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HOMOCLINIC ORBITS IN A NEAR-INTEGRABLE MIXED
TYPE CNLS SYSTEM

A. AIGNER AND V. M. ROTHOS

Department of Mathematical Sciences, Loughborough University. Loughborough
LE11 8TU UK

We consider a system of coupled nonlinear Schrédinger equations with even, peri-
odic boundary conditions, which are damped and quasi-periodically forced. Under
certain conditions, we establish criteria for the existence of homoclinic orbits to
a spatially independent invariant torus. We compare the analysis with rigorous
numerical simulation.

1. Introduction

Soliton pulses are the heard of high speed fiber-optic telecommunication sys-
tem and hold great potential for all optical switching devices. Novel soliton
packing schemes propose to subdivide information streams into different
wavelengths-wavelength division multiplexing (WDM), or into orthogonal
polarizations-polarization division multiplexing (PDM). However, a proper
modeling of these schemes, especially to address stability properties, re-
quires careful attention to the various perturbations which are present in
optical systems. To model the interaction of the orthogonal polarizations
of a pulse, the widely studied nonlinear Schrédinger equation (NLS) is ex-
tended to the integrable Manakov system. However, fiber-optic systems
exhibit birefringence, differing phase and group velocities for different po-
larizations, as well nonlinear interactions between polarizations dependent
upon amplitude—cross-phase modulation (XPM) and upon complex phase—
four-wave mixing (FWM). The nonlinear terms break the integrability of
the Manakov equation and numerical simulations including these nonlin-
earities have demonstrated pulse splitting and inelastic collisions.
We consider the mixed type coupled NLS equations:
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ipt = —Daa — 5(01 |p|2 + 03 |Q|2 —w?)p (1)
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+ie[asq + dogyy — Do — vy + (81 |p|° + )],

with even periodic boundary conditions

p(z +271) = p(z), q(z + 27) = q(z), p(—2) = p(x), ¢(—z) = q(z), (2)

where a1, as,dy,ds, 01,1, T2, v are small parameters and §; # 1.

The system (1) is an example of an infinite dimensional dynamical sys-
tem in interaction. We explicit in the next section its corresponding sym-
plectic structure. Previous examples of such structures have been presented
for the coupled Maxwell-Dirac system® and by Chernof and Marsden®.

In Section 2, we exhibit the analytic expression of the homoclinic so-
lutions for CNLS and we prove the existence of a set of invariant in order
to derive the Mel’nikov conditions to establish necessary condition for the
persistence of homoclinic solutions under dissipative perturbations. The
sufficient conditions and full dynamical systems consideration are studied
in Aigner’? et al. In Section 3, we investigate numerically the existence of
temporal homoclinic chaos for the CNLS system.

2. Integrable Homoclinic Orbits

We consider the CNLS system in the following form:
. 1 . 1
ipt + Pea + 5p(or — w* +¢5) =0, iq + Gow + 54(pr + g5 —w%) =0, (3)
where r = o1p* and s = o2¢™ under the assumption that the potential are
even periodic functions on [0, L].
This system is the compatibility condition of the Lax pair:

Ur = (EAo + A, O = (B*Ag + EA; + A2)9, (4)

where Ag, A1, As are defined in Forest” et al. Now consider the plane wave
solution

po = aeikx—iﬂt, go = be—ikx—iﬂt, (5)

1
where Q= k* — 5(01|a|2 + a3|b|?) + w?.

A spatial period is chosen, for example I = 27. And then the wavenumber
of the plane wave is chosen, for example £ = 1, and the amplitudes are fixed,
for example a = 2 and b = 2. The plane wave may be linearly unstable to
perturbation by certain Fourier modes on the given spatial period. Let the
wavenumbers of the Fourier modes be labeled by A,, = 2L—”n

To construct the homoclinic orbit, we need a certain spectral parameter
E, that corresponds to the wavenumber A, of the Fourier mode. The



plane wave is unstable if and only if F,, is non-real. Assuming E = E,, is
non-real, the homoclinic orbit pp, gn, which saturates the linear instability,
is defined by

* *

U R v

T A TRk
where % denotes complex conjugate. The variables u and v are defined
by in terms of the eigenvector of the Lax pair z/? = (¢1,v2,93)t by u =
s /b1, v = 3 /1p1. Upon substitution into the Béicklund transformation”,
and oya® + 026> = A2 + A?, s0 6y € [0,7/2] as defined above makes sense.
The expression of the homoclinic solution for the CNLS system (since k = 0)
is given by:

pr = pot+2i(E*—E)

Pn = pOh(wa t): qn = qOh(ma t)7 (6)
where
cos 26y — sin fpsech 27 cos(2x + 6y — §) + i tanh 27 sin 26,

h(z,t) =
(%) 1 + sinfpsech 27 cos(2x + 6o — &)

The orbit is homoclinic up to a phase shift to the base plane wave.

ei?ool’

6o = arctan( A AN =o01a® + aab® — A% (7)

Z):
The Floquet discriminant D is central to the theory of CNLS. We con-
sider the initial value problem:

lim h(z,t) =
t—+oo

LM = EM, M(0; E; p,q,r,s) =1, (8)

with
L=0, — (EAg + A1), (9)
where Ap, A; are defined in (4). The Floquet Discriminant D is defined by
D = —4(D;* + Dy*) + D;?Dy? + 18D, D, — 27, (10)

Dl = traceM(l) = Mll(l) + M22(l) + M33(l),
Dy = My (1) Mas (1) — Mys(1) My (1) + Moo (1) Mss (1) — Mas (1) Mao (1)
+ M1 (1) Mas (1) — Mys (1) My (D).

One interplays D’s dependence upon the complex spectral parameter E
with its dependence of the functions p, ¢ and r,s. The function D is entire
in both E and (p, ¢,r, s) and we have used its E dependence to characterize
the spectrum of the operator L.

If the potentials are sufficiently smooth, one can describe the asymptotic
behavior of D(E;p,q,r,s) as E — oo. The gradients of Dy,Ds and the
Floquet Discriminant D with respect to (p,q,r,s) are given in Aigner! et
al.



3. Persistence Homoclinic Solutions-Necessary Condition

In this section, we discuss the derivation of transversality condition based
on the Poincaré-Arnold-Melnikov theory for finite dimensional dynamical
systems and the Hamiltonian structure of the CNLS system. The evolution
of any real-valued functional S under the flow governed by the unperturbed
CNLS formally obeys:

dsS

= ={s.m}.
The unperturbed CNLS flow conservates the following quantities: (i) the
momentum of the solutions J; (ii) the energy of the first mode J> and the
second mode J3 (iii) the Floquet discriminant D, Aigner! et al. The above
functionals conserved by the CNLS flow are those that Poisson commute
with the Hamiltonian

_ L[ 2 1 o o0 1 4 4
Holp 3,0 = 5= [ (ol +1a” + 3Ula) + S1lpl* + el
0

w? 2 2
+5- (1ol + 1) de,

{Jl,HO}:{J2,H0}:{J3,H0}:{D,HO}:0. (11)

The class of functional are related with the special symmetries of solutions
of CNLS. In particular, we consider the complex functions p(z, t), q(z,t) as
p = Pel? ¢ = Qe'® and using the Lie symmetries theory one can prove that
the solutions p, ¢ of CNLS are invariant by space translation, time transla-
tion, rotation of the phase a, rotation of the phase b. Hence, Noether’s the-
orem implies that there exist four independent nontrivial conserved quan-
tities associated with each of the Hamiltonian symmetries (Ji, Hy, Jo, J3).
Using the Hamiltonian structure of the CNLS system and implicit function
theorem, we can prove':

Prop 3.1. A solution q = (p,¢) of CNLS which is homoclinic to a two

dimensional torus of fixed points persists under the perturbation (cf (1) if

there exists q. e-dependent family of solutions of the PCNLS such that:
lim (- (1) = S(Q:), lim Bs(a(1) = B5(Q:) = 0, Bs(ax(1) = B (Q2)

[t|—o0 |

as € — 0 and Q. is a perturbed saddle point. For any functional S that
Poisson commutes with Hy, we define the Melnikov function as:

+o00
M= / B (cthom) dt,

— 00



+oo ™ 9S OF oS OF
_/ [{87H1}+ o —(—p—sz)+—q(a—q—VQz)

o 0p 0
0S OF - 0S OF B
+8_p(6_ﬁ —vpy) + B_q(a_cj —vq,) dz | dt, (12)

where

. 27
_ 1 _ _
Hi(p,q,p,q) = %/ I'i(p—p) +Ta(q— q) de,
0

o 1 2w
Fo0.5.0 = 5 | dilpal’ + la = (@ilpf + aslal”)
0

1
+§(Ipl4 + lg* + 8Jp|*|a]®) dz.

Suppose that there exists a point (Gli, 02i, 50) such that
M(8,00) =0 and 0s,M(8,d0) # 0,

then the Mel’'nikov function has simple zeros, ie W*(g-) and W*#(M.) in-
tersect transversally.

4. Numerical Simulation

The equations given by (1.1) are integrated using a pseudospectral method
using a Fourier cosine series satisfying the even boundary conditions given
by (1.2). For the temporal integration a fifth order variable-stepsize Runga-
Kutta method is used with local error control. A spatial discretization of
nxz = 128 and a stepsize of about dt = 107°s works in all cases. A fast
discrete cosine differentiation matrix is used to improve performance.

Theoretically homoclinic solutions exist only for the focusing-focusing
case (01 = o2 = 1) and the mixed focusing-defocusing case (o1 = =1,
o2 = F1). To find the homoclinic solutions to the perturbed CNLS system
we initialize with a complex perturbation p, § to a plane wave solution

p=po(14+6p), q=q(1+9G), (13)

where the plane wave solution of constant amplitudes a,b are given by
equation (2.3). The complex perturbations p,§ can be expressed as lin-
ear combinations of pure Fourier modes (see Forest” et al and Forest and
Wright®) given by

p= f+€i(mv—,ut) + fie—i(ms—,u*t), G= g+€i(mv—,ut) +gie—i(nm—u*t)’ (14)

where * denotes complex conjugate and the coefficients fi, f—,g4+,9- € C
are given by the eigenvector

(f+7f—7g+7g—) = (+/1' - ’i)ila (_:u - ’i)ilv (+/1' - K’)ilv (_/1' - K’)il): (15)



Figure 1. Plot of the Ly norm versus time and x for the focusing-focusing case (o1 =
oo = 1) and (a) € = 0, (b) e = 0.1 and the following parameters: k = 0.3, a = b =1,
ai=d;=v=T;=1 (fori=1,2), 5 =0.1 and w = 1.

and p € C satisfies the dispersion relation for linearized disturbances
14 + (orlal? = w2)] [ + (2ol = )] — oroafaPp = 0. (16)
The dispersion relation (16) can be solved directly for p yielding four roots
Pij2 = K, H3/4 = +VK2 — 5102 — 0202, (17)

with two stable modes (1/2) and two potentially unstable modes (u3/4)-
A non-zero imaginary part of the phase velocity p represents a temporal
growth mode of instability in time. One can identify a critical wave number
Kerit for which pg /4 is complex, having two instable modes, given by

Kerit < V0102 + 02b2. (18)

From equation (18) it is clear that for the focusing-defocusing case (o1 =
+1,00 = F1) the focusing channel has to be stronger than the defocusing
channel for p3,4 to be complex.

To satisfy the even symmetric boundary conditions (1.2) only the even
Fourier cosine modes are chosen and the plane wave number is set to zero
(k = 0) yielding the initial conditions

p(z,0) = a(l + (f4 + fZ) cos(kz + ¢)), (19)
4(2,0) = b(1 + (g1 + g) cos(kz + 8)),
where ¢ is an arbitrary phase shift.

Numerical results are shown with and without perturbations for the

focusing-focusing case in Figure 1 and the focusing-defocusing case in Figure

2. In both cases homoclinic solutions clearly persist under perturbations,
exhibiting pulse shortening and pulse intensification.
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Figure 2. Plot of the Ly norm versus time and x for the focusing-defocusing case (o1 =
1,020 = —1) and (a) € = 0, (b) € = 0.1 and the following parameters: x = 0.3, a = 2,
b=1,a;=d;=v=T;=1 (fori=1,2), 61 =0.1 and w = 1.
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