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Purpose: to formulate a method for normalizing computed tomographic (CT) lung 
image data as a preparation for computer-based automatic, or semi-automatic, 
diagnostic applications.   
 
Mater ials and Methods: histograms of greyscale distributions in comparable thoracic 
image slices from eight CT data-sets showed different modal values for normal, 
constituent tissues. In a given data-set, the usually consistent modes for muscle tissue, 
fatty tissue, spinal process and the descending aorta have a close correlation with the 
brightness increase necessary to bring an anterior 50x50 image region of visually 
normal parenchyma to a modal greyscale value of 35 – an arbitrarily chosen normal 
reference value. A straight line equation  relates the mode for muscle tissue in a data-set 
with the required percentage brightness correction. The validity of the processing was 
tested using the ‘ information dimension’  of noise-reduced pixel patterns, created when 
standard upper and lower greyscale thresholds are applied to 50x50 regions to confine 
the values closely around the normalized mode. An empirically based information 
dimension 
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Results: the criterion information dimension is a useful index of normal lung 
parenchyma in normalized CT data-sets. 
 
Conclusion: image normalization is a prerequisite for computer-based diagnosis of CT 
pulmonary images. 
 
 
 
 
Key terms: computed tomography (CT), densitometry, greyscale distribution, statistical 
mode, information dimension, correlation coefficient. 
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Image Normalization, a Basic Requirement for         
Computer -based Automatic Diagnostic Applications. 

 
 
INTRODUCTION 
 
     Reliable software for automatic, objective assessment of, for example, lung 

parenchyma from x-ray CT would prove a most useful diagnostic tool. A number of 

projects have been dedicated to finding practical applications towards this end. 

[1,2,3,4,5,6,7,8,9]  

Regular images and standardized processing are a sine qua non for the success of any 

suggested approach. However, irregularities in image data have been found and 

recognized as a possible source of error in tissue classification − especially where data 

has been acquired indirectly (from archives or a series of ‘downloads’ ) or from using 

different scanning protocols and/or scanners. [10,11,12,13] 

Hounsfield units and image greyscale values 

 Hounsfield units provide a scale for measuring local tissue density recorded as the 

reduction in x-ray intensity per unit thickness of material. The scale is arbitrarily 

defined such that  air, water and fully calcified bone have values of –1000, 0 and +1000 

(Hu) respectively. CT images are reconstructed using a greyscale contrast range of 0 for 

black pixels and 255 for white. The image pixels are points of varying brightness that 

depend directly on the attenuation coefficients. Studies show a good linear 

correspondence between Hu and greyscale values – particularly over the range of tissue 

densities involved in this study. [1,11]  A simple heuristic, using the straight line plot 

obtained by setting –1000 Hu = 0 greyscale and +1000 Hu = 255, produces a possible 

conversion equation, y (greyscale) = 127 + 0.1275x (Hu). In normalized images, the 

typical greyscale mode for fat is 115, which gives a corresponding Hu value of –94; for 
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soft tissue it is 132, which converts to 39Hu; and for bone anything between 140 and 

255, which corresponds to Hu range 101 to 1000. The quoted Hu values are, typically,                   

–100 to  –80, 22 to 46, and 80 to 1000 respectively. [1] 

 Computer analysis of a medical image derived from densitometry depends crucially 

on the recognition of a specific range within a greyscale distribution that is indicative of 

a particular physical condition. Specially important is the modal value representing 

‘normal’  in a given location within a thoracic region, appropriate for the patient’s 

posture during scanning. CT scans are usually (though not always) taken with the 

patient in the supine position, which means that, among other things, effects of pressure 

and gravity on organs such as the lungs must be taken into account. Differences in 

patients’  size and weight affect image quality. Other complicating factors include the 

use of a contrast medium and variable scanning parameters of range and level. [1,11,14] 

     In the dissertation, ‘Computer Diagnosis of Tomographic Pulmonary Images’  [11], 

the point is made that it is sometimes quite a small deviation from the ‘normal’  modal 

greyscale ranges that can signal a physical abnormality. For training the computer, 

50x50 image regions are selected (referred to as ‘ regions of interest’  or ‘ roi’s’ ) that are 

known to contain a significant number of pixels representing lower-than-normal, 

normal, or higher-than-normal tissue density. From each of these classes, three pixel 

patterns (plots) are segmented using empirically obtained upper and lower threshold 

values to contain, respectively, the characteristic density-related greyscale distribution 

ranges. A histogram of the greyscale distribution in the pixel plot shows its mode(s). 

However, as already suggested, though one can expect a low-deviation modal greyscale 

distribution in images of most lesion-free parenchyma – certainly in the lung fields – the 

actual mode number is not guaranteed to be the same from one data-set to another, even 
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for similar locations. [11] The term ‘normalization’  refers to an image-processing 

method aimed at correcting such differences by shifting the relative brightness values up 

or down before assessing the number of pixels contained within the threshold limits and 

the information dimension characterizing the resulting pattern. The actual degree of 

brightness correction needed is determined by reference to a standardized value. How 

one arrives at this ‘standard’  value is the subject of this paper. 

MATERIALS AND METHODS 

Fractal estimator  
 
    The information dimension (see appendix) is used as the principle estimator for 

characterizing processed regions from digitized CT lung-slice images. Individual slices, 

512x512 format, are extracted from complete data-sets which are derived chiefly, 

though not exclusively, from spiral scans; (source: Siemens Somaton Plus 4 whole-body 

spiral scanner). ‘Regions of interest’ , 50x50 greyscale pixel plots, are selected by the 

software to cover, progressively, the entire lung fields. Each region is then processed as 

three black and white images, using three pre-determined sets of upper and lower 

threshold limits: values chosen to ‘capture’  greyscale distributions that characterize the 

three different tissue densities referred to above. These thresholded distributions must 

be consistent for any subsequent analysis to be reliable.  

 Information dimension is used as an estimator in preference to capacity dimension 

based on straightforward box-counting, because it is more sensitive to the pattern of 

pixel distribution in thresholded images. Other workers researching methods of 

estimating fractal dimensions of image regions have discovered the limitations of 

simple box-counting methods, especially where images are somewhat restricted in data. 
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Impulsive noise and scatter in images – which is not uncommon – present other 

problems. [8,11,14] 

 One approach to improving the quantitative characterization of information in 

images depends on extracting a large number of features – as in the Adaptive Multiple 

Feature Method developed at the University of Iowa, [6,7] – though most workers have 

found some application of fractal measure to be a ‘best feature’ . [10,13]  This paper 

demonstrates a method that relies upon pre-processing of selected regions of interest to 

normalize pixel brightness to a chosen ‘standard’  based on ‘normal’  tissue density. This, 

allied to image smoothing to eliminate ‘noise’ , allows data to be effectively 

characterized using the information dimension as the chief discriminating feature. 

Differences among data-sets 
 
     The images in figure 1 illustrate the irregularities in greyscale distribution for similar 

tissues in selected slices, one from each of eight data-sets. The thoracic location is much 

the same in each. Experiments have shown that such irregularities occur between one 

set and another, rather than between one slice and another in a particular data-set. This 

observation is based on an analysis of the eight sets, comprising 418 slices. [11] The 

main exception occurs either where the enhancement by contrast medium happens 

partway through a scan, or its application is uneven. In the histograms, the spike nearest 

zero shows the sum of pixels resulting from x-ray attenuation detected beyond the chest 

wall and from any very low attenuation values not recorded as data − as determined by 

the CT range and level settings. The other ‘modal’  distributions occurring progressively 

towards the higher greyscale values correspond, respectively, to the lung parenchyma, 

fatty tissue and muscle tissue. Compacted material, such as bone, is represented by the 

non-modal greyscale distribution beyond that of muscle.   
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Fig. 1: histograms of image slices from around anatomical level T6 in eight data-sets. 
 
Lung 1, slice 30. 

 
 
Lung 2, slice 39. 

 
 
Lung 3, slice 32. 

 
 
Lung 4, slice 22. 
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Lung 5, slice 23. 

 
 
Lung 6, slice 20. 

 
 
Lung 7, slice 24. 

 
 
Lung 8, slice 30. 

 
 
 

These images show that, though the profiles of greyscale distribution in the selected 

slices have some broad similarities, there are significant differences in the characteristic 
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modal values for the common tissue types. Table 1 contains the modal values for 

normal parenchyma, fatty and muscle tissue etc. for the slices illustrated in figure 1; 

table 2 provides statistics for the complete data-sets. 

Table 1: modal greyscale values for  images in figure 1. 
 

 Lung -  slice  Muscle   Fat M – F  Spine  Aor ta Parenchyma: ant.  post. 
     1    -    30     111 98     13   110   110                          15     22 
     2    -    39   81 73  8 81 81                          11      – 
     3    -    32   93 79     14 90 91                          13     18 
     4    -    22 96 83     13 97 95                          14     18 
     5    -    23 66 58  8 66 65                            6     10 
     6    -    20     112 99     13   111   111                           –       – 
     7    -    24     115  102     13   112   120                          15     17 
     8    -    30     116  102     14   117   117                    *     21     18 

 
Key:  (i)  M – F  is the difference between the modal values for  muscle and fatty tissue. 
 

 (ii)   Dashes indicate an abnormal region; a possible interpolation figure for                      
‘would-be’  normality can be gauged from appropr iate data in table 2. 
 
(iii)  *  The scanning for  data-set 8 was carr ied out in the prone position. 
 

Table 2: statistical details based on modal greyscale values for  the eight 
                 complete data-sets. 
     

Data-set: 1 2 3 4 5 6 7 ¶ 8 
Muscle:     max. 
                   min. 
                   avg. 
                   std. 
                   avg.d. 

113 
109 
111 
0.98 
0.63 

83 
81 
82 
0.58 
0.42 

92 
90 
91 
0.75 
0.64 

97 
92 
94 
1.96 
1.80 

68 
65 
66 
0.64 
0.32 

112 
111 
111 
0.45 
0.41 

116 
115 
115 
0.43 
0.38 

118 
114 
117 
1.07 
0.75 

Fat:            max. 
                   min. 
                   avg. 
                   std. 
                   avg.d. 

99 
96 
98 
0.76 
0.65 

78 
71 
73 
1.95 
1.47 

79 
79 
79 
0.0 
0.0 

85 
83 
84 
0.80 
0.72 

59 
58 
58.3 
0.43 
0.38 

99 
97 
98 
0.61 
0.50 

104 
102 
103 
0.86 
0.78 

102 
102 
102 
0.0 
0.0 

M – F:        avg. 13 10 12 10 7.7 13 12 15 
Spine:        max. 
                   min. 
                   avg. 
                   std. 
                   avg.d. 

111 
109 
110 
0.45 
0.44 

82 
81 
81.5 
0.51 
0.49 

92 
90 
91 
0.80 
0.72 

97 
92 
94 
1.62 
1.36 

67 
65 
66 
0.80 
0.69 

111 
111 
111 
0.0 
0.0 

115 
112 
114 
0.99 
0.78 

118 
115 
117 
0.84 
0.66 

Aor ta:        max. 
                   min. 
                   avg. 
                   std. 
                   avg.d. 

116 
106 
112 
2.35 
2.11 

84 
80 
82 
1.06 
0.75 

92 
90 
91 
0.75 
0.64 

97 
95 
95.5 
0.67 
0.52 

65 
65 
65 
0.0 
0.0 

112 
110 
111 
0.71 
0.50 

130 
120 
124 
3.80 
3.22 

118 
116 
117 
0.51 
0.49 

Anter ior :    max. 
 (normal)    min. 
                   avg. 
                   std. 
                   avg.d. 

16 
12 
14 
1.32 
1.02 

12 
  9 
11 
1.06 
0.93 

15 
11 
14 
1.55 
1.20 

15 
12 
14 
1.00 
0.67 

11 
6 
8.4 
1.55 
1.42 

20 
16 
18.5 
1.20 
1.12 

17 
14 
15 
0.90 
0.61 

# – 
# – 
# – 
# – 
# – 

 Poster ior : max. 
 (normal)   min. 
                   avg. 
                   std. 
                   avg.d. 

26 
22 
23 
2.28 
2.01 

18 
16 
17.5 
0.88 
0.88 

20 
16 
18 
1.33 
1.04 

16 
14 
15 
1.63 
1.33 

12 
12 
12 
0.0 
0.0 

*27 
*25 
*26 
0.71 
0.63 

19 
15 
17 
1.40 
1.22 

26 
17 
22 
3.15 
2.90 
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Key:  (i)  ¶ The scanning for  data-set 8 was carr ied out in the prone position. I t follows 
                   that the anter ior  regions are more gravity affected than poster ior  ones. 
 

    (ii)  # Too few normal regions in data-set 8 to give meaningful values. 
 
         (iii) *  Too few normal poster ior  regions in the r ight field; readings refer  to the left 
                   field only. 

 
   (iii)  ‘Avg.d.’  is the average deviation, a measure of the var iability in a data-set. 

 
         (iv)   ‘Std’  is the standard deviation, a measure of how widely values are       
                         dispersed from the average value (mean) of the data-set. 
                          
 
 
 The data in table 1 can be used to determine a possible correlation between the modal 

value of the greyscale distribution for a measurable image feature and the modal values 

characterizing normal tissue in anterior and posterior regions. An important observation 

is the closeness in values obtained for muscle tissue, the spinal process and the aorta in 

a selected slice. These regions will be affected by any use of a contrast medium which, 

of course, would also affect the radio-density of the parenchyma. The M – F value (see 

key for table 1) serves as an indicator of  the relative effect of any contrast medium, 

since fatty tissue will not be affected. From this, one might deduce that lung slice 2 – 39 

and 5 – 23 result from scanning without the use of contrast, and so the imaged 

parenchyma, where normal, should have lower modal greyscale values than would 

otherwise be the case. The data shows this to be so, though slice 5 – 23 has values 

considerably lower than slice 2 – 39. This difference holds for all the data in table 2 

regarding sets two and five. 

 Overall, these data demonstrate the general consistency in modal greyscale values for 

similarly located normal tissues throughout a full thoracic scan. However, though this 

regularity holds for a given data-set, there are considerable differences between one set 

and another – hence the need for ‘normalization’ . 
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Normalization 
 

The basis of normalization is a correlated change of brightness level in a selected 

region of interest to bring the modal greyscale value for its ‘normal’  (or would-be 

normal) parenchyma to a standardized reference value. [11] The selection of this 

reference value is determined from inspection of data such as that in table 2. It provides 

a working ‘norm’  for a particular location within the slice. In this study, the decision 

involves either anterior or posterior regions for scans taken with the patient in the 

supine position. The anterior value is probably more reliable as a reference, since 

patients of widely differing weights will contribute variously to the gravity and pressure 

effects on dependent tissue during scanning; non-dependent regions are affected much 

less overall. For example, a glance at the average values for anterior and posterior 

locations reveals a small effective difference between their densities in sets 4 and 7 

compared with those of sets 1 and 2.     

One factor informing the choice of a greyscale reference norm is the preference for 

adjusting brightness values upwards rather than down in order to keep all image data 

accessible. Any greyscale values reduced to zero lose all information. From the 

available data, a modal value of 35 (approx. corresponding to –722 Hu) for a normal 

anterior region looks to be a good practical choice; then brightness adjustments can be 

found heuristically to bring corresponding regions from each data-set to that value. 

Visual inspection of the selected region must serve to determine tissue normality. Table 

3 shows the results using the slices listed in table 1 – except for set 6, where slice 20 

was not normal. In slice 8 – 20, the value for the normal posterior region is used 

because the patient was scanned in the prone position. 
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Table 3: % br ightness increases for  normalization. 
 

   Lung - slice   Mode  shift   % Brightness increase 
     1    -   30 15  +-,  8 
     2    -   39 11  .-/                    10 
     3    -   32 13  0-1  9 
     4    -   22 14  2-3  9 
     5    -   23   6  4-5                    12 
     6    -   12 16  6-7  8 
     7    -   24 15  8-9  8 
     8    -   30 18  :-;  6 

   
           
 The task now is to find whether a set of extracted feature values correlates 

satisfactorily with the required brightness shift. Since tables 1 and 2 show similar values 

for muscle tissue, the spinal process and the aorta in a given set, any of these features 

could be used. In a correlation exercise, the correlation coefficient for the slice and 

whole data-set average for muscle values was returned as 0.998. This gives confidence 

in the use of a single slice to find a reference mode. Further, correlating the muscle 

values with the corresponding brightness increases necessary for standardizing the 

normal anterior modes (as set out in table 3) gives a coefficient of – 0.98, whether one 

uses the single slice or average data-set values; (a minus coefficient because the sets of 

values are inversely related). 

 Thus it seems justified to assume a linear relationship between the modal greyscale 

values for muscle tissue and the empirically derived brightness adjustments required for 

normalization – certainly for the relatively small range of greyscale values involved. A 

brightness conversion graph, with its line equation of the form y = mx + c , can now be 

constructed by fitting a straight line (using the method of least squares) to values along 

a linear trend implied by the known values. The brightness changes are returned along 

this line for the modified ‘muscle’  values in this linear trend. The parameter values, ‘m’  

and ‘c’ , are easily found. The graph is shown as figure 2.  
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Fig. 2: a ‘best fit’  straight line relating empir ically der ived br ightness ‘normalizing’  corrections and  
            a linear  trend of modal greyscale values of muscle tissue from a ser ies of CT lung scans. 
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The parameter  ‘c’  has value 17.68  and ‘m’  – 0.096 
 
The line equation is, therefore, y = 17.68 – 0.096x ; (where ‘y’  is the % brightness 

correction, and ‘x’  the modal greyscale value for muscle tissue in a sampled pulmonary 

CT data-set.) 

Image smoothing 
 
 In image processing, smoothing is a method aimed principally at noise reduction. 

Employing the simplest algorithm results in some ‘ fuzzing’  of edges in the image, 

hence its application is sometimes referred to as ‘blurring’ . The basic operation involves 

replacing the central pixel in a specified mask with one having the greyscale average of 

its neighbourhood values. (The neighbourhood as defined by the mask) The smallest 

mask involves 3x3 averaging and produces the least blurring. In this study, a standard 

3x3 mask is used in all 50x50 imaged regions of interest offered for diagnostic 

quantization. In images with strongly modal distribution(s), one outcome of this 

averaging is an increase in the number of pixels falling within the modal distribution(s) 

Muscle greyscale mode (reference)   

 
 
 
% 
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together with a clearer definition of the modes. For example, where modal values for fat 

and muscle tissue are not clearly defined, smoothing may be necessary to separate them 

in a histogram when determining the reference value for normalization. Importantly, 

smoothing does not alter the modal greyscale value(s). (Fig. 3)  

 

Fig. 3: a region from lung slice 4 – 30 containing muscle tissue and fat. Image ‘a’  has no    
smoothing applied; image ‘b’  has had two successive smoothing applications using a 3x3 mask. 
 
(a) 

 
 
 
(b) 

 

 

Some impulsive noise will be found in most CT images, which can result in a 

significant number of black and/or white pixels interfering with the data. Figure 4(a) is a 

plot of pixels within the greyscale range 0 to 2 in an unprocessed 50x50 anterior region 

in lung slice 4 – 30. Figure 4(b) shows the plot after the same image has been smoothed.  
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Modal value for  muscle is 
defined as 98 for  reference. 
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  Fig. 4: greyscale 0 to 2 pixel plots of a 50x50 r ight anter ior  region of lung slice 4 – 30.  Plot (a) is  
             for  the image without smoothing, plot (b) after  smoothing with a 3x3 mask. 
 
 

 
 

The pixel pattern in figure 4(a) is a random distribution of near-black pixels 

corresponding to no physiological feature in the scanned lung field; if offered to 

quantifying software, however, it would be classified as possible low-density tissue. 

Smoothing removes the pixels into the nearest neighbouring mode. The presence of any 

emphysematous tissue will appear as a cluster of closely associated low-greyscale 

pixels, which will not disappear with smoothing. Such regions frequently show bi- or 

even tri-modal distributions. With smoothing, pixels that are close neighbours of a 

particular mode will be merged into its characteristic distribution, the mode itself acting 

as a kind of ‘attractor’ . This accounts for the differentiation of fatty and muscle tissue 

modes, shown in figure 3(b), appearing only after smoothing the distribution shown in 

figure 3(a). 

Figures 5 (a) to (c) show the result of applying the standard image normalizing and 

smoothing processes to the extracted anterior region referred to above. 

 

 

 
 

 

(a)                                                                          (b) 
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Fig. 5: a 50x50 r ight anter ior  region from lung slice 4 – 30; image ‘a’  is as extracted, ‘b’  with the 
            appropr iate br ightness increase to normalize and ‘c’  with smoothing, using a 3x3 mask.  
 
(a) 

 
 
 
Substitution of the reference value 98 into the line equation, y = 17.68 – 0.096 x 98, 

suggests a brightness addition of  8.272. (The nearest % brightness addition is 8) 

(b) 

 
 
 
With this brightness addition, the histogram profile is unaltered, but moved about 20 

greyscale points to the right. This should normalize the modal value in an image of 

normal, anterior parenchyma from this set to greyscale 35. Note, the small spike with 

original mode value 0 (image ‘a’ ), representing noise, has moved to greyscale value 20. 

This could distort possible tests for emphysema unless smoothed into the normal modal 

distribution. (See fig. 4, above) The smoothing algorithm, using a 3x3 mask, also 

produces a more sharply defined mode. (Image ‘c’ ) 
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The histogram resulting from a 
br ightness ‘cor rection’  of + 8%. 
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(c) 

 
 
 
 
Diagnostic windows 
 
 ‘Window’ , as used here, refers to a segmentation tool set with precise upper and 

lower greyscale threshold values. When applied to a normalized region, it creates a 

quantifiable black and white pattern made of all the pixels from within those limits. The 

limits are determined heuristically, using the information in images of known 

physiological type, location and condition. Where a visually ‘healthy’  anterior region of 

lung parenchyma has been  normalized to a narrow, modal distribution around greyscale 

35, it seems reasonable to set threshold limits of, say, 30 and 40 as a first trial for 

identifying such tissue across all data-sets. Different, empirically determined limits will 

be needed for posterior regions (when gravity dependent). In the following tests, limits 

of 35 and 50 are used. 

 Pixels with greyscale values within the limits might now be called ‘normal’ ; those  

below the lower limit may represent a typical emphysematous density distribution, but 

will also comprise any non-registered x-ray attenuations due to the scanning level and 

range settings; and while those above may result from attenuations due to abnormally 

dense tissue, there can also be the effect of septa, blood vessels, non-registered 

attenuations, tissues other than parenchyma etc. Separate ‘windows’  will be required to 

   0             50            100           150         Greyscale 

Modal greyscale 
distr ibution 35. 
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resolve the distributions above and below the ‘normal’  limits. However, this paper is 

concerned only with testing a methodology for image normalization as a preparation for 

reliable, computer-assisted identification of normal anterior and posterior regions. In 

table 4, the letters ‘a’ , ‘b’ , ‘c’  and ‘d’  refer, respectively, to right anterior, right 

posterior, left posterior and left anterior. (In a supine scan, ‘b’  and ‘c’  are ‘dependent’ .) 

RESULTS 
 
 
Table 4: no. of pixels segmented by diagnostic ‘window’ . 
 
Lung slice   region   Pixels: in     below above    Inform. dim. 

1 – 16                   a 
                             b 
                             c 
                             d 

2259 
1946 
1995 
1370 

  13 
    0 
  37 
    1 

129 
554 
468 

            1129 

1.93 
1.87 
1.88 
1.85 

1 – 45                   a 
                             b 
                             c 
                             d                        

2158 
1825 
1522 
2374 

  16 
    6 
    2 
    0 

326 
669 
976 
126 

1.90 
1.87 
1.86 
1.93 

2 – 33                   a 
                             b 
                             c 
                            d       

2079 
  821 
1479 
2311 

    3 
    8 
715 
  36 

418 
     1671 

306 
153 

1.89 
1.67 
1.76 
1.93 

2 – 50                  a 
                            b 
                            c 
                            d       

2070 
1196 
1242 
2277 

  11 
654 

  1143 
  36 

419 
650 
115 
187 

1.88 
1.75 
1.63 
1.91 

3 – 30                  a 
                            b 
                            c 
                            d       

2009 
2358 
2019 
2253 

  28 
  61 
262 
    8 

463 
  81 
219 
239 

1.90 
1.94 
1.88 
1.91 

3 – 48                  a 
                            b 
                            c 
                            d       

1522 
2026 
2006 
1945 

    9 
270 
235 
  44 

      344 
204 
259 
511 

1.73 
1.90 
1.91 
1.86 

4 – 10                  a 
                            b 
                            c 
                            d       

  520 
  216 
  699 
  195 

  27 
    4 
    1 
    0 

    1953 
    2280 
    1901 
    2305 

1.55 
1.09 
1.70 
1.35 

4 – 15                  a 
                            b 
                            c 
                            d       

1552 
1443 
1653 
1127 

  26 
  53 
  23 
  64 

      922 
    1004 
      824 
    1309 

1.81 
1.79 
1.81 
1.75 

 5 –   7                 a 
                            b 
                            c 
                            d       

2013 
  711 
2152 
1925 

  19 
    4 
  73 
  94 

      468 
    1785 

275 
481 

1.90 
1.67 
1.89 
1.89 

5 – 30                  a 
                            b 
                            c 
                            d       

2166 
2324 
2260 
2104 

  24 
160 
  79 
  23 

310 
  16 
161 
274 

1.91 
1.94 
1.93 
1.91 

6 – 12                  a 
                            b 
                            c 
                            d       

1314 
1836 
1873 
  465 

    0 
    0 
    0 
    1 

      1186 
664 
627 

    2034 

1.82 
1.85 
1.87 
1.60 

6 – 30                  a 
                            b 
                            c 
                            d       

    13 
1865 
2050 
  566 

    0 
    0 
    0 
    0 

    2487 
      635 
      450 
    1934 

                    – 
1.82 
1.89 
1.54 

Key:  (i)  Pixels ‘ in’  etc. refers 
                to numbers of pixels 
                distr ibuted with ref- 
                 erence to the threshold  
                limits taken to signify 
                ‘normal’ . 
 

(ii)  I talicized figures indi- 
       cate a distr ibution with- 
       in those limits charact- 
       er ized by an informat- 
       ion dimension below  
       that taken as ‘normal’ . 
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7 – 22                  a 
                            b 
                            c 
                            d       

1912 
1852 
2127 
1923 

208 
595 
251 
188 

380 
  53 
122 
389 

1.87 
1.86 
1.90 
1.88 

7 – 33                  a 
                            b 
                            c 
                            d       

1945 
1168 
1987 
1959 

268 
      1263 

195 
249 

287 
  69 
318 
292 

1.87 
1.68 
1.79 
1.88 

8 – 23                  a 
                            b 
                            c 
                            d       

  864 
1622 
2024 
1715 

    0 
  44 
    0 
  17 

     1636 
834 
476 
768 

1.64 
1.81 
1.88 
1.87 

 
 
     Based on a number of trials, using parenchymal image regions of known normality, 

an information dimension <�=�>�?�@
ACB�D#E�F�G�H�IKJ�F(LNM(DOF�P�Q�MRF(B�S
TUF�M(V�F'S
M(V�HXW�V�B�L�H�S
M�V�DYH�LCV�B�I�J
limits is taken as an indicator of ‘health’ . Where the imaged 50x50 region is entirely 

within the lung fields, the ‘normal’  pixels within the distribution should number at least 

2000. A ‘good’  information dimension assessed for substantially fewer pixels suggests a 

region partially filled with healthy parenchyma. If the bulk of the ‘missing’  pixels are 

below the range, there is the possibility of emphysema; if above, the indication is either 

the presence of fibrosis or the inclusion within the image of a non-parenchymal region. 

In general, there will always be some distribution of higher greyscale pixels due to the 

higher radio-density of larger blood vessels and structural elements, such as septa. There 

is also the problem of the partial volume effect. [1,11] 

 The results listed in table 4 suggest the need for closer inspection of image regions  

1-16d, 2-33b & c, 2-50b & c, 3-30c, 4-10a, b, c, & d, 4-15 b, c, & d, 5-7b, 6-12a & d,  

6-30d, 7-33b & d and 8-34a & d. In each of these, the number of pixels and/or the 

character of their distribution do not fall within the ‘normal’  parameters. (See figure 6.) 

 Of the 60 regions assessed from the eight data-sets, 38 were registered as ‘normal’ , 3 

as possibly emphysematous and 19 as ‘over dense’ . Visual inspection suggests that the 

first two categories were correctly assessed, as were all but 3 of the ‘possibly fibrotic’ . 

Importantly, there are no false negatives. 
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    1 – 16                                                                     2 - 33 

    2 – 50                                                                      3 - 30 

 4 – 10                                                                      4 - 15 

Fig. 6: images of slices with regions classified as ‘not normal’ . 
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Fig. 6 ctd. 
 

 
 
 

 5 – 7                                                                       6 - 12 

 6 – 30                                                                     7 - 33 

 8 - 34     50x50 region from the left anter ior  of   
    slice 1  - 16.     (‘d’ ) 

 

     
                     
 
 

     

50x50 regions, ‘a’  &  ‘d’  from slice 6 – 12. 
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DISCUSSION 

     Image 1 – 16, in figure 6, suggests a location comprising normal parenchyma. Its 

region ‘d’  referred to in table 4 is assessed as having a ‘normal’  information dimension, 

i.e. Z 1.85, though almost half the pixels have greyscale values above the upper 

threshold limit. The indication is that the extracted 50x50 anterior image contains a 

substantial area outside of the lung field; visual inspection confirms this. (Fig. 6)  

     Image 2 – 33 shows regions of normal, fibrous and emphysematous parenchyma; the 

two abnormal regions are posterior – fibrosis in the right lung, emphysema in the left. In 

each case, the information dimension is < 1.83 with a large number of pixels 

respectively above and below the ‘normal’  threshold limits. The slice from higher in the 

thorax, 2 – 50, indicates more widespread emphysematous bullae around the periphery 

of each lung. In region ‘b’  there are about the same number of pixels above and below 

the ‘normal’  threshold limits suggesting emphysema with scarring, while region ‘c’  has 

around half the distribution below the limit. Computer and visual analyses concur. 

     Slice 3 – 30 appears practically lesion-free, though region ‘c’  has a substantial 

number of pixels below the lower limit. This is also true of slice 48 (not illustrated), 

which suggests a lower-density feature extending over a considerable portion of the 

lungs’  posterior. The official clinical report mentions ‘a few tiny bullae  peripherally’ , a 

condition to which the program may be responding.  

Data-set 4 is from the scan of a patient clinically diagnosed as having ‘appearances 

that indicate an active alveolitis with early signs of fibrosis’ . Images of slices 10 and 15 

show clearly the characteristic ‘ground glass’  opacification. Note, incidentally, the 

amount of noise in the image; no smoothing has been applied to ensure greater clarity. 

The figures quoted in table 4, however, were obtained using smoothed 50x50 regions. 
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In every example, the assessed information dimension for normal greyscale distribution 

suggests abnormality.   

     A brief inspection of the image of slice 5 – 7 is enough to suggest something 

seriously wrong at the posterior of the right lung. The low information dimension for 

the pattern of ‘normal’  pixels, together with the large number of high greyscale ones 

recorded, point straight to an area of major collapse. Distended bronchi suggest 

bronchiectasis. 

     Large numbers of higher than desirable greyscale value pixels are recorded for all 

regions tested in slices 6 – 12 and 6 – 30. The anterior regions seem most afflicted. The 

50x50 images ‘a’  and ‘d’  from slice 12 do have some non-parenchymal portions, but the 

information dimension for ‘d’  is far from ‘normal’ . The features in image 6 – 30 

resemble those of  slice 12 very closely, though here all values are derived only from an 

assessment of  the parenchyma. The opacity in 6 – 12 ‘d’  could be an artefact due to 

movement, but that of the anterior regions of slice 30 suggests abnormality. The lungs 

appear to be hyper-perfused, possibly as a result of hypertension.  

     The abnormal readings for the images from the posterior of slice 7 – 33, right and 

left, are more difficult to account for. Visually, the lungs appear sound. It is possible 

that a small density loss has been detected, though for this study it will be suspected as a 

false positive diagnosis. 

     Data-set 8 was obtained from a patient scanned in a prone position. The image of  

slice 34 has been rotated for more convenient display. However, the threshold limits 

defining ‘normality’  have been applied appropriately. The anterior regions have 

unusually high opacity. It is known that there are metastatic deposits present in some 
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locations, but probably not enough to account for the apparently high densities; again, 

hyper-perfusion might be suspected.   

No attempt has been made in this study to classify abnormality by quantitative 
means. A modal greyscale value in a normalized CT image of ‘healthy’  lung 
parenchyma is used as an index of normality for a similar location in any other data-set; 
the information dimension  for the pixel pattern segmented by thresholding within limits 
set closely above and below the modal value provides a ‘criterion value’  – which is an 
empirically derived measure taken to signify that a particular segmented pixel 
distribution corresponds to a recognizable physiological condition in the patient. [11]  
By using only the criterion value for normality, a technician can draw attention to any 
abnormal regions by removing the apparently normal ones from one’s area of concern.  
     Care is needed when assessing an image restricted to fewer ‘normal’  pixels than is 

optimal in a 50x50 format (c. 2000 might be expected); the cause may be an intrusion of 

a non-parenchymal feature into the image or, with possible pathological significance, 

the presence of a subset of ‘abnormal’  pixels. Where an extended patch of higher-than-

normal tissue density is suspected from the image data, the diagnosis might be fibrosis. 

Similarly, a substantial number of associated points below the normal greyscale 

threshold may indicate a corresponding region of lower-than-normal tissue density – a 

strong indication of emphysematous change. Visual inspection of the suspect region is 

generally sufficient to make the diagnosis – especially where the feature in question 

extends across contiguous slices. However, a more automated diagnostic system should 

be able to discriminate an ‘ incomplete’  image region from a ‘diseased’  one, and indicate 

whether any implied physical abnormality is of the emphysematous or fibrous kind. For 

this, at least two more threshold ‘windows’  will be needed – one to segment any pixel 

pattern corresponding to below-normal tissue density, the other to register any 

pathologically significant distribution of pixels with higher-than-normal greyscale 

values. ‘Pathologically significant’  implies a greyscale range corresponding to 

parenchyma with either higher than usual opacity or lower than expected density. The 
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appropriate criterion values (critical information dimensions of the segmented patterns) 

must be determined empirically and incorporated into a robust algorithm. 

     Results in this study, obtained using only the one, ‘normal’ , window on normalized 

images, are encouraging since none of the regions flagged as ‘normal’ , i.e. having an 

information dimension [�\�]�^�_�`�a�b�c�d egf�c�e�d -full distribution of ‘normal’  pixels, is found, 

by visual inspection, to have any abnormality.  

 

APPENDIX 

Information dimension (diagnostic cr iter ion) 

     The CT images used in this study are two-dimensional thoracic slices extracted from 

complete data-sets. Regions of interest, representing lung parenchyma, are selected in a 

50x50 pixel format; the area of this sub-set of points, taking pixel size as unit measure, 

is, thus, 2500. When the diagnostic thresholds for ‘normal’  parenchyma are applied, the 

result is generally a segmented pixel pattern with an irregular distribution. For ‘healthy’  

anterior regions, the greyscale values are normalized closely around mode value 35. The 

expected number of pixels is close to 2000, the remainder representing blood vessels, 

septa etc. The distribution will have a fractal dimension < 2 since the pixels do not 

uniformly fill the square. Because lung parenchyma has near-uniform density, with the 

available space for gaseous exchange efficiently filled with the branching system of 

airways and blood vessels, we might reasonably expect segmented image regions of 

‘normal’  tissue to have a fractal dimension close to 1.90. From this, a criterion value of 

h�i�j�k�l
m(n�o�p�q�r�s�p�n�pgt�r�u�vOm(nNo�m(wXm�s
o�t�m(n�nNo(u�x�y�z{p�n|p�s�m's�x�r�}�~���t�r�p���o�t�j���t�rXm'������m(r�x
p�n�nCu�����o�m�~�s

is that regular lung parenchyma has a near-uniform local density with a strong modality, 

and that x-ray attenuation values translate more or less linearly into normalized 

greyscale values. 
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 An assigned fractal dimension is a means of characterizing a distribution of points 

embedded in a Euclidian space: how spread out or irregular the set is when examined at 

a particular scale. There are a number of different definitions of dimension, though most 

practical applications use a form of box-counting. To find a ‘box’  dimension of a plane 

set F, a mesh of squares of side ‘ r’  is drawn to cover F and the number of boxes, N(r), 

counted that contain at least one point of F. A count is made for various small values of 

‘ r’ , and the dimension taken as the logarithmic rate at which N(r) increases as ‘ r’   0. In 

practice, the largest value of N(r) is where ‘ r’  = pixel size; the dimension being 

estimated by the gradient of the graph of log N(r) against –log r. 

 The information dimension is a version of box-counting in which more account is 

taken of the way points are distributed within a set. A measure of information gained by 

observing the occurrence of an event – such as the finding of points from a covered set 

in a ‘box’  of given size – is taken as minus the log of the probability of that event. Thus, 

the probability, ‘P’ , of finding a point from a given set of ‘s’  points in a typical cell of a 

minimal cover of N cells, linear measure ‘ r’ , is given by dividing the number of points 

found in the cell by the total number of points in the set. For each cell, linear measure 

‘ r’ , there is a calculable ‘surprise’  (i.e. information), the average of which for the ‘N’  

covering cells being the product of sampled probability and its surprise value, summed 

for all the cells. Now, the sum of the probabilities for all cells will equal 1, so average 

information, I(r), becomes the log of the number of cells, N(r), ‘ visited’  by the notional 

average point distribution. (This is because average probability for each cell is 1/N(r).) 

We now have an analogue of basic ‘box counting’ , where the count of boxes, scale ‘ r’ , 

all of average probability, just needed to cover the set, is the modified ‘box’  number that 
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takes more account of the non-uniformity of distribution. The ‘ information dimension’  

is now calculated using the general notion of dimension:  

 

                                           I(r) 

  D(information)  =  r
 limit   

0    

                                      log (1/r) 

 
Where cell sizes are very small, the cell count, N(r), will represent saturation and 

have a value corresponding to the total number of thresholded pixels. At the lower end 

of the column, the cell sizes used are relatively large and will be too coarse-grained to 

assess a fractal pattern separately from its background. Between these extremes, the data 

from box counting are significant and useful for making computations. Rows of stars 

are used in the readout to indicate the limits.[15] By definition, fractals have the same 

granularity across scales; but, since images are composed of pixels, it does not take long 

before the limiting granularity, the individual pixel size, is reached. It follows that only 

a relatively small range of scales can be used for estimating the fractal dimensions. This 

is reflected in the small number of relevant measures appearing between the stars in the 

‘ fractal dimension’  readout. Because linear sizes of successive grid boxes are scaled by 

2, and logs base 2 are used, the differences between successive entries in columns three 

and four, that is (log
2
N(r) – log

2
N(2r) and (I(r) – I(2r)), give estimates respectively of 

capacity (box) and information dimensions − at the specified scale.   

   

From: 

(1).... N(r) = k.(1/r) d  and (2).... N(2r)  = k.(1/2r)
d ,  we get 

(3).…log 
2
N(r) = log 

2
k + d.log 

2
(1/r)    and 

(4)….log 
2
N(2r) = log 

2
k + d.log 

2
(1/2r). 

Now, by subtracting (4) from (3), we find: 

Log 
2
N(r) – log 

2
N(2r) = d(log 

2
2r – log 

2
r) 

                                   = d (i.e. dimension). 
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The final estimate of information dimension is obtained by fitting a ‘best’  line to the 

plot of log r against I(r). In effect, this is providing the average slope of the plot, which 

is an estimate of the fractal dimension for that range of scales. 
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