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LUNT AND WILSON: NEW DATA SETS AND HIGHWAY TRAFFIC MODELS

New Data Sets and Improved Models of Highway Traffic

George Lunt, TRL Ltd. glunt@trl.co.uk
R. Eddie Wilson1, University of Bristol. RE.Wilson@bristol.ac.uk

Abstract

In this paper we report progress on the use of novel data sets to calibrate and improve car-following
models of highway traffic. These models describe vehicles as discrete entities moving in continuous
time and space, and use plausible behavioural assumptions to derive systems of differential equa-
tions which must be solved for vehicles’ trajectories. To date, there has been little or no systematic
attempt to fit these models to quantative microscopic (at the level of individual vehicles) highway
data. Our recent work has involved the analysis of two such data sets:

• MIDAS (Motorway Incident Detection and Automatic Signalling) IVD (Individual Vehicle Data),
and

• aerial video pictures.

Each of these data sets has been kindly provided by the Highways Agency.
The MIDAS (Motorway Incident Detection and Automatic Signalling) system consists of double

inductance loops which record the lane number, time headway and wall-clock time of passing vehi-
cles, as well as estimating their lengths and speeds. This data has been collected by TRL.

We have applied novel statistical techniques to the pattern matching of vehicle length measure-
ments at different loops, and thus we are able to track individual vehicles down the motorway. In
particular, we may:

• obtain accurate estimates for individual vehicles’ travel times between loops;

• estimate lane changing rates.

However, presently MIDAS loops may not be used to estimate vehicles’ accelerations. We de-
scribe how image analysis and pattern matching techniques have been used to automatically follow
vehicles across a sequence of aerial video frames. Projective transformations can then be applied
to build full time series of vehicles’ displacements, from which headway, velocity, and acceleration
information can be extracted.

1 Introduction

In this paper we report progress on our programme of research dedicated to the improvement of
highway traffic models. Broadly speaking these models fall into two categories:

1. Simplified models which have appeared in the applied mathematics and theoretical physics
literatures since the mid 1990s. The principle goal of these models is to illustrate interesting
phase change phenomena in an attempt to gain a qualitative understanding of traffic jams.

2. Models devised by engineers which are incorporated in commercial simulation software. Typi-
cally these models are very complex and have large numbers of parameters which purport to
model driver behaviour and variability in detail.

To illustrate our division, consider so-called car-following models which describe vehicles as
discrete entities moving in continuous time and space, see Fig. 1. In such models, acceleration laws
are written down which attempt to model drivers’ responses to external stimuli, which include such
factors as the drivers’ speed, and the relative displacement (i.e., headway) and relative velocities of
neighbouring vehicles.

1Supported by the Nuffield Foundation awards for Newly Appointed Lecturers in Science, Engineering and Mathematics,
grant number NAL/00544/G.
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Figure 1: Common notation for car-following models. Here we show a unidirectional flow with one
lane only and vehicles, which are labelled 1, 2, 3, . . . etc. in an upstream direction, travel to the right
in the increasing x direction. The displacements and velocities of vehicles are labelled . . ., xn−1,
xn, xn+1, . . . and . . ., vn−1, vn, vn+1, . . . respectively. Of interest is the separation of consecutive
vehicles, known as the headway. We define the headway of vehicle n to be hn = xn−1 − xn.
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Figure 2: Illustration of instability and spontaneous formation of traffic jams for the optimal velocity
model (1). Here the trajectories x(t) are plotted when initial data is taken close to a uniform flow
solution with separation 25m and speed � 15ms−1, and the sensitivity is taken below the stability
threshold. The optimal velocity function V is taken from Bando et al (1995b).

A particularly simple acceleration law was suggested by Bando et al (1995a) and took the form

v̇n = α [V (hn) − vn] , α > 0. (1)

Here V is an optimal velocity function, with the properties (i) V (h) = 0 for h < hcrit (i.e., hcrit is the
headway corresponding to the jam density); (ii) V is an increasing function; and (iii) limh→∞ V (h) =
V∞, where V∞ is (something like) the speed limit. The idea is that drivers would like to drive as
fast as possible up to some limit V∞, but in practice drive slower because of safety constraints, e.g.,
the distance to the vehicle ahead. Thus for a particular headway h, V (h) gives the optimal velocity,
i.e., the fastest safe speed. Thus the right hand side of (1) indicates that if travelling slower than
the optimal velocity, V (hn)− vn is positive and we accelerate; conversely, if travelling faster than the
optimal velocity, we decelerate.

Equation (1) is clearly a gross simplification of driver behaviour and cannot possibly replicate the
microscopic details of drivers’ interactions. However, the major surprise is that particular parameter
choices give emergent macroscopic dynamics which resemble closely (see Fig. 2) the well-known
stop-and-go waves propagating upstream in motorway traffic.

Let us turn our attention to engineering simulation models, such as that derived by Gipps (1982),
which forms the kernel of several commercial simulation packages. The basic hypothesis of Gipps’s
model is the following behavioural model:
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What speed should I travel at now, given the behaviour of the vehicle in front one reaction
time ago. If the vehicle in front comes to a stop at what I think is its hardest rate, and one
reaction time later I commence braking at my hardest rate, I must come to a stop safely.

This law may be formulated as a differential-difference equation. Wilson (2001) examined Gipps’s
model and performed a detailed analysis of the uniform flow solutions and their stability. In particular,
that paper shows that uniform flow may only become unstable in unrealistic parameter regimes,
and it follows that Gipps’s model is not able to replicate stop-and-go waves. Further work at TRL
by Abou Rahme and White (2001) simulated minor adaptations of Gipps’s model in an attempt to
produce stop-and-go waves, but found no satisfactory parameter regimes. In conclusion: although
engineering modes make a great effort to capture the details of driver behaviour, they are often
unable to replicate important features of macroscopic motorway dynamics.

Thus in our view there is a need to either validate existing highway traffic models, or to develop
new ones, which capture the full complexity of individual driver behaviour, but which also yield the
correct macroscopic (over several minutes and kilometres) dynamics. New sources of microscopic
data, which incorporate acceleration information, will be required to fit these models.

This paper discusses progress with two new data sets:

1. MIDAS (Motorway Incident Detection and Automatic Signalling) IVD (Individual Vehicle Data).
For some time the Highways Agency has stored MIDAS data in the form of one minute aver-
ages. This data is very useful for analysing bulk flow properties and macroscopic dynamics
(e.g., see Dixon et al (2002) for the well known MTV plots which demonstrate stop-and-go
waves), but cannot be used for fitting microscopic behavioural rules. However, in a recent
project funded by the Highways Agency, TRL used extra equipment at MIDAS outstations to
collect and store full unaveraged individual vehicle data. This data set includes details of the
lane number, time headway and wall-clock time of every passing vehicle, and also contains
estimates of their lengths and speeds.

2. Aerial video pictures. The Highways Agency has recently funded work to examine lane chang-
ing behaviour at motorway intersections which involved filming traffic from a helicopter. An
ongoing project at the University of Bristol is considering the automatic image processing of
these pictures, in order to obtain high resolution time series of the displacements of the many
vehicles passing through the field of vision.

A number of entirely novel observations may be made from MIDAS IVD. For example, it is possible
to examine the full variability of speed-headway relationships, and not just their bulk averages. One
may also consider other interesting microscopic quantities such as the correlation of consecutive
vehicles’ velocities, and use this information to test statistical theories concerning platoons. All this
data may be collected cheaply with no modification to the existing MIDAS infrastructure.

The principal disadvantages of MIDAS IVD are (i) it does not make measurements of vehicles’
accelerations and (ii) it makes only point measurements in space. However, one of the main top-
ics which we discuss here is the vehicle re-identification problem, where pattern matching tech-
niques are applied to the estimates of vehicle lengths at consecutive loops in an attempt to track the
progress of individual vehicles down a 1km section of motorway. In particular, this procedure might
allow us (i) to calculate accurate travel times for individual vehicles and (ii) estimate the number
of lane changes, by observing discrepancies between the vehicle length sequences at consecutive
outstations. This process is extremely complex due to the inaccuracy of the vehicle length estimates.
The details of our analysis follow in Section 2.

The chief advantage of aerial pictures is that acceleration information may be obtained by the
double differentiation of the time series of vehicles’ displacements. However these time series are
noisy and the image processing algorithms presently require a great deal of manual intervention. A
short announcement of our progress to date follows in Section 3.

2 MIDAS IVD analysis

The Highways Agency (HA) has developed an automatic speed-control environment known as Con-
trolled Motorways. At its core is the Motorway Incident Detection and Automatic Signalling (MIDAS)
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system, which monitors current traffic conditions. Alerts are communicated to a central control com-
puter, which in turn relays messages back to motorists via message signs. In particular, the system
at present uses an algorithm known as HIOCC to set temporary (mandatory) speed limits upstream
of queues, in an attempt to improve safety by smoothing traffic flow: as a result journey times and
journey time reliability are also improved. In such conditions motorists are also advised not to change
lanes, in order that the lane utilisation may be improved. The Controlled Motorways programme is
being rolled out across the UK, but the focus of our analysis is on data collected from the south
western section of the M25 where Controlled Motorways has been in operation since 1995.

The MIDAS detection system consists of outstations every 500m down the length of the motor-
way. Each outstation consists of a pair of inductance loops buried in the surface of the road and a
smart signal processing and communications box. The magnetic field of passing vehicles induces a
current in each loop and the system is wired so that the carriageway and lane number of the vehicle
can be identified.

Further, for each passing vehicle, the times at which each half of the inductance loop pair is
activated and deactivated are captured. The microcontroller then uses this information to give each
vehicle a timestamp (from which, by comparison with the timestamp of the preceding vehicle, the
front-to-front time headway may be calculated). Further, the difference in activation times and longi-
tudinal separation of each half of the loop pair may be used to estimate the speed of each vehicle.
The activation and deactivation times may also be used to calculate the time over loop, which com-
bined with the speed estimate may be used to estimate the vehicle’s length.

As we discuss further below, all measurements are rounded at various stages in the microcon-
troller’s algorithm, and the nominal accuracy of recorded measurements are 1s, 0.1s, 1km/h and
1cm for the timestamp, time headway, speed and length respectively.

In the past, outstations have not stored the full details of individual vehicles, but have bundled the
data into one minute averages which is then sent to the central control computer. However, TRL has
now intercepted the individual vehicle data (IVD) before it is lost, and consequently we have access
to comprehensive IVD sets from across the UK. This allows us to peform highway traffic analysis at
a level of detail which has not previously been possible.

For example, it is now possible to analyse not only the bulk speed-density relation, but also the
speed-headway information of individual vehicles: see Fig. 3(a). Thus we may analyse the huge
variations in behaviour between different drivers.

A further avenue of research concerns the analysis of the correlation of speeds of consecutive
vehicles, see Fig. 3(b). In particular, the skewness of these distributions, and how that skewness
depends on lane number, may contain information about platoon behaviour.

The scatter plot of Fig. 3(b) indicates granularity in measured speeds which is examined further
in the histogram of Fig. 3(c). It is clear that above 70km/h, speed measurements occur in narrow
clusters, with almost no measurements between clusters. Further, the separation of clusters in-
creases as speed increases. It is clear that the true accuracy of speed measurements, particularly
of fast vehicles, is somewhat coarser than the quoted 1km/h. So far we have not had access to the
details of the microcontroller algorithm, but these statistics could be explained by the use of rounded
activation times in the speed calculation.

Unfortunately, the errors in speed measurements will have a knock-on effect on length measure-
ments, whose errors might also be compounded by the use of rounded activation and deactivation
times in the time over loop calculation. It is thefore possible for length measurements to be quite
inaccurate.

We have performed some analysis of length measurement errors using existing IVD, in which
the true lengths of vehicles are actually unknown. To do this, we examined the data sets obtained
from two outstations (numbers 4897 and 4907) which are in the vicinity of junction 13 of the M25,
between the busy interchanges with the M3 and M4. Outstations 4897 and 4907 are 1km apart, and
the section of motorway between them is particularly simple, in that there are four continuous lanes
in both directions and no on- or off-ramps2. Henceforth we restrict attention to the clockwise (north-
bound) carriageway and will refer to 4897 as the upstream outstation and 4907 as the downstream
outstation.

Since there are no on- or off-ramps on this section of motorway, all vehicles which pass the
upstream outstation must also pass the downstream outstation a short time later, and conversely,

2We have not considered outstation 4902 since its IVD appears to have a higher than usual error rate.
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Figure 3: (a) Speed-headway data of individual vehicles. (b) Scatter plot showing the correlation of
velocities of consecutive vehicles. The velocity of the leader is plotted against that of the follower.
Note that the correlation is weaker for faster traffic.. We believe that an analysis of the skew about
vi−1 = vi may lead to new statistical theories of platoons. The data from (a) and (b) are taken
from lane 1. (c) Histogram of measured speeds at a single loop, with bucket size 1km/h. There
is granularity and the measured speeds of fast vehicles are not accurate to the quoted 1km/h. (d)
Scatter plot of measured length at downstream outstation against measured length at upstream
outstation for a set of definite match lorries. The outstations are statistically identical, but inconsistent
in their length measurements. This data might be used to obtain distributions of length measurement
error.
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all vehicles which pass the downstream outstation must have also passed the upstream outstation.
Unfortunately, it does not follow that there is a complete 1-1 correspondence between the vehicle
records of the upstream and downstream outstations: it is known that outstations sometimes miss
vehicles, particularly in bumper-to-bumper traffic. It is thought that this failure rate is of the order of
1%.

The key to our analysis of length measurement errors is to remark that vehicles longer than,
say, 10m, are rather infrequent. With such vehicles it is thus possible to establish a set of definite
matches (concise definition to follow) where records at the upstream and downstream outstations
must correspond to the same vehicle, because no vehicle of comparable length was present on that
section of the motorway at that time. We call this process vehicle re-identification.

We can use a set of definite matches to produce a scatter plot of length measurements at the
downstream outstation against length measurements at the upstream outstation: see Fig. 3(d). It
is clear that the upstream and downstream length measurements for an individual lorry may occa-
sionally disagree by up to two metres. However, since the statistical properties of upstream and
downstream length measurements are almost identical, it is clear that the errors are due to a lack
of consistency in the measurement of each individual outstation, rather than overall (e.g., physical)
discrepancies between the outstations. Thus it may be possible to model the error in length mea-
surement at an individual outstation by a random variable X which itself depends on the true length
of the vehicle. The distribution of X might be inferred from Fig. 3(d), which contains information
about (X1, X2) pairs, where we assume that X1 and X2 are independent and identically distributed.

Note that the techniques outlined above cannot tell us anything about the distribution of length
measurement error for shorter vehicles, since these vehicles are so common that it is impossible to
establish a set of definite matches. There is thus some scope in the future for controlled experiments
on outstations using vehicles of known length, although it may be more appropriate to derive error
distributions by analysing the microcontroller software.

The presence of such large errors in length measurement is extremely unfortunate. If length
measurements were more accurate, it might be possible to re-identify all passing vehicles. This
idea has been employed by Coifmann (2002) to calculate vehicles’ travel times through a section of
Californian freeway. Coifmann’s method gives a maximum 60% re-identification rate. However, our
main interest is in using re-identification to estimate lane changing rates, by comparing the order in
which individual vehicles pass each outstation: this goal will require re-identification rates close to
100%.

The central idea of this research programme is that vehicle re-identification may proceed in
a probabilistic manner, by seeking the most likely matches between upstream and downstream
records. Fig. 4 shows short sequences of upstream and downstream length measurements taken
from lane 1. The overall pattern of the data is very similar and it seems that we can match most of
the sequences with some confidence.

We need to define some terminology before we proceed further. Firstly, we say that we have a
possible downstream match of an upstream record, if

• the measured downstream length is within some tolerance of the measured upstream length;
and

• the downstream timestamp is within some tolerance of that predicted by considering the up-
stream timestamp, the upstream measured speed, and the distance between the outstations.

A possible upstream match of a downstream record is defined similarly, except that one considers
a backward forecast of the upstream timestamp using the downstream timestamp and downstream
measured speed. We say that a pair of records are a possible match if the downstream record
is a possible downstream match for the upstream record, and the upstream record is a possible
upstream match for the downstream record. Further we say that two records are a definite match if
the downstream record is the unique possible downstream match of the upstream record, and the
upstream record is the unique possible upstream match of the downstream record.

It would clearly be desirable if we could re-identify 100% of records as definite matches. However,
due to the length measurement error we described above, this is not possible.

The principal question concerns the size of the length and timestamp tolerances mentioned
above. If these tolerances are too tight, then it is possible that many records will have no possi-
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Figure 4: Short sequences of vehicle length measurements against time, taken from lane 1 at (top)
the upstream outstation and (bottom) the downstream outstation. Note that there is an offset of
40s between the two graphs. It appears possible to re-identify most vehicles, despite the length
measurement errors.

ble matches at all. In fact, as mentioned earlier, the outstations fail to record some vehicles, so that
even under loose tolerances, some records will have no possible matches.

However our aim is to re-identify as many vehicles as possible, even if this process includes a
probabilistic element. Thus our strategy is to set loose tolerances where typical records will have
more than one possible match. The idea is then to score each possible match, and find a set of
pairings which overall has the best score. However, our basic data set has over 600,000 records at
each outstation, and we cannot expect to match such long sequences in one step.

Our approach therefore is to try and break sequences of traffic into smaller subsequences and
to seek optimal matches between these. The overall strategy is to use long vehicles (usually defined
as over 10m) as reference points which assist in breaking up sequences. A first step therefore is to
obtain likely matches (somewhat weaker than definite matches) for large numbers of long vehicles
throughout the data set.

The mathematical formulation of the full process is extremely complicated and is still under de-
velopment. Here we illustrate the idea with an example of the search for likely long vehicle matches,
which has most of the key features of the more general search for shorter vehicles once long vehicle
reference points have been found.

The first step is to choose a long vehicle record in the upstream data set. We then find all possible
downstream matches, and for each of those possible downstream matches, we find all possible
upstream matches; for each of those possible upstream matches we find all possible downstream
matches, and so on. If we only allow matches with records whose measured length is above a certain
threshold, and if we set error tolerances sufficiently tight, the process described will terminate: i.e.,
we will end up with sets D and U of downstream and upstream records respectively, such that all
possible downstream matches of all elements of U are contained in D, and similarly all possible
upstream matches of all elements of D are contained in U . For a real example, see the data of
Fig. 5, where the process terminated with the |D| = |U | = 4.

The next step is to calculate possible (bi-directional) matches between D and U ; i.e., to identify
all pairs of elements d ∈ D and u ∈ U such that u is an upstream match of d, and d is a downstream
match of u. This gives a possible match matrix, which for the Fig 5 example takes the form
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Figure 5: This figure plots measured lengths against timestamp and illustrates how the principle of
possible matches may be used. The length error tolerance is ±1.5m and the timestamp tolerance
corresponds to a ±20% deviation in average speed between the loops, compared to that which is
measured. The leftmost group of circles (lane 1) and squares (lane 2) labelled 1, 2, 3, 4 are upstream
records and the group of rectangles labelled 1, 2 etc. towards the right of the figure represent the
tolerances which downstream records (the circles and squares labelled A, B, C, D) must fall within to
be considered possible downstream matches. Likewise, the leftmost group of rectangles A, B, C, D
represent the tolerances which upstream records must fall within to be considered possible upstream
matches for the respective downstream records. Therefore the possible downstream matches of 1
are A, B, C; of 2 are A, B, C, D; of 3 are C, D; of 4 are C, D. Likewise the possible upstream
matches of A are 1, 2; of B are 1, 2; of C are 2, 3, 4; of D are 2, 3, 4. It follows that A and B
are each possible matches of 1 and 2; further C and D are each possible matches of 2, 3 and 4.
If we assume that each record has at least one possible match, then matches of C or D with 2 are
impossible, because we seek a bijection between U := {1,2,3,4} and D := {A,B,C,D} It follows
that we must calculate scores to decide which way round A and B match 1 and 2 and which way
round C and D match 3 and 4. Different scoring formulations are possible, but if one considers the
distances of points relative to the centres of the required tolerance rectangles, then A matches 1, B
matches 2, C matches 4 and D matches 3. It is clear that the vehicle corresponding to record 4 has
been undertaken by that corresponding to 3 and 4 has subsequently pulled in to lane 1.
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A B C D

1 1 1 0 0
2 1 1 1 1
3 0 0 1 1
4 0 0 1 1

Then we need consider which amongst the possible matches are the most likely. To do this we
choose and calculate a scoring function. For example, a match might be scored according to the
appropriately weighed sum of (i) the discrepancy in length measurements of the two records, (ii)
the difference of downstream timestamp and the forecast obtained from the upstream record, and
(iii) the difference of upstream timestamp and the backward forecast obtained from the downstream
record.

In the simplest case where D and U have the same number of elements, we seek the pigeon-
holing map Π (i.e., the bijection) between the two sets which minimises some norm (e.g., the sum)
of the scores of each of its matches. As illustrated in the example of Fig. 5, the search for a bijec-
tion may immediately eliminate certain combinations of possible matches and massively reduce the
search space.

The search space of bijections consists of permutation matrices which are invariant when ANDed
with the possible match matrix given above. Under most natural scoring functions, the Fig. 5 example
yields the optimal bijection

Π =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (2)

In the caption of Fig. 5, we describe how lane changing information is inferred from this result.

3 Aerial video analysis

In this section we announce work on the automatic image processing and analysis of video pictures
of highway traffic which have been taken from a helicopter flying above the motorway. These pictures
were originally filmed by TRL as part of a Highways Agency funded project to study driver behaviour
at motorway merges. However, we believe that modern data analysis tools will be able to extract
much more information.

In particular, since the field of view is several hundred metres (see Fig. 6), it should be possible
to track vehicles for several seconds and obtain displacement time series with a resolution of 25Hz.
This time series can then be differenced to yield new time series for velocity and acceleration. This
is precisely the information required to fit the details of microsopic car-following laws which has not
previously been available.

In fact, Low and Addison (1999) have pioneered the use of aerial pictures to fit car-following
models. As part of an EPSRC funded project, they chartered a helicopter and followed vehicle pairs
down the motorway. They subsequently measured vehicles’ displacements by hand and attempted
to fit some simple nonlinear dynamics to the results. The goals of our work are much more ambitious:

• Firstly, we want to analyse large numbers of interacting vehicles, so that we may understand
the full range of driver variablity and its effect on macroscopic dynamics. It follows that we
would rather not measure vehicles’ image coordinates by hand, and we would like as many
steps of the process as possible to be carried out automatically in software.

• Secondly, we would like to use existing aerial pictures which were originally recorded for other
purposes than our own. These pictures may be less than ideal: e.g., the cars may appear
small and rather too far away, or the camera angle may be bad, and high winds may also buffet
the helicopter and lead to pictures which shake.

Our approach is based on standard modern image processing techniques; see Gonzalez and
Woods (1992) for an introduction. The process is as follows:

9



LUNT AND WILSON: NEW DATA SETS AND HIGHWAY TRAFFIC MODELS

Figure 6: Screen capture from our automatic image analysis software package. The operator has
selected a vehicle, top picture approximate coordinates (490,150) and the software has automatically
tracked the vehicle for 3 seconds (bottom picture).

• We copy the pictures on to hard disk using a video capture card. This gives 25 bitmap files per
second. Each bitmap file has 24 bit colour and about 600 rows and about 700 columns.

• We throw away all the even numbered pixel rows. This is to eliminate the undesired combing
effect which arises because the video camera is interlaced.

• The operator looks for prominent (stationary) features which are present in as many video
frames as possible. The operator selects rectangular regions around each of these reference
points in the first image frame of the sequence, and the software remembers the bitmaps inside
these rectangles.

• The software package automatically tracks the pixel coordinates of each of the reference points
in every video frame. (See Fig. 7 for an illustration of this process.) This tracking is achieved
by seeking a least squares best fit position of the initial stored bitmap to each new video frame.
The initial position for the search is usally the pixel coordinates of the reference point in the
previous frame. For computational efficiency, a maximum size (number of pixels) for the search
window must also be defined, and if the reference point moves more than that number of pixels
between frames, the software will usually fail to track the reference point.

• The pixel coordinates of all (stationary) reference points together will allow one to define for
each frame a transformation from pixel coordinates to a displacement defined in terms of the
relative (real) displacement of the reference points. (All reference points and vehicles must
be approximately co-planar in real space.) When tracking moving vehicles, this allows one
to eliminate the component of apparent motion due to the motion of the camera. Absolute
distances can be fixed by measuring the length in pixels of some object in the frame whose
size is known, e.g., the lane markings.

• The least squares matching process described above is used to follow vehicles through the
sequence of video frames: see Fig. 6. Knowledge of the reference points’ pixel coordinates
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and vehicles’ velocities enables one to obtain refined guesses for the initial search position.
After pixel coordinates of vehicles have been obtained, real displacement coordinates may be
obtained using the transformations described above.

The last part of this work is at the limits of what automatic image analysis can presently achieve, and
work is still in progress. However, at the UTSG conference we hope to announce the first large data
set produced by automatic image analysis.

4 Conclusion

In this paper we have reported progress on our analysis of two new microscopic highway traffic data
sets, namely (i) MIDAS IVD and (ii) aerial video pictures. In our view, the analysis of microscopic
data is essential if highway simulation packages are to be improved.

We would like to thank the Highways Agency for allowing us to use these data sets (which were
originally collected for other purposes) free of charge.

In the future, we feel that there is scope for the deliberate collection of very much more compre-
hensive data than that described here. In particular, use of triple inductance loops, or clever double
loop algorithms, could lead to point measurements for acceleration. We believe that there is also
scope for reducing vehicle length measurement error by improving the microcontroller software. Our
belief is that comprehensive data collection, in combination with modern data analysis techniques,
will in time lead to a thorough quantitative understanding of all aspects of driver behaviour.
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Figure 7: Screen capture from our automatic image analysis software package. (View sideways.)
The operator has selected small rectangular regions of the top picture which contain easily identi-
fiable features (small bushes, chevrons etc.). These features are stationary and are to be used as
reference points. Our software has automatically tracked the features through 5 seconds of video:
see bottom picture. Although the features are stationary, their pixel coordinates change due to the
motion of the helicopter. Tracking stationary reference points allows one subsequently to factor out
that component of vehicles’ apparent motion which is due to the motion of the helicopter.
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