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Global bifurcations and bistability at the locking boundaries
of a semiconductor laser with phase-conjugate feedback

Kirk Green and Bernd Krauskopf
Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, UK
(Dated: February 4, 2002)

We investigate dynamics and bifurcations of a single-mode semiconductor laser subject to phase-
conjugate feedback near the locking region. The system is described by rate equations which are
a three-dimensional system with a delay. With new tools that go much beyond mere simulation,
we find and follow steady states regardless of their stability and compute unstable manifolds of
saddle points. Furthermore, we identify heteroclinic bifurcations, which turn out to be responsible
for bistability and excitability at the locking boundaries.

I. INTRODUCTION

Recently there has been much interest in the nonlin-
ear dynamics of semiconductor lasers; see, for example,
the recent overviews Refs. [1, 2] and further references
therein. Due to the material properties of semiconduc-
tor lasers, external influences can alter the stability and
dynamics of the laser dramatically. Knowledge of this
effect is therefore essential for physical applications. Of
particular interest are lasers subject to optical feedback,
such as lasers with conventional optical feedback (COF)
from an external mirror [3, 4], lasers with phase con-
jugate feedback [5-10], the case considered here, lasers
with opto-electronic feedback [11], and mutually coupled
lasers with delay [12]. In all these cases the relevant
and generally well-established models are delay differen-
tial equations (DDEs) [13].

Delay differential equations have received a lot of at-
tention recently. Other areas where DDEs are crucial
include biology [14], neural networks [15] and control
theory [16]. It is quite a challenge to understand the
dynamics and bifurcations of a DDE. Already in the case
of one fixed delay 7 (like in a laser with feedback), the
phase space of the DDE is the infinite-dimensional space
of continuous functions on the delay interval [—, 0]; see
Ref. [20]. Tackling delay equations arising in applica-
tions is analytically very hard, and for a long time the
only numerical tool was direct simulation by integration
of the DDE. Very recently the package DDE-BIFTOOL
[23] was developed, allowing numerical continuation of
steady states and periodic solutions and the detection of
their local bifurcations. Building on this work, we de-
veloped a method for computing unstable manifolds in
DDEs. These new tools allow one to find global bifur-
cations that are responsible for sudden changes of the
observed dynamics of a DDE.

In this paper we bring these new tools to bear to
study the locking mechanism in a semiconductor laser
receiving phase-conjugate feedback (PCF) from a phase-
conjugating mirror (PCM) [7, 9, 10]. Phase-conjugate
feedback is physically interesting as it produces a return
wave that coincides exactly with the incident wave, so
that alignment is less of an issue. Furthermore, distor-
tions are undone on the return trip in the external cav-

ity. A laser with PCF was shown to exhibit complicated
nonlinear dynamics, including stable periodic operation,
quasiperiodic motion and chaos, as was found in detailed
simulations of bifurcation diagrams, phase plots and op-
tical spectra. The overall picture is that of regions of
periodic output that are interspersed with ‘bubbles’ of
chaos [9, 10].

Here we concentrate on the mechanism of locking.
Physically, in its locking range the PCF laser is both
frequency locked and phase locked to the frequency of
the PCM pump laser. Unlike the case of a COF laser,
phase locking in a PCF laser does not depend on the
feedback phase. In particular, phase locking results in
an ultra-narrow laser line-width which has been shown to
be stable even with the addition of noise [9]. By continu-
ing steady states and computing the unstable manifolds
of saddle points we find that hysteresis loops and global
bifurcations are involved in the mechanism of locking in
the PCF laser.

II. RATE EQUATIONS

Our object of study is a single-mode PCF laser re-
ceiving feedback from a PCM which responds instanta-
neously. The rate equations describing this PCF laser
are well established [7, 9, 10] and can be written as
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for the evolution of the slowly varying complex electric
field E(t) = E,(t) + iEy(t) and the population inver-
sion N(t). In system (1), nonlinear gain is included as
G = GN(N — No)(1 — €P), where ¢ = 3.57 x 1078 is
the nonlinear gain coefficient and P = |E(t)|? is the in-
tensity. This produces an effective detuning of 166 MHz.
Parameter values are set to realistic values [10], namely
the line-width enhancement factor « = 3, the optical
gain Gy = 1190 s !, the photon lifetime 7, = 1.4 ps,



the injection current I = 65.1 mA, the magnitude of
the electron charge ¢ = 1.6 x 1071 C, the electron life-
time 7, = 2 ns, and the transparency electron number
No = 1.64 x 108. The phase shift ¢pcy at the PCM
was set to zero and Nso = No + 1/ (GnT7p). The feed-
back term in system (1) involves the feedback rate x and
the external cavity round-trip time 7 which we fix at
7 = 2/3 ns. Together they form the dimensionless bifur-
cation parameter k7.

System (1) is written in the frame of reference of the
solitary laser. A locked solution is one where the fre-
quency of the PCM pump laser is locked to that of the
solitary laser and, therefore, locked solutions are steady
states of system (1). Note that noise terms due to spon-
taneous emission have been left off system (1). It has
been shown that both intensity and frequency noise are
negligible at the low frequency range we are dealing with
[7].

Mathematically, system (1) is a system of DDEs [20].
The state of the system at time ¢ > 0 is a continuous
function on the time interval [t — 7,¢], which is an evo-
lution of the initial condition defined on the time inter-
val [—7,0]. Therefore, the system is infinite-dimensional.
While (E, N)-space is not the phase space of system (1),
it is nevertheless helpful to show the dynamics projected
onto (E, N)-space, which is also called the physical space
of system (1).

System (1) is symmetric under the transformation
FE — —E, which corresponds to a rotation of m of the
E-plane, so that an attractor is either symmetric, or has
a symmetric counterpart [10, 21]. Physically, this sym-
metry corresponds to a phase shift by #. The symmetry
implies restrictions on the types of bifurcations of peri-
odic solutions: for example, symmetric periodic solutions
cannot undergo period-doubling bifurcations [22]. More
generally, this discrete symmetry allows for the possi-
bility of symmetry-breaking bifurcations. Note that the
PCF laser considered here is different from the COF laser
in terms of the underlying symmetry of the governing
equations [21]. The COF laser is symmetric under any
rotation of the electric field £ and does not feature sym-
metry breaking bifurcations.

III. COMPUTATIONAL METHODS FOR DDEs

In our study we make use of very recent developments
in theory and numerical methods for DDEs. In simula-
tions we integrate system (1) with an Adams-Bashforth
forth-order multistep method [19]. Moreover, we use re-
cently developed tools for DDEs that go beyond simula-
tion.

First, we wuse the continuation package DDE-
BIFTOOL [23], consisting of Matlab routines, for the bi-
furcation analysis of steady states and periodic solutions.
This not only allows one to find and follow stable solu-
tions (those one also finds by simulation), but also un-
stable ones. Furthermore, DDE-BIFTOOL detects local
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FIG. 1: Bifurcation diagram obtained by simulation showing
normalized inversion N versus the feedback strength 7 (a),
and computed with DDE-BIFTOOL showing a normalized
amplitude versus x7 (b); see text for details.

bifurcations, including saddle-node bifurcations, Hopf bi-
furcations, period-doubling bifurcations and saddle-node
bifurcations of limit cycles. The continuation of bifurca-
tions leading to mixed-mode oscillations of a COF laser
in Ref. [17] and our bifurcation analysis of the PCF laser
here and in Ref. [18] are first examples of continuation
studies with DDE-BIFTOOQOL.

Second, we compute the one-dimensional (1D) unsta-
ble manifolds of saddle steady states with one unstable
eigenvalue. Each 1D unstable manifold has two branches,
which are computed by integrating from two initial con-
dition along the associated 1D unstable eigendirection
close to but on different sides of the steady state. This
eigendirection can be found by an iterative approach [19]
or with a new routine that was recently added to DDE-
BIFTOOL. Knowing at which attractor the branches of
1D unstable manifolds end up is crucial for understanding
the global dynamics, as will become clear in Section V.

IV. BIFURCATION DIAGRAMS

Figure 1 contains two bifurcation diagrams. In
Fig. 1(a) we integrated system (1) and plotted (after
transients died away) the normalized value of the inver-
sion N = (N/Nso — 1) x 10 whenever the intensity P
crossed its average value in the positive direction [10]. No
points in the bifurcation diagram correspond to a locked
solution. A small number of points correspond to a pe-
riodic solution. A large number of points correspond to
quasiperiodic or chaotic dynamics. Due to the presence
of hysteresis discussed below, the periodic solution for
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FIG. 2: Phase portraits shown in projection onto (E,N)-
space; the box is [—200, 200] x [-200, 200] x [7.61x10%, 7.68 x
10%]. From (a) to (1), k7 takes the values 0.1000, 0.2700,
0.2952, 0.3065, 0.4410, 0.5180, 0.6182, 0.7183, 0.7252, 0.7253,
0.7904, and 0.9004. Except for (a) and (b), plotted are both
branches of the 1D unstable manifold of one of the two sym-
metric saddle points (x).

kT € [0.0000, 0.2953] was computed for increasing k7,
while the periodic solution for k7 € [0.7487, 0.9004] was
computed for decreasing 7.

Figure 1(b) was obtained with DDE-BIFTOOL. For
steady states we plot Re(FE) and for periodic solutions we
plot |max(Re(E)) — min(Re(E))|, offset by the Re(E)-
value of the steady states at the Hopf point. Attract-
ing solutions are drawn as solid curves, while unstable
solutions are drawn as dashed curves. By studying the
eigenvalues of the system we are able to identify the bifur-
cations involved, namely a saddle-node bifurcation SN,
a Hopf bifurcation H, period-doubling bifurcations PD1
and PD2 and a saddle-node bifurcation of limit cycles
SL. A global Shil’nikov bifurcation Sh was observed at
kT = 0.2953. The symmetry of solution branches, which
can be found from the respective phase portraits, is in-
dicated at the top and bottom of Figure 1.

Figure 1(a) is useful for investigating bifurcations of
attractors, but in Fig. 1(b) we also follow unstable solu-
tions and their bifurcations. We can already see that the
system features hysteresis at the boundaries of the lock-
ing region, which is discussed in more detail below. Fig-

E.

FIG. 3: Projection of plots in Fig. 2 onto the E-plane; the
square is [—270, 270] x [—270, 270].

ure 1(b) also shows that the extra branches that develop
in Fig. 1(a) at k7 > 0.1347 are not bifurcations. They are
due to the symmetric limit cycle spiraling through, and
thus producing extra crossings with, its value of average
intensity.

V. UNSTABLE MANIFOLDS

Figures 2 and 3 show the phase portraits correspond-
ing to Fig. 1 in projection onto (E,N)-space [Fig. 2]
and the E-plane [Fig. 3]. Except for panels (a) and (b),
which were obtained by simulation, these phase portraits
were obtained by plotting both branches of the 1D unsta-
ble manifold of one of the two symmetric saddle points,
marked by x; the corresponding attracting steady states
are marked by +. The bifurcation diagrams in Fig. 1,
along with Figs. 2 and 3, present a complete picture of
the route into and out of locking for the PCF laser spec-
ified in Section II.

For very low values of k7, system (1) has an almost
planar periodic solution surrounding the origin of the E-
plane [Figs. 2, 3 (a)], which is the continuation of the
free-running laser (k7 = 0) that has constant power and
inversion. With increasing feedback the laser is destabi-
lized. First, the periodic solution starts to curl up near



two distinct points [Figs. 2, 3 (b)]. It develops a typical
shape and does end in a Shil’'nikov bifurcation Sh when
it hits two saddle-focus steady states at k7 ~ 0.2953,
[Fig. 1(b)]. The exact nature of this global bifurcation is
detailed in Sec. VI A. The two saddle-focus steady states
are each others symmetric counter parts and are born to-
gether with two attractors in the saddle-node bifurcation
SN at kT = 0.2794, that is, before the Shil’nikov bifurca-
tion [Fig. 1(b)]. This produces a region of bistability be-
tween the pair of attracting steady states and the periodic
solution. Indeed, for k7 € [0.2794,0.2953] one branch of
the 1D unstable manifold converges to the periodic solu-
tion, while the other branch converges to a locked steady
state [Figs. 2, 3 (c)]. Physically this bistability means
that the laser is capable of producing locked or periodic
output for the same experimental value of k7, depending
on the initial condition. After the Shil’nikov bifurcation,
bistability is lost and both branches of the saddle-focus
steady state converge to one of the two locked solutions,
which are the only attractors and symmetric images of
each other [Figs. 2, 3 (d)].

This bistability leads to a hysteresis loop: for increas-
ing k7 the symmetric periodic solution is destroyed in the
Shil’nikov bifurcation and the system jumps to one of the
steady states, whereas for decreasing k7 the two steady
states are destroyed in the saddle-node bifurcation and
the system jumps to the symmetric periodic solution. So
not only do we see a qualitative change in the attracting
solutions, but we also see a change in the symmetry of
the attractor, as is indicated in Fig. 1.

As k7 is increased further through the locking region,
the two branches of the 1D manifold of the saddle steady
state continue to converge to the respective locked solu-
tions, but with an increasingly larger degree of spiraling
[Figs. 2, 3 (e)(f)(g)(h)]. Physically this spiraling corre-
sponds to the characteristic relaxation oscillations of the
laser (a periodic exchange of energy between electric field
and inversion), which is still damped. At k7 & 0.7247
there is a saddle-node bifurcation of limit cycles SL creat-
ing two pairs of symmetric periodic solutions [Fig. 1(b)],
one attracting and one of saddle-type. The attracting pe-
riodic solutions grow at a rate proportional to /KT, one
speaks of an undamping of the relaxation oscillations.
The saddle periodic solutions shrink down to the locked
steady state and disappear in a sub-critical Hopf bifur-
cation H at k7 = 0.7487; see [Fig. 1(b)]. This bifurcation
results in the loss of stability of the locked steady states
and forms the boundary of the locking range. The sys-
tem jumps to one of the two attracting periodic solutions
and the laser produces self-pulsations (relaxation oscilla-
tions). Indeed both branches of the unstable manifold of
the saddle steady state end up at an attracting periodic
solution [Figs. 2, 3 (j)].

In other words, also the right-hand locking bound-
ary is associated with a region of bistability: for k7 €
[0.7247,0.7487] both the pair of locked solutions as well as
the pair of periodic solutions corresponding to undamped
relaxation oscillations are stable. Again, this leads to a
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FIG. 4: The periodic solution just before the Shil’'nikov bifur-
cation (a) and the heteroclinic connection between the saddle
steady states z1 and 2 at the Shil’nikov bifurcation (b). Pan-
els (¢) and (d) show the corresponding time-traces of E, with
the mesh points highlighted.

hysteresis loop when k7 is swept up and down through
SL and H.

Note already that the two branches of the unstable
manifold of the saddle steady state behave differently just
after SL [Figs. 2, 3 (h)] and just before H [Figs. 2, 3 (i)].
As will be discussed in detail in Section VI B, this implies
the existence of a heteroclinic bifurcation between SL
and H.

When k7 is increased further, the pair of stable peri-
odic solutions undergoes a period-doubling cascade start-
ing at kT =~ 0.8393 [Fig. 1(b)]. This eventually leads
to both branches of the 1D unstable manifold of the
saddle steady state accumulating on a chaotic attractor
[Figs. 2, 3 (1)]. Eventually the two attractors collide in
an attractor crisis caused by a collision of their basins of
attraction, culminating in symmetry restoring inside the
chaotic region [10].

VI. GLOBAL BIFURCATIONS

We already mentioned in the last section that at both
boundaries of the locking range we find global bifurca-
tions, namely a Shil’nikov bifurcation at the left-hand
boundary and a heteroclinic bifurcation between a sad-
dle steady state and a saddle periodic solution at the
right-hand boundary. We now discuss these two global
bifurcations in detail.



FIG. 5: Before (a), at (b) and after (c) a heteroclinic connec-
tion between a saddle steady state zo and a saddle periodic
solution I';.

A. Shil’nikov bifurcation

In Figure 4 (a) we show the symmetric limit cycle just
before the Shil’nikov bifurcation Sh in which it hits the
pair of saddle steady states 1 and z5. A time-trace of E,
over its period T =& 41.07 is shown in Figure 4 (c), where
the mesh points used in the DDE-BIFTOOL continua-
tion are highlighted. When approaching Sh the period T
goes to infinity. At Sh the periodic solution disappears
and instead we have a symmetric pair of heteroclinic con-
nections between z; and x2, one of which is shown in Fig-
ure 4 (b). This connecting orbit was computed with the
new extension of DDE-BIFTOOL introduced in Ref. [24].
Its time-trace with highlighted mesh points is shown in
Figure 4 (d). An analysis of the eigenvalues of the saddle-
foci shows a negative saddle quantity, implying that there
is a unique stable limit cycle involved in the Shil’nikov
bifurcation [22].

The fact that the Shil’'nikov bifurcation appears as two
simultaneous heteroclinic connections is due to the sym-
metry of Egs. (1). When one divides out the symmetry
and identifies 1 and x5 then one gets just a regular ho-
moclinic connection at the Shil’'nikov bifurcation.

We remark that after but near the Shil’nikov bifur-
cation Sh the system is excitable — an example of ex-
citability due to a heteroclinic bifurcation [25]. When the
locked solution is perturbed to the other-side of the sad-
dle steady state it will produce a large excursion by fol-
lowing roughly the old heteroclinic connection and ending
up at the other locked solution [Fig. 2, 3 (d)]. Physically,
this corresponds to a phase jump by m and a relaxing
pulse in the power of the laser. We remark that the
amplitude of this pulse is quite small. This can also be
inferred from Fig. 3 (d): the distance from the origin in
the E-plane does not change much and the power is the
square of this distance.

B. Heteroclinic connection

Between the saddle-node bifurcation SL and the Hopf
bifurcation H we have another region of bistability where
again the laser can produce qualitatively different stable

output depending on the initial condition. The infinite-
dimensional stable manifold of the unstable periodic so-
lution forms the boundary between solutions converging
to the locked steady state or the stable periodic solution.
As the unstable periodic solution decreases in size
there must be a heteroclinic bifurcation between the
two attractors, and we explain this in detail now.
Figures 2, 3 (i) show the 1D unstable manifolds for
kT = 0.7252, which is typical of the region k7 €
[0.7247, 0.7252] where we see one branch spiraling into
a periodic solution, while the other branch spirals to a
locked solution. However, at k7 = 0.7253 [Figs. 2, 3 (j)],
one branch spirals into a periodic solution as before, but
the other branch now spirals out to the symmetric coun-
terpart of this periodic solution. This implies that be-
tween the values of k7 = 0.7252 and k7 = 0.7253 a
heteroclinic bifurcation must take place, as is sketched
in Fig. 5. Initially, the 1D unstable manifold W*(z¢) of
xo spirals into the locked solution [Fig. 5(a)]. As k7 is
increased the amplitude of the saddle periodic solution
I'; starts to decrease, from maximum amplitude at SL to
zero amplitude at H, as can be seen in Fig. 1(b). For a
particular value of k7, W¥(x¢) forms a connection with
the stable manifold W#(T';) of the saddle periodic solu-
tion I'y [Fig. 5(b)]. As k7 is increased further this connec-
tion is lost and W*(x) spirals out to the attracting peri-
odic solution I'y [Fig. 5(c)]. This behaviour is preserved
after the sub-critical Hopf bifurcation H: one branch of
the saddle steady state converges to a stable periodic so-
lution and the other branch converges to the symmetric
counterpart of this periodic solution [Figs. 2, 3 (k)].

VII. DISCUSSION

We studied in detail the transitions into and out of
locking of a semiconductor laser with phase-conjugate
feedback. Both feature bistabilities leading to hystere-
sis loops. Furthermore, both transitions to locking are
associated with global bifurcations, namely a Shil’nikov
bifurcation and heteroclinic bifurcation between a steady
state and a periodic solution, respectively. New tools for
DDEs allowed us to study these global bifurcations in
unprecedented detail.

The bifurcation scenario we described is structurally
stable. Initial investigations of some bifurcation curves
in the plane of k7 versus injection current indicate that
this scenario appears to be typical for a PCF laser
pumped near its threshold current (up to about 7.7%
above threshold), which is the region of injection current
most commonly investigated in feedback experiments.
The construction of a full two-dimensional bifurcation di-
agram is the next logical step. However, at present this
is quite a challenge and requires further developments of
numerical methods for DDEs. We are hopeful to report
results in this direction in the future.

Other ongoing investigations of the PCF laser concern
the role of periodic solutions and their unstable manifolds



in transitions to chaos for larger values of k7. For a
study of the break up of a torus and a subsequent sudden
transition to chaos see [18].

In more general terms, we believe that the results pre-
sented here showcase the usefulness of continuation and
manifold computations for the study of DDEs.
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