situations that are unique to non-
smooth systems; specifically, when the system dynamics does something de-
generate with respect to a discontinuity boundary. For example, this might



involve an invariant set gaining a first contact with a certain 3;;, or the
onset of sliding along the orbits of that invariant set. We shall refer to these
events as nonsmooth transitions (NST) because, as we shall see, depending
on the circumstances this may or may not lead to a bifurcation in either
of the classical senses as a parameter is varied. NSTs were given the name
C-bifurcations? in the Russian literature [33]. We shall concentrate on NSTs
that involve the simplest kinds of invariant set only; equilibria or periodic
orbits. In what follows, the term ’bifurcation’ shall be used to mean such a
nonsmooth transition. Of course, nonsmooth systems can also undergo reg-
ular bifurcatiopns too just like smooth systems, but the focus of this review
is those bifurcations that are unique to nonsmooth systems. We should also
contrast the C-bifurcations to so-called border-collision bifurcations [64, 3]
which occur when fixed points of discrete-time maps cross a discontinuity.
Here we shall be concerned exclusively with continuous-time systems.

For simplicity, we shall consider each NST in its simplest possible setting.
So we will not allow systems which change their type between the three
classes outlined above as parameters vary, and we shall assume that all
discontinuity boundaries remain fixed. Also, we shall only deal with local
bifurcations in the sense that the dynamics shall be governed by the point
of interaction with the boundary and shall not involve possible heteroclinic
connections to other invariant sets (but see [51] for a catalog of possible
bifurcations, both local and global in two-dimensional Filippov systems with
a single discontinuity boundary). A few remarks concerning bifurcations
involving other invariant sets are given in Section 5.

This brings us to the issue of codimension. Broadly speaking we shall
only treat codimension-one situations, that is NSTs that one should ex-
pect to see as a single parameter is varied. However, the classification by
codimension relies heavily on what is assumed about the system topology.
For example, in a system with four discontinuity boundaries that meet at
a point, it may be possible for a bifurcation to occur upon varying one pa-
rameter whereby a periodic orbit passes through this point [53]. Hence we
shall need to assume that the boundaries themselves are in general posi-
tion. That is, any intersection between Y;; and ¥;; occurs along a smooth
(n — 2)-dimensional manifold. For this reason, and since we only consider
local neighbourhoods of the NST we shall only need consider cases where
there are at most two discontinuity boundaries. The NSTs we consider shall
then involve either an equilibrium approaching a single boundary ¥ (or leav-

2The C stands for the Russian word for ‘sewing’, so that different trajectory segments
are being sewn together at the bifurcation point.



ing the sliding region) or a periodic orbit either grazing with a boundary
or approaching the intersection point between two boundaries 3; and .
As we shall see, even considering this finite set of transitions leads to many
possible dynamical consequences. Finally we should re-iterate that we are
motivated by examples, and quite often the purely topological definition
of codimension can then be unhelpful. For example in smooth dynamics,
we know that conservative or symmetric systems can undergo bifurcations
that would be of significantly higher co-dimension in the generic case. We
already mentioned the case of degenerate piecewise discontinuous systems,
where sliding is impossible. Also, motivated by examples with dry friction,
there can be Filippov systems where there can exist non-isolated equilibria
in the sliding region.

The next three sections of this review treat each of the three classes of
system in turn, in each case dealing first with NSTs involving equilibria,
then periodic orbits. In addition to reviewing the existing literature we
include many new results, especially in Sections 2.1, 2.3, 3.1, and the whole
of Section 4. For each NST we shall give a mathematical example, and
where possible a physical application. We shall also give ‘normal forms’
for the transition, where they are known to exist, and if not highlight a
method for analysing what occurs. These normal forms shall, in the case of
periodic orbit bifurcations typically take the form of maps. See Section 2.2
for a discussion on how to derive such maps using the discontinuity mapping
idea. It might also be the case that the simple mathematical examples can
serve as canonical models that contain all the essential features, that can
occur in realistic applications. Where possible, we shall also indicate what
is known about the dynamics of the unfolding of the transition, indicating
which different sub-cases may occur. In some cases, where complete theory
is available we give it with a motivation of the method rather than the
complete proof. In other cases, complete results remain unknown and we
merely sketch possible NST scenarios. We shall also introduce techniques of
analysis and notation as we go along, thus later sections rely on concepts that
are introduced in earlier one. In this way, we shall also highlight connections
between the bifurcations that occur in the three different classes of systems.
Finally, Section 5 indicates some of the many problems that are not treated
by this review, including open questions and future directions for research.



2 Non-sliding Systems

This section describes the possible nonsmooth transitions of equilibria and
periodic orbits of systems of relative degree one or two, i.e. piecewise smooth
continuous and (degenerate) discontinuos vector fields with no sliding.

Example 2.1 (The bilinear oscillator, a motivating example)

Consider the bilinear oscillator defined by the equation (e.g. [71])
X+GX + k2X = B cos(wt) + ©; (3)

where ¢ =1 if X > 0 and 1 = 2 if X < 0. This models a simple one-degree-
of-freedom linear oscillator with sinusoidal forcing, where the value of the
damping (, spring constant k, forcing amplitude 8 or offset © might change
when the displacement X crosses a threshold value, which without loss of
generality we take to be X = 0. We seek to understand the nature of the
singularity in the flow map if a trajectory becomes tangent, i.e. grazes, with
the threshold X = 0 at some time ¢t = t*. Now clearly for a grazing event
we require X (£*) = 0 also.

First, to make the system autonomous, set time to be an extra state
variable, via 3 := w(t — t*), so that a grazing event happens automatically
at the origin of the co-ordinate system

o= (w1, 32, 3)" = (X, X, w(t —1*))".
Then (3) becomes

. A1£C+Bl, lfH(.’I)) =Cz>0
xr=
Aoz + By, lfH(.’II) =Cx<0

where
0 1 0
Al = |-k -G 0 B cos(z3 + wt*) +0 |,
0 O
0
Ay = —k’% —( 0 Bo cos .133 + wt*) + 0y,
0 0 0
cC = (100). (5)
In what follows, let R
Bi = Bi(cos wt*) + ;. (6)

10



Consider first the case where Bl #+ Bg. Then vector field itself is discon-
tinuous at the grazing point since Fj|,—q = (0, B, w)?. So, we have a jump
in the value of the vector field anywhere along the set of potential grazing
points. Moreover, at any point in the switching plane 3 := {z € R® : z; =
0}, the vector field undergoes a finite jump, since

Fi|, o = (x2, Bicosw(c+ z3) + ©; — iz, w)T. (7)
This situation, where the degree of discontinuity of the vector field at all
points of 3 is the same we refer to as representing uniform discontinuity of
degree 1.

Definition 2.1 A discontinuity boundary 3 is said to be uniformly discon-
tinuous in some domain D, if the degree of discontinuity of the vector field
across 3 is the same throughout D. Furthermore, we say that the disconti-
nuity is uniform with degree m + 1 if the first m — 1 derivatives of F1 — F»,
evaluated on ¥ are zero.

We note however from the form of F; and F in (7) that ¥ is never simulta-
neously attracting or repelling from both sides. This is because both vector
fields graze along the same line z; = 23 = 0. So there is no sliding possible
in this example because in essence of second-order structure. (See condition
(9) below).

Now suppose instead that ©; = @9 := O and 3; = 2 := 3 so that at the
grazing point the vector field is continuous. Then at the grazing point we
have 95i|,_o = A;, Fily—o = (0, B, w)” which if ¢1 # (o or ki # ko implies
that there is a jump in the first derivative of the vector field. Consider
separately the cases where the damping coefficient (; or the stiffness term
k; vary across the discontinuity boundary. If {; # {5 but k; = ks then, at a
general point in the switching plane ¥, we have (taking t* = 0): Fj|;,—0 =
(z2, B; coswzs + O — (ize, w)T. Hence if x5 # 0 we find that the vector field
itself is discontinuous since Fy # F5. Only on the grazing line defined by
o = 0 is the lowest order discontinuity in the derivative of the vector field.
This is an example of non-uniform discontinuity. As mentioned above, it is
easy to see that there can be no sliding here though since both vector fields
graze along the same line. In contrast if &y # kg but {( = {2 := (, then at a
general point in ¥ we have F}|y,—g = (72, 5; coswzz + O — (z2, w)T, so that
F} = F» and we have uniform discontinuity of degree 2.

In what follows, we shall be interested in two special forms of allowed
jump across Y. Uniform discontinuity of degree m > 2 is ensured by assum-
ing

Fy(z) = Fi(z) + J(2)H ()™ (8)

11



where the boundary ¥ is defined by the zero-set of the smooth function
H(z), and J, F; and F5 are all sufficiently smooth in a neighbourhood of
the grazing point z = 0. In the case of discontinuity of degree 1, that is
where the vector fields are discontinuous across 3, the generic situation is
described by Filippov flows with sliding. However we saw that the special
structure of the bilinear oscillator in the case of jumps in §; or (; caused
discontinuity of degree 1 that did not lead to sliding. This special structure
can be formalised by the assumption that

Hy(z)Fo(2) = N(2)H(z) + M (x) Hy (2) F1 (2), (9)

for functions N, M, F; and F» that are sufficiently smooth at the grazing
point.

2.1 Nonsmooth Transitions of Equilibria

C-bifurcations or border-collisions, have been studied mostly with respect
to fixed points of maps and limit cycles of continuous-time systems [28].
Comparitively less is known on the possible nonsmooth bifurcations of equi-
libria in piecewise smooth systems, that is [53] where equilibria of PWS flows
can also interact with the switching manifolds as parameters are varied. In
particular, we focus on nonsmooth continuous systems, i.e. systems with a
degree of discontinuity equal to 2. We restrict our attention to a region of
phase space, say D, where the system under investigation can be described
as follows in terms of a local set of coordinates. Namely, we have

Fl(xau)’ lfH($1M)>0
Fo(z,p), if H(z,pu) <0’

(10)

where z € R?, F,F, : R*! 3 R™ are supposed to be sufficiently smooth,
H : R"*! s R is a sufficiently smooth scalar function of the system states.
Because of the continuity assumption we must have

F2($a,u) :Fl(waﬂ) +G(*T’N)H(*T’N)’ (11)

so that when H(x,u) = 0 then F; = F5 as required.
According to (10), H defines the switching manifold ¥ as:

Y:={zeR':H(z)=0}
Locally, ¥ divides D in the two regions S; and S, where the system is smooth
and defined by the vector fields F; and F5 respectively; namely:
Si={zx€D:H(z,u) >0},
So={z€D: H(z,p) <0}

12



We assume that both the vector fields F7 and F» are defined over the entire
local region of phase space under consideration, i.e., on both sides of 3.

We can identify different types of equilibria of system (10). Namely, it
is possible to give the following definitions.

Definition 2.2 We term a point © € D as a regular equilibrium of (10) if
x s such that either

Fi(z,p) =0 and H(z,pu) >0

or
Fy(z,p) =0 and H(z,p) < 0.

Alternatively, we say that a point y € D is a virtual equilibrium of (10)
if either
Fi(y,p) =0 but H(y,pu) <0

or
Fy(y,p) = 0 but H(y,p) > 0.

For some value of the system parameters, it is possible for an equilibrium
to lie on the discontinuity boundary.

Definition 2.3 We say that a point z € D is a boundary equilibrium of

(10) if
Fi(z,p) = Fa(z,p) = 0 and H(z,u) = 0.

Note that under parameter variation the system might exhibit a bound-
ary equilibrium for some value of its parameters . We shall seek to unfold
the bifurcation scenarios that can occur when p is perturbed away from the
origin, i.e. the possible branches of solutions originating from a boundary
equilibrium. Specifically we give the following definition.

Definition 2.4 A regular equilibrium z* = z*(u), which we assume depends
smoothly on p, is said to undergo a boundary equilibrium transition at y =

w*if
o Fi(z*,p") =0,
o H(z",u*) =0,

o Fy(z*,pu*) is invertible (or equivalently det(Fi,) # 0).

13



While the first two conditions state that z* is a boundary equilibrium
when y = p*, the third condition ensures that the branch of regular equilib-
ria undergoing the bifurcation is isolated. Obviously, an equivalent definition
can be given by considering flow F5 rather than F.

Note that it is possible to interpret all of the scenarios described below, in
terms of collisions of regular equilibria of the system with the discontinuity
boundary. It is worth mentioning here that the definition given above is not
equivalent to the one reported in [53]. There, bifurcations of equilibria are
defined in terms of the eigenvalues of the system at the bifurcation point.
Namely, the nonsmooth bifurcation of an equilibrium is defined as the point
at which the eigenvalues of the system are set-valued and contain a value
on the imaginary axis. Thus the definition given here is more general.

2.1.1 An overview of possible cases

The existence of different types of bifurcation scenarios following this type
of nonsmooth transitions was discussed in [37], [53] and illustrated through
some one and two-dimensional examples. It was shown, for example, that
nonsmooth transitions of equilibria can be associated, in the simplest cases,
to the persistence of the bifurcating equilibrium or its disappearance through
a saddle-node like scenario. Namely, it was conjectured that a boundary
equilibrium bifurcation can lead to the following simplest scenarios:

1. Persistence: at the bifurcation point, a regular equilibrium lying in
region S is turned into a regular equilibrium lying in region S (or
vice versa).

2. Nonsmooth Saddle-Node: at the bifurcation point, the collision of a
stable and unstable equilibrium is observed on the boundary followed
by their disappearance.

An extension of Feigin’s classification strategy for border-collisions of
fixed points of maps to the case of equilibria in flows was recently given
in [27]. In the next section, we will present an alternative, more elegant
derivation of conditions to classify between the two scenarios highlighted
above, which will be further discussed in [57].

In addition to persistence and nonsmooth saddle-node scenarios, there
might be other invariant sets involved in the bifurcation, for example, scenar-
ios where one or more families of limit cycles are either created or destroyed
at the nonsmooth bifurcation point. As shown later in Example 2.2, this

14



include the scenario where an equilibrium undergoes a boundary equilib-
rium transition, giving rise to a family of limit cycles. Such transition is the
closest nonsmooth equivalent to a Hopf bifurcation for a smooth system.

More complex, non-generic scenarios are also possible in systems with
symmetry, as for example the multiple crossing transition described in [54].
Note that all of these scenarios are due to the interaction between the bi-
furcating equilibrium and the discontinuity boundary in phase space. Thus,
they are not necessarily associated to eigenvalues crossing the unit circle.
We discuss now how some of them can be classified.

2.1.2 Persistence and Nonsmooth Saddle-Node

Despite their similarity to border-collisions, no general classification strategy
has been proposed for nonsmooth bifurcations of equilibria in n-dimensional
continuous-time systems. Qur aim is to classify the simplest possible sce-
narios associated with a boundary equilibrium transition in n-dimensional
nonsmooth continuous flows. We start by giving more precise definitions
of the persistence and non-smooth saddle node scenarios introduced above.
We assume that a boundary equilibrium bifurcation occurs at x = 0 when
u =0, ie. F1(0,0) = F5(0,0) =0,H(0,0) = 0.

Definition 2.5 We say that (10) exhibits o border-crossing transition
(persistence) for u = 0 (see Fig. 5(a)) if when p is varied in a neighbor-
hood of the origin, one branch of regular equilibria and a branch of virtual
equilibria, cross at the boundary equilibrium point, x = 0 when p = 0, ex-
changing their properties. Namely, we assume there exist smooth branches
zt(u) and = () such that z7(0) = 27(0) and w.l.o.g., (reversing the sign

of 1 if necessary)
1. Fi(zt,p) = 0,H(z",pn) > 0 and Fy(z,p) = 0,H(z " ,pu) > 0 for
p <0,

2. Fi(zt,p) = 0,H(z",p) < 0 and Fo(z~,pu) = 0,H(z~,u) < 0 for
w> 0.

In terms of collision of equilibria with the boundary, this scenario de-
scribes how the only admissible equilibrium point z* for x4 < 0 hits the
boundary when p = 0 and turns continuously into the admissible equilib-
rium z~ for p > 0.

Definition 2.6 We say, instead, that the boundary equilibrium bifurcation
is associated to a nonsmooth saddle-node for p = 0 (see Fig. 5(b)) if
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two branches of reqular equilibria collide at the boundary equilibrium point,
z =0 when p = 0 and are both turned into two branches of virtual equilibria
past the bifurcation point. Namely, there exist smooth branches x~ (u) and
1 (p) such that z~(0) = z7(0) and

1. Fi(zt,p) = 0,H(z,p) > 0 and Fy(z ,p) = 0,H(z ,u) < 0 for
p <0,

2. Fi(zt,p) = 0,H(z",p) < 0 and Fo(z~,pu) = 0,H(z™,u) > 0 for
u > 0.

(@) (b)

Figure 5: Schematic bifurcation diagrams showing the two possible scenar-
ios: (a) persistence; (b) saddle-node. Regular equilibria are represented by
solid lines while virtual equilibria by dotted ones.

Here the two equilibria are both regular for g < 0 turning into two
virtual equilibria past the border-collision point (leaving the system with no
regular equilibrium either in region S; or region Ss). As will be shown later,
one of the two equilibria has to be unstable.

We will now give conditions to distinguish between these two fundamen-
tal cases in the case of n-dimensional locally linearisable continuous nons-
mooth flows. Namely, in order for zT and 2~ to be two regular equilibria
of the system, we must have

H(z ,u) == AT >0 (12)
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and, using (11),

FQ(:C_’/‘) = Fl(w_aU)+G($_aU)H($_au)a
H(zt,p) == A <0 (13)

Now, linearizing about the the boundary equilibrium bifurcation point,
z =0,y = 0 we have:

Az +By = 0 (14)
Czxt+Du = ' (15)
and
Az +Bpu+EXN = 0 (16)
Cz~+Duy = A~ (17)

where A = Fi;,B = F,,C = H;,D = H, and E = G all evaluated at
z=0,u=0.
Hence, from (14) we have

T =—-A"'Byu
and substituting into (15), we get
M =(D—-CA™'B)p. (18)
Similarly using (16) and (17), we have

_ (D-CA'B)p At
A= (1+CA-'E)  (1+CA-lE) (19)

Therefore we can state the following theorem.

Theorem 2.1 (Equilibrium points branching from a boundary equilibrium)
For the systems of interest, assuming the nondegeneracy conditions

det(A) # 0 (20)
D—-CA™'B # 0 (21)
1+CA'E # 0 (22)

e g persistence scenario is observed at the boundary equilibrium bifurca-
tion point if
1+CA'E > 0; (23)
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e ¢ nonsmooth saddle-node is instead observed if

1+CA'E < 0; (24)

This can be easily proved by considering that, from (18) and (19), A"
and A\~ have the same signs for the same value of i (persistence) if condition
(23) is satisfied, while they have opposite signs (nonsmooth saddle-node) if
condition (24) is satisfied instead.

The strategy presented here is valid for n-dimensional systems. Much
work is still needed to account for the other scenarios conjectured in [53]. A
particularly interesting case is the case where a family of nonsmooth periodic
oscillations is involved in the boundary equilibrium bifurcation scenario.
Recently, some results have been presented in the literature to account for
this type of transitions in planar nonsmooth dynamical systems.

It is worth mentioning here that, currently, there is no general result
concerning the occurrence of such transitions in systems of dimension higher
than two. After illustrating, a representative planar example, we shall seek
to discuss the open problems and challenges lying ahead.

In what follows, we shall seek to illustrate a different scenario that might
occur around a boundary equilibrium bifurcation point. Namely, we will
discuss the case where a branch of limit cycles is generated or annihilated at
the bifurcation point. We consider the case of planar nonsmooth continuous
systems of the form (10).

Example 2.2 (A planar case)

Assume that z* = 0 is a boundary equilibrium of (10) when x = 0. Lin-
earising the system vector fields about the origin, we then get

(25)

Az + By, if Cx+Du<0
Az + By if Cx+Dp>0
where zT' = (151,.’172) € RQ, A = le,Az = FQJ;,B = Flu = FQM and
C = Hg, D = H,. As discussed earlier, continuity of the vector field implies
that Ay = A1 + EC for some nonzero vector FE of appropriate dimension. It
is possible to show that under this assumption, a similarity transformation
can be found that puts the system in a general canonical form, also termed
observable canonical form in Control Theory [19] where the matrices A; and
Ajg have all their last column equal to the vector [0 1]7 and C = [1 0].
As mentioned above, this class of planar dynamical system can exhibit
numerous nonsmooth bifurcations. Obviously, there are many of the possible
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scenarios involving the appearance (or disappearance) of one or more families
of limit cycles. Rather than attempting a classification of all the possible
ones, we focus on the one that is more reminiscent of the Hopf bifurcation
in smooth system. Namely, we shall seek to find conditions for a family of
stable limit cycles originating from a boundary equilibrium bifurcation.

In the case of planar nonsmooth continuous systems, we propose that
such an event can be observed if

1. the boundary equilibrium bifurcation at p = 0 is associated to a per-
sistence scenario with a regular stable focus becoming unstable as p is
varied in a neighborhood of the origin;

2. when p = 0 the origin is an asymptotically stable equilibrium of the
linearised system of interest.

Note that, in this case, by using a continuity argument, it is easy to show
that a stable attractor must exist in a neighborhood of the bifurcation point
when the stable focus turns into an unstable one.

Now, condition 1 can be easily satisfied by using Theorem 2.1, i.e. as-
suming (1 4+ CA~'E) > 0. Moreover, we require the eigenvalues of A; and
Az to be complex with real parts characterised by opposite sign.

To fulfil condition 2 and hence ensure the existence of a limit cycle (the
only other generically possible attractor locally for a planar system) for
i > 0, we need to find conditions to ensure that the origin is asymptotically
stable when y = 0. Since the system is in canonical form, we can assume
C =[1 0], and the solutions for y = 0 are

z1(t) = e®!(z10 cos(w;t) + 90 sin(w;t))
To(t) = €%t (xog cos(wit) — 10 sin(w;t))

where o; + jw;, i = 1,2 are the eigenvalues of A; and As respectively.

Now, without loss of generality, let x99 be positive and start from initial
conditions on the x5 axis given by (z19 = 21(0) = 0,299 = z2(0)). Then, we
have

{:vl(t) = e®pyg sin(wit)

To(t) = elxog cos(wit).

Then, the orbit will cross again the vertical axis at some time ¢t = ¢; such
that z1 (tl) =0, i.e.

a1t

e xog sin(wt1) = 0.
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Thus, we must have sin(wit1) = 0 and therefore we find

T
t1=—.
w1
Moreover, we have
ay = ay =
To(t1) = € ' “1 x99 cos(m) = —wgpe” ©1 < 0.

Now, the vector field characterised by As drives the system trajectory,
and it can be shown similarly that the next time the orbit hits the vertical
™

axis is tp = -, at which time

a1 Lo =
.’122(752) = I9o€ 1“’1+ 2“’2.

Now, the origin will be stable as required if zo(t3) < wog, thus we get
the condition: o a
— + — <0.
w1 we
Hence, the origin is stable for ;4 = 0 and for continuity for further variations
of u, past the bifurcation point an attractor must exist. As the system is
planar and no other equilibria can exist, such an attractor must be a stable
limit cycle.
Fig. 6 shows the bifurcation diagram of a planar system with

() (B () e

Here a stable focus hits the boundary and becomes unstable. We observe
that, when this occurs, a limit cycle is indeed generated at the border colli-
sion point and that the amplitude of the limit cycle scales linearly with the
parameter (rather than quadratically as in the classical Hopf bifurcation).
A further analysis of this scenario can be found in [37].

2.1.3 Some non-generic phenomena

We close this section with a discussion of some other transitions recently
studied in the literature which occur in non-generic piecewise smooth con-
tinuous systems of the form (10), such as systems, which are invariant under
certain symmetries.

In this first case, we review an example from [54], where a branch of
stable periodic orbits and an unstable focus existing for y < 0 collide on
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Figure 6: Bifurcation diagram for (25) and (26) showing the occurrence of
an Hopf like transition at p = 0.

the boundary ¥ at the bifurcation point. For p > 0, the unstable focus
becomes a saddle, the periodic orbit disappears and two further stable equi-
libria appear (see Fig. 7). Phase portraits corresponding to representative
parameter values (4 = —1,0,1) have also been computed and are depicted
in Fig. 8. This transition, named multiple crossing bifurcation in [53] has
no counterpart in smooth systems.

As a second case, we refer again to Example 2.2, the system (25). De-
pending on the value of the parameters, regular equilibria can collide with
3 giving rise to one of the local transitions discussed above. In addition
to this, for some degenerate cases, nonsmooth global bifurcations are also
possible involving interactions of stable and unstable manifolds with 3. In-
deed, it has been shown that global phenomena like single or double saddle
connections (homoclinic or heteroclinic loops) can occur when parameters of
the system are varied. To illustrate the occurrence of such global nonsmooth
phenomena, we briefly outline below some results presented in [37].

It can be proved for planar systems that the so-called Lum-Chua’s con-
jecture is true; namely, that a continuous piecewise linear vector field with
one discontinuity surface ¥ has at most one limit cycle. Moreover, it it
exists, the limit cycle is either attracting or repelling. Also, under some
additional conditions, existence of homoclinic loops can be proved. For ex-
ample, Fig. 9 shows a bifurcation diagram with bifurcation parameter puq,
where a continuum of homoclinic loops (shaded region) is born at the bi-
furcation value. At this point, the global attractor at the origin changes its
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Bifurcation diagram

~... Periodic orbit Stable Node

S max (x,)

Unstable Focus "~ Saddle

- Periodic orbit Stable Node
min (x,)

L L L L L L \
4 -3 -2 -1 0 1 2 3 4

Figure 7: Bifurcation diagram for the example in [54] (egs. (25) and (26))
showing the disappearing of a branch of limit cycles and an unstable focus
and the appearing of two branches of stable nodes and a saddle at u = 0.

stability character. A phase portrait corresponding to y = 1.75 is shown in
Fig. 10, where the homoclinic loops are clearly seen (see [37]).

2.2 Nonsmooth Transitions of Limit Cycles 1; Grazing

We consider two possible NST's for periodic orbits. Here, the case of grazing
with an isolated discontinuity boundary, and in Section 2.3, the case where
a periodic orbit passes through a point where two boundaries cross. In
the case of grazing, we shall start with some preliminary discussion which
introduces the main technique of analysis that we shall use when dealing
with bifurcations of limit cycles.

2.2.1 Discontinuity mappings
Suppose that the PWS system (1)

:i':f(xau)a re€R", peR

depends smoothly on a parameter y, and that at y = 0 there is a T-periodic
orbit z(t) = p(t) that grazes with a discontinuity set ¥. That is, there is a
point of tangency between the orbit p at 3, which without loss of generality
(with a translation of phase space and time if necessary), we assume to occur
at the point z = 0 = p(0). More precisely, the tangent vector to the flow is
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Figure 8: Phase portraits for Fig. 7 corresponding to y = —1, p = 0, and
pw=1.

Bifurcation diagram
T

Globally asymptotically stable (GAS) B ,/l J/

L L L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 9: Bifurcation diagram showing the occurrence of a continuum of
homoclinic orbits.

assumed to be in the tangent space to 3 at £ =0
f(0,0) € T|a—0X.

Moreover we suppose that p(t) is hyperbolic and hence isolated (we shall not
consider the Hamiltonian case here) and for simplicity that ¥ is the unique
discontinuity boundary of the system (see Fig. 11(a)).

As with smooth bifurcations, we also need a non-degeneracy hypothesis,
that the paremater y really does unfold the bifurcation. This can be stated in
terms of the periodic orbit of the system obtained by removing the boundary
Y. being such that it really does penetrate as u is varied. This is effectively
a nondegeneracy condition with respect to u of the smooth global Poincaré
map around p(t). Figure 11 illustrates one possible fate of such a bifurcation,
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Figure 10: Phase portrait for corresponding to a parameter value with a
continuum of homoclinic orbits.

(a) u=0 (b) u<0 (c) >0
2\ p(1)
Y
xé;:O

Figure 11: A possible fate of a hyperbolic periodic orbit undergoing a grazing
bifurcation with boundary ¥ at u = 0.

that a periodic orbit is generated on the far side of the bifurcation which
penetrates Y., but as we shall see this is only one possibility.

Let us now introduce the key concept of the (local) discontinuity mapping
(DM) introduced by Nordmark [58, 59, 16]. This map near a grazing point
is the correction that must be applied to a trajectory to take account of the
passage through region Ss on the far side of the discontinuity set ¥, when
solving trajectories as if the boundary 3 were not there.

This DM is defined for all trajectories in a neighbourhood of the grazing
one, and has no reference to grazing trajectories being part of a periodic
orbit. Also, assuming some non-degeneracy conditions, it may be assumed
that the entire phase portrait in the neighbourhood of the grazing point is
qualitatively unchanged under small parameter variation (the grazing bifur-
cation occurs because of the fate of a certain distinguished trajectory, namely
a periodic orbit). Hence we shall drop explicit parameter dependence when
presenting the local discontinuity mappings. Notice that, by definition, the
discontinuity map will be the identity for non-¥-crossing trajectories.
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Figure 12: Comparison between the construction of global Poincaré maps
GPDM and GZDM. For the GZDM (a), the local correction is composed
with the non-crossing time-7T" map Pr, to give a new time-7" map that must
be composed with a smooth projection v in order to obtain the complete
Poincaré map at some remote Poincaré section IT*. For the GPDM (b),
the local correction is computed with respect to a Poincaré section II that
contains the grazing point, so that the full Poincaré map may be obtained
by composition of this local correction with the non-crossing Poincaré map
Py.
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Two forms of discontinuity map can be distinguished: The zero-time
discontinuity mapping (ZDM) is defined in a full neighbourhood of the graz-
ing point, and maps trajectories onto ones which have the same value of
t. That is, the total time spent by following trajectories which define the
ZDM is zero. The Poincaré-section discontinuity mapping (PDM) is defined
on a suitably chosen Poincaré section II that is transverse to the flow and
contains the grazing point x = 0. That is, the PDM takes initial conditions
on IT back to themselves. In fact the PDM is just a smooth projection of
the ZDM (see, for example, [22]) so that the two maps will be topologically
equivalent.

The difference in concept between the ZDM and the PDM comes about
when one considers how to embed them into a more global picture containing
the dynamics around the periodic orbit, see Fig. 12.

2.2.2 The local geometry near the grazing point

Consider an n-dimensional piecewise-smooth autonomous ODE system (1)
that for small z can be written in the form

. {Fl(:c), %f H(z) >0 27
Fy(z), if H(z) <0

Here z € D C R® and Fi,F5 : D — R" and H : D — R are assumed to be
smooth. The discontinuity set ¥ := {H = 0} defines a smooth boundary in
phase space which for simplicity can be assumed to be linear (see [22] for
co-ordinate transformations to which allow one to rectify a nonlinear smooth
boundary into a linear one). The boundary ¥ separates regions ST and S~
in which smooth dynamics governed by F} and F5 apply:

St={zeD:H(z)) >0} S ={zeD:H(z)) <0}

We assume that both the vector fields F; and F, are defined over the entire
local region of phase space D under consideration, i.e., on both sides of 3.

We say that a grazing occurs at x = 0, ¢t = 0 if the following conditions
are satisfied for s = 1, 2:

d[H (z(1))] 0 770 d*[H (z(t))] 0 770y 770
dt o ztg ) dt2 0 ( Z= )J: 7 > ’
(28)
where a superscript ‘0’ denotes quantities evaluated at = 0 (which super-

script is dropped in what follows). The first condition states that the vector
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field there is tangent to 3. The second condition ensures that the curvature
of the trajectories in the direction normal to 3 is of the same sign in ST and
S™. Without loss of generality we assume this sign to be positive so that
grazing occurs from the side S

We are now in a position to state normal form results for grazing bifur-
cations, by constructing discontinuity maps within these local co-ordinates.

2.2.3 Normal forms for grazing bifurcations

We do not give the details here of the construction of discontinuity mappings,
merely the results, the interest reader is referred to [16, 22, 61] for the
details. The key idea is to use Taylor series expansion and the implicit
function theorem to construct expressions for the local DMs purely in terms
of quantities evaluated at the grazing point itself.

Theorem 2.2 (The ZDM normal form for uniform discontinuity [61])
Given the above assumptions and the assumed form of discontinuity (8) for

m > 2, let y(x) = Hpin(z) be the minimum value of H(z) attained along a
trajectory of flow ¢1, then the ZDM is given by

T if y>0
wk*{x+da¢qm—wmé if y<0 (29)

where e is a sufficiently smooth function of its arguments within D whose
lowest order term is given by

e(0.0) = =1y 1m)1(0) | - Fj A0
with
1
I = [a-eymlas 1Q=F T®)= 35 16)= 5.

If we do not assume uniform discontinuity then we have the much more
cumbersome expressions given by the following result, which include the
case of degree of discontinuity 1, provide we include a condition that avoids
sliding taking place.

Theorem 2.3 (The ZDM normal form at a general grazing bifurcation [22])
Given the above assumptions but not (8), the local zero-time discontinuity
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mapping ZDM describing trajectories in a neighbourhood of the grazing tra-
jectory gemerically has: (i) a square-root singularity at the grazing point if
FY # FY, and a non-sliding condition such as (9) holds; (ii) a 3/2-type
0 0
singularity at the grazing point in the case where FY = FY while 63% #* aai;
o’FY , 0?°FY
or 53 F £
ox? 7 0x? . .
Specific formulae for these maps are given in the two cases as follows,
where a subscript x denotes partial differentiation, and all quantities are

evaluated at x = 0 (the superscript 0 being omitted).

(i) If the vector field is discontinuous at grazing we have:

! if Hmin($) >0
T — —ZHmin(.T) . . (30)
m’u + O(-’L‘) if Hmm(I) <0,
where
(HzFQ)wFl
(TR R e~ 1) (31)
Huin(@) = How +0(c?). (32)

(ii) If the vector field is continuous, i.e. Fy = Fy := F, but has discontinu-
ous first or second derivative:

z Zf Hmin(x) >0
T
—2H yin() i
T+ 2, [ ——2 Y (1 + w9 + v3) + O(22 if Hpin(z) <0
(HzFl)wF( 1+ vz +v3) + O(z7) f (z)
(33)
where v1,v2,v3 € R" are given by
(HoFo), (F1 — 5F5)),F
= —{_ F, — Fy)_F
” { T S e G
1 2 H,x
Fi Fo — —F1,F — —Fy,Fo ) Fp ————(34
+( 12F2 = 5 F1a by = 5P 2)m }(HacFl)wF(3)
Vg = (FQ—Fl)z.iL' (35)
(HwFQ) T
v3 = —(Fy—F) F— 2% 36
3 (Fy 1)g (HoF), F (36)
Hupin(z) = Hpz + O(z?). (37)
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Degree System at grazing point Map Discontinuity
F jump in Uniform Case ‘ Non-uniform
0 | é-function z square-root (Sec. 4)
1| bounded F - square-root
2 CY F, (3/2)-type (3/2)-type
3 C! Fio (5/2)-type (3/2)-type

Table 1: Relationship between the singularity of the system at the grazing
point and the type of singularity in the corresponding local map.

Remarks

1. Note the pattern implied by the non-uniform discontinuity results,
Theorem 2.3. If the vector field has a J-function discontinuity or a
finite jump across Y, we see a local square root singularity in the
discontinuity mapping. If, instead, there is a jump in first or second
derivative then the DM has a 3/2-law singularity, see Table 1.

2. In contrast, the uniform discontinuity result, Theorem 2.2, gives the
more straightforward property that discontinuity of the nth derivative
implies a map with a O(n +1/2) discontinuity to lowest order. In par-
ticular, this asserts that the O(3/2) correction term of (33) which does
not vanish if F1; = Fy, but Fiz; # Foyy must rely on the disagreement
between the two Hessians does not occur with a factor H(z)? in the
Taylor expansion of F; — Fy at = 0. We leave it as a (non-triviall)
exercise to the reader to show how the two formulae (33) and (29)
agree in the case of uniform discontinuity.

3. In all cases, the ZDM can be seen to reduce to the identity map at
each order when the two vector fields F; and F5 are identical.

4. In the general, non-uniform case, equivalent expressions for the PDM
applied at some local Poincaré section that contains the grazing point,
are given in [22]. Note that the smooth projection that converts from
the PDM does not change the order of discontinuity in the map.

Example 2.1 continued (bilinear oscillator)

Let us return to the bilinear oscillator example (4), (5), (6). with a
grazing happening at t = t*. First consider when the damping coefficient (;
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Figure 13: Theoretical prediction (dashed line) and numerical computation
of the (solid line) of the second component of the local ZDM plotted against
—zy for the bilinear oscillator (3) near grazing. The parameter-values are
(a) k1:12k2:A2,C1:CQZO.I,ﬁlzﬁQZIand(b) k1:k2:1,C1 :0.1,
=028 =p=1

x10

-0.001 0 0.001

Figure 14: Similar to Fig. 13 but for k&1 = ko = 1,( = (o = 0.1,;@1 =1,=
P2 =2

or the stiffness coefficient k;, changes across the switching manifold, while the
forcing remain the same. In this case, we set 81 = B = 3 in (5) and, using
the expressions in Theorem 2.3 one gets for the lowest order approximation
to the ZDM for 21 < 0

2(¢ — )78

z x| [5(E -Gl + 3k —k3)] By +2(k —kDzim |, (38)
0

where y; = MZ'%', which gives an |ac|3/ 2_correction to the leading-order

behaviour, which is confirmed numerically (see Fig. 13).
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Consider next the case where 81 = 3 := B and, in addition, (; = (o =
¢. Here we can apply the uniform discontinuity result (29) with m = 1.
Applying (29), one finds that Hpi,(2)=21min which is equal to z7 to lowest
order. Hence to leading order for z; < 0 we get

2 2 3 T
o+ (K —k%)\[g(o, a2, 0)

Finally, consider the local dynamics of the bilinear oscillator when the
forcing amplitude varies across the switching manifold, i.e. B # 35 while
ki = ko =k, (4 = (2 = ( in (5). In this case, the bilinear oscillator is
characterized by a discontinuous vector field at the grazing point and the
formula for the ZDM yields to lowest order for

~ T
T (o, 2%(32 — ), 2'53 |.o> , for z1 <0. (39)

2 1

which is a square-root map provided Bl # 0 and BZ # 0, again confirmed
numerically in Fig. 14.

Example 2.3 (An explicitly calculable canonical model for grazing)

We now consider an example where we compute the complete Poincaré map.
This is an explicitly constructed cannoical model for grazing bifurcations,
that takes the form of an autonomous three-dimensional system of ODEs
which can be solved in closed form (up to solution of implicit transcendental
equations):

r = gr(a—r)
0 = w; , (1=1,2) where z=rcosf, y—1=rsin, (40)
z = Pzt

where 7 = 1 corresponds to y > 0 and 7 = 2 corresponds to y < 0. Then the
switching manifold is given by

EZ{(:c,y,Z)|y:0}, and Hw:(oalao)a
ST is the region y > 0 and S~ is y < 0. A Poincaré section is defined by
II = {(z,y,2)| z = 0},
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Figure 15: Grazing bifurcation in the explicitly-constructed autonomous
system (40)

see Fig. 15.
For simplicity we assume that

wi=1 m1=0, >0, and p; <0.

Then, for a = 1, by construction the system (40) possesses a limit cycle
r =1, § =t of period 27 which grazes with ¥. Moreover, as a — 1~ this
solution is the limit of a continuous branch of stable 27-periodic solutions
r = a contained within region S7.

Note that an explicit solution can be found for any point in regions S*
or S~ with initial conditions (rg, 6y, 2o):

_ arg
T(t) - o + (a _ ,,,O)efasit’
ot) = 6o+ wit, (41)
2(t) = é ((%’ — Bizo)elit — %’) :

Using these solutions, the explicit Poincaré map can be constructed for
initial conditions on II with y > 0 (solution entirely in S*) or y < 0 (where
solution is required of implicit transcendental equations for transition times
between St and S~). This ‘exact’ map can be compared with the leading
order DM evaluated using the above theory. Consider two separate cases;
where the flow is not continuous at the grazing point (2 # 71 and/or
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w1 # w2), and where the flow is continuous (y2 = 71 and wi = ws). In
the first case we obtain the global Poincaré map, defined according to the
construction in Fig. 12,

+0(y,z) for y <0, (42)

ProPppu : [Z] = [ 2\/_72 —2ﬁ17r\/_

where Py is the Poincaré map computed around the limit-cycle assuming
that region S_ does not exist. Note that it is similarly possible to define
the topologically equivalent map Pppy o Pri. Fig. 16(a) compares both of
these two global PDMs with the exact expression in each case plotting the
z-component of the map as a function of the y-component of the initial
condition. Note how the exact map lies exactly between Pppy o P and
Pp o Pppyr each of which clearly has a square-root behaviour.

This now raises a subtle point; the constructed maps are only topolog-
ically equivalent to the true Poincaré map from II — II, since we have to
apply the full DM either at the beginning of the end of the period. To over-
come this difficulty, one can work with a new Poincaré section Ily that is
away from the grazing point. For the present example we could take II2 to
be the local Poincaré section that is defined by the global extension of II to
a neighbourhood of (z,y,z) = (0,2,0), see Fig. 15. Then the linearisation
around the periodic orbit at the grazing point can be composed of two pieces
P = Pyo P, where P, : Il — I, and P : II — IIy. Then we can construct
a global PDM from Il5 to Iy via

P=PyoPopyoP

Thus we obtain

. 0

. Yy

P [ s ] — [ 22y ,—fim ey +O0(y,z) for y<0. (43)
w2

Figure 16(b) shows the almost perfect agreement between this map and the
equivalent exact expression.

Finally, let us turn to the case where the vector field is continuous at
the grazing point (y; = 72, w; = wy). Note that if 8 = B2, but €1 # &9
the vector field is not continuous at the whole boundary, but local to the
grazing point, the vector field is quadratically equivalent to one that can
be written in the form (8) Therefore, to leading order we can use the the
simpler formula (29) for calculating the discontinuity mappings.
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Figure 16: Agreement between the ‘exact’ Poincaré map calculated by solv-
ing the implicit equations and the ‘calculated’ PDM using the theory for
the example (40) with a = 1, f1 = e1 = 1/2, 1 = 0, w1 = 1; and (a)—(b)
52 = &9 = 1/2, Y2 = 1 and w1 = 3/2, (C)*(d) ,82 = 1/2, €9 = 1/10, Y2 = 0
and wy = 1. In (a), the final value of the z-coordinate is plotted against ini-
tial perturbation in y < 0 for the exact map (solid line), Py o Pppy (dashed
line) and Pppy o Prp (dotted line). (b) Then compares the exact map with
Pgppu defined by (43). (c) Shows, for a case with continuity of the vector
field at the grazing, the exact expression for the Poincaré map (solid line)
against the unperturbed map as if the boundary were not there (dashed
line). Plotted is the final y-value against initial perturbation in y. Finally,
(d) shows the difference between these two maps (solid line) together with
the curves defined by the nonlinear parts of the Pppys o Py (dotted) and
PH o PPDM (dashed)
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Figure 16(c) shows the exact map for a particular set of parameters
showing how the y-component varies as a function of an initial perturbation
in y. Figure 16(d) then shows the difference between this map and the map
obtained by solving the flow as if the boundary were not there, together
with an expression for the nonlinear part of the GPDM calculated as follows.
Applying the formula (29) for the ZDM, for simplicity in the case y; = 0,
we find that the correction lies in the Poincaré section II and so is in fact a

DM:

T x 0
4+/2 —€
v | — +iw(_y)% 1
3 w1
z z 0

Looking at Fig. 16(d) we see that this gives a good fit to the data from the
explicit calculation in this case.

2.2.4 The dynamics of the Poincaré maps

The above analysis derives a complete normal form valid for all grazing
bifurcations. This normal form takes the form of a Poincaré map and we have
gone to great lengths to explain how they are derived and how the degree
of discontinuity of that map relates to assumptions about the discontinuity
vector field in the neighbourhood of the gazing points. However, we have
so far said almost nothing about the dynamics of the Poincaré maps as a
parameter is varied. We shall return to a treatment of maps with a square
root singularity in Sec. 4. So let us conclude this section with a few remarks
and an applied example that illustrate what can happen in maps with a
3/2-law singularity.

The simplest statement to make is that the 3/2-map is C! at the grazing
point, so there can be non corresponding local bifurcation of fixed points of
the map (assuming as we do that the orbit p(¢) is hyperbolic). Thus this
NST does not imply bifurcation in the classical sense. However, the slope of
the map has square-root singularity, so there can be a rapid (but continuous)
change in the Floquet multipliers of the periodic orbit at the grazing point.
This can lead to a nearby local bifurcation. The next example illustrates
through an application, that such a local bifurcation indirectly caused by
the grazing, can occur remarkably close to the grazing point itself.

Example 2.4 (Application: A stick-slip oscillator)
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Dankowicz & Nordmark [16] studied the following five-dimensional model of
a friction oscillator:

o= Yo (44)

o = —1+ [1=U[L—yalys + BU(1 — ) VE ()] =0 (45)

Ys = Ya (46)

. V90 _

Y4 = —sys+ g- e [ulyse ¥ —1) + aU?S(y1,v4)] (47)

_ 1

g5 = I —ya) = [1 = yalys], (48)

where
—d d

K(n) =1- 535 Sy = 0yl - malK@n)e™ — 1+ 1.

This dimensionless model was based on the derivation in [15] aimed at ex-
plaining experimentally observed stick-slip motion using more realistic laws
than simple coulomb friction. Here the variable y; is a vertical, and y3 a
horizontal degree of freedom of a mass being pulled across a horizontal sur-
face by a spring whose other end moves at constant speed U. The extra
co-ordinate y5 € [—1,1] is an internal variable measuring the shear deforma-
tion between the surface and the mass. The main discontinuity to feature in
the dynamics is the set ¥ = {y4 = 1} and this corresponds to motion with
zero relative velocity between the mass and the surface. Motion with ¢4 < 1
corresponds to the mass being dragged across the surface.

Figure 17 shows a bifurcation diagram where the the bifurcation param-
eter is s, a rescaling of the spring stiffness (the ordinate & depicted in the
plot) for the fixed value of the equilibrium surface separation d = 0.1. For
the values of the other parameters used, the interested reader is referred to
[16]. Note that for k = 214.2528, an unstable limit cycle grazes with ¥. This
causes the onset, upon decreasing k of so-called stick-slip motion that makes
repeated tiny penetrations into the region with ¢4 > 1. This motion can be
quite involved and features chaotic dynamics and period adding bifurcations
(as one would expect in the case of normal-form maps with a square-root
dependency [58, 12]).

The onset of this rich dynamics observed upon decreasing k£ through the
grazing value can be explained by the theory treated here. Specificaly, an
involved computation in [16] computes the normal form (33) in Theorem 2.3
(actually this was the first ever such computation in the case of discontinuity
of degree 2). We omit the details here, but merely reproduce in Fig. 18 the

36



170 190 k 210
Y4 |
f 1.00001
I =
- - - /
7/
7/
‘ 7/
0.99999 |
0.9997 ‘ /
,
// 7

214.247 214.25 K 214.253 214.252 214.2524 K 214.2528

Figure 17: Successive enlargements of a computed bifurcation diagram for
d = 0.1, depicting local maxima of y4. The dotted line corresponds to the
discontinuity set ¥ and the dahsed line to a branch of unstable limit cycles
born in a sub-crtical Hopf bifurcation
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Figure 18: Comparison between the numerical simulations (left panel) and
the discontinuity mapping (right panel) local to the grazing bifurcation
at k = 214.2528. Here 9 is a rescaling of y4 and 7 is a rescaling of —k
(cf. Fig. 17(c))

results of the iteration of the corresponding map composed with the flow
map over a whole period. Note, over this small scale the close agreement
between the mapping and the simulations

Further computations in [16] show that a qualitatively similar bifurcation
diagram is obtained for d = 0.01, but that here the grazing and the fold are
O(1) apart.

Now, this example serves to illustrate a key point about grazing bifur-
cations where the degree of discontinuity is 2 or more. A local analysis of
the normal form shows that it is continuous at the grazing point and has a
3/2-type discontinuity. At the grazing point, there should not be a change
in the tangent to the branch of fixed points. One might think that this
would rule out any complex dynamics emerging from such transitions. Yet,
in the dynamics depicted in Fig. 18 while there is no discontinuous jump
in the slope, it is found that there is a fold at a P-value within 1072 of the
grazing point. Returning to the physical co-ordinates, this implies a fold for
k within 10~7 of the grazing point (see Fig. 17)! So even if no instantaneous
transition occurs, grazing in piecewise-continuous systems can cause a rapid
change in the curvature of a bifurcation branch giving rise to many nearby
classical bifurcations. Moreover, when viewed in the large, the dynamics of
the normal form may help explain some more global features of the dynamics
such as period-adding cascades.

2.3 Nonsmooth Transitions of Limit Cycles 2; Boundary In-
tersection Crossing

Consider now a situation where two discontinuity boundaries ¥; and ¥,
cross transversally, see Fig. 19(a). It is clear that it would be of codimension
one for a periodic orbit to pass through the (n—2)-dimensional intersection C
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Figure 19: (a) A boundary-intersection crossing trajectory that intersects
the crossing manifold C between two discontinuity surfaces 1 and ¥y, and
two nearby trajectories. Here it is assumed that a different smooth vector
field F; applies in each of the four local phase space regions. (b) Shows the
special case where only two different vector fields, £} and F5 apply, and
the crossing manifold might better be described as the corner in a single
discontinuity surface made up of two smooth pieces 31 and 5. Two distinct
kinds of corner-intersecting trajectories are depicted, so-called external and
internal corner collisions [21]
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Figure 20: A planar representation of the construction of the local PDM in
a neighbourhood of a boundary-crossing intersecting trajectory. Here it is
assume that the Poincaré section is ¥; : {Hy = 0}

between these two boundaries. It is this situation that we call a boundary-
intersection crossing. The special case in Fig. 19(b) has previously been
called a corner-collision bifurcation [21] We shall consider only the case
where the vector field is discontinuous across each of ¥; and X5 and shall
show that to lowest order this leads to a piecewise linear normal form GPDM.
The case where the vector field is continuous can be similarly shown to lead
to a discontinuity mapping with a jump at quadratic order.

Consider first the general case depicted in Fig. 19(a) and set up some
local co-ordinates such that the point of intersection of the periodic orbit
with C = ¥; N Y9 occurs at x = 0. Let the boundaries ¥; and 39 be given
by the zero sets of smooth functions Hi(x) and Hs(x) respectively, which,
as in the previous section, we take for simplicity to be linear; ¥; = {H; = 0}
and ¥y = {Hy = 0} and the sense of their normal vectors is as depicted in
Fig. 20.

Now, it will transpire that the linear approximation to the flow and to
the boundaries is sufficient to determine the leading-order expression for the
discontinuity mapping in a neighbourhood of (z, ) = (0,0). Thus Fj(z, u)
is replaced by F;(0, ) and we suppose for simplicity that the local situation
near z = 0 is unchanged by the variation of u, so F;(z, u) = F;(0,0) := F;.
Also let a final subscript indicate a component in the normal direction Hj ;,
so that Fj; = H; ;F;(0) and z; = H; zx, for j = 1,2.

We make the further assumption that there is no sliding or grazing in
the neighbourhood of z = 0, so that all four vector fields cross both ¥; and
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Yo transversely and in the same sense. That is,
Fij>0 for i=1,...,4, j=1,2. (49)

For simplicity, it is easier to work with a Poincaré section that lies in
one of the boundaries. Without loss of generality we take the section IT :=
{H; = 0} as in Fig. 20. Then, constructing the local PDM as in the Figure,
we arrive after some algebra at the following

Theorem 2.4 (Local PDM at boundary crossing point intersection)
Under the above assumptions, the local PDM based on the Poincaré section
Yo is given by

T+ 22 FQ&—F]_ +O(|$‘2) ’Lf $2>0

T Fyo 11;21 . (50)
z+ g5 (Bt = F) +0(|z?) if 22 <0,

Here the correction is made to a trajectory for which it is assumed evolves
according to vector field Fy before hitting X1 and vector field Fy afterwards.

Remarks

1. To lowest order (50) is a piecewise-linear map, such that the each of the
maps for o > 0 and x5 < 0 is a rank-one update of the identity. This
is precisely the form of map studied by Feigin (see [24] and references
therein) and in one and two-dimensions by the Maryland group [62, 2],
where they were given the name border collision bifurcations (of maps).
The reader is referred to these works for a detailed description of the
dynamics that may ensue under parameter variation. Among other
possibilities it is possible for a sharp fold-like transition to occur, a
non-smooth period-doubling or a sudden jump to chaotic motion. The
chaotic motion has the character of being robust [5], that is containing
no periodic windows.

2. Obviously in the case of a corner where F; = F3 = F; (external corner
collision) or F, = F3 = Fy (internal corner collision) then the local
PDM reduces to the identity for zo < 0 (see [21] which also derives
ZDMs in this case).

Now suppose that the trajectory p(t) that passes through the boundary
crossing point at © = 0, 4 = 0 is part of a periodic orbit. Then, the above
discontinuity mapping can be composed with the linear to lowest-order order
Poincaré map Ppy around the critical boundary-crossing intersecting periodic
orbit. The following examples illustrate the construction of the ensuing
piecewise linear maps. Both correspond to the special case in Fig. 19(b).
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Figure 21: (a) Sketch of the phase portrait of (51), (52) with a = 1. (b) An
adaptation of the system.

Example 2.5 (An explictly calculable canonical model for corner-collision)

We consider first an example where a hyperbolic limit cycle grazes with
a corner in an autonomous, piecewise-smooth vector field that is solvable in
closed from. Specifically we take a system

z i g , forr>0,y>0,y<ztanf (REGION Sy), (51)
r = er(a—r) .
i 1 , otherwise (REGION Si). (52)

Here
z+1=rcosf, y=rsiné,

and v, d, B, € and a are real constants satisfying the constraints
0<pB<m/2, &>~ytanp. (53)

See Fig. 21(a). Consider the system (52). For a > 0 there is a limit cy-
cle which is stable if ¢ > 0. At a = 1 this limit cycle collides with the
boundary of region Sy in an external corner collision bifurcation. Under
this construction we have

Hj ;= ycos B(—zsin 3, cos ()

The constraints (53) ensure that no sliding occurs along 1 o
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Figure 22: Comparison between the PDM given by (56) (solid line) with the
map obtained from the exact analytical solution of (51), (52) (dotted line).
(Note that there is agreement between the slopes of the two maps on either
side of z,, = 0. For z,, < 0, this agreement is not so obvious but it has been
confirmed for each of the three a-values by plotting the graphs on a shorter
Zp-interval. Just such a zoom for a = 1.1 is depicted as an inset to (a).)
Intersection of the map with the gray line represents the existence of a fixed
point. Numerical values used are ¢ = 1/10, f =« /4, v =3/8, 6 = 1/2 and
the three given values of a.

Since the systems in regions S; and Sy are solvable in closed form one can
explicitly construct the Poincaré map x — Iz associated with the Poincaré
section {y = 0,z > —1}. After a short calculation, we obtain an explicit
expression for this map when = > 0,

af explea(2m — 0)]

T - - (54)
7explea(2mr — )] +a — 7
where .
g:%, Feosh=z+~yi+1, Fsinb=ai. (55)

This exact map may be compared to the global PDM calculated using
the above theory, for which one easily obtains

sexp(=2em) 4 (1 — exp(—2¢e7))(a — 1) if z>0° (56)

N exp(—2em)z + (1 —exp(—2em))(a —1) if <0
x
d—vtan B

Fig. 22 gives the comparison between the PDM and the exact map. Note
both the qualitative and quantitative agreement between the two. Note also
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that for the illustrated numerical values of the various constants, the corner-
collision has the effect of destroying the limit cycle. Before the bifurcation,
i.e. for ¢ < 1, there is the stable limit cycle lying solely in region S;, but
this coexists with an unstable limit cycle which passes through region S,.
At a = 1 these two periodic solutions coalesce and for a > 1 they have
disappeared. Note finally that unlike a saddle-node bifurcation for a smooth
system, the Floquet multipliers of the two periodic orbits (the slopes of the
two portions of the map) do not approach 1 asa — 17.

Example 2.6 (Application: corner-collision in the DC-DC buck converter)

We now study a certain piecewise-linear circuit used widely in power elec-
tronics for adjusting a given DC voltage to a lower value. The DC-DC Buck

L
Sy

s

Figure 23: Blocks diagram of the Buck Converter, where V;,, = F.

converter under ramp voltage-mode control is used as an example exhibit-
ing nonsmooth bifurcations. Figure 23 shows the block diagram of the buck
converter. A control signal V., where

Vi(t)=v+n(tmodT), v, 1, T>0, (57)

is compared with the voltage V' (¢) in the capacitor. If V' > V, then the switch
S1 opens and the switch So conducts, while if V' < V,. then the switch S is
closed, S does not conduct, and the battery feeds the load.

Here we shall take the following form of the equations modelling such a
circuit used in which are written in terms of a current I(¢) and voltage V (¢)
[18, 20]

: 1 I
V.= “geV o (58)
.V 0 V >V (t)

L= f+{E/L V < Vi (t). (59)



C, E, L, and R are positive constants representing a capacitance, battery
voltage, inductance and resistance respectively and V, is a piecewise-linear
but discontinuous ‘ramp’ signal (see 57). For this system we have ¥ :=
{V =V, (t)} which has corners whenever ¢t = 0 mod 7.

For the details of the electrical circuit represented by the model (58),(59)
and for some of the rich features of its dynamics, see [35, 25, 20]. These
features include periodic orbits and strange attractors that are characterised
by trajectories that are close to both corner-collision (at ¢ = 0 mod 7") and
sliding (with V(¢) = V,.(¢) for (m — 1)T < t < mT for some m). The
parameter values taken were those used in the experiments of [18], which in
SI units are

R =220, C = 4.7uF, L = 20mH, T = 400us,
v = 11.75238V, 1 = 1309.524V s, (60)

with the bifurcation parameter E € (15,60) being the input voltage.

In [21] an analytical explanation was offered for the phenomenon that was
merely observed numerically in [20] namely that corner-collision of a periodic
orbit causes a fold (actually a sharp corner) in the bifurcation diagram of a
branch of periodic orbits. Specifically a sequence of such folds was found for
certain 3T and 5T-periodic orbits, as part of a bigger picture of a spiralling
bifurcation diagram; see also [35, 25]. See the work of Yuan et al. [82] for
corner-collision in a related buck-converter configuration.

Figure 24 shows numerically computed 5T-periodic orbits that, in their
fourth depicted T-interval, undergo a collision with the upper corner of the
function V,.(t) at

t=to=0modT, V =v+4+nT

Moreover, we will consider the possibility of both internal and external cor-
ner collision.
As a first step, define local co-ordinates

z=V—-(y+nT), y=I1—-1), z=t—ty (61)

and rewrite the equation (58),(59) in autonomous form, to give the system

T = —a1+bz—cy,
= —ag —coy +dO(o(z) — z),
z = 1,
in which
a1:—7+nT_RI0 blziclziaazry_'_nT CQ—ld:E
RC ’ C’ RC’ L L’ L’



(a) E=19.9786656 (b) E=53.500001

0 0.0005  0.001 0.0015 10.002 0.0025 0 0.0005  0.001 0.0015 t0.002 0.0025

Figure 24: Periodic orbits of the DC/DC buck converter with period 57
undergoing (a) an external and (b) an internal corner collision.

© is the Heaviside step function and
o(z) =n[(zmod T) — T.
For this system we have
Y51 ={H1 =0} ={z=0(t)}, 32:={Hs=0}={z=0},

C={z=0,2=0}

The corner-collision happens at x = y = z = 0, and it can be checked that
the conditions of the preceding theory are met there with

FO = (—a1,—as,1), F?=(-ai,—as+d,1)

(observe that F' is discontinuous only in the z-direction, and so the jump in
derivate of solutions is not seen in graphs of y against ¢ as in Fig. 24).

Using (50), specifically for an ezternal grazing the local discontinuity
mapping for corner-crossing trajectories using the {z = 0} Poincaré section
takes the form

Pzow : ( Z ) > ( y+kf(E)x ) + h.o.t. (62)

E RC
L(y +nT — RIy + nRC)
To compute the full Poincaré map, we must compose the map Pzpm
with a global one which is simply found by taking the Jacobian derivative

of the flow around the periodic orbit at £ = Ej ignoring the effects of the
corner.

where

ki(E) = —dnai +n = — (63)
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Figure 25: The Poincaré map for a 5T-periodic external corner-colliding
orbit at Ey = 19.9786656, computed numerically (solid line with crosses)
and via the corner-collision analysis (dashed line). A one-dimensional slice
of the map is taken considering the effect of varying only the initial current
y(0). (a) and (b) depict the final current and voltage respectively for E = Ey;
(c) and (d) show the effect on the final current of variation of the bifurcation
parameter F. In the final current versus initial current figures, the 45° line
is depicted as dotted; viewing the graphs as approximations of 1D maps,
intersections with this line are indicative of nearby fixed points of the 2D
map.
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The results for the 5T-periodic orbit at £ = Ey = 19.9786656 are de-
picted in Fig. 24, for which it was found from examining the numerically
computed trajectory that ki (Ep) = —0.934. The map (62) can be com-
pared with a purely numerical evaluation of trajectories in a neighbourhood
of the corner-coliding one. We illustrate in Fig. 25 just a one-dimensional
approximation to this two-dimensional map, by only displaying the effect of
changes in initial current y. This is purely for illustrative convenience (sim-
ilar results were found with other combinations of z(0) and y(0) varying as
initial conditions), but we note from the numerical Jacobian that that initial
variations of current y have a much bigger effect (by a factor of about 10)
than variations of voltage x.

The results in Fig. 25 (a) and (b) show good quantitative and qualitative
agreement between the local theory and the numerics at £ = Ey. They
also illustrate the extent of the region of validity for the local analysis; for
—0.006 < y(0) < —0.0035 at E = Ej, the local map is qualitatively correct,
but outside of this region the numerical map shows extra corners. This is
due to other corner-collisions taking place at ¢t = nT" for some n < 5. Note
from panel (b) in particular that there is no corner in the z-component of
the numerically computed map — this component of the map is smooth —
which is in complete agreement with the analytical result (62) (there is no
change in the z-component in the discontinuity mapping).

Panels (c) and (d) show the effect of variation of E, with the existence of
a fixed point on such a graph of y(57") against y(0) being indicative only of a
fixed point of the full 2D map. Here again there is good agreement between
theory and numerics on how the map is perturbed as F varies and that two
fixed points (corresponding to unstable periodic orbits of the ODEs) are
created at F = Fy and coexist for E > Ey. See [21] for more details.

3 Filippov PWS system

We consider general system (1) with a single well-defined switching manifold
Y. As mentioned in the introduction, a particular feature of Filippov type
systems is the possibility of evolution of the system within its discontinuity
set 2. A subset of 33 where such an evolution is possible is termed as sliding
region or sliding subset. Therefore, the sliding subset represents a region by
within the switching manifold 3 where trajectories hitting the manifold are
not allowed to switch to another vector field as they are pushed back toward
the manifold itself. Thus, there exists a possibility of a motion within 3
which is termed sliding motion. An example of a 3-dimensional phase space
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Figure 26: Phase space topology of a system with discontinuous vector fields

with a sliding region, say S is schematically depicted in Fig. 26. Two for-
malisms exist in the literature for deriving the equations for flows governing
the dynamics within the sliding region. These are Utkin’s equivalent control
method [77] and Filippov’s convex method [34]. In Utkin’s method one sup-
poses that the system flows according to the sliding vector field Fs which is
the average of the two vector fields F} (in region S, ) and F5 (in region S_)
plus a control B(z) € [—1,1] in the direction of the difference between the

vector fields:
P+ F +F2—F1

2 2
Specifically, the equivalent control is

Fy B(x). (64)

H, F, + H, Fy

- 65
HwF2_H:cF1’ ( )

Blz) =
where H, is the gradient vector of H(z). Filippov’s method, by contrast,
takes a simple convex combination of the two vector fields

Fs = (1 — Oé)Fl + an

with 0 < a <1, where
H,F,

H(F — Fy)’

Now it is a simple exercise to show that the above two methods are
algebraically equivalent with 4 = 2a¢ — 1. In both cases it is straightforward
to show that the vector field Fi lies orthogonal to the direction H, and so lies
tangent to X. Utkin’s method has the interpretation that u is precisely the

o =
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control power that is needed to pull the flow back to being in the direction
3, see Fig. 27(a). Another interpretation, from Filippov’s method, is that
just the right convex combination of the vector fields needs to be taken for
the resulting field F; to lie in ¥ (Fig. 27(b)).

The control 8 = —1 (equivalently a = 0) means that the flow is governed
by F} alone, which must by definition be tangent to ¥ there. Similarly 5 =1
(a = 1) represents a tangency of flow F» with 3. Hence, we can define the
sliding region as

Si={reX:-1<p(z) <1},

and the boundaries of the sliding region as
OVt :={z e X: fz) = £1}

where one of the vector fields is tangent to X.

In Section 3.1, we will discuss the most significant types of nonsmooth
transitions of equilibria using a planar Filippov system as a representative
example. Nonsmooth transitions of equilibria in this class of systems have
been little studied in the literature. An overview of local phenomena in pla-
nar Filippov systems was presented in [51]. A non-generic class of Filippov
systems was studied in [49]. It was shown that a class of transitions, termed
in [49] generalized Hopf bifurcations, can be observed in such systems when
a family of limit cycles is generated, under parameter variations, as a fo-
cus located on the switching surface is perturbed. The transition to sliding
cycles (a cycle with a segment of sliding motion) in a class of different Fil-
ippov planar systems is studied in [40]. Also, global phenomena can occur
with heteroclinoc connections to equilibrium points [51]. An interesting set
of examples in applications is given by certain models of DC-DC convert-
ers. We will study in some detail a model of a buck converter, an adaption
of Example 2.6 above [65]. In [14] a different circuit topology, the Boost
converter, is also studied.

In Section 3.2 we focus our attention on sliding bifurcations of limit
cycles. We depict four possible cases of this type of NSTs which are a
distinct feature of Filippov-type systems. Then, their heuristic description
is followed by the presentation of the normal forms capturing the essence
of sliding bifurcations. Finally, an example where one of these bifurcations
leads to the sudden onset of chaos is discussed.

50



tangent to switching manifold X B,

g+ at some point (t,x) B,

(1.x)

_~

™
w
J\

(a) Utkin’s method
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Figure 27: (a) Utkin’s equivalent control method and (b) Filippov’s convex
method allowing for the definition of the vector field governing the sliding
flow — schematic representations

51



3.1 Equilibrium bifurcations
We consider Filippov systems of the form:

(66)

o Fi(z,p), if H(z,u) >0
Fy(z,p), if H(z,pu) <0’

where F1 # F2 on H = 0. It is possible to identify different types of
equilibria in a Filippov system. We give the following definitions.

Definition 3.1 We say that a point x € D is a regular equilibrium of (66)
if

Fi(z,u) = 0 (67)
H(z,p):=X1 > 0
or

F2 (Jj, H) =0
H(z,p):=X2 < 0
Definition 3.2 We say that a point T is a pseudo-equilibrium if it is an
equilibrium of the sliding flow, i.e.
Fl(i‘alu)—FS‘(FQ_Fl) = 07
H(z,u) = 0, (68)
A >

Definition 3.3 A point & is termed a boundary equilibrium of (66) if

Fl(Aa/J‘) = Oa

H(z,p) = 0.
or

FQ(‘%,M) = 0,

H(z,p) = 0.

Note that a boundary equilibrium is always located on the boundary of the
sliding region defined by where the H, component of the vector fields is
vanishes.
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As shown in Sec. 2.1 for nonsmooth continuous systems, in Filippov
systems, a boundary equilibrium can appear for some value of the system
parameters y. We shall seek to unfold the bifurcation scenarios that can
occur when y is perturbed away from the origin, i.e. the possible branches
of solutions originating from a boundary equilibrium. Specifically we give
the following definition.

Definition 3.4 A regular or pseudo- equilibrium x* = x*(u), which we
assume depends smoothly on p, is said to undergo a boundary equilibrium
transition at y = p* if

o Fie*,p*)=0, i=1or2,
o H(z* pu*) =0,

o Fip(x*,p*) is invertible (or equivalently det(Fi;) # 0).

3.1.1 Overview of the possible cases

Without loss of generality, we assume that F;(0,0) = 0, H(0,0) = 0, i.e.
z = 0 is a boundary equilibrium when y = 0. We shall now seek to find con-
ditions to distinguish between the simplest possible unfoldings of a bound-
ary equilibrium as g is perturbed away from the origin. We will show that
scenarios similar to those presented in Sec. 2.1 for nonsmooth continuous-
systems are possible. Namely, we can observe persistence where a branch of
regular equilibria can turn into a branch of pseudo-equilibria or nonsmooth
saddle-node where a branch of regular equilibria can disappear after collid-
ing with a branch of pseudo-equilibria. We will not investigate here the case
of Filippov systems without sliding. In that case, two branches of regular
equilibria can exist and be involved in the nonsmooth transition scenario.

3.1.2 Persistence and Nonsmooth Saddle-Node

Let z be a regular equilibrium of (66) and Z a pseudo-equilibrium. Then,
linearising (67) and (68) about the boundary equilibrium point at the origin,
we have

Az +Bup = 0,
Cz+ Dp A1 >0 (69)
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and

Az +Bu+E\N = 0,
Ct+Duy = 0, (70)
A>0
where A = F;,B = F,,C = H;,D = H, and E = F; — F; all evaluated

atz =0,u=0.
Now, from (69) we have z = —A~! By and:

M = (D—-CA™'B)p. (71)
Moreover, from (71), & = —A !By — A~'EX. Hence, we find

i (D-CA™'B)u
A= T eaE (72)
or, equivalently,
\= M (73)
- CA-lE’

In order for z and Z to exist for the same value of 41, both A; and A must
share the same sign. While they will exist for opposite values of y if A\q
and X have opposite sign. Therefore, using (73), we can state the following
theorem.

Theorem 3.1 (Equilibrium points branching from a boundary equilibrium)
For the systems of interest, assuming

det(A) # 0 (74)
D—-CA'B # 0 (75)
CA™'E # 0 (76)

e persistence is observed at the boundary equilibrium bifurcation point if

CA~'E < (77)

e g nonsmooth saddle-node is instead observed if

CA™'E >0, (78)

Note, that the conditions found are different, as expected, from those pre-
sented in Sec. 2.1 for nonsmooth-continuous systems and are valid for any
n-dimensional Filippov system of the given type.
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3.1.3 Planar Filippov Systems

A comprehensive analysis of possible bifurcations in Filippov systems is
given by Kuznetsov, Rinaldi, & Gragnani in [51]. In reviewing this material,
we will consider in this section, only transitions which involve sliding on the
discontinuity boundary. Actually, the appearance or disappearance of a
sliding segment is already a transition.

Following [51], we term a point T on the switching manifold tangent
point if the vectors F;(T"),i = 1,2 are nonzero but at least one of them is
tangent to . Suppose that a tangent point T € ¥ is such that

H,(T)F\(T) = 0.

We say that this tangent point is wvisible if the orbit of & = Fy(z, u) starting
at T belongs to S; for all sufficiently small |t # 0 . We say that it is
invisible if the orbit belongs to S. Similar definitions hold for F5. In a
neighbourhood of a generic tangent point orbits are like in Fig.28, with a
possible reversal of all arrows and/or reflection with respect to the vertical
axis.

@ ®
Figure 28: Visible (a) and invisible (b) tangent points.

To meet all generic one-parameter transitions involving the discontinuity
boundary ¥ we use the following criterion: for a given parameter value u,
we consider the sliding set 3 and find all the pseudo-equilibria and tangent
points in it. These points are finite in number but can collide as y varies,
leading to local codimension-1 transitions. Another local codimension-1
transition can occur when a standard hyperbolic equilibrium in S; or S
collides with 3, i.e. a boundary equilibrium bifurcation. There are no other
local codimension-1 transitions. Global codimension-1 transitions involving
sliding are discussed in [51].

3.1.4 Local Transitions

Collisions of equilibria with the boundary
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Figure 29: Boundary focus transitions. (a) g < 0, (b) g =0, (c) u > 0.
(1),(2) and (5) are nonsmooth saddle-node bifurcations, while (3) and (4)
correspond to Persistence.

We can distinguish three main cases:

e Boundary focus: there are five generic critical cases (see Fig. 29(b)).
In all of them there is a visible tangent point for 4 < 0 and an in-
visible tangent point for y > 0. The cases are distinguished by the
relative position of the focus zero-isoclines and the behaviour of the
orbit departing from the visible tangent point into S1, as well as by
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Figure 30: Boundary node transitions (a) u <0, (b) p=0, (c) p>0. (1)
is a persistence bifurcation while (2) corresponds to saddle-node.
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Figure 31: Boundary saddle transitions. (a) u < 0, (b) p =0, (c) > 0. (1)
and (2) are Saddle-node bifurcations, while (3) corresponds to persistence.

the direction of the motion in Sy. If we assume that the colliding focus
is unstable and has counter-clockwise rotation nearby, we can distin-
guish all five cases in Fig. 29. Cases (1),(2) and (5) are nonsmooth
saddle-node bifurcations, while (3) and (4) correspond to persistence.
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e Boundary node: Depending on the direction of motion in Se, there are
two generic critical cases, which are shown in Fig. 30. Case (1) is a
persistence bifurcation while (2) corresponds to saddle-node.

e Boundary saddle: When the colliding equilibrium is a saddle, there are
three generic cases determined by the slope of the saddle zero-isoclines,
as can be seen in Fig. 31. In all cases, there is an invisible tangent point
for 4 < 0 and a visible tangent point for g > 0. These points delimit
the sliding segments on the discontinuity boundary. Cases (1) and (2)
are saddle-node bifurcations, while (3) corresponds to persistence.

AR S O SR N B
Y T

Figure 32: Pseudo-saddle-node transition. (a) u < 0, (b) p =0, (c) p > 0.

(&S b> >

Note that, when y varies, two pseudoequilibria can collide and dissappear
via a standard saddle-node bifurcation on the sliding set f], which in this case
we will call a pseudo-saddle-node transition. Figure 32 shows this transition
in the case of a stable sliding segment.

Global phenomena such as those depicted in Fig. 33 are also possible
and were studied in [51]. For example, a pseudo-equilibrium Z(x) can have
a sliding orbit that starts and returns back to it for 4 = 0. This is possible
if £(0) is either a pseudo-saddle-node or a pseudo-saddle (Fig. 33 (1),(2)).
Moreover, a standard saddle z, can have a homoclinic orbit containing a
sliding segment at = 0 (Fig. 33 (3)).

3.1.5 Non-generic situations

Other phenomena concerning equilibria in Filippov systems have been re-
ported in some non-generic cases. For example, it has been observed that a
branch of limit cycles can appear after a focus changes its stability on the
boundary.

In a non-generic case, where the focus is always in the origin, Kiipper
and Moritz [49] study parameter dependent Filippov dynamical systems of
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Figure 33: Global phenomena: (1) Sliding homoclinic orbit to a pseudo-
saddle-node, (2) Sliding homoclinic orbit to a pseudo-saddle, (3) Sliding
homoclinic orbit to a saddle. (a) u < 0, (b) u =10, (c) p > 0.

the form ( i(t) ) _ { K+ (z(t),y(t),A) if z(t) >0
y(t) K~ (z(t),y(t),\) if =z(t) <0’

where the right-hand sides KT, K~ : R? x I + R? for some interval I
containing 0 are given by:

Ko =430 () + (4500,

Kt = a0 (£ )4 (BN,

Y
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Figure 34: Global phenomena: (1) Heteroclinic connection between two
pseudo-saddles, (2) Heteroclinic connection between a pseudo-saddle and a
saddle. (a) u <0, (b) p =0, (c) x> 0.

The parameter dependent matrices A} (\) and A7 ()\) are assumed to be
of the standard form used in the treatment of Hopf bifurcation in smooth

systems, i.e.: ( A T\ )
AL = "

@ —wt(A) A
and \ N
_ «a w
0=t ")
where @« = 1 or @ = —1. Then, as shown in [49], it is possible to give

conditions for a continuous isolated branch of periodic orbits to bifurcate
from the boundary equilibrium at the origin.

Another special case is described in Zou & Kiipper [85], where the exis-
tence of periodic orbits bifurcating from a corner-like manifold in a planar
Filippov dynamical system. There, the creation of a branch of cycles is
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determined by interactions between the geometrical structure of the corner
and the eigenstructure of each smooth subsystem.

Still another non-generic Filippov system (with symmetry) modeling a
relay system is studied by Giannakopoulos and Pliete in [40]. Specifically, a
piecewise-linear system is considered of the form

@ = Au + sgn(w? u)v

where A is a 2 x 2 real matrix, u, v, w are two-dimensional real vectors.
The theory of point transformation is applied to obtain conditions for the
existence and stability of periodic solutions without sliding motion. The
case where A has complex eigenvalues with a non-zero real part is studied
completely. It is further shown that, if A has real or purely imaginary
eigenvalues, then the system has no periodic solutions with sliding motion.
Further results are given concerning branches of periodic solutions both with
and without sliding motions.

Return to Example 2.6
In fact, Example 2.6 is a Filippov system which at other parameter values
than those in Section 2 there can be equilibrium solutions on the ramp.
In [14] a DC-DC Boost converter was shown to exhibit several nonsmooth
transitions. In [65] a DC-DC Buck converter was initially studied as a Fil-
ippov system. We review this example in the following, where a nonsmooth
transition is reported.

So we have equations (58),(59) but in this case we assume mixed voltage
and a current control, so that the reference signal (57) is

Vr = Wow - ZI(t),

where 7 is an impedance constant. The differential equations which drive
the system are

()= (5 ) (V) ()

where u = 0 if Voo, := V(1) + ZI(t) > Vjoy and u = 1 otherwise.

Thus we have two linear topologies in continuous conduction mode. We
will not consider discontinuous conduction mode in this paper, since we will
assume that we have bidirectional switches, which allow negative currents. If
we fix a set of initial conditions V) = V' (t9) and Iy = I(ty), since the systems
of differential equations are linear, we will be able to compute exactly the
solution of each one.
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Let us write

1 [1
— 2
"= 3he w=\ze (79)

1
— _k?
LC >0, (80)

which is the usual case since oscillatory solutions are desired. We also define

the real matrix N ( ko 1/(Cw) )
—1/(Lw) k/w '

Then we have the following solutions for the systems:

and suppose that

system 1: Vo, >V

( I;((:)) ) = ¢k(t=10) [T cosw(t — to) + Asinw(t — )] ( 11/3 )

system 2: Vo <V

( ‘;((f)) ) - ( EJfR )+e—k<t—t0> [Tz cos w(t — to) + Asinw(t — to)] ( IOVO__]_;/,I/@R )

where Iz is the identity matrix. It follows that, between two commutation
consecutive ramp intersection times, we know exactly the state variables of
the system. Essentially, they are a combination of exponential and sinusoidal
functions.

In each linear topology we can compute the equilibrium points and their
stability. The equilibrium point when u = 0 is Py := (0,0), and when u =1
Py := (Vip, Vin/R). It is easy to check that the equilibrium points are spiral
sinks with eigenvalues —k + iw. But we should not forget that the system
switches topologies depending on the switching condition

V(t) + ZI(t) = Viow

and thus, in the nonlinear switched system it can happen that none, one or
the two equilibrium points are active.

One of the equilibrium points is always at the origin, and the other
moves as parameter E is varied. The corresponding bifurcation diagrams
are plotted in Figs. 35-37. The line corresponding to the switching condition
is also plotted in the figures, and some representative orbits are also shown.
The fixed parameters are R = 22Q, C = 47uF, L = 0.02H, Vi, = 5V,
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Figure 35: E=7.9 V. The only attractor is a stable focus at (E, E/R).
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Figure 36: E=9.166 V. The stable limit cycle is coloured blue, while the un-
stable one is coloured red. The unstable limit cycle contains the stable focus
inside. They are close to the boundary equilibrium bifurcation, where the
unstable limit cycle dissapears and the unstable focus changes its stability
and remains in the switching manifold. The figure on the right is a zoom of
the figure on the left.

Z = —10 and F is varied between 7.9 and 9.5 as a bifurcation parameter to
obtain the different configurations.

For E=7.9, there exists only a stable focus at (E, E/R). For E=8.0012
a standard saddle-node bifurcation of cycles occurs, and a stable limit cycle
and an unstable limit cycle are created. The unstable limit cycle is inside the
stable one, and the stable focus is inside the unstable cycle, which delimits its
basin of attraction. As parameter E is continuously increased the amplitude
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Figure 37: E=9.167 V. The stable limit cycle is coloured blue, while the
unstable one (previously red) has dissapeared after the boundary equilibrium
bifurcation. The figure on the right is a zoom of the figure on the left.

of the unstable limit cycle gets smaller and smaller, and finally it disappears
in a nonsmooth transition, when the stable focus collides with the cycle at

. Wow
1+ Z/R

The stability of the focus changes and an unstable equilibrium point
remains on the switching manifold as Ej, is further increased.

3.1.6 Open Challenges and Problems

We have seen that equilibria in Filippov systems can undergo several non-
smooth transitions involving their sudden disappearance, persistence and,
in some cases, the generation of branches of limit cycles. Currently, we
can only characterise the simplest possible cases in general n-dimensional
systems, while only special (often non-generic) planar models are studied
in the literature. A pressing open problem is the study in a more general
framework of those transitions involving the occurrence (or disappearance)
of one or more families of limit cycles at a boundary equilibrium bifurcation.

Also, Filippov systems can also exhibit sets of equilibria (see [8]) that
can be attracting or repelling. Nonsmooth bifurcations of sets of equilibria,
which are bound to occur under parameter variations, have not been stud-
ied sofar in the literature. Thus, the study of such bifurcations remain an
important open challenge for further study.
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Figure 38: The four possible bifurcation scenarios involving collision of a
segment of the trajectory with the boundary of the sliding region 0%~

3.2 Sliding Bifurcations of Limit Cycles

Sliding bifurcations are defined here as interactions between limit cycles of
the system and the sliding region 3. According to the results presented
in [29, 47, 48], and in more detail in [33], we can identify four possible
cases of interactions between the system flow and the sliding section. These
can be generalised to the case of n-dimensional piecewise-smooth dynamical
systems of the form (66). A three-dimensional schematic representation is
given in Fig. 38, where we assume the phase space topology introduced in
Sec. 2.1 and depict only segments of trajectories (denoted in the figure by
’1’, 2" and ’3’) which interact with the sliding region. In order for a NST to
occur as a parameter is varied, we suppose that these depicted trajectories
represent parts of a limit cycle for three different parameter values.

Figure 38(a) depicts the scenario we term a crossing-sliding bifur-
cation. Here, under parameter variation, a part of the system trajectory
transversally crosses the boundary of the sliding strip at the bifurcation
point (trajectory labelled ’2’ in Fig. 38(a)). Further variations of the pa-
rameter cause the trajectory to enter the sliding region ¥, leading to the
onset of sliding motion. Note that the sliding trajectory then moves locally
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toward the boundary of 3. Since at the boundary F, = Fy or Fy (without
loss of generalty we henceforth assume Fy; = Fj there, i.e. we are on 82*)
the trajectory leaves the switching manifold tangentially.

In the case presented in Fig. 38(b), a section of trajectory lying in region
ST grazes the boundary of the sliding region from above. Again, this causes
the formation of a section of sliding motion which locally tends to leave 3.
We term this transition a grazing-sliding bifurcation. We note that this
transition is the natural generalisation of grazing bifurcations (see Sec. 2.2)
to dynamical systems with sliding.

A different bifurcation event, which we shall call a switching-sliding bi-
furcation, is depicted in Fig. 38(c). This scenario is similar to the crossing-
sliding bifurcation shown in Fig. 38(a). We see a section of the trajectory
transversally crossing the boundary of the sliding region. Now, though,
the trajectory stays locally within the sliding region instead of leaving the
switching manifold X.

The fourth and last case is the so-called adding-sliding bifurcation,
shown in Fig. 38(d). It differs from the scenarios presented above since
the segment of the trajectory which undergoes the bifurcation lies entirely
within the sliding region $. Thus, as parameters are varied, a sliding sec-
tion of the system trajectory tangentially (grazes) hits the boundary of the
sliding region. Further variation of the parameter causes the formation of
an additional segment of trajectory lying above the switching manifold, i.e.
in region ST.

3.2.1 Normal forms for sliding bifurcations

To capture the dynamics of sliding bifurcations one can obtain normal form
mappings using the concept of the zero-time discontinuity mapping (see
Sec. 2.2). Similarly, we will not give details of the construction of the dis-
continuity mappings but only present final results; a detailed derivation can
be found in [30]. It is assumed that we have uniform discontinuity (see ear-
lier Definition 2.1) across the switching manifold 3. Since X is a well-defined
surface, at the bifurcation point z* we have H(z*) = 0 and Hz(z*) # 0. The
additional condition

H,(Fy, — F1) >0, (81)

which we assume to hold across 3 ensures that the sliding region is simulta-
neously attracting from both regions S and S~. Under these assumptions
we shall introduce conditions which need to be satisfied at every sliding
bifurcation. These are presented in Tab. 2
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‘ Bifurcations ‘ Defining Conditions

crossing-sliding H,F, =0, (HyF1),F1 >0
grazing-sliding HyF, =0, (H,F1),F1 >0
switching-sliding H,F, =0, (HyF1),F1 <0

adding sliding | HoF = 0, (HoF)oF1 = 0, (HoF1)oF1)oFr < 0

Table 2: Analytical conditions determining a particular sliding bifurcation

scenario

Theorem 3.2 Given the above assumptions and that condition (81) holds,
then under the appropriate additional conditions summarised in Tab. 2, we

have the following zero-time discontinuity mappings
e crossing-sliding; given by

T if pgxr <0
x'_){x+v+0(:1:3) if puzx >0,

where pg denotes vector normal to the manifold defined
alent control p (see Eq. 65)

e grazing-sliding

if Hmin(.'lj) >0

X
v { T +u+ O(z3/?) if Hmin(z) <0,

e switching-sliding

s d if ppr <0
Tz +w+ O(z?) if pzx >0,

e adding-sliding

N z if Pmin >0
z + 2 4 O(x5/?) if Wmin <0,

where:
Hypin, = Hpx + O(-TQ)a Pmin = Pz T + 0(372),

1 (R0
2 (HyFy)((Hy Fy),F1)

Fda
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u= _HdeFd’ (88)
2 (HF))
-3 (Hde)Q((prl)xFl)Q
(HyFq)(FipFg — Fp ) — (Hy(FipFg — Fap F1)) Fgl,  (89)
9 (HyFr),x)?

7z =

2 (H Fo)*(Ho ), ), )
[(HmFd) (leFd - deFl) - (Hx(Fled - deFl)) Fd] ) (90)

where Fy = Fy — F}.

As shown on examples in Sec. 2.2.3 the appropriate composition of
the discontinuity mapping with some affine transformation gives rise to a
map which describes the behaviour of a limit cycle which undergoes a C-
bifurcation. We can state that generically, the type of discontinuity found
in the discontinuity map will be characterising the full Poincaré map. Thus,
the leading order term characterising a particular discontinuity map has
direct influence on the system dynamics following any sliding bifurcation
scenario.

Let us briefly discuss consequences following from the character of each
ZDM.

3.2.2 Dynamical consequences of the character of the ZDMs.
Discussion

The ZDM characterising crossing-sliding bifurcation scenario causes discon-
tinuity in the second-derivative terms (v = O(z?)). Thus, the Poincaré
mapping describing the bifurcating orbit will be continuous with continuous
first derivative, but there will be a second derivative discontinuity across
the boundary of the sliding region. The mapping will have co-rank 1 on the
sliding side of the discontinuity (note that sliding introduces loss of system
dimension by 1). The eigenvalues of the Jacobian matrix of the Poincaré
map describing the bifurcating cycle vary continuously across the disconti-
nuity. Thus, a hyperbolic cycle undergoing the crossing-sliding bifurcations
will preserve its stability properties and period. Moreover, non-standard
bifurcations can be expected in the case when the bifurcating cycle is non-
hyperbolic.

68



The second case of sliding bifurcations considered here is the grazing-
sliding scenario. The correction which needs to be made to account for the
sliding flow in this case influences terms at the linear order, u = O(z).
Thus, for such a mapping we can not conclude that the periodic orbit will
persist under parameter variations that wolude cause it to acquire a sliding
portion. If the orbit survives the bifurcations, we can expect a jump in
eigenvalues as the periodic orbit goes through a tangency with the boundary
of the sliding set. The presence of the higher order term in the ZDM (the
O(3/2)-term) will cause the eigenvalues to have a square root singularity
with respect to parameter variations as the border is approached from the
sliding side. The jump in eigenvalues is nicely illustrated by the fact that a
sliding periodic orbit must have at least one eigenvalue 0, whereas there is no
such restriction for an orbit which does not contain any sliding segments. It
is worth mentioning here that in the case of grazing bifurcations in systems
with degree of discontinuity one that do not slide, the normal form map
is characterised by a square-root singularity (see Sec. 2.2). Grazing in the
presence of sliding changes the nature of C-bifurcations giving rise to a
normal form that is piecewise linear to leading order.

To classify the possible bifurcation scenario we can use the classification
strategies for border-collision bifurcations in maps [2, 3, 24, 62, 63]. Note,
however that sliding motion introduces loss of the rank of the map on one
side of the discontinuity. Therefore, not all classification strategies devel-
oped for PWS maps can be applied to describe bifurcations in PWL maps
which are non-invertible in one of their region of definition. This point has
been further elucidated in [46] where a classification strategy for bifurca-
tions arising due to grazing-sliding in 3-dimensional Filippov type flows is
introduced.

The third case, namely switching-sliding leads to a normal form which
has continuous derivatives up to order 2 (w = O(z?)). Hence, as for crossing-
sliding, a hyperbolic trajectory will persist under parameter variation since
the mapping has continuous first parameter derivatives, but the second pa-
rameter derivative is discontinuous. Finally, we shall consider the ZDM for
the adding-sliding bifurcations. Since the first derivative is continuous, a hy-
perbolic orbit persists under parameter variations, but the first parameter
derivative of the eigenvalues has a jump over the boundary, and the second
parameter derivative approaches infinity on one side, due to the presence of
a 5/2 term in the higher order term of the Poincaré mapping.

Example 3.1 (Application to a simple dry-friction oscillator)

In what follows, we present an example of a dry friction oscillator model
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which serves as an illustration of how the ZDMs can be used to explain and
also predict a particular bifurcation scenario arising in Filippov systems.
More details can be found in [46].

Friction oscillators are of Filippov type when the friction characteristic
is modelled by some discontinuous function and gives rise to a system with
discontinuous right hand side [69, 68, 38]. A characteristic feature of the dy-
namics of friction systems is so-called stick-slip motion. As shown in [72] the
stick phase of an oscillatory motion corresponds to sliding . Therefore, differ-
ent transitions from slip motion to more complex stick-slip oscillations, often
present in friction oscillators, correspond to sliding bifurcations. Examina-
tion of slip to stick-slip transitions found in [69, 68, 39, 38] will reveal that
at least three of the four aforementioned cases of sliding bifurcations have
been observed there, namely crossing-sliding, switching-sliding and grazing-
sliding. In fact all the four sliding-bifurcations scenarios have been reported
to be have been exhibited in a simple model of friction oscillator (see [33]
for details).

Here we focus on a more intricate stick-slip transition which lead to the
sudden onset of chaotic stick-slip behaviour. Following [81], the dry friction
oscillator under investigation in dimensionless form can be expressed as

J+y=f(1—-19)+ Fcos(vt), (91)

where
f(1—9) = agsgn(l —9) — er (1 = §) + aa(1 — 9)° (92)

is a kinematic friction characteristic and 1 — g corresponds to the relative
velocity between the driving belt and moving block. In the case when y =1
the relative velocity is 0 and the kinematic friction is set valued i.e.: —ap <
f(1 —9) < ag. The coefficients of the kinematic friction characteristic are
positive constants, which in our example shall take the values

ay=a; =15, ay =045 while F =0.1

is the amplitude of forcing. As a bifurcation parameter, we take v, the
normalized angular velocity, and let T' = 27 /v represent the forcing period.
We focus, in particular, on the bifurcation scenario for v =~ 1.7078 that
gives rise to the sudden emergence of chaotic stick-slip motion. As shown in
Fig. 39(a), at the bifurcation point, a 4T-periodic orbit grazes the switching
manifold ¥ = {y = 1} at the boundary of the sliding region (denoted in
the figure by a short vertical line). The observed scenario corresponds to
a grazing-sliding bifurcation, as the bifurcating orbit grazes from below the
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Figure 39: (a) Orbit of (91) of period 4T (87 /v) undergoing grazing-sliding
bifurcation for v = 1.7077997. (b) Enlargement of the region where grazing-
sliding occurs; the dash-dotted segment correspond to the periodic orbit for
v = 1.7082 that clearly does not reach the switching manifold.

boundary of the region where stick motion can take place. This can be more
clearly seen in Fig. 39(Db).

To study the dynamics ensuing due to this bifurcation we can proceed
similarly as in Sec. 2.2 for grazing bifurcations. That is, we need to obtain
a global Poincaré mapping which describes the behaviour of the bifurcating
cycle. Such a mapping is obtained by a composition of the ZDM for the
grazing-sliding bifurcation with an affine transformation such as (93) which
captures the dynamics of the non-sliding hyperbolic cycle. Here we have a
forced dynamical system with the bifurcating orbit being of period 47T, i.e.
four times the period of the external forcing term, the natural Poincaré map
is a 4T'-stroboscopic mapping, say Py, which we assume to be affine and
well represented by its linear terms i.e.

Pyr:xpyy = Az, + By = ( i a1z ) Ty + ( b ) v, (93)
a1 a2 bo

where z,, is the two-dimensional state vector, in our case corresponding to
position and velocity of the dry-friction oscillator, obtained by sampling the
system states at time instants that are multiples of 47". Note that we assume
the map to be affine and sufficiently smooth away from the bifurcation point,
i.e. when the orbit does not contain any segments of sliding (stick) motion.
Smoothness is lost under parameter variation as the orbit grazes and then
enters the sliding region.

To capture the influence of the grazing-sliding event we then need to
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compose (93) with the normal-form map for grazing-sliding given by (83)
with correction term (88). Thus, the final map obtained from a composition
of (93) with the ZDM takes the form:

a1 a b .
1 12>$n + Ly if Top < 0,

a a b
Tni1 = a21 022 b2 (94)
1 T + Ly if Top > 0.
a9l O b2

A detailed derivation leading to the mapping (94) was presented in [31]. Fol-
lowing [31] we introduce numerical values of the matrix coefficients: a;; =
—1.85, alp = 4.396, ag1 — —1.14, aoo = 2.704, b1 = 4.498 and bg = —1.755.
Bifurcations that can be observed in (94) under the variation of the bi-
furcation parameter v correspond to bifurcations in the friction oscillator.
Note, that map (94) is non-invertible in one of its regions of definition.
Non-invertibility can be heuristically understood form the fact that sliding
motion introduces loss of a system dimension by 1 which appears in the map
as a loss of rank. Under appropriate coordinate transformation (94) can be
written as:

0 1 1
! Ty, + po it x1, <0,
T1 0 0
Tnt1l = (95)
1 +( b if 21, >0
T v if z .
0 0 n b2 1n

where 1, 71, 79 are the determinant and traces of the matrices on either side
of the discontinuity. The map (95) is a canonical normal form for grazing-
sliding bifurcations in 3-dimensional Filippov type flows. Here we have that
71 = 0.854, 61 = 0.009 and 79 = —1.85 which according to the criterion
developed in [46] implies sudden onset of chaos under variation of p. The
bifurcation diagram computed from numerical integration of the system is
depicted in Fig. 40(a). Note that the chaos is robust in the sense introduced
in [5], that is it has no enbedded periodic windows. A part of the chaotic
trajectory born in the bifurcation is shown in Fig. 40(Db).

4 Impacting Systems

Example 4.1 (A motivating example, a driven linear impact oscillator)
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Figure 40: Bifurcation diagram obtained from the numerical integration of
the system under consideration (a) and a chaotic trajectory in the neigh-

bourhood of the switching manifold.

Suppose a 1 one-degree-of-freedom linear, damped, harmonically driven os-
cillator is constrained to displacements to the right of its equilibrium po-
sition. When the oscillator reaches the constraint with non-zero velocity,
a rebound will take place, where we assume the outgoing velocity to be

proportional to the incoming velocity.
The non-impact dynamics can be written
§ + 0¢ + wiq = cos(t),
where ¢ > 0 and the impact law

+

" =-rg-

at ¢ = 0. Using instead the state variables

rr = q,
T2 = q'a
r3 = tmod 2T,

the impact system can be more abstractly described by

Z2
i=F(z)= | —0z9 — wiz1 + cos(z3) |,
1
when H(z) =21 >0
Ty
zt =Rz )= |-rz,
T3

This last equation (97) can also be written

T =27 + Gz )H,F(z ) =2+ | —(r+7) | z;.
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We will in the next section study impact systems described by the three
functions F, G, and H. The chosen form of the impact law covers systems
with multiple impacting rigid bodies, when no friction is assumed in the
impact. When friction is present, the assumption of low incoming velocity
H,F leading to a small change of state in (98) does not necessarily hold (see
for example the Painlevé paradox studied in [55]).

Apart from motion with H > 0 interrupted by isolated impacts, there
are some special types of motion in these systems. In the linear oscillator,

if we start at
0

T = 0
3m/2
which is at the boundary with zero velocity, we find that we cannot leave the
boundary through the vector field, as the acceleration (H;F), F = cos(37/2)
is negative. The impact law will just return us to the same state, so we have
to assume that sticking motion takes place along the boundary until the ac-
celeration becomes positive again at z3 = 0 mod 27, which can be thought
of as higher order sliding, i.e. motion along a codimension-two surface. Fur-
ther, if the coefficient of restitution satisfies 0 < r < 1, then starting at

0
z = | small
3n/2

will lead to a rapid series of impacts accumulating in finite time (like a
ping-pong ball coming to rest) which we call chattering, see [10]. After the
chattering has completed, sliding motion will follow until the acceleration
becomes positive again.

4.1 Nonsmooth transitions of Boundary Equilibria

In structural mechanical systems with friction, the question of the existence
and uniqueness of equlibrium points has been investigated recently, for ex-
ample in [45]. Here we will present results in a more abstract and general
setting, albeit one that precludes impact with friction.

As stated above, we will consider system of the form

i=F(z) if Hz) >0 (99)

with impact at the surface ¥ defined by H(z) = 0, and where the impact
law takes the form

st =R(z7) =2 + Gz )H.F(z"). (100)
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For convenience, we will also define the velocity v(z) and acceleration a(z)
(of the vector field F relative to H) as

v(z) = HyF(z), (101)
aw) = (HF),F() (102)

These systems also have the possibility of sliding motion, through points
satisfying

H(z) = 0, (103)
v(z) = 0, (104)

where the impact mapping is the identify. The mechanism for maintaining
sliding motion is the same as for low velocity impacts, so the sliding vector
field should be

z = Fs(x) = F(z) — Mz)G(z), (105)

where A > 0 is chosen to keep H = 0, v = 0. This is possible for the typical
mechanical impacting system since, at these points, we must have H,G = 0
as the impact mapping should map points in the impact surface back to the
impact surface, and thus G must be parallel to the impact surface for small
impact velocities. Further, defining

b(z) = (HzF),G(x),

we have for the typical system that b < —1 at these points, since a negative
incoming velocity should produce a positive outgoing velocity. The require-
ment that the acceleration also vanishes for the sliding flow, i.e. that a(z)
defined by (102) with F' replaced by Fj is zero for the sliding flow (105)
leads to the condition that

AMz) = a(z)/b(x).

Now since A(z) > 0 we find this equivalent to a(z) < 0 that the acceleration
is directed towards the boundary. We can interpret A physically as the
contact force provided by the boundary. Thus the sliding set ¥ is determined
by



4.1.1 Existence of equilibrium points

In addition to regular equilibrium points z*, with F = 0, H > 0, there is a
possibility of having pseudo-equilibrium points z* with Fy; = 0, H = 0. The
equations to solve are

and

AY >0,

respectively. In the later case, A* is most conveniently regarded as an inde-
pendent variable.

Now assume that the system depends on a single parameter u, and that
T =, p = i satisfies

F(z,p) = 0,
H(z,p) = 0.
This point may be called a boundary equilibrium point. If the parameter
p is changed, regular and/or pseudo-equilibrium points may branch off the
boundary equilibrium. Assuming for simplicity Z = i = 0 and linearizing,
we find
Az* + Mp* = 0,
Cz*+ Nuy* > 0,

for a regular equilibrium, and

Az* + My* + BX* = 0,
Cz*+ Nuy* = 0,
A >0,

76



for a boundary equilibrium, where

A = Fw(ia/j’)a

M = Fu(z,p),

C = Hzc(ja/j)a

N Hu(f,/_ﬁ),

B _G(j’/_‘)a
CB = 0.

If the linear systems are not degenerate, they will be representative for what
happens locally in the full system. We find

Theorem 4.1 (Equilibrium points branching from a boundary equilibrium)
For systems in this class, and assuming

det(A) # 0
e=N—-CA'M # 0
s=CA'B # 0,

there exists a unique regular equilibrium point branching off from T when
e(u*—p) is small and positive, and a unique pseudo-equilibrium point branch-
ing off from T when (e/s)(u* — ) is small and positive. The derivative of
the points with respect to the parameter exists and has a limit as p* — [
from the side where the point exists.

Note the similarity of this result to Theorem 3.1; the proof follows along
similar lines. We note that if s > 0, the regular and pseudo points are
both present for one sign of y4* — i and none are present for the other sign.
Thus one can say that the points annihilate each other as p* changes, in a
saddle-node like bifurcation. If s < 0, one equilibrium point is present for
any small value of y4* — 1, and the regular equilibrium persists into a pseudo
point as p* changes.

Stability The stability of a regular equilibrium point is determined by
the eigenvalues of the matrix A. The question of stability of a pseudo-
equilibrium point can be split into stability of the sliding set, and stability
of the sliding vector field when restricted to the sliding set, respectively.
A simple calculation shows that stability of the sliding set is guaranteed
if
—2 < b(z) < -1,
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atleast in the case when G is linear (essentially because expression —(1 + b)
acts like a “coefficient of restitution”). If this is fulfilled a small disturbance
in initial condition will decay towards the sliding set through an infinite
number of impacts in finite time (“chattering”).

The linearization of the sliding vector can be attained by linearising with
z replacing * and £ on the right hand side of the first equation about x = Z,
A = X at fixed . The result is

and we see that there is a 2x2 Jordan block corresponding to eigenvalue 0
with left eigenvector C A and left generalized eigenvector C. This of course
corresponds to the invariance of the codimension two sliding set. The rest
of the eigenvalues of A correspond to dynamics within the sliding set, and
if all have negative real part, the pseudo-equilibrium is stable within the
sliding set.

Example 4.2 (A simple 2D system)
Consider the system

_ T2
Few = (,_ )

H(zx) = z (106)
G = —(1+7) (‘1))

describing a 1DOF mechanical system with position z1, velocity zo, a spring
force with spring constant k, damping coefficient —1, and an impact coeffi-
cient of restitution r. Note this is like an unforced, but negatively damped
(energy inputting) version of Example 4.1. At £ = 0, &z = 0 we have a
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boundary equilibrium. We find

= .'1;'2’

= p—kzy + 9,

- ().

c = (10,

N = 0

B — (1+7«)((1)>,
e = 1/k,

s = —(L+71)/k,

01
w0

This is consistent with the explicit solution for the regular equilibrium

& = (u*o/ k) ,

pr/k > 0,

c o (0)

A= _H*/(l"i_'r)a
1 +r) < 0.

and the pseudo-equilibrium

If £ = 1 the regular equilibrium exists for 4 > 0 and the pseudo one for
p < 0. If £k = —1 none exist for g > 0 and both exist for 4 < 0. The
regular equilibrium point is unstable (a saddle point if £ < 0). The pseudo-
equilibrium point is stable if 0 < r < 1 (owing to stability of the sliding set;
A has no non-trivial eigenvalues).
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4.1.2 Existence of other invariant sets

Little is known about the existence of invariant sets besides equilibrium
points when perturbing a boundary equilibrium. The type of analysis re-
quired clearly has a strong resemblance to the what would be needed in
the corresponding cases for Filippov and nonsmooth continuous systems in
Sections 2.1 and 3.1, where planar systems are fully understood, but only
relatively weak results apply in three and higher dimensions. We will here
merely give some examples where a single-impact limit cycles exist for the
Example 4.1, equation (106). In each case, the limit cycle will branch off
the boundary equilibrium as g passes through 0. In particular we can show
after some calculations that

e Ifk=1,0<r < exp(—7/v3), and u > 0, a stable impacting limit
cycle surrounds the regular unstable focus equilibrium point.

e If k =1, exp(—7/v3) < r < 1, and g < 0, an unstable impacting
limit cycle surrounds the stable pseudo-equilibrium point.

e Ifk=—-1,(3-+5)/2 <r < 1,and g < 0, an unstable impacting
limit cycle surrounds the stable pseudo-equilibrium point, but not the
regular saddle point.

Figure 41 shows one example of each these situations.

4.2 Nonsmooth transitions of Limit Cycles 1; Grazing

We will again consider systems that (at least locally) take the form, given
at the beginning of this section,

i=F(z) if H(z) >0

with impact at the surface defined by H(z) = 0, and where the impact law
takes the form

" =R(z7) =2~ + Gz )H,F(z).

In such a system, there is the possibility of having a periodic orbit that
contains an isolated point of zero impact velocity H,F. This is called a
grazing impact. Due to the assumed form of the impact law R, it will have
no effect on the orbit, so we may or may not regard this as an impact.
Nearby trajectories may have a low velocity impact close to the grazing
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Figure 41: Limit cycles in boundary equilibrium bifurcations. Top left:
k=1, r = 0.03, p = 1. Impacting stable limit cycle (dashed) together with
orbit (solid) starting near unstable focus (circle). Top right: k=1, r = 0.5,
p = —1. Impacting unstable limit cycle (dashed) together with chattering
orbit (solid) converging to the stable pseudo-equilibrium (circle). Bottom:
k=-1, r = 0.5, p = —1. Impacting unstable limit cycle (dashed) together
with stable pseudo-equilibrium (circle), saddle point (star), and the non-
impacting parts of its stable and unstable manifolds.
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Figure 42: A grazing trajectory (solid), an impacting trajectory (dot-
dashed), and a missing trajectory (dashed), all simulated for the same
amount of time. Note the large shift in endpoint for the trajectory with
a low velocity impact.

impact point, or they may miss the impact surface, see Figure 42. Since
nearby trajectories can undergo different events, it is suitable to encapsulate
this into a discontinuity mapping acting on a neighborhood of the grazing
point.

4.2.1 Discontinuity mappings for grazing impact

The derivation and form of the discontinuity mapping for grazing impact

has been presented for one degree driven impact oscillators in [58], and for

more general systems in [36]. The results presented here have been adapted

to the more general form of system specified by arbitary F', G, and H.
Consider the grazing set Xy C X where the

H(z) = 0,
H,F(z) = 0,
(HyF) F(z) > ag>0.

We assume all functions to be as smooth as necessary in a neighborhood of
¥9. Through each point of ¥y passes a grazing trajectory of the system that
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has a quadratic tangency to the impact surface. The form of the impact law
ensures that grazing trajectories are well defined whether they are considered
as impacting or not, and that incoming trajectories that are close stay close
after passing trough a neighborhood of ¥y. In a neighborhood of ¥y we
define a ZDM as the identity if the trajectory does not impact, and as the
result of going through an impact and returning to time zero along the flow,
if the trajectory impacts. See Figure 43. We find

0.17 Zo ]
Te
H
T4
*o Is
o R s 1
.172\\\\ X3
\\AO"L'l
-0. :
—6.6 0 0.4
H.F

Figure 43: Discontinuity mappings for grazing impact. A trajectory starts
at xg, impacts at zo, is mapped to z3 by the impact law, and continues to
Tg. The ZDM maps zg to 4. The PDM maps 1 to z5.

Theorem 4.2 (The ZDM for grazing impact) For systems in this class,
there is a neighborhood of ¥y where the ZDM can be written

0 if Hyin(z,v) >0

B(z,y,v)y if Huin(z,v) <0’ (107)

ZDM(z) = z + {
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where

= —G(.’II)\/% + 7'2(37a Y, 'U)’

B(z,y,v)
7"2(%%’”) - 0 /Lf Y, 0 — 0,
y(.T,’l)) = _Hmin(x,lu),
Huin(a0) = H(0) =0 (50 +n@n). (108)
ri(z,v) — 0 ifv—0,
v(z) = HF(z),
a(z) = v.F(x),

and B and Hpin are smooth in their arguments.

Note that the set ¥y is determined by H and H,F being zero and that
the auxiliary variables v and y are independent variables measuring the
closeness of x to ¥y. Note also that y is not smooth when Hp;, = 0. Thus
the full ZDM is not smooth at points where Hp,;, = 0. The lowest order
approximation is

ﬂ(w,y,v) ~ —G(LE)\/%,
Hpin(z,v) =~ H(z).

By choosing an incoming and a (possibly different) outgoing surface that
are both transversal to the flow and that both contain 3, we can derive
PDMs for grazing impact. A convenient surface to use is HyF' = 0, which

satisfies all requirements. For this choice, also illustrated in Figure 43, we
find

Theorem 4.3 (A PDM for grazing impact) For systems in this class,
there is a meighborhood of X9 where the PDM from an incoming to an out-
going H, F' = 0 surface can be written

0 ifH(z)>0

PDM(x):x—l_{ﬁ(a:,y)y if Hz) <0’ (109)
where
Bloy) = Vi (G) - LFW@) +rao)
ro(z,y) — 0 if y—0,
y(z) = V-H(z), (110)
a(z) = (H,F),F(z),
bz) = (HF),G(z),
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and B is smooth in its arguments.

Note that H attains its minimum in the Poincaré surface, so no calculation
of the minimum value is needed. Note also that if F' and G are parallel, the
lowest order term of 8 drops out.

Example 4.3 (An explicitly calculable model)

Consider an undamped, undriven single-degree-of-freedom linear impact os-
cillator model with angular frequency 1, where z; is displacement and z is
velocity, the equilibrium position is at 1 = 1, and there is impact at z; = 0.
We write the state variables collectively as

o= (z;) .
= (12)

when 1 > 0. At z; = 0 an impact with coefficient of restitution r takes

The ODE system is

place: 3 = —rv, . In the notation of the general theory, we have
_ T2
re) = (7)),
H(z) = =z,

Glz) = —(1+7) (2) .
At x1 = 0 there is a grazing impact with acceleration
a(z) = (HyF),F=1—121>0.
For this system the ZDM can be explicitly computed and we find
Hpin(z,v) = 1—+/(1—2)2 402, (111)
[VaT=x0) =42 + xou/(1 — x1)]

(1 —x1)4/(1 —z1)2 + v2

y(1—21)v/2(1 — x1) — 2 +v(1 — x1 — ¥°)
(<1 )1 - x1—9?) — o2 ) y2) - (112)

ﬂ(wayav) = (1 + ’I‘)

bl
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where

Yy = — Hmin(7),
o= 1- (1 —z1)? + z9v
(1—21)2+ 02
Yo — (zo —v)(1 —xl)’
(1—2)? + 02
v = I9.

The result is seen to be in agreement with equations (107)—(108). Using the
relations between y, v and z, we can simplify (111)—(112) into

Hmin(x) = 1- (1 — .’1,‘1)2 + .’L‘%,

/8('7"7'!/) = (1+r)@ <$2+(1—$1)y 2+y2)

14922 \ (1 —z1) — 22y\/2 + 92

The PDM can also be explicitly computed and we find

—1z1)(o = 21 —y1?

- VItyo(vT+yo+1+y7) \0
where
Yy = Vv~
L+ 2 2
o = —ym{@(l —z1) —y ) (L —=21)°(1 —7),
—zoy[zay(l +7) +2v/2(1 — z1) — y*(1 — z1)r]},
T o= —(11_%1)4{@;(2(1 —z1) — ) (L —@)’(L 1),

—zofzoy(l —x1 + TIUQ)a
201 —z1) — 2(1 — 21 — ¥ 4 202(1 — z))r + 2192)]}-

This lengthy expression is seen to be in agreement with equations (109)-
(110). Setting r1 = —y? and z2 = 0 simplifies (113) into

y(1-r3)v2+¢? (1) _

Blz,y) =
(=) 1+y2+/1+7r2y2(2+y2) \U
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4.2.2 Poincaré mappings for the full system

The PDM . H( )
_ 0 1 z) >0
Dlz) =2+ {B(w,y)y if H(z) <0’

where
y() = v—H(@)

can now be composed with a mapping P(z) from the outgoing surface to
the incoming, where any low velocity impacts in the beginning or towards
the end is disregarded, and it is assumed that no low velocity impacts are
taking place elsewhere. In that case, the mapping P is smooth, and the full
mapping from the outgoing surface back to itself is D o P and contains all
dynamics.

Note again that this mapping is not the usual Poincaré mapping derived
from the same section, as the low velocity impact is always taken into ac-
count at the end of the mapping, whereas in the usual Poincaré mapping,
low velocity impacts could come either in the beginning or at the end. Usual
Poincaré mappings are best taken at a section away from 3y. On the other
hand, the mapping D o P is topologically equivalent to any Poincaré map-
ping using a section away from 3, and so it can be used to analyze the
dynamics. These observations echo those made for Example 2.3 earlier for
non-impacting systems.

Example 4.4 (Another explicitly calculable model)

We now consider a somewhat artificial example where we can compute all
mappings explicitly. Let z; and x9 be position and velocity, and the x3 be
a variable defined modulo 4 that keeps track of the driving phase. We write
the state variables collectively as

I
r = Z9
3

The three-dimensional ODE system for 21 > 0 will be taken to have different
forms depending on the values of z3. For 21 > 0, 0 < 3 < 2 (region S1) we

use
Z2

i = | dop — (2d/w) (2 — w2p) — (1/w?) (w1 — 21p) |
1
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where the particular solution z; is

<a:1p> (23) = (1/2 +p+x3 — x§/2> _

Zop 1—ua3
For z1 > 0, 2 < 23 < 4 (region S3) we use

T2
=11
1

As 3 = 1 there is no possibility of sliding of the boundary between regions
S1 and Sy. At 27 = 0 an impact with coefficient of restitution r takes place:
x;' = —TZy.

In S; the system is controlled towards the particular solution z, using
the positive control parameters d and w, and the position of the particular
solution is determined by the parameter y. In this region, the particular
solution represents those initial conditions that lead to constant negative
acceleration equal to —1. In region Ss, the acceleration is constant and
equal to 1.

When g > 0, the system admits a non-impacting periodic solution
<x1> (1/2 +p+ x5 — x§/2>
= :L'p =
I 1-— I3

(ac) _ (1/2 +u— (23 —2) + (z3 — 2)2/2)

v -1+ (.’L‘3 — 2)
in S3. The minimal z1 value of this orbit is ;4 at z3 = 3. When y = 0 we
have a periodic orbit with a grazing impact at

in 51, and

0

The grazing orbit is shown in Figure 44.
For this system we can explicitly write down mappings for trajectories
close to the grazing one. The flow mapping for region S; is, assuming no

impacts and 0 < z3,z3 +t < 2,
+ (“) (z3 +1)
Z9 P

() - () e

T3 +1

Ax(t)

@1(3), t) =
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Figure 44: Grazing periodic orbit of Example 4.4.

where

Al(t) = eBlt

?

B - 0 1
P\ -@d/w) —(1fw?))
In region So, there is at most one impact. Assuming no impacts and 2 <
z3,23 + t < 4 the flow mapping is

T1 + mot +12/2
q)g(.’E,t) = ) +1
Ty +1

For initial conditions with 3 < 3 near the grazing periodic orbit, there is a
low velocity impact near 3 = 3 precisely if

Hypin(z) = z1 — 23/2

is negative. If we take an impact into account whenever Hpin(z) < 0 (re-
gardless of whether the impact takes place inside or outside of the time
interval studied), we arrive at the mapping

0 if Hmin(z) > 0,
/ B V2y +xa+t
@y (xz,t) = Oo(x,t) + V2(1+7) 1 y if Hyin(z) <0,
0
(114)

where y = \/—Hpin(z). Setting ¢ = 0 in (114) gives us the ZDM

0 if Hyin(z) >0

D(z) =z + {,B(m,y)y if Hyin () < 0
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where
V2y + o
Blz,y) = V2(1+71) 1
0

These results for Hp,i, and 8 are in agreement with the equations (107)-
(108) of the grazing ZDM for a system with impact, if the expression for
v = x9 is introduced.

Knowing these mappings we can easily build other mappings. For ex-
ample, a Poincaré mapping from the surface z3 = 0 back to itself, is
Dy(-,1)oDoPy(-,1) 0P (-, 2) near the grazing periodic orbit. An equivalent
mapping is D o ®y(-,1) o &4(+,2) o Po(+, 1), which is essentially the Poincaré
mapping at z3 = 3, except the impact is always taken into account last.

Using only
(ml)
z =
ZI9

as the variables, the mapping can be written D o P, where

P(z) = Az+ My,

and

4= o Do ),

= (-G Dae()
and i

D(z) ==z + {b(z?y)y ii Zgz; i 8 ’
where

bzy) = V2(1+r) (*/ile”x?),
H(z) = z1—x2/2.

4.2.3 TUnfolding a grazing periodic orbit

The dynamical behaviour nearby (in state and parameter space) to a grazing
orbit can be quite rich, with the grazing orbit being at the limit point of an
infinite series of other smooth and non-smooth transitions. Various aspects
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of it have been studied in [58, 12, 11, 59, 36, 60]. It has been shown that up
to an infinite number of different periodic orbits can branch off the grazing
orbit as a parameter is varied, and also that a chaotic attractor may exist.
Here we will present some results that are valid in any finite number of space
dimensions.

4.2.4 Existence of low period periodic orbits

Assume that the system depends on single parameter p, and that z = Z,
u = i satisfies

P(‘(ivﬂ) = z,
H(z,jh) = 0.

This means that % lies on a grazing periodic orbit. If the parameter u is
changed, non-impacting and/or impacting periodic orbits (fixed or periodic
point for the mapping) may branch off the grazing orbit. Finding all of these
is a difficult task, given that the Poincaré mapping has different expressions
depending on the sign of H at each iterate, but if one decides to look for
a specific period and a specific pattern of signs of H for each iterate, one
can formulate a smooth system of equations to solve, whose solutions are
subject to the condition that they must agree with the assumed pattern. In
the following, when an iterate is referred to as being “impacting” or not, we
mean the presence or not of a low velocity impact near the grazing point.
There may well be other impacts along the trajectory.
Thus, the conditions for a non-impacting period-one point are

P(x*au*) = IE*,
H(w*alu*) > 07

and the conditions for a single-impact period-one point are

P i)+ B 1) W =
H(P(z*,u"),n*) +y* = 0,
Yy >
Assuming for simplicity Z = i = 0 and linearizing, we find

Az*+ My* = z*
Cz*+ Nuy* > 0
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for the non-impacting period-one point

Az* + My* + By* = z7,
CAz*+ (CM + N)u* = 0,

for the single-impact period-one point, where

N =Z2Q»
ol
5 <0
\_i*?l

KRS

CB = 0.

If the linear systems are not degenerate, they will be representative of what
happens locally in the full system. Introducing the notation

s(\,n) = CA"(\ — A")"'B
we find

Theorem 4.4 (Period 1 orbits branching from a grazing orbit) For
systems in this class, and assuming

det(I—A) # 0
e=N+CI-A)"'M # 0
s(1,1) =CA(I - A)™'B # 0,

there exists a unique non-impacting period-one point branching off from x
when e(u* — i) is small and positive, and a unique single-impact period-one
point branching off from x when (e/s(1,1))(p* — i) is small and negative.
The derivative of the points with respect to the parameter exist and has a
limit as p* — p from the side where the point exists.

We note that if s(1,1) < 0, the non-impact and single-impact points are
both present for one sign of y* — i and none are present for the other sign.
Thus one can say that the points annihilate each other as p* changes, much
like in a saddle-node bifurcation for smooth systems. If s(1,1) > 0, one
equilibrium point is present for any small value of y* — i, and the non-
impact is transformed into a single-impact point as p* changes. Note the
similarity of this result to Theorem 4.1 for equilibria.
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Concerning orbits of period-two, a non-impacting orbit branching off the
grazing orbit will in general (if A does not have an eigenvalue —1) just be
the the non-impacting period-one orbit traversed twice, and likewise for a
double-impact orbit, so the interesting case is when a period-two point has
a single impact. Then we find the equations

P(z3,p") 5

P(z3, p*) + B(P(z3, u*),y", u")y* = =7
H(P(z3,p*), ") +y° = 0

H(z3,p*) > 0

*

y > 0

(note that suffixes means iterate numbers here, not component numbers).
Linearizing as before, we find

Theorem 4.5 (Period 2 orbits branching from a grazing orbit) For
systems in this class, and assuming

det(I — A)

det(I + A)

e=N+C(I—-A"'M

s(—1,1) = ~CA(I+ A)'B

5(1,2) = CAX(I — AY)™IB = (s(1,1) +s(—1,1))/2 #

VAR NI NI 'N
o o o o o

bl

there exists a unique single-impact period-two point branching off from z
when (e/s(1,2))(u* — i) is small and negative. The derivative of the points
with respect to the parameter exist and has a limit as u* — [ from the side
where the point exists.

Note that s(—1,1) determines if the orbit is possible, and s(1,2) on which
side of the transition the orbit exists. Note also that the relation be-
tween s(1,1), s(—1,1) and s(1,2) shows the impossibility of having a non-
impacting and a single-impact period-one orbit on one side of the transition,
and a single-impact period-two orbit on the other side.

One can note that these results have a strong resemblance to the results
for existence in continuous piecewise smooth mappings [24]. This is a strong
hint that there are underlying topological properties that may be used to
shed light on these results.

For higher periods the analytical solution of the linearized equation and
conditions becomes more complicated, but there is of course no problem with
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solving the linearized equations numerically for a given system, and then
checking the linearized inequalities. In this way the existence of periodic
orbit up to say period-ten can be quickly established for a given grazing
bifurcation.

For two-dimensional mappings, the situation is known more completely,

see [60].

Stability The stability of the non-impacting orbit is determined by the
eigenvalues of A. If all eigenvalues are within the unit circle, the orbit is
stable. For the single-impact period-one orbit, if CAB # 0 the orbit must be
unstable with an eigenvalue approaching —C AB/(2y) as the transition point
is approached. For the single-impact period-two orbit, if CA%2B # 0 the or-
bit must likewise be unstable with an eigenvalue approaching —C A2B/(2y).
In general, all impacting orbits that branch off the grazing orbit are vio-
lently unstable close to the transition point unless there is some additional
degeneracy. Away from the transition point, the branches may well turn
stable, of course (see e.g. [60] for an example where this happens).

4.2.5 Attractors

Although all impacting periodic orbits are in general found to be unstable
close to the transition point, there is nonetheless a possibility of finding an
attractor branching off the grazing orbit. An attractor is guaranteed, if we
can show that the grazing orbit is asymptotically stable. The stability of
the grazing orbit, depends on whether repeated low velocity impacts can
be avoided, as each such impact, through the square root terms, tend to
shift motion away from the grazing orbit by a (relatively) large amount.
Repeated impacts are avoided if CA™B > 0 for all n > 0, Thus we have

Theorem 4.6 (Stability of a grazing orbit) For systems in this class,
a grazing orbit is stable if A is stable (all eigenvalues within the unit circle)
and CA"B > 0 for allm > 0. If CA™ B < 0 for some ny > 0, the grazing
orbit is unstable.

For a 2D mapping, the conditions for stability (and the existence of an
attractor) are fulfilled if the eigenvalues of A satisfy 0 < A2 < A\; < 1 and
CAB > 0. For N-dimensional mappings, if A has a single positive stable
eigenvalue \; of largest modulus with right eigenvector ¢ and left eigenvector
¢*, and (C¢)(¢*B)/(¢*¢) > 0, then CA™B > 0 for large enough n, so only
a finite number of C'A™B need be checked.
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Assuming we have this situation of a single positive stable eigenvalue A;
of largest modulus, and a non-zero value of e, we will have 1 stable non-
impacting period 1 orbit when e(y — ) > 0. When e(p — 1) < 0 there
is an attractor of size proportional to y/—e(u — ). The dynamics of this
attractor depends mainly on the value of A;, see [59].

e If 2/3 < A1 < 1 there will be a chaotic attractor for all small negative
e(p — ).

e If 1/4 < Ay < 2/3 there will be an alternating sequence of chaotic and
stable periodic motion for small negative e(u — i). Each chaotic or
periodic band is mapped to the next if y — iz is multiplied by a factor
that has the asymptotic value A\? as g — i — 0. The period of the
periodic motion is increased by 1 from one band to the next (“period-
adding”). For A; close to 2/3 the periodic bands will be narrow, and
for A1 close to 1/4 the chaotic bands will be narrow.

e If 0 < A\ < 1/4 the periodic bands start to overlap and there is
no attracting chaotic motion for small negative e(u — ). The same
parameter scaling as before applies. For each parameter value, there
is either a unique stable periodic orbit, or two different stable orbits
with periods differing by 1.

The chaotic attractor, when it exists, has a general structure consisting of
segments in the positive A" B directions for 0 < n < N. The segments gets
thinner and their number increases as y — j.

Let us end this discussion on grazing in impacting systems with two
examples that illustrate this period-adding and chaos.

Return to Example 4.4
In the example system, set d = 0.7, w = 2, and r = 0.8. This gives

A = 0.4663  1.4337 )

0.2277 —0.1713

(!
)
(

B_25456>
c = (1 0),
N = 0.
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Checking orbits up to period-three, we find for small positive y there is a
non-impacting period-one orbit and single impact period-three orbit, and for
small negative y there are single-impact unstable orbits of periods one and
two, as well as a double impact orbit of period three. Since CA3B < 0, there
is no continuous transition from the non-impacting orbits into an attractor
as p decreases through 0. All impacting orbits are highly unstable close to
the transition point. In the left panel of Figure 45 we can see how the stable
non-impacting period-one orbit existing when y = 0.4 vanishes at y = 0.
The single impact orbit of period three becomes stable in a saddle-node
bifurcation near g = 0.1, but vanishes in another grazing transition just
below 4 = 0. The single impact orbit of period-two becomes stable in a
period-doubling bifurcation near 4 = —0.3, and is still stable at u = —0.6.
There are several other bifurcations/transitions in this plot.

5 T 3

T

Figure 45: Grazing transitions in the example system. Left: d = 0.7, w =
2, r = 0.8. Discontinuous transition. Right: d = 1.5, w = 5, » = 0.8.
Continuous transition.

Now change the parameters to d = 1.5, w = 5, and r = 0.8. This gives

A < 0.7883  1.6660 ) ’

—0.0895 —-0.0175
0.2117
M= <0.0895) )
The eigenvalues of A are 0.50 and 0.27 and thus we should have a continuous
transition from a non-impacting periodic orbit to an attractor. Since the
largest eigenvalue is between 1/4 and 2/3, we expect periodic windows with

increasing periods, with the size of the windows scaling by 0.50? near the
transition point. This is shown in the right panel of Figure 45. Periodic
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windows of periods 5, 6, and 7 can be distinguished, with the higher periodic
windows being too narrow to be seen. When there is a chaotic attractor, it
has a charatcteristic fingered structure, as shown in Figure 46.

)
0.5r / 1

o+
—_
N

Figure 46: Star-shaped chaotic attractor when d = 1.5, w = 5, r = 0.8,
p=—0.3.

Example 4.5 (Application to an impacting pendulum)

In [67] a simple rigid-arm pendulum that strikes an impact surface is con-
sidered experimentally (see right panel of Fig. 1). By horizontally shaking
the supporting pivot of the pendulum a variety of dynamic behavior can be
observed including chaos. However, with the impact barrier located at static
equilibrium the velocity of impact tends to be relatively high and thus graz-
ing bifurcations of the fundamental period-one orbit do not typically occur.
But, by inclining the angle 6 at which the pendulum mass strikes the bar-
rier (see left panel of Fig. 1), it is possible to observe a transition between
non-impacting and impacting dynamic behavior.Due to speed limitations
of the forcing mechanism the assembly isinclined at an angle of © (out of
plane, see middle panel of Fig. 1) in order to change the effect of gravity,
i.e., g = cos(©)g, and thus reduce the natural frequency of the system. For
a more careful discussion of this system see [6, 73, 67].
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The nondimensionalized equations of motion for the mechanism described
above can be written

T Z2
z=| @2 | = | acos(z1+0)sin(zs) — %wg - ﬁg sin(z1 +6) |,

T3 1

(115)
. T
where (z1,z2,23)" = (9 —6,0',7 mod 27r) and
w Je A K
n 0 ,  Wo L » T wt, « L ’ 6 2&)0 ( 6)

Here wq is the frequency of small amplitude motion of the impacting
oscillator (when = 0), which is twice the natural frequency of the non-
impacting system. At impact, as 1 = 0, we assume a simple restitution law
of the form (100) is applied, thus

gt =2+ | 1+7r |aj, (117)

where r is the coefficient of restitution. We assume further that zjy, an 7y
is the point and time of grazing, respectively, i.e. h(z(7im)) = h(Zim) = 0.
Following (107) and (108) the ZDM for the present system can be written

0
D(z) = z+ | 1 EI)—’I‘ v —2r1a(zim), h(z) <0, (118)
T, h(ac) > 0,

where we have used y = /—x1, a = o5 and zj, = (0,0, 7im)”. The complete
Poincaré map II around the grazing periodic orbit can be written as

(z,T) = ®2(x, T — Tim) © D(z) o ®1(z, Tim), (119)

where T' > 0 is the period of the grazing periodic orbit, ®;and ®, are the
flow function before and after the grazing (cf. sect. 4.2.2). Estimation of
the motion near grazing using the map (119) can be compared with ex-
perimental results and direct numerical simulations. In Figs. 47(a) and (b)
bifurcation diagrams close to grazing using direct numerical simulations and
the full Poincaré map (119) are shown, respectively. As expected, a striking
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Figure 47: Grazing transitions in the forced impacting pendulum under
variation of 17 and using (a) direct numerical simulation, (b) the full Poincaré
map including the ZDM. (c) Delay plots for the impacting pendulum near
grazing using direct numerical simulation (cf. Fig.1). In all figures the angle
of the impact barrier 6 = 40°.

similarity between the two methods are found. In this particular example
the in magnitude largest eigenvalue is | Amax| = 0.51 for the grazing orbit and
therefore, as expected (see sect. 4.2.5), a period-adding sequence is clearly
visible. Figure 47(c) shows a finger shaped delay plot of the system close
to grazing using direct numerical simulation. The square root term in the
grazing normal form (118) clearly shows its presence as the almost vertical
finger, and if the full Poincaré map is used very similar results are found
(not depicted). If Fig. 47(a) is compared with Fig. 2(a) the n-value at which
grazing occurs is almost the same. While there are also some differences
in the details between the simulations and the experiment, there is clear
experimental evidence for a period adding sequence (upon decreasing 7)
interspersed with regions of chaos, just as predicted by the theory.
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4.3 Nonsmooth Transitions of Limit Cycles 2; Multiple Im-
pacts

In general, the sort of impacting problems that are likely to be met in many
applications are systems of impact oscillators which have many components,
each of which can collide of others. In the simplest case this could be a sys-
tem like the Newton cradle, in which a line of balls can each collide with its
nearest neighbour. At the extreme limit of complexity we can look at a gran-
ular material with many particles each of which can collide with any other.
Other problems, such as the cantilever beam, can be considered (by looking
at the different modes of oscillation) as being systems of impact oscillators
where the modes evolve independently between impacts, but are coupled
together by the impacts. Certain types of the behaviour of systems can be
considered to be extensions of the theory for single impact oscillators. How-
ever, there are new phenomena to be considered which simply do not arise in
the simple impact oscillator. Roughly speaking, this is the dynamics which
arises when we have a simultaneous collision of several particles. Whilst
the probability of such an incident occurring for an isolated system is zero,
as a parameter in the system varies then such incidents will be observed.
We show presently that this is a codimension-one phenomenon. Significant
changes of behaviour then occur to the dynamics of the overall system as
a parameter varies through the multiple impact scenario. In particular, we
see that several new types of periodic motion are generated. This makes it
hard to say precisely what the dynamics will be following a multiple impact,
as several scenarios are possible.

There is far less existing literature (if any) on analysis of multiple impacts
using bifurcation theory, than there is for grazing. So rather than attempt
to be completely general we shall stick here to the mechanical framework of
rigid particles described by positions and velocities.

Thus, we can think of a set of particles z;, with velocities v;, moving
smoothly in a set S;. In the simplest case we might consider a set of such
particles in an ordered line so that z; < z;4; with the motion of the particle
z1 excited by impact with a moving wall zy. Under the motion induced
by the moving wall, each particle will move independently so that a 2N-
dimensional phase space

S = (z1,v1) X (T2,v9) X ... X (TN, VN), (120)

with the restriction that z; < z;41. This phase space is bounded by a
piecewise smooth (N — 1)-dimensional surface ¥ comprising the union of
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the N separate surfaces

Y = {(.’E,’U) = (:El,!EQ,...) X (’01,’02,...) Xy = -'E'H—l}; 1=0, ..., N-1.
(121)
The combined surface Y. thus has corners and resembles the discontinuity
surfaces examined in Section 2.3 above for piecewise smooth systems without
impacts. Interesting dynamics occurs when a trajectory intersects one of
these corners. In § itself we have smooth dynamics.
An example is given by a simplified version of Newton’s cradle in which
balls at positions x; are suspended by vertical strings and we have simply

dx; dv; _
d—tZ = Vi d_; = —w; (zi — &) — (ivi- (122)

where Z;, w;, and (; are the rest position, the natural frequency, and the
damping coefficient of each particle, respectively. The dynamics changes
when two particles collide and the trajectory in S intersects one of the
surfaces ;. The simplest description of the resulting dynamics is that (as
in Example 4.1) we have an instantaneous impact in which the combined
momentum of the particles is conserved but the relative impact velocity is
reversed. This leads to the following system of equations

x;L =z, 55;:-1 =1, (123)
m;v; + mi_|_1vi_+1 = mivi+ + mi+1fu;:_1, (v;fi_l — 'U;L) = —r (”z'_+1 — ’U,L_) .
(124)
so that
:1:;" 1 0 0 0 z;
o ) 01 0 0 x'_+1
Ilj;_‘: = 0 0 mif’r"rini+1 (1+71‘\)4’I:Li+1 52_ (125)
via ) \oo Gigm meme [\
where

M; =m; +miqq.
The linear equation (125) then describes the action of the impact map
(‘Ti+’$i++1’vi+’xz’+-|—1) = fi(x;,x;+1,vi’,x;+1,r)T (126)

on the surface ¥; which is a natural generalisation of the impact map
vT = —rv used in the analysis of single-degree-of-freedom impact oscilla-
tors (Example 4.1). If it is assumed that m; > m;;1 then the map (125)
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reduces to

zf 10 0 0 z;

+ —

z,, | _ 101 O 0 Tiq 19
v} o0 1 0 v; ’ (127)
”;:-1 00 I+r —r Vi1

which is the standard restitution law for a rigid impact of a particle with a
moving wall.

(a) (b) (c)
Xi-1 Xi Xi1 Xi-p Xi Xigp Xi-1 Xi Xir1
® o o 000 ® O
= ="
Vi1 Vi Vit Viel Vi Vi Vi1 Vi Vivl

Figure 48: Three particles and their (possible) velocities (a) before, (b)
during, and (c) after collision. The velocity directions in (c) depend of the
associated impact map (cf. (125)).

The overall behaviour of the system of impact oscillators is thus described
by the hybrid motion of the smooth map in S and the various maps f; on
the surfaces 3;. As before, we will see the usual mix of periodic fixed
points and chaotic behaviour. Similarly, we will see grazing behaviour in
a neighbourhood of any trajectory which intersects any of the surfaces 3;
tangentially.

4.3.1 Corner-bifurcations

The similarities between systems of impact oscillators and the single-degree
of freedom impact oscillator break down in a neighbourhood of a trajectory
which intersects one of the corners of the surface ¥. Generically these are
manifolds of codimension-two and we denote these by I'; so that for the
Newton’s cradle type problem we have

Li={z:zi1=2;=mi1}, (128)

representing a simultaneous collision between z;, z; 1 and x; 11 (see Fig. 48).
It is simply not known at present how to define what sort of dynamics arises
in such a collision using bifurcation theory, as several, equally likely scenarios
are possible. A complete analysis of this situation is difficult, so we restrict
our discussion to the following scenario, which encapsulates much of the
interesting dynamics observed in multiple impacting problems.
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4.3.2 Saw-tooth forcing

Consider an infinitely massive moving wall 21, moving sinusoidally and im-
pacting with a massive particle at position zo(t) > z1(t) which rebounds
from it periodically. This scenario is a familiar example of a single degree
of freedom impact oscillator. Whilst the motion of the wall is smooth, that
of x5 is not, and its periodic motion, in the simplest case takes the form of
a rectified sine wave of which the simplest example is the function

k + B sin(wt)], (129)

where in this case k,3,w € R and the points of impact with the wall are
given by

T

ty = k—.

w
(The motion resembles the teeth of a saw). More generally, close to the point
of impact with the wall, so that ¢ =~ t; we may approximate the motion of
the particle z2 by the function

B fﬂ:+91(tk—t), t < 1o,
wa(t) = { K+ 0s(t —tr), t > to, (130)

for 8; > 0 with the overall motion of o having a period T so that t =
to + kT

xx(1)=x + Blsin(ot)| (a) (b)

to to

Figure 49: (a) The function z9(t) = k + S [sin(wt)|. (b) A blow-up of the
area in the vicinity of ¢y (cf. eq. (130)).

Now consider a third particle at position z3(t) > z2(¢t) which impacts
with the particle at z9. In the simplest case we take z9 to be very massive
when compared to z3 so that its is unaffected by the impact. As a useful
simplification of a multiple impacting system we can this study the motion
of a particle 3 driven by impacting with a non-smooth moving surface x(t)
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described, in particular, by the function (129) or more generally by the
function (130) locally. For simplicity, we will also consider the particle to
move in free space between impacts according to the the harmonic equation

— 3 L3 =0. (131)

As parameters in this system vary, we expect to see a change in the various
points impact 7; between z2 and x3. Under smooth changes in these param-
eters, there will be values at which z3 impacts zo at a point ¢; at which z9
loses smoothness (see Fig. 50). As 7; varies through such a point, we would
also expect to see a qualitative behaviour in the solution.

X3

X X2

LY 5=

Figure 50: A schematic on how a saw-tooth event can locally be approached.

To illustrate this, we present in Fig. 51 some simulations of the behaviour
of this system by considering the bifurcation diagram of the w-limit sets of
the motion in the case of the saw-tooth forcing function (129) with « fixed,
B8 =1 and w treated as the bifurcation parameter. In these simulations an
event driven numerical code is used with a semi-analytical solution of the
motion obtained by using the MATLAB expm command.

From the Figs. 51(a),(b) it can be seen that over significant parts of the
bifurcation diagram, the behaviour of z3 is simply periodic (with one impact
per period). However, as w is reduced through a point w = wg , a dramatic
change is observed as the point of impact passes through the discontinuity
point tg. In the case of Fig. 51, for which x = 0 this occurs when wg = 2,
ts = /2. For w slightly less than wg we then see the creation of three
distinct types of periodic motion I, IT and III illustrated below in Fig. 52.
It is notable that in this case each solution type, with period nT, has 2n
equivalent solutions but separated with a time shift of k7, k =0,--- ,n —1.

We now proceed to give a brief explanation of this behaviour.
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Figure 51: Bifurcation diagrams showing the position of the particle z3 at
impact for varying frequency w. In (a) and (b) the local behaviour in the
vicinity of the nonsmooth transition (at w = 2) is depicted and in (c) a
bifurcation diagram for 1.5 < w < 2.5. The different curves in (a) and
(b) represent period-one (O - ’solid” and I - ’solid’), period-two (II - ’--7),
and period-three (III - - - -') motion. See also Fig. 52, where the actual
trajectories are depicted.

4.3.3 Bifurcation condition

Let us make the presumption that a simple periodic orbit of 3 exists, and
that as a parameter varies, this orbit has a point of impact which coincides
with a point of discontinuity ¢ of the forcing function described in (130).
To study this, we introduce a Poincare surface II at the time ¢ = nT so that
(23(0),v3(0)) = (a,b) and (z3(T),v3(T")) = (A, B) so that close to t = 0
we have z3(t) = acos(t) + bsin(t) and close to ¢ = T we have z3(t) =
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Figure 52: Time series at w = 1.999 of the three distict types of periodic
orbits created at ws = 2, where I, II, and III show period-one, period-two,
and period-three motion, respectively.

Acos(t —T)+ Bsin(t — T).

We assume at present that there is a single impact orbit of period T for
which the impact of x5 with o occurs at a point 7 slightly after the point
to. The reasons for this choice will become clear presently. In this case it
follows that a,b and A, B are related as follows. The condition for an impact
gives

acos(t) + bsin(1) = Acos(t — T') + Bsin(r —T') = K + (7 — to)
and the change in the velocity at impact gives
—Asin(r —T) 4+ Beos(tr —T) = (1 + 7)02 + rasin(r) — rbcos(r),

where the impact law (127) is used. If a, b are known, this gives a nonlinear
map to 7, A and B. If 7 — ty = € is small we have to leading order

0
0y +asin(ty) — beos(tg)’

€ d = acos(ty) + bsin(ty) — k. (132)
The condition
§=0 (133)

implies that x3 lies above 9 at the point 3 so that the impact occurs after
to.

The condition for a single period periodic orbit is that (a,b) = (4, B).
This orbit will occur at the ‘saw-tooth’ point t; provided that 7 = ¢;. For
given i this leads to the following linear system for a,b and &

cos(to) sin(tg) -1 a
cos(tg) — cos(tg — T) sin(tg) —sin(to —7) 0 b | =
—rsin(tg) —sin(tg —T') rcos(tg) +cos(to —7T) 0 K (14+7)62
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with solution

(14 7) (sin(tg) —sin(tg — 1) cos(to — T') — cos(to)
=7 ( (01 . cos(flg)) ! (01 = cos(T)) = cob(T)/ 2))
(134)

As an example we consider the case of the forcing k + f|sin(wt)| given
in (129). In this case we let 8 =1, t) = 7/w, T = 27 /w and 6; = 03 = w.
A ‘saw-tooth’ bifurcation then occurs when w = wg satisfies the condition

wsg t:; cot(m/wg) = k.

(0,, ba ﬁ) = 92

For fixed k this is satisfied by a locally unique value of w so that we have a
codimension-one condition for a bifurcation in this case. If x = 0 this occurs
when w = 2 as we can observe from the bifurcation diagram in Fig. 51. Note
that for general k at the bifurcation point we also have

1+r) 1

a:w(l_r) (/) b=0. (135)

Note further that the height o of the point of impact of any such periodic
orbit is given by
+r

o= flw) = wi cot(m/w).

—r
This is an increasing function of w. Thus o is greater than x and the impact
occurs on the part of the function z9(¢) with positive slope only if w > wg.
If w < wg then the impact is on the part of the curve zo with negative slope.
In this case a < 0 and the periodic solution z3 lies underneath the curve zo
which is non-physical.

In conclusion, we expect to see regular behaviour if w > wg and more
complex behaviour is w < wg which is consistent with the observed be-
haviour on the bifurcation diagram (51).

4.3.4 The maps close to the saw-tooth bifurcation point

We now consider the behaviour of the impact close to the point ¢3. Generi-
cally one of three things can happen for the linear map approximation given
in (130):

a-map The particle z3 impacts at a point 73 < ¢y and at a second point
75 >ty 71 and 19 close to tp.

B-map The particle x3 impacts at a point 71 > %9 close to tp.
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v-map The particle z3 impacts at a point 7 < to close to tp and does not
impact again close to ty.

The three situations are as illustrated in Fig. 53 and the condition for either
of the maps « and v to occur is that

d = acos(tg) + bsin(ty) — k < 0.

Figure 53: Schematics of the three local maps «, 8 and 7.

4.3.5 Analysis at the bifurcation point

We now present an analysis of the infinitesimal map associated with an
impact at the sawtooth point. For convenience we consider the resonant
case for which kK = 0, w = 2 and ¢; = /2. In this case the resulting algebra
is greatly simplified. The solution can easily then be perturbed to either of
the two cases of w = 2 — € and w = 2 4 € where ¢ > 0. In this case we see
a multiplicity of different types of periodic motion when w = 2 — € and a
single periodic motion when w = 2 + €.

To analyse this situation, we consider the map Ps from (a,b) — (A, B)
advancing (u, du/dt) over the time 7' = m, and show that Pg can take three
different linear forms.

The condition for impact with kK = 0 at ¢ = 7/2 gives

acos(m/2) + bsin(w/2) =0, and Acos(n/2 —m)+ Bsin(n/2 — ) =0.
These two conditions are satisfied if and only if

b=DB=0.
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Now, suppose that the impact velocity is v so that
v = —asin(w/2) 4+ beos(w/2) = —a.
After impacting with the sawtooth waveform we have

v— f(v)
so that
f(v) = —Asin(n/2 — ) + Bceos(n/2 — ) = A.

Thus we have an infinitesimal Poincaré map given by

PS(O"O) = (f(—a),O).

Now, the map f(v) takes one of three affine linear forms, depending upon
whether the infinitesimal impact occurs on both sides (the «—map), imme-
diately after 7/2 (the f—map) or immediately before 7/2 (the y—map). If
the slope of the forcing function before 7/2 is 6; and after 7/2 is 65 then we
have

a: fi(v) =1 47)0 —r[(1+7)0 —rv] = (1 +7)0g — (1 +7)0; + v,

B: fo(v) = (1+71)82 — 10,

v: f3(v) = (14+7)0; —rv.
Observe that in each case, when w = 2 the impact point is at £ = 0. For
w = 2 £ € we expect that the point of impact will be proportional to e, as
can be seen in Fig. 51.

In the case of forcing with a sinusoidal function |[sin(wt)|, then when
w=2att=n/2 we have —6; = 0y = 2 giving

a: fi(v) =2(1+7) +r,
B: fo(v) =2(1+7r)—ro,
v: f3(v) = =2(1+7r)—ro.

(Again with perturbations proportional to € when w varies from 2). Thus
when applying one of these maps we simply have

A=gi(a) = fi(-a),i=1,...,3.

It is clear from inspection that none of these maps commutes with any other.
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To look for periodic orbits we now seek fixed points of the iterated map
F(a’) =0in °Gin_1°Gin_5C---00jy-

In principle any such combination of the elemental maps, with a free choice
of each index ix will lead to a fixed point. However two conditions restrict
our choices

1. If a* (with b* = 0) is any such fixed point then ¢* > 0 and the value
of
Gig ©Gig_1 °Gig_5°---°G0 (@*) >0
for all values of 1 < K < N.

2. If we perturb w to w — € and the fixed point perturbs to a} (with the
value of b* similarly perturbing to b) then the values of (a,b) given
by the two dimensional prolongation of the above maps

(G,, b) = 0ix ©Gixg_1 °Gixg_5°---°Gi (a:ab:)

are such that the conditions for the next map to be of the form g;, _,
are satisfied.

Condition 1. can be easily verified for any particular fixed point by using the
ideas described in these notes. Verification of Condition 2 is rather harder,
and we will not give it here.

Prompted by our numerical calculations, we are led to the conjecture
that four possible fixed points are given by the respective maps: g2, g1,
g2 © g1, and g3 o g2 o g;. We examine each in turn.

go: The fixed point of the map g is given when

2(1+7)

W>O.

a=2(14r)+ra, sothat a=

g1: The fixed point of the map g; is given when

2(1 +r)?

(1+41r2) > 0.

a=2(1+7)?—-r%, sothat a=

Both maps satisfy Condition 1. A little thought shows that g can only
occur when the impact is to the right of the saw-tooth point, so that w > 2.
Similarly, the fixed point of g; can only arise when the impact is to the left
of the saw-tooth point, so that w < 2.
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g2 o g1: The iterated map g9 o g1 is given by

gogi=21+7r)+r20+7r)? =r?a) =20 +7r) QA +7r+72) —ra

with fixed point(s)

20+ 7)1 +7+72)

(1—|—7‘3) >0 and a9 :gl(al).

a] =

Note that

2 2
a4y — 2(1+7‘)2—2T Q+r)QA+r+r9)

(1+73)
B r?(1+7+1?)
= 2(1+7) (l-l-r)—w
21+
- 7(1+r3)(1—|—r—7"2)>0.

g3 o g2 0 g1: The iterated map g3 o go o g1 is given by

grogaogr = —2(147)+r2(L+7)(1+7+7°) —rq]
= —rla4+2((0 +r)(r(1, +r%) = 1)).

This has fixed points

A+7)(=1+7r+7r24+73)
(1+7%) ’

ay = az =gi1(a1) and a3 = go(as).

A similar check to the above shows that these are all positive. The periodic
orbits corresponding to the fixed points of the respective maps g1, go © g1,
and g3 o g3 0 g1 give the three orbits I, IT and III visible in Figure 1.5 when
w = 1.999 (with a small perturbation in this case as w is slightly less than
2). The fact that these orbits can be computed strongly implies that the
various compatibility conditions apply in this case, though this remains to
be verified in detail. At this stage no other combinations of the maps g;
have been found (numerically) which lead to periodic orbits.

5 Discussion

While we have tried to be comprehensive in this review, there are many
things that we have not addressed. For example (in no particular order)
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we have not dealt with more complex impact laws than (100), for example
those required to explain the so called ‘Painlevé paradox’ [55]. We have also
not treated multiple impacts in a generic way (Section 4.3). In the case
of equilibrium bifurcation, general unfoldings in N-dimensions remain un-
known (Sections 2.1, 3.1). For sliding bifurcations of limit cycles we have not
dealt with repelling sliding regions. Perhaps the biggest area that remains
open is the unfolding of all the possible dynamics of the normal form we
have derived. Set valued Coulomb friction laws [78], chattering (the infinite
accumulation of impacts), higher order sliding (sliding along the intersec-
tion of two or more discontinuity surfaces), and the possible existence of
sets of equilibria in the sliding or sticking set have not been touched on here
as often more precise mathematical tools such as differential inclusions are
required.

Also, the reviw has (deliberately) limited its scoop to codimension-one
equilibrium and periodic orbit bifurcations. For some hints on how cer-
tain codimension-two C-bifurcations can act as organising centres, see [23].
There is also literature on global bifurcations in non-smooth systems (an
idea that was touched in Section 3.1) see also [51, 70, 74] for other exam-
ples. There is also literature on non-smooth invariant tori bifurcations that
we have not touched on here [17, 84].

Finally we mention infinite-dimensional systems genersted by PDEs or
delay equations, see e.g. [52, 80]. In real continuous structures with impact,
for example, many modes may be excited at impact and there may be a
delay associated with the dissipation of the shock wave (see e.g. [41, 76, 83]
for more realistic models of impact mechanisms).

Clearly we are just scratching on the surface of a bifurcation theory for
piecewise smooth systems, yet it is the nnn of the authors that such a theory
is pressing since rattles, bangs, and switches are perhaps the most common
(and grossest) form of nonlinearity found in applications.
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