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Abstract

Recent investigations of non-smooth dynamical systems led to the study of a class of
novel bifurcations termed as sliding bifurcations. These bifurcations are a characteristic fea-
ture of so-called Filippov systems, i.e. systems of ODEs with discontinuous right-hand side.
In this paper we show that sliding bifurcations also play an important role in organising
the dynamics of dry friction oscillators, which constitute a subclass of non-smooth systems;
non-smoothness being brought about by the character of friction law. After introducing
the possible codimension-1 sliding bifurcations, we show that these bifurcations organise
different types of “slip to stick-slip” transitions in the dry friction oscillators. In particu-
lar, we show both numerically and analytically that a sliding bifurcation is the mechanism
causing the sudden jump to chaos often reported in the literature on friction systems. To
analyse such bifurcation we make use of a new analytical method based on the study of
appropriate normal form maps describing the sliding bifurcation. In so doing we explain
under what circumstances the theory of so-called border-collision bifurcations can be used
to explain the onset of complex behaviour in stick-slip systems.

1 Introduction

In Engineering friction plays an important role. It is the source of self-sustained oscillations
termed stick-slip vibrations. These oscillations are often undesired effects observed in many
areas of Engineering. Examples include torsional stick-slip vibrations in drill strings, squeaking
doors and squealing railway wheels.

Thus, it is not surprising that systems with friction have been attracting the attention of scientists
for decades [1, 2, 3]. Only in recent years, due to the introduction of new analytical techniques
these systems have been studied from the standpoint of bifurcation theory.

In [4] Popp and Stelter introduce four different models including single-degree-of-freedom
oscillator with external forcing where chaotic behaviour characterised by stick-slip motion is
found. Moreover, they find different routes to chaos (intermittency, period-doubling) and differ-
ent modes of stick-slip behaviour in their model problems. In [5] Stelter studies a simple beam
system to determine how continuous structures behave under the action of dry friction forces.
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Here, chaotic mode characterised by stick-slip motion is also found. In a further study, the bifur-
cation behaviour of a non-smooth friction oscillator under pure self and/or external excitation
is treated [6, 7]. In the case of external excitation, the system is shown to exhibit a sensitive
dependence on the bifurcation parameter, with a rich class of bifurcations being observed un-
der parameter variations. The theoretical results were verified experimentally together with the
bifurcation diagrams of the system for different types of excitation.

Work carried by Galvanetto addresses the problem of bifurcations in a two block stick-slip
system [8, 9, 10, 11]. A one dimensional map is introduced for studying bifurcations in the four
dimensional system. The bifurcation scenarios observed include a class of bifurcations leading
to the onset of stick-slip motion. Non-standard bifurcations have also been detected in a simple
damped oscillator [12].

Self-excited vibrating system with dry-friction were studied by Yoshitake and Sueoka in [13].
An interesting route to chaos is reported here. It is shown that a period doubling cascade is
abruptly terminated by an outburst of chaotic behaviour due to the transition from slip to stick-
slip motion. The authors conjecture that the onset of chaotic stick-slip vibrations is associated
somehow to the occurrence of so-called border-collision bifurcations. These bifurcations can only
be observed in dynamical systems with discontinuous non-linearities and have been shown to
characterise the dynamics of a wide range of systems of relevance in applications [14, 15, 16, 17].
Border-collisions, for example, were shown to be fundamental in organising the dynamics of
DC/DC converters in Power Electronics [18, 19, 20] walking mechanisms, and vibro-impacting
mechanical systems [21]. One of the most common features of these bifurcations is the abrupt
transition from a periodic to a chaotic solution. This is a very similar feature to the one reported
in [13] for a friction oscillator which might lead to deduce that border-collisions are indeed at
play also in friction systems.

This conjecture, though, proves hard to be characterised analytically as there is a fundamental
problem recently outlined in [22, 23]. As shown in [22, 23], the theory of border-collisions can
only be used to characterise the behaviour of continuous-time systems when a periodic orbit
hits tangentially a non-smooth manifold or “corner” between phase space regions associated to
different functional forms of the system under investigation. Only in this case the normal form
map associated to the bifurcation event is piecewise linear and hence the classification strategy
for bifurcations in piecewise linear maps can be used to characterise the transition observed in
the continuous-time system. This is not the case in general for friction oscillators where the phase
space discontinuity boundary associated to the Coulomb friction characteristics is a sufficiently
smooth manifold (see Sec. 4 for further details).

The problem then is how to characterise and classify abrupt transitions, such as the one
observed in [13] for a friction oscillator which (i) cannot be explained in terms of bifurcations
also observed in smooth systems and (ii) involve a “slip to stick-slip” transition.

In this paper, we show that many of the bifurcations associated to the onset of stick-slip
motion in friction oscillators can actually be explained in terms of a novel class of bifurcations,
termed as sliding bifurcations, whose occurrence was independently reported in [24] and [25].

The starting point is to note that, as reported in [26], the stick phase in dry friction os-
cillators can be linked with the so-called sliding mode studied by Filippov [27] and Utkin [28].
Thus, periodic stick-slip motion in friction oscillators correspond to periodic orbits characterised
by segments of sliding mode, or sliding orbits as they were recently termed in the literature
[25]. In [29], it was shown that there are four distinct bifurcation scenarios termed as sliding
bifurcations associated to the birth and bifurcations of an orbit with a sliding segment. Sliding
bifurcations were shown to organise a variety of bifurcation scenarios including novel routes to
chaos, sliding-adding scenarios and multisliding behaviour (for further details see [25]).
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Figure 1: Phase space topology of a system with discontinuous vector fields

We propose that these four distinct scenarios can also explain stick to stick-slip transitions
in dry-friction oscillators and bifurcations involving stick-slip periodic solutions. Recently, it has
been shown that certain types of sliding bifurcations can be associated under certain conditions
to piecewise-linear normal form maps [23]. Thus, as our analysis proves, the onset of stick-
slip chaos in friction systems can be rigorously classified using the theory of border-collisions.
Moreover, it can be shown that different types of sliding bifurcations are associated with different
functional forms of their normal form maps. Therefore, we anticipate that they can be used to
explain other bifurcation scenarios in friction oscillators which have been left unexplained in the
literature.

The rest of the paper is outlined as follows. In the next section (Sec. 2) the phase space
topology we are concerned with is introduced. Sliding bifurcations are defined and four distinct
sliding bifurcation scenarios are presented. In Sec. 4 the dry friction oscillator studied in [13] is
studied and shown to exhibit the so-called grazing-sliding bifurcation. In the following section,
an analytical method to studying periodic orbits undergoing a grazing-sliding bifurcation is
detailed. A discussion of the possible dynamical scenarios and how to classify them is also
included. In Sec. 5, the grazing-sliding bifurcation in the system of interest is examined using
analytical tools introduced in Sec. 3.1. Finally in Sec. 6, conclusions are drawn.

2 Sliding Bifurcations: an overview

2.1 Phase Space Topology

We focus our attention to systems with discontinuous vector fields. Such systems are charac-
terised by the presence of discontinuity boundaries in phase space between regions where the
vector field is smooth and continuous. We consider a sufficiently small region D C R™ of phase
space where the equations governing the system flow can be written as:

(1)

o Fi(z,p) for H(z)>0,
| Fy(z,p) for H(z) <0,
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Figure 2: Geometrical construction of the vector field F§, which governs the flow within a system
discontinuity set X

where Fi, F, are sufficiently smooth vector functions and H(x) is some scalar function de-
pending on the system states. D is split into two subspaces, say G; and G5, with smooth and
continuous dynamics. The discontinuity boundary between GG; and G5 we assume to be a smooth
hyperplane, say ¥. Namely:

Gi:={x € R": H(x) > 0}, (2)
Ge:={r € R": H(z) < 0}. (3)
Y:={re€eR":H(z)=0}. (4)

The resulting topology in the case of a three-dimensional vector field is shown schematically in
Fig. 1. If the vector field points towards X from both subspaces G; and G5, a trajectory hitting
) is forced to evolve within the discontinuity set until reaching some point on it where one of
the two vector fields, Fy or Fj, changes its direction (the boundary of the shaded region in Fig. 1
denoted by f?) The solution which lies within the system discontinuity set is termed as sliding
motion and the region of the discontinuity set where such a motion may occur is labelled sliding
region. Throughout this region the following condition must hold:

(VH, Fy) — (VH, Fy) >0, (5)

where VH denotes a vector which is normal to ¥ and (VH, F;) denotes the component of the
vector field F; along the normal to X.

Following Utkin’s equivalent control method [28], we can derive the vector field Fy, which
governs the flow within the sliding region, as a vector function belonging to the convex hull of
F1 and FQZ
kB +F F,—F

+H,———, (6)

F
2 2

where —1 < H, < 1. H,(z) can be obtained in terms of F; and F by considering that Fy must
be tangential to the switching manifold, i.e. (VH, Fy) = 0.
Using this condition, we have
(VH, F1) +(VH, F,)

H@) =~ S Ry = (VA B @)
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Figure 3: The four possible bifurcation scenarios involving collision of a segment of the trajectory
with the boundary of the sliding region

Note that Utkin’s method is derived from straightforward geometric considerations as il-
lustrated by Fig. 2. In particular, the sliding vector field is obtained by considering a vector
function tangential to the switching manifold. Using this function, we can now define the sliding
region as:

S:={zeX: |H,(z) <1}, (8)

and its boundaries:
" :={zeX: Hy(z)=—-1}, 9)
ot :={zx e : Hy(z)=1}. (10)

2.2 The four possible cases

We define sliding bifurcations as bifurcations due to interactions between a system periodic
solution and the boundary of the sliding region 8%*. Following [24, 29, 30] we can distinguish
four possible bifurcation scenarios involving sliding (see Fig. 3). Figure 3-(a) depicts the scenario
we term as sliding bifurcation of type I. Under parameter variations, a piece of a trajectory
(denoted by a letter b in 3-(a) ) hits the boundary of the sliding region. Further variation of
the parameters causes the trajectory to hit ¥ within 3, yielding the formation of an additional
segment of the trajectory lying within the system discontinuity set (see in Fig. 3-(a) trajectory
c).

In the case presented in Fig. 3-(b), instead, a section of trajectory lying in region G; or Gy
grazes the boundary of the sliding region from above (or below). Again, this causes the formation
of a section of sliding motion. This bifurcation is termed as grazing-sliding bifurcation and as
will be shown later in the paper it may cause a sudden jump to chaos.
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BIFURCATION || sliding I | grazing-sliding sliding II multisliding
CONDITION 1 H(x") =0, VHX") £ 0

CONDITION 2 Hy(x") = -1, F,=F, & (VH,F) =0 at x*
CONDITION 3 vH, %Ry >0 |(vE YRy <0 | (VH,91R) =0
CONDITION 4 no condition defined (VH, (%)ZE) <0

Table 1: Analytical conditions for sliding bifurcations

A different bifurcation event, which we shall call sliding bifurcation of type II or switching-
sliding, is depicted in Fig. 3-(c). This scenario is similar to the sliding bifurcation of type I shown
in Fig. 3-(a). We see a section of the trajectory crossing transversally the boundary of the sliding
region. Now, though, the trajectory stays locally within the sliding region instead of zooming
off the switching manifold X.

The fourth and last case is the so-called multisliding bifurcation, shown in Fig. 3-(d). It
differs from the scenarios presented above since the segment of the trajectory which undergoes
the bifurcation lies entirely within the sliding region 3. Namely, as parameters are varied, a
sliding section of the system trajectory hits tangentially (grazes) the boundary of the sliding
region. Further variations of the parameter cause the formation of an additional segment of
trajectory lying above or below the switching manifold, i.e. in region G; or Gbs.

To each of these four scenarios, we can associate a set of analytical conditions describing the
system properties at the bifurcation point [30]. These are summarised in Table 1.

3 Classification of sliding bifurcations

Once a bifurcation event has been detected in a system of interest, a fundamental problem is
to predict the dynamical scenario associated with it. For example, when bifurcations in smooth
systems are considered, the derivation of appropriate normal forms allows the classification of
different bifurcation types such as saddle-nodes, Hopf and period-doublings [31]. As shown in
[30] and discussed above, piecewise smooth systems exhibit bifurcations, such as those involving
sliding, which cannot be classified using standard techniques. In particular, the same bifurcation
event can be associated to different dynamical scenarios according to the properties of the system
vector field locally to the bifurcation point.

Recently, a new classification strategy has been proposed to identify the dynamical scenarios
due to the onset of a sliding bifurcation, and more generally a non-standard bifurcation in
piecewise smooth systems. To illustrate the methodology we take as a representative example
the case of a periodic orbit undergoing a grazing-sliding bifurcation such as the one depicted in
Fig. 2(b). A similar procedure can be used to classify other types of sliding bifurcations.

3.1 The Grazing-Sliding case

For the sake of clarity, we consider the simplest possible scenario for a periodic orbit to undergo
a grazing-sliding bifurcation. Namely, we consider the periodic orbit, shown in Fig.4, that goes
through a point A on the boundary of the sliding region X satisfying conditions for this case,



but otherwise lying entirely in region G.

P,
Figure 4: Simplest orbit undergoing grazing-sliding bifurcation

To study stability and bifurcations, we then consider a section II; transversal to the flow in
region G| and a section Iy := {x € R" : H,(x) = —1} going through point A transversal to
flow ¢;. The full Poincaré map, P, maps II; back to itself and is obtained by composition of the
following mappings:

.P12:H1|—>H2,
.P221H2|—>H2,
.P21!H2l—>H1.

Note that Py and P»; are smooth maps and of full rank since they are obtained from the flow
¢1, i.e. by considering the system evolution in region G;. The mapping Py, instead, is the
one whose effect is to take into account the presence along the trajectory of the sliding region.
In particular, such mapping is simply the identity if the trajectory does not interact with the
sliding region (i.e. before the bifurcation event) while introduces a discontinuity otherwise. In
order to classify the dynamical scenarios following a grazing-sliding we then need to:

1. derive the analytical form of the mapping P,, (the discontinuity map);

2. study the dynamics of the Poincaré map of the bifurcating orbit.

It is worth mentioning here that, as recently shown in [30], the functional form of the discon-
tinuity map depends uniquely on the bifurcation type considered and can be obtained in closed
form through a combination of asymptotics and Taylor series expansion.

Note that in the case of periodically forced systems the discontinuity map Py and mappings
Py, Py correspond to “parts of” a stroboscopic map. Hence, the correction brought about by
the discontinuity map should be such that the period of the orbit remains uperturbed. In this
case Py, is often termed as a zero-time discontinuity map or ZDM.

In the case of non-periodically forced systems or when the introduction of a stroboscopic map
is not possible, the ZDM needs to be composed with some projection mapping M, which maps
the correction back to section II,. The composition of the ZDM and the projection mapping M
is then referred to as a Poincaré Discontinuity Mapping or PDM.

In what follows, we outline briefly the derivation of the ZDM for the grazing-sliding bifurca-
tion under investigation. This will be used later in Sec. 4 to characterise the complex behaviour
of a dry-friction oscillator. (More details about the methodology used is presented in [30], where
the derivation of normal form maps for all types of sliding bifurcations can be found.)
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Figure 5: Schematic representation of constructing the ZDM for the case of grazing sliding
bifurcation

3.1.1 The Grazing-Sliding Discontinuity Map

The key to derive the normal form map of a grazing-sliding bifurcation is to use the idea recently
introduced in [32]. This is graphically sketched in Fig. 5 where the periodic orbit is shown after
the grazing-sliding bifurcation and therefore contains a sliding segment (denoted by a solid line
joining  and Z points).

Namely, there are two alternative ways of describing the evolution of the sliding orbit in Fig.
5. The first is to use flow ¢; until reaching the sliding region (point ), switching then to the
natural, sliding flow ¢,, until the trajectory reaches the boundary of > when flow ¢1 is used
again.

The other way to describe the orbit shown in Fig. 5 is to use flow ¢; all way through (even if
the orbit crosses the sliding region), applying an appropriate correction at an intermediate point
to account for the presence of the sliding region. Such a correction is actually the discontinuity
map and contains all the crucial information concerning the influence of the sliding region on
the evolving trajectory (the map from zy to z; in Fig. 5).

To construct an analytical approximation of the ZDM, the methodology presented in [30]
can be used. This is based on three different steps: (i) firstly, we consider the evolution of
the trajectory from the point zy backward in time to the point z € f]; (ii) we then study the
sliding motion from Z to the boundary of the sliding region (point %) (iii) finally, we consider
the evolution along ¢; from the point & to some final point z;. In so doing, we require that
the elapsed time to get from the point zy to x; is equal to 0. Note that the final point z; does
not lie on the boundary of the sliding region ( section II; in Fig. 4) since it is evaluated from Z
following flow ¢;.

Using a combination of Taylor series expansion and asymptotics (as detailed in [30]), it can
be shown that the grazing-sliding bifurcation is associated to leading-order to the following
discontinuity map (P):

To if <VH, .T()) Z 0

T :D(ﬂf): VH’ . ’
T T a0 R (R~ )+ 0E?) it (VH,z) <0

(11)

Note that (11) is the identity below the sliding region (region () and contains a linear
leading-order term otherwise.



From (11) we see that the correction brought about by the ZDM, in the grazing-sliding case
cannot be parallel to the vector field Fi, as it has the direction of (F, — F}). If, in fact, (Fy — F})
were parallel to Fi, then sliding would not be possible. Hence, when non-stroboscopic mapping
are considered, the composition of the ZDM with the projection map M does not cancel out the
leading-order term and the discontinuity is still of linear order.

From what mentioned above, the derivative of the Poincaré map P describing the periodic
orbit is discontinuous at the bifurcation point. Naturally the same holds true for the stroboscopic
map composed directly with the ZDM for grazing-sliding. Thus, for such mappings we cannot
conclude that the periodic orbit will persist under parameter variations that would force it to
acquire a sliding portion. To classify the bifurcation scenarios following a grazing-sliding event,
one should therefore refer to the literature concerning border-collision bifurcations in piecewise-
linear maps [14, 15, 33] (see Sec. 5 for further details).

Finally, if the orbit survives the bifurcation, we can expect a jump in eigenvalues as the
periodic orbit acquires a sliding portion. The jump in eigenvalues is nicely illustrated by the
fact that a sliding periodic orbit must have at least one eigenvalue 0, whereas no such restriction
exists for an orbit lying entirely in region G;.

3.2 Discontinuity maps of other sliding bifurcations

As shown in [30], other types of sliding bifurcations in general are associated with discontinuity
maps of the form :

Az + By, if 'z <0
T —r
Asz + D(c"z)" 4+ By, if "'z > 0.

where A, Ay, B, ¢’ and D are appropriate matrices and:

e 7 =1 in the grazing-sliding case (scenario (b) in Fig. 3);

e v =2 in the multisliding case ((scenario (d) in Fig. 3);

e 7 = 2 in the sliding bifurcation type I (scenario (a) in Fig. 3);
e 7 = 3 in the sliding bifurcation type II (scenario (c) in Fig. 3)

Normal form maps are therefore characterised by different nonlinearities according to the
bifurcation scenario they describe. Piecewise-linear normal form maps are only associated to the
grazing-sliding case.

4 Sliding Bifurcations in Dry Friction Oscillators

As anticipated in the introduction, the stick phase of the dynamics of friction oscillators can be
analysed as a segment of sliding motion [26]. Thus, the sliding bifurcation scenarios presented
in the previous section are likely to occur in this important class of dynamical systems and can
be used to explain the complex dynamics often reported in the literature.

Evidence to support this conjecture can be found in [7], where a class of friction oscillators is
subject to an extensive experimental and numerical investigation. The oscillator studied therein
exhibits transitions from periodic orbits without any stick phase to periodic orbits characterised
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Figure 6: Orbit of the period 47 undergoing grazing-sliding bifurcation for v = 1.7077997
(a); Zoom of the region where grazing-sliding occurs - segment of an orbit at and before the
bifurcation (b). The dash-dotted segment correspond to the periodic orbit for v = 1.7082 that
clearly does not reach the switching manifold. Variation of the parameter v below 1.7077997
causes the birth of aperiodic mode of stick-slip motion.

by one or more stick phases per period. In view of our results, such transition can be classified
as a sliding bifurcation type I. The formation of an orbit characterised by a multiple number of
stick phases per period observed in the paper clearly indicates the occurrence of a cascade of
sliding bifurcations.

A more intriguing scenario is exhibited by the dry friction oscillator studied in [13], which is
numerically shown to exhibit a route to chaos characterised by the abrupt transition from slip
periodic motion to stick-slip chaotic behaviour. The bifurcation mechanism causing the onset of
such aperiodic motion is left unexplained by the authors who conjecture that it must be due to
some type of non-smooth bifurcation without offering any analytical explanation.

In what follows we will use the theory of sliding bifurcations and their normal form maps
to unfold this bifurcation scenario. We will use the oscillator presented in [13] as an illustrative
example to propose sliding bifurcations as a fundamental mechanism in organising the dynamics
of friction oscillators.

Following [13], the dry friction oscillator under investigation in the dimensionless form can
be expressed as:

i+y=f(1—9) + Fcos(vt), (13)
where:
f(1—9) = agsgn(l — 9) — ax(1 — 9) + ap(1 — g)° (14)

is a kinematic friction characteristic and 1 — ¢ corresponds to a relative velocity between the
driving belt and moving block. In the case when 1 — y = 0 the relative velocity is 0 and the
kinematic friction is set valued i.e.: —ay < f(1 —9) < ap. The coefficients of the kinematic
friction characteristic i.e.: «g, o, ag are positive constants. F' is an amplitude, v a normalised
angular velocity and T a period of the forcing term.

An extensive numerical study of the aforementioned oscillator allowed the detection of various
dynamical scenarios including incomplete period doubling cascade, abrupt transitions to chaos
and different modes of subharmonic motion (for details we refer the reader to [13]).

10
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Figure 7: Bifurcation diagram obtained from the numerical integration of the system under

consideration (a) and a period chaotic trajectory in the neighbourhood of the switching manifold.

We focus, in particular, on the bifurcation scenario giving rise to the sudden emergence of
chaotic stick-slip motion shown in Fig. 6(a). The bifurcation was detected for parameter values
oy = 1.5, a1 = 1.5, ag = 0.45, F = 0.1, under variation of the bifurcation parameter v in a
neighbourhood of v = 1.7078. As shown in Fig. 6(a), at the bifurcation point, a 47-periodic
orbit grazes the switching manifold at the boundary of the sliding region (denoted in the figure
by a short vertical line) for v = 1.7077997. According to what mentioned earlier in the paper,
the observed scenario corresponds to a grazing-sliding bifurcation, as the bifurcating orbit grazes
from below the boundary of the region where stick motion can take place. This can be more
clearly seen in Fig. 6(b).

The existence of a chaotic attractor for v < 1.7077997 was confirmed by computing the
Lyapunov exponents as reported in [13]. As shown in Fig. 7(b) the chaotic motion is characterised
by stick-slip motion.

Using the analytical approach presented in the previous sections, we will now try to char-
acterise these numerical results by carrying out an appropriate analysis of the system at the
bifurcation point.

We start by putting system (13) under consideration in the general form (1). Setting vt = T,
x1 =1y, To = Y, we can express (13) as a set of first order ODE’s with discontinuous right-hand
side of the form:

j’/‘l = g, (15)
fy = —x1 4+ apsgn(l — z9) — a1 (1 — ) + (1 — 29)® + F cos(7), (16)
T o= (17)

The switching surface ¥, in this case can be defined as:
Yi={x€eR:H(x)=1-1zy =0}, (18)

where x = [ Ty Tog T ]T and H(x) = 1—u, is a scalar function defining the switching manifold.
Thus, the normal to ¥ is the vector:

VH=[0 -1 0]. (19)
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The dynamics of the system is smooth and continuous when H(x) is non-zero and is governed
by the vector fields:

X2
Fi= |-z +ap—ai(1 —x2) + as(l — 33)% + Fcos(7) when H(x) > 0 (20)
v

and

T2
Fo=|—-21—ay— ai(1 —z3) + as(l —29) + F cos(T) when H(x) < 0 (21)
v

According to our analysis, sliding motion (stick) is possible if condition (5) is satisfied, i.e. if:
oy > 0 (22)

The condition above holds true since it is assumed that the coefficients of the kinematic friction
characteristic (14) are positive.

Using Utkin’s equivalent control method we can define the vector field Fy which governs the
flow on the switching manifold, as described in (6). Substituting (20) and (21) into (6), we then
get the following expression for the sliding flow Fj :

x2
Fy= -2 —a1(1 —23) + ag(l — 22)> + Fcos(1) — Hy(x)ap (23)
v
where —1 < H,(z) < 1. Since, the vector field F; must lie on the switching manifold X, we have:
(VH, Fy) =0, (24)
and using (7), we can express H,(x) as:

C 1+ ai(l = x9) — ap(l = 33)° — Feos(r)

H,(x) = 25
() 2 29
The sliding region ¥ can then be defined as:

. - F

So(xen: 1<t Feosm gy (26)

(&%)

To carry out the analytical investigation of the bifurcation point under consideration, it is
useful to assume that the bifurcation point x* occurs at the origin. Since, in our case the bifurca-
tion point is ( 2§ z3 7 )= (ap+ Fcos(r*) 1 7 ) = ( 1.4198660038 1 3.7828571553 )
we consider an appropriate translation of the system coordinates. Namely, we choose the new set
of local coordinates as 1 = r1 — 27, T2 = 9 — x5, T = 7 — 7. Under this choice of coordinates,
the vector fields Fi, F5 and F§ become:

. 14+ 29
F1: f2 ) (27)

v

12



1+

Fy = —2a0 + fo ; (28)
14
and
) 1+ &,
F,= 0 : (29)
14
where
fo= =1 + 1Ty — @ + F (cos(T* + 7) — cos(7¥)) . (30)

Similarly, we obtain the functions H and H,, as:

H(x) = —y, (31)

H,(%x)= -1+ i—z (32)

By definition the bifurcation point in a new set of coordinates is translated to the origin i.e.:

(27 23 @5 )=(0 0 0) therefore, we can write:

F1(0) = F,(0) = %2 . (33)

14

We can now check that the set of analytical conditions which identify a grazing-sliding bi-
furcations (see Tab. 1) are indeed satisfied at the bifurcation point under investigation. In fact,
we get:

1. H(0) =0,
2. H,(0) = —1,

3. (VA, 95 F) = 1 4 vF sin(r*) = 0.8971661 > 0.

Thus, at the aforementioned value of z*, the system satisfies all three conditions and it is
therefore proven that the bifurcation event described in [13] is indeed due to a grazing-sliding
bifurcation. We now show how knowledge of this can be used to classify analytically the observed
bifurcation scenario and hence explain the sudden appearance of a chaotic attractor using the
theory of border-collisions.

5 Explaining the onset of chaotic behaviour

5.1 Classification of grazing-sliding: the discontinuity map

Following the analysis introduced in the previous section, the first step to characterise the occur-
rence of the grazing-sliding bifurcation detected in the friction oscillator of interest (see Fig. 6)

13



is to derive an appropriate Poincaré mapping describing the bifurcating solution. In our case, we
have a forced dynamical system with the bifurcating orbit being of period 47, i.e. four times the
period T of the external forcing. Thus, the natural Poincaré map is a 47-stroboscopic mapping,
say P,r, which we assume to be affine and well represented by its linear terms, i.e.

- - - ai; a - b -
Py :Xyy1 = AX, + Br = S - 7 (34)
Qg1 Q22 by
where X,, is the two-dimensional state vector z,, = [ Tin Zon }T and v = v + v* with v* =

1.7077997, obtained by sampling the system states at time instants multiples of 47.

Note that we assume the map to be affine and sufficiently smooth away from the bifurcation
point, i.e. when the orbit does not contain any segment of sliding (stick) motion. Smoothness
is lost under parameter variation as the orbit grazes and then enters the sliding region.

For the 4T periodic orbit of interest computed earlier when v* = 1.7077997, we find that:

a~ n 7 n T n
an = ;1 Tl = 185, app= ag} 1l = 4396, ay = % = —1.14,
Tin Ton Tin
0T on11 0T 1n11 0Ton+1
Gy = 2L 9704, by = = 4.498 by = = —1.755 (35)
0%am v ov

The coefficients of matrices A and B shown above can be obtained numerically by considering
small perturbations of each component of vector X and parameter v while the other components
and parameters are kept fixed. Note, that the matrix A involved is nonsingular, which is all that
is required for the linear approximation to be valid.

To capture the influence of the grazing-sliding event, according to what presented above, we
then need to compose (34) with the normal-form map for grazing-sliding given by (11). In the
case of the friction oscillator (13) under discussion, this mapping takes the form:

%, if (VH,%,) >0,
D) =4 . Ty - - o
(%) xn—M(FQ—H) if (VH,%) <0,
(VH, F;

Substituting (19), (27), (28) for VH, Fy, F, respectively and considering that the state
variables of interest are z; and z9, (36) becomes:

~'n .f T n < 07
DE)=4." 7 (37)
X + CXn if Ton > 0.

(36)

where C = ( 8 _01 ) To obtain the complete Poincaré mapping describing the orbit close to

the bifurcation point, we now compose (37) with (34). Hence, we get that such Poincaré map is
given by:

. ARy + Bo i ey <0,
Xn+1={ Xn BV Com (38)

AgX, + By if Zo, >0,
where A; = A and Ay, = A 4 AC; or equivalently,

b
(an o )X +<b1 ) P msh
a a
>~Cn+1 _ 21 22 2 (39)
ann 0 ~ ~
Xn
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Figure 8: Numerical and analytical mappings at the bifurcation value of the control parameter
v

The comparison between a map obtained numerically and between the analytical mapping
(39) is shown in Fig. 8. The figure depicts one dimensional projections of the 2-dimensional
mapping (39). Coordiantes Z1,,1 and Zo,,1 are plotted versus Zo, with Z1, = 0 Vn.

It is worth mentioning here that to retrieve a map obtained from numerical simulations of
a system under consideration the stroboscopic map needs to be aplied at some value of z;, say
1 = T19 Vn such that ;9 # 0 but is applied at the close neighbourhood of 0.

The stroboscopic mapping of the bifurcating orbit has a piece-wise linear functional form (39).
Hence the grazing sliding of the periodic solution under investigation correspond to a so-called
border-collision of its corresponding map. In practice, as the periodic orbit hits tangentially the
boundary of the sliding region (grazing sliding), the associated fixed point of map (39) crosses
the boundary Zo = 0 across which the map takes two different functional forms.

5.2 Classification of grazing-sliding: border-collision scenario

To predict and classify the scenario exhibited by the system past the bifurcation point, we
can now use the classification scheme for border-collision bifurcations in piecewise-linear maps
recently proposed in [33]. According to this strategy, to predict analytically the dynamical
behaviour of the system at the grazing-sliding bifurcation, one needs to count the number of
real eigenvalues of map (39) on both sides of the discontinuity boundary i.e.: for Zo, < 0 and
T, > 0. Namely, we denote by o and o5 the number of real eigenvalues greater than 1 of
matrices A; and A, respectively in equation (38). Similarly, we term o, 0, the number of real
eigenvalues lower than —1 of the same matrices.

It is then possible to show that using these quantities, one can classify among the three
following simplest scenarios (see [33] for further details).

1. Border-crossing: if o] + o is even, the bifurcating orbit (without any stick phase) will
simply change into an orbit characterised by a sliding segment of the same periodicity (i.e.
a stick-slip periodic motion);

2. Nonsmooth saddle-node: if o + 05 is odd the bifurcating orbit will collide with an
unstable sliding one on the boundary of the sliding region and disappear;
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3. Nonsmooth period-doubling: if o] + 0, is odd, a period-doubling will be observed
and the bifurcation will cause the formation of a sliding orbit with doubled period (with
respect to bifurcating periodic solution).

In the case under investigation, the eigenvalues of A; in (39) are A\;; = 0.0107, A5, = 0.8433
while those of Ay are Xo; = 0, Ay = —1.8500. Hence, o] + o5 = 0 is even while 0] + 0, =1 is
odd. Therefore, according to the classification strategy presented in [33], at the grazing-sliding
bifurcation point we will observe the transition from the non-sticking bifurcating orbit to two
coexisting sliding solutions; an orbit sharing the same periodicity of the bifurcating one and a
period-doubled periodic solution.

Moreover, since Ay is outside of the unit circle, the sliding orbit born through the afore-
mentioned smooth transition will be unstable. Similarly, as the eigenvalues of the second-iterate
of map (39) also lie outside the unit circle, the nonsmooth period-doubling will give rise to an
unstable orbit.

Hence, we can conclude that at the grazing-sliding, the bifurcating orbit will not persist.
Namely, the transition will be observed from the stable 47-periodic solution (without any stick
phase) to at least two coexisting unstable solutions: an unstable sliding orbit of period 47 and
an unstable 87-periodic solutions.

Note that because of its applicability to general n-dimensional systems, the classification
strategy above does not offer any information on the possible existence of aperiodic solutions or
periodic orbits of periodicity higher than 2 past the bifurcation point. This must be checked a
posteriori by using appropriate tools from nonlinear dynamics and is only feasible, as we write,
for low-dimensional maps.

In our case, as the Poincaré map of the orbit under investigation is two-dimensional we can
gather this extra information by using the classification of border-collisions in two-dimensional
piecewise-linear maps recently presented in [14, 34]. Briefly, this strategy consists of a set of
inequalities involving the trace and the determinant of the map matrices on both sides of the
boundary. Here, we present only the final results. For a more detailed description of the method,
we refer the reader to [34].

Following, [14, 34] we calculate the appropriate quantities and find that they satisfy the
following inequality:

1. 26, <7 < (L+6L),
2. Tp < —(1 +5R),

where 61 = /\11A12 = 0009, 52 = /\21/\22 = 0, 1 = )\11 —+ )\12 = 08540, Tg = /\21 + )\22 = —1.85 are
the determinants and traces of the map matrices A; and A, on both sides of the boundary. As
shown in in [34], this implies that a chaotic attractor will be coexisting with the unstable orbits
detected above past the grazing-sliding bifurcation point.

Hence, the numerical results reported in [13] and depicted in Fig.7 are confirmed and ex-
plained analytically, confirming the role of grazing-sliding in causing the trasition from periodic
non-sticking solutions to fully blown chaotic stick-slip motion.

6 Conclusions

It was shown that a novel class of bifurcations, so-called sliding bifurcations, play an important
role in dry friction oscillators. Normal form maps (discontinuity maps) describing these bifur-
cations have been introduced. This normal form maps allow us the derivation of the Poincaré
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map describing the system behaviour close to the bifurcation point. This map can then be used
to classify hence predict analytically the scenarios following a sliding bifurcation.

A dry friction oscillator, recently reported in the literature, has been used as an illustrative
example and analysed from the standpoint of sliding bifurcation theory. It has been shown
that the bifurcation of a periodic orbit leading to the onset of chaotic motion (reported in [13]),
accompanied by slip to stick-slip transition, can be explained in terms of a grazing-sliding bifur-
cation. Detailed analysis shows how the grazing sliding bifurcation translates into a piecewise
linear Poincaré map (PWL) describing the system dynamics close to the bifurcation point. Thus,
the conjecture, often made in the literature, that bifurcations in friction oscillator correspond
to so-called border-collisions of piecewise linear maps, has been rigorously proven and linked to
the occurrence of grazing-sliding bifurcations of the corresponding flow.

We wish to emphasize that only in this case, the classification schemes developed for border-
collision in PWL maps ([33, 34]) can be used to predict the dynamical scenario following the
bifurcation. Their application was reported to the friction oscillator under investigation. It was
shown that the route to chaos in this system is associated to a grazing-sliding bifurcation causing
the sudden appearance of chaotic stick-slip motion.

We anticipate that sliding bifurcations are bound to be a common feature in friction systems
and more generally vibro-impacting mechanical systems. The approach described in this paper
can then be used effectively to explain the occurrence of complex behaviour and predict unwanted
dynamics.

Further work will be directed towards the analysis of other types of sliding bifurcations in
friction oscillators and other systems of relevance in applications, with particular attention to
higher-dimensional systems. A pressing open problem is the classification of border-collisions in
maps which are locally piecewise-smooth but not piecewise-linear.
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