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Abstract: This paper considers a system of two semiconductor lasers that are mutually
coupled face to face, so that they receive each other’s light after a delay time τ. The
lasers are assumed to be identical, except for a possible detuning ∆ of their free-running
frequencies. The coupled laser modes of a rate equation model with delay are studied
with tools from bifurcation theory, especially numerical continuation. This reveals a
comprehensive geometrical picture, which is organized by the unfoldings for ∆ 6= 0 of
pitchfork bifurcations that exists for ∆ = 0.
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1. INTRODUCTION

Semiconductor lasers are widely used today in appli-
cations such as optical data storage and optical com-
munication. This type of laser is known to be very
sensitive to external optical influences. Well known
is that small reflections re-entering a semiconductor
laser may completely destabilize its output. As semi-
conductor lasers are integrated into more complex
optical systems, the question of mutual coupling has
received increasing attention in recent years. The in-
terest in coupled lasers is also fueled by the wish to
utilize chaotic laser output in a sender-receiver con-
figuration for private communication applications. In
many such applications delay effects are crucial.

Today some experimental as well as theoretical stud-
ies have been performed on mutually delay-coupled
lasers. Synchronization of two chaotic semiconductor
lasers was reported in Mulet et al. (2002, 2004). Spon-
taneous symmetry breaking for zero detuning and a
leader-laggard scenarion for nonzero detuning was
found in Heil et al. (2001). On the thoretical side, the

instantaneous-coupling limit of small τ was studied
in Yanchuk et al. (2004) and the limit of large τ in
Javaloyes et al. (2003); Viktorov et al. (2004). An ap-
proximate thermodynamic potential for two mutually
coupled laser was derived in Vicente et al. (2004).

The topic of this paper is the short coupling regime
where the delay time τ is of the same order as the
period of the lasers’s intrinsic relaxation oscillation.
Specifically, we study a rate equation model of two
mutually delay-coupled semiconductor lasers that are
identical but have a detuning of their free-running fre-
quencies. Due to inherent delay in the coupling, the
model equations are mathematically a delay differen-
tial equation (DDE). For the intermediate range of τ
considered here the full DDE needs to be studied.

We present a bifurcation analyis of the coupled laser
modes (CLMs), which are fundamental solutions of
the system where both lasers produce light of constant
output intensity. The main tool is numerical continua-
tion of the CLMs with the the sofware package DDE-
BIFTOOL; see Engelborghs et al. (2001). We con-
centrate here on the bifurcations as a function of the



coupling phase Cp. A representation of the CLMs in
the plane of frequency versus inversion, which is often
used in the laser physics literature, and experimental
measurement can be found in Erzgräber et al. (2004).

2. THE MODEL EQUATIONS

Two mutually delay-coupled semiconductor lasers can
be modelled by Lang-Kobayashi-type rate equations
(compare Lang and Kobayashi (1980)) for the com-
plex slowly-varying envelope of the optical fields E1,2

and the normalized inversions (electron-hole pairs)
N1,2; see Fig. 1 for a sketch of the situation and Mulet
et al. (2002) for more details of the derivation. Suit-
ably rescaled, the equations can be written as

dE1,2

dt
= (1+ iα)N1(t)E1,2(t)

+ηe−iCpE2,1(t − τ)∓ i∆E1,2(t) , (1)

T
dN1,2

dt
= P−N1,2(t)

−(1+2N1,2(t))|E1,2(t)|
2
. (2)

The two lasers are assumed to be identical, which
means that they are described by the same value of
the linewidth enhancement factor α, the normalized
carrier lifetime T , and the pump parameter P. Further-
more, the coupling is assumed to be symmetrical (as
is the case in the face-to-face configuration in air), so
that both lasers experience the same coupling strength
η and delay time τ. (Since both lasers are identical,
we are not studying here the situation that one laser
is used to control the other laser.) In the computations
below these parameters are set to α = 5.0, T = 392.7,
P = 0.231, η = 0.025, and τ = 71. This corresponds
to a physically realistic setup where the delay time is
on the order of the relaxation oscillations of the two
lasers; see also Erzgräber et al. (2004).

The detuning between the lasers is taken into account
by the last term of (1) where ∆ = 1

2(Ω2 −Ω1) and Ωi

is the optical frequency of the free-running laser i. A
final and important parameter is the coupling phase
Cp = Ω0τ with respect to the average frequency Ω0 =
1
2 (Ω1 +Ω2). In this paper Cp is considered as the main
independent parameter. This is reasonable because Cp

can be varied in an experiment, for example, by tiny
changes of τ, which have only very little effect on the
other parameters in Eqs. (1)–(2).

Equations (1)–(2) are mathematically a DDE with the
single fixed delay τ. They exhibit several symmetries
which are important for what follows. First, there is
the S1-symmetry

(E1,2,N1,2) → (cE1,2,N1,2) (3)

for any c ∈ C with |c| = 1, which is physically an
invariance of both electric fields under any phase shift.
The continuous symmetry group S1 is a typical feature

(E1, N1) (E2, N2)

ηe−iCpE1(t− τ)

ηe−iCpE2(t− τ)
Ω1 Ω2

laser 1 laser 2

Fig. 1. Sketch of two face-to-face coupled semicon-
ductor lasers.

of rate equations with optical feedback (see Krauskopf
et al. (2000)) and must dealt with in the numerical
continuation. Second, there is the Z2-symmetry

(E1,2,N1,2,∆) → (E2,1,N2,1,−∆) (4)

of interchanging the lasers and changing the sign of
∆. For ∆ = 0 this leads to a reflectional Z2-symmetry
in phase space. Finally, there are two translational
symmetries involving the parameter Cp, namely

(E1,2,N1,2,Cp)→ (E1,2,N1,2,Cp +2π) , (5)

(E1,E2,N1,2,Cp)→ (E1,−E2,N1,2,Cp +π) . (6)

3. COUPLED LASER MODES

The S1-symmetry of Eqs. (1)–(2) means physically
that when both lasers lase with some constant intensity
then they must lase at the same frequency ωs. How-
ever, there may be a constant phase shift σ between
the lasers. Such a solution is called a coupled laser
mode (CLM). Mathematically a CLM is given as



























E1(t) = Rs
1eiωst

,

N1(t) = Ns
1 ,

E2(t) = Rs
2eiωst+iσ

,

N2(t) = Ns
2 ,

(7)

where Rs
1,2, Ns

1,2, ωs, and σ are real numbers. As is the
case for external cavity modes (ECMs) for a laser with
conventional optical feedback, the CLMs are group
orbits of the S1-symmetry; see Krauskopf et al. (2000);
Rottschäfer and Krauskopf (2004).

Inserting the ansatz (7) into Eqs. (1)–(2) gives a set
of six coupled transcendental equations for the six
unknowns Rs

1,2, Ns
1,2, ωs, and σ. An analytical inves-

tiagation of these equations in the general setting is
quite a challenge and beyond this paper. However,
it is quite straightforward to find the transcendental
equation involving only ωs and σ, namely

(ωs)2 = ∆2 +κ2 (8)

×[sin(Cp +ωsτ+σ)+αcos(Cp +ωsτ+σ)]

×[sin(Cp +ωsτ−σ)+αcos(Cp +ωsτ−σ)] .
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Fig. 2. The CLMs of Eqs. (1)–(2) in the (Cp,N)-plane for ∆ = 0; shown are the inversions N1 and N2 of both lasers
and Cp is in multiples of π. The infinitely long solid curves (relevant parts of which are highlighted) are of
constant-phase CLMs; the stable regions are shown thicker. The dashed curves are ellipses of variable-phase
CLMs. Saddle-node bifurcations are denoted by crosses (+), Hopf bifurcations by stars (?), and pitchfork
bifurcations by diamonds (�).
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Fig. 3. The CLMs of Eqs. (1)–(2) in the (Cp,N)-plane for ∆ = 2.5×10−3. Panel (a) shows inversion N1 of the red
laser 1 and panel (b) shows inversion N2 of the blue laser 2; Cp is in multiples of π. All CLMs have a variable
phase and they are organised in closed self-intersecting curves, stable regions on which are shown thicker.
Saddle-node bifurcations are denoted by crosses (+) and Hopf bifurcations by stars (?).



4. ZERO DETUNING

When ∆ = 0 then two special types of solutions can
be identified, namely those for σ = 0 and σ = π. Then
Eq. (8) reduce to

ωs = ∓[κ(sin(Cp +ωsτ)+αcos(Cp +ωsτ))] , (9)

where the minus sign relates to σ = 0 and the plus
sign to σ = π. A solution for σ = 0 is called an in-
phase CLM and one for σ = π an anti-phase CLM, and
both are referred to as constant-phase CLMs because
σ is constant as a function of Cp. Furthermore, it is
straightforward to see that for a constant-phase CLM
one has Rs

1 = Rs
2 and Ns

1 = Ns
2, meaning that both lasers

lase with the same intensity.

The in-phase CLMs are, in fact, (ECMs of the Lang-
Kobayashi equations describing the situation that a
regular mirror is halfway between the two lasers. In-
deed, in this case (9) is recognized as the transcen-
dental equation for ωs as it is known for the Lang-
Kobayashi equations; see Rottschäfer and Krauskopf
(2004). The anti-phase CLMs are related to the in-
phase CLMs by symmetry (6) and can, hence, also be
interpreted as ECMs of the Lang-Kobayashi equations
but for Cp +π.

However, even for ∆ = 0 there are CLM for which
the intensity of the two lasers is not the same so
that Rs

1 6= Rs
2 and Ns

1 6= Ns
2. This type of CLMs must

have a phase difference σ that is neither 0 nor π, and
they cannot be interpreted as ECMs of a COF laser.
Because their phase varies with Cp, they are referred
to as variable-phase CLMs.

Figure 2 shows the CLMs for ∆ = 0 in the (Cp,N)-
plane where the inversions Ns

1 and Ns
2 of both lasers are

plotted. The in-phase CLMs form the curve of infinite
length that has its minima near π + 2πk. Note that,
since Ns

1 = Ns
2, the in-phase CLM curves for laser 1

and laser 2 coincide. The curve of anti-phase CLMs
looks exactly like that of the in-phase CLMs, but it
is shifted by π due to symmetry (6), that is, it has its
minima near 2πk. To help interpret Fig. 2, a relevant
part of the constant-phase CLM curves is shown as
a black solid curve, while the other parts are shown
only in grey. On both curves there is a small section
in the low-inversion region where the constant-phase
CLMs are stable, which is drawn in a thicker line style.
This section is bounded on the right by a pitchfork
bifurcation and on the left by a Hopf bifurcation; all
other constant-phase solutions are unstable. As Cp is
decreased two constant-phase CLMs are born in the
saddle-node bifurcation in the low-inversion region
and then finally disappear in a further saddle-node
bifurcation in the high-inversion region.

Also shown in Fig. 2 are the variable-phase CLMs.
They form ellipses of which two are shown as dashed
curves. The ellipses intersect the constant-phase CLM
in pitchfork bifurcations. One type of ellipse (left
ellipse in Fig. 2) connects the in-phase CLM curve

in the low-inversion region with the anti-phase CLM
curve in the high-inversion region; the other type of
ellipse (right ellipse in Fig. 2) connects the anti-phase
CLM curve in the low-inversion region with the in-
phase CLM curve in the high-inversion region. The
two types of ellipses are mapped onto each other
by symmetry (6). When Cp is decreased a pair of
variable-phase solutions, related to each other by the
symmetry (4) of exchanging laser 1 with laser 2, are
born in the pitchfork bifurcation in the low-inversion
region. The inversion N1 of laser 1 traces out the upper
(resp. lower) branch, while the inversion N2 of laser 2
traces out the lower (resp. upper) branch of the ellipse.
The two solutions meet in the pitchfork bifurcation in
the high-inversion region and disappear.

In summary, Fig. 2 shows how for ∆ = 0 the variable-
phase CLMs provide a connection between the in-
phase and anti-phase CLMs. This is emphasized in
Fig. 5(a) where the phase σ of all CLMs is shown
over a suitable range of Cp. The horizontal lines
are of constant-phase CLMs, and the variable-phase
CLMs provide the connection between them. Note
that Fig. 5(a) is π periodic in Cp and 2π-periodic in
σ (not all curves of CLMs are shown).

5. NONZERO DETUNING

When ∆ 6= 0 then Eqs. (1)–(2) no longer have the
additional Z2-symmetry, so that each pitchfork bifur-
cation unfolds into a saddle-node bifurcation and a
separate branch of solutions. Furthermore, there are no
constant-phase solutions anymore, that is, the phase
σ of all CLMs varies with Cp and also Rs

1 6= Rs
2 and

Ns
1 6= Ns

2. Nevertheless, the case ∆ = 0 can be thought
to organize the dynamics even for nonzero ∆, as is
shown now.

Figure 3 shows the situation for ∆ > 0, where panel
(a) shows the inversion N1 of laser 1, the red laser that
lases with a lower frequency, and panel (b) shows the
inversion N2 of laser 2, the blue laser that lases with
a higher frequency. The pitchfork bifurcations have
disappeared and the previous constant-phase CLMs
(referred to as almost constant-phase CLMs) are now
connected to the previous variable-phase CLMs (still
referred to as variable-phase CLMs) in two closed
curves, a pair of which is shown in Fig. 4. Indeed,
the two types of CLMs bifurcate in saddle-node bi-
furcations, two of which come from the pitchfork bi-
furcation for ∆ = 0. Note that the way the pitchfork
bifurcation is unfolded in the high- and low-inversion
regions differs for the red and the blue laser; compare
panels (a) and (b) in Fig. 4. There are no longer any in-
finitely long curves. Nevertheless, the curves of CLMs
for ∆ > 0 in Fig. 3 converge to the those for ∆ = 0 in
Fig. 2.

Plotting the phase σ between the two lasers as a func-
tion of Cp results in closed curves of CLMs, as is
shown in Fig. 5(b). This image is seen to contain
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Fig. 4. A single closed curve of CLMs in the (Cp,N)-
plane for ∆ = 2.5×10−3. Panel (a) shows inver-
sion N1 of the red laser 1 and panel (b) shows
inversion N2 of the blue laser 2; Cp is in multiples
of π.

two branches of almost constant phase (justification to
speak of almost constant-phase CLMs) which are con-
nected by two branches of variable-phase solutions.
The latter are the remainders of the variable-phase
CLMs for ∆ = 0. Indeed, one realizes that Fig. 5(b)
unfolds the situation shown Fig. 5(a).

6. CONCLUSIONS AND OUTLOOK

The geometrical structure of CLMs presented here
forms the backbone of the dynamics of two mutually
delay-coupled lasers in the short coupling regime. It
is organized by the case of ∆ = 0, which features an
additional Z2-symmetry that is broken for ∆ 6= 0.

There are several clear avenues for future research.
The next step in this study will be to consider dy-
namics beyond the CLMs, which are stable only in
small sections of Cp. Priliminary investigations of
Hopf bifurcations and the bifurcating periodic orbits
indicate a complicated structure of connecting bridges
of periodic orbits, not unlike those found in the COF
laser in Haegeman et al. (2002). Further bifurcations
to chaotic dynamics will also occur.

Furthermore, while the presented structure of CLMs is
structurally stable, it is nevertheless very interesting to
study how it depends on the parameters of the setup,
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Fig. 5. The phase difference σ between the two lasers
in the (Cp,σ)-plane; panel (a) shows the case
∆ = 0 and panel (b) shows the case ∆ = 2.5×
10−3; both Cp and σ are in multiples of π.

η and τ, as well as on the intrinsic parameters of the
lasers, α, T , and P. This is also important for matching
parameters to compare theoretical results with exper-
imental measurements. Finally, there is the question
what happens when the assumption of identical lasers
is dropped.
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