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On the existence of stable asymmetric limit cycles and chaos
in unforced symmetric relay feedback systems
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We study the occurrence of bifurcations leading to the formation of asymmetric orbits and chaos
in unforced relay feedback systems with a symmetric relay characteristic. Specifically, we show
that novel bifurcation mechanisms cause the formation of stable periodic solutions with segments
of sliding motion. We then characterise the formation of asymmetric stable periodic solutions and
detail the route to chaos exhibited by a representative third-order example.

Keywords: Complex Systems, Discrete Event and Hybrid Systems, Bifurcations and

Chaos.

I. BACKGROUND

Relay Feedback Systems are widely used in applied
science and enginering to model a wide variety of phys-
ical devices. Early examples come from mechanical and
electromechanical systems [1-3], while recent attention
has been motivated by variable-structure controllers [4],
supervisory switched control [5], relay methods for tun-
ing controllers in process industry [6], and delta—sigma
converters in signal processing [7].

The class of relay systems of our interest are charac-
terised by being unforced, symmetric and without hys-
teresis. Hence, they are described by the following state
space representation:

& = Az + Bu (1)
y=Cz (2)
u = —sgny, ()

where z € R®, y € R, A€ R™", Be R*"*! C € R'*"
and signy = 1if y > 0, signy = -1 if y < 0, and
sgny € [-1,1]if y = 0.

We define the switching hyperplane as the manifold:

H={zeR":Cx =0} (4)

Such hyperplane defines a boundary in phase space
between the two regions, Gy = {z € R™ : Cz > 0} and
Gy = {x € R" : Cx < 0} associated with the two dif-
ferent system configurations (see Fig. 1). Note that for
every initial condition outside H, the state trajectory will
eventually cross H if the steady-state gain of the system
transfer function, G(s), is positive (G(0) > 0) and G is
stable [8].
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FIG. 1. Schematic representation of the phase space topol-
ogy in the case of a third-order relay feedback system.

As shown in [9,4], systems like (1)-(3) can exhibit a
peculiar type of solution termed sliding motion. This is
characterised by lying within the switching hyperlane H
and can be heuristically seen as associated to an infinite
number of switchings between different system config-
urations. For this to occur, the system vector field in
both G; and G2 must point locally towards H. Hence,
by studying the gradient of the system vector field in a
neighborhood of H, we can identify a set H C H where
sliding is possible. For system (1)-(3) such sliding region
can be defined as H = {z € H : |CAz| < CB} and only
exists if CB > 0 (see [4] for the analytical details). In
what follows we assume that this latter condition is in-
deed satisfied. The system dynamics within the sliding
region can be studied by looking at an appropriate re-
duced order system. This can be obtained by applying
Utkin’s equivalent control method [4] or Filippov’s con-
vex method [9]. In particular, the state evolution under
sliding motion is described by

@ = Az, (5)
where A = [I — (CB) *BC]A and I is the identity ma-

trix.
According to the direction of the system vector field,
one can also identify the two subsets Hy := {z € H :



CAx > CB} and Hy := {2 € H : CAx < —CB} as-
sociated to trajectory leaving the switching hyperplane
towards G and G2 respectively (see Fig. 1).

Although relay systems have been studied for more
than a century, several problems remain unsolved. For in-
stance, the global stability of periodic solutions is largely
an open question [10,11,8,12]. Recently, the onset of bi-
furcations and chaos in these systems has also been stud-
ied. It is commonly assumed, though, that complex be-
haviour such as deterministic chaos is only present if the
relay system under investigation is subject to an exter-
nal forcing, say sinusoidal, and has either hysteresis or an
asymmetric relay characteristic (see for example [13-15]).
Similarly, a conjecture due to Tsypkin and reported in
[3], p- 179, states that asymmetric solutions in relay
feedback systems can only exist if the system is forced or
has an intrinsic asymmetric relay characteristic.

In this paper, we show instead that symmetric un-
forced relay feedback systems can indeed exhibit asym-
metric solutions and chaos. We present for the first time
numerical evidence of the existence of stable asymmetric
limit cycles whose bifurcations lead to stable chaotic dy-
namics. We find that sliding motion plays an important
role in the formation of these solutions. In this sense,
this paper expands and complete the work presented in
[16], where the existence of stable asymmetric solutions
and chaos in unforced, symmetric relay feedback systems
was first conjectured.

For the sake of clarity, we will detail our presentation
to the third-order relay feedback system studied in [16]

where:
—(2¢w+A) 1 0 k
A= <—(2Cw/\+w2) 0 1) , B= <2k0p> , (6)
—w? 00 kp?
c=(1 0 0), (7

which corresponds to the transfer function

s2 +20ps + p?
(82 + 2Cws + w?)(s + )’

Gs)=k

It is relevant to point out that the analysis presented
here can be applied, without major modifications, to
other relay feedback configurations and switched dynam-
ical systems where sliding solutions play an important
role in organising the system dynamics [17].

II. PERIODIC ORBITS

Relay feedback systems, such as the one under investi-
gation, tend to oscillate without external excitation and
particular interest has been devoted to detect and study
such self-oscillations, for example, by using describing
function methods [3].

FIG. 2. Phase space diagrams of periodic solutions for the
third-order relay feedback system under investigation: non-
sliding periodic solution for p = 3 (a), and sliding periodic
solution for p = 1 (b). All the other parameters are set to
w=¢=A=k=—o =1. The apparent change of the size
of the sliding region, whose boundary is here represented by
two solid lines, is only due to a change of scale.

Under certain conditions, it has been shown that pe-
riodic solutions of the system can connect the sliding
set with itself, giving rise to so-called sliding orbits [8].
Some typical periodic solutions for the third order exam-
ple considered in this paper, including a sliding orbit, are
depicted in Fig. 2.

As shown in [16], to study the existence and stabil-
ity of these periodic solutions one can introduce a set
of appropriate Poincaré maps. For example in the case
of orbits without sections of sliding motion (or simple
orbits), one can construct the map, Il : H — H from
the switching plane back to itself by solving the system
equations in each of the two phase space regions G and
G3. In so doing, each of the system periodic solution
will be associated to a corresponding fixed point, say zg
of the Poincaré map II. Notice that in the case of sim-
ple periodic orbits, II is actually the composition of the
two submappings II, : HL — Hy and II, : H, — H;
associated to motions in region GGy and G respectively.

Similarly, to analyze the system solutions character-
ized by sliding motion (sliding orbits), one can consider
the additional sliding map X : Hw— 0H , from a point
ieHtoa point = € 8fI, i.e. the map from the slid-
ing region to its boundary. The sliding map ¥ can be
constructed by considering the equations of the reduced
order system (5) describing the system evolution within
the sliding region (see [16] for the analytical details).

By suitably composing the maps II;,II, and ¥ it is
simple to obtain the map describing a periodic orbit with
sliding (an example of this type of orbit is reported in Fig.
2-b). Notice that in the case of third-order relay feedback
systems such composition give rise to a one—dimerlsional
mapping from the boundary of the sliding region H back
to itself.
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FIG. 3. Phase space diagrams of the simple limit cycle at
the bifurcation point (p =~ 2.1). It can be clearly seen that
the orbit intersects the switching plane on the boundary of
the sliding strip

III. LOCAL BIFURCATIONS

Both simple and sliding limit cycles were found to un-
dergo several bifurcations as the systems parameters are
varied. Standard local transitions such as the saddle-
node, transcritical and period-doubling bifurcations are
indeed possible and can be detected by studying the dis-
crete time mappings described above. It is worth men-
tioning here that for a symmetric system such as the relay
feedback system under investigation, the period-doubling
of a symmetric solution corresponds to a symmetry-
breaking point. Namely, as discussed in [16], at such a
bifurcation point the transition occurs from a symmetric
solution to a pair of conjugate asymmetric orbits.

In addition to the standard bifurcations, relay feed-
back systems (and more genereally switched dynamical
systems) can exhibit a novel class of bifurcations involv-
ing sliding motion which were first reported in [16]. In
what follows we briefly summarise the main characteris-
tics of some of these novel transitions (see [18] for further
details).

A. Sliding Bifurcation

This bifurcation describes the transition from a simple
orbit to one with sliding motion. It occurs when, by vary-
ing the system parameters, a section of the simple orbit
hits transversally the boundary of the sliding strip. As
shown in Figs. 2 and 3 when this occurs, the fixed point
of the switching map corresponding to the non-sliding
orbit enters the sliding strip at the bifurcation point and
sliding orbits are then generated. For further parameter
variation, the newly formed sliding orbit is characterised
by a longer and longer sliding section.

FIG. 4. Multisliding bifurcation of a 2-sliding orbit (a)
into a 3-sliding solution (b) as the parameter w is varied
between 9.5 and 10.5 while the other parameters are set to
p=C=A=k=—-0=1.

B. Multisliding Bifurcation

Sliding orbits can themselves undergo bifurcations to
more complex solutions as the system parameters are var-
ied. Namely, a novel bifurcation was found to take place
when the sliding section of the orbit grazes tangentially
the boundary of the sliding strip. In the simplest case,
this is then followed by the formation of an orbit charac-
terised by an additional sliding section as shown in Fig.
4; hence the name of multisliding bifurcation. Also, as
reported later, a multisliding bifurcation can be associ-
ated to a saddle-node like scenario where orbits with a
different number of sliding sections collide and disappear.

To avoid confusion, in what follows, we term a periodic
solution characterised by N sections of sliding motion as
an N-sliding orbit. Hence, at a multisliding bifurcation
one can either observe the bifurcation of an N-sliding into
a(N + 1)-sliding solution [16] or the collision and disap-
pearance of two orbits, unstable and stable ones having
the same number N of sliding sections.

IV. STABLE ASYMMETRIC
SELF-OSCILLATIONS AND CHAOS

It has been often assumed in the control literature
that self-oscillations of symmetric, unforced relay feed-
back systems such as (1)-(2) are also symmetric. Specifi-
cally, as discussed in the introduction, it is usually conjec-
tured that asymmetric periodic solutions in these systems
can only exist either by means of some type of external
forcing term acting on the system or because of an in-
trinsic asymmetric relay characteristic (see for example
the conjecture by Tsypkin reported in [3], p. 179).
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FIG. 5. Symmetric 12-sliding orbit observed when [include
parameter values]. Note that the orbit is characterised by 6
lobes on each side.

In [16] it was shown via a third-order counterexam-
ple that, contrary to what is usually assumed, symmet-
ric and unforced relay feedback systems can instead ex-
hibit asymmetric periodic solutions. The asymmetric or-
bits reported in [16], though, were all unstable and the
existence of stable asymmetric solutions and chaos was
only conjectured. In what follows we report evidence
of stable asymmetric solutions and give a detailed de-
scription of the bifurcation scenarios they are involved
in. We will see that their existence is intrinsically re-
lated to the occurrence of sliding and multisliding bifur-
cations and leads to the formation of a chaotic attrac-
tor. We consider the bifurcation scenario obtained for
decreasing values of the parameter ( € [—0.08,—0.06]
while all the other parameters are assumed fixed to the
values £k = 1,A = 0.05,w = 10,p = 1,0 = —1. This is
a neighborhood of the parameter-space region where a
seemingly chaotic solution was reported to exist in [16].
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FIG. 6. Bifurcation diagram for the third-order relay feed-
back system under investigation, obtained by considering the
variation of the parameter ¢ in the interval [—0.08, —0.06].
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FIG. 7. Stable asymmetric 12-sliding orbit close to the mul-
tisliding bifurcation point. Note the near-tangency of one of
its sliding sections. The orbit is characterised by 6 lobes on
each side but one lobe on the right hand side is very small-due
to broken symmetry.

A. Symmetry Breaking

We begin by considering the 12-sliding stable sym-
metric orbit shown in Fig. 5 and represented by the
solid branch to the right of the point SB in the bi-
furcation diagram reported in Fig. 6. Our numerical
analysis shows that this solution undergoes a subcritical
symmetry-breaking bifurcation at { ~ —0.0628 (point
SB in Fig. 6). Thus, the symmetric orbit involved in the
bifurcation, becomes unstable giving rise to two branches
of complex conjugate unstable 12-sliding orbits (branches
sby and sby in Fig. 6).

This would appear to be a scenario similar to the one
described in [16], since we only have a pair of asymmet-
ric solutions which are unstable. In this case, though,
following the two branches of asymmetric solutions, we
find that they terminate into two multisliding bifurca-
tion points located at ¢ ~ —0.0623 (points M S1 and
MS2 in Fig. 6). Through these non-standard bifur-
cations, new branches of stable asymmetric solutions
are then formed (branches msll and ms21 in Fig. 6).
Thus, stable asymmetric solutions can indeed be found
for ¢ € [-0.0638, —0.0623] in this entirely symmetric re-
lay feedback system which is not subject to any external
forcing.

More specifically, at the multisliding bifurcation point
M S1, the stable 12-sliding orbit depicted in Fig. 7 (ms1)
collides with the 12-sliding unstable asymmetric orbit
(sbl), originating from the symmetry-breaking of the sta-
ble symmetric solution depicted in Fig. 5. Despite the
apparent similarity of this transition with a saddle-node
bifurcation, we emphasize that in this case this is due to
a novel type of phenomenon caused by the tangency of
a sliding section of the orbit with the boundary of the
sliding region.
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FIG. 8. One of the two stable asymmetric chaotic attractor
exhibited by the system for { = —0.07.

A similar scenario is observed at the bifurcation point
M S2 for the symmetric conjugate of the orbit shown in
Fig. 7 (which is characterised by 6 lobes on the left-hand
side and 6 on the right-hand one (5 lobes can be seen
the 6-th one is very small-due to broken symmetry). As
expected both the stable asymmetric solutions are char-
acterised by a small basin of attraction and are therefore
extremely difficult to locate.

B. Deterministic Chaos

As we continue exploring this region of parameter
space, we find that the newly formed stable asymmet-
ric sliding orbits undergo a sequence of period-doublings
which accumulate into two fully developed chaotic at-
tractors. As shown in Fig. 8, these chaotic attractors
are stable and organised by an underlying asymmetric
multisliding orbit. Hence, they are both asymmetric.

For lower parameter values, these two bands of asym-
metric chaos then merge into one (see Fig. 6) and the
symmetric stable chaotic attractor depicted in Fig. 9
is therefore generated. Hence, stable chaos is also pos-
sible in these systems in the absence of any external
forcing term or asymmetric relay characteristic. More-
over, the “route to chaos” is here characterised by an
interesting combination of standard bifurcations such as
period-doublings and symmetry-breaking together with
novel transitions involving sliding.

As the system parameter, is further decreased we fi-
nally observe the sudden disappearance of this symmetric
chaotic attractor at { & —0.08 This is due to a global bi-
furcation phenomenon or “crisis” which is caused by the
collision of an unstable coexisting periodic solution orig-
inated at a saddle-node point with the stable symmetric
chaotic attractor.

FIG. 9. Symmetric chaotic attractor xexhibi’ced by the sys-
tem for ( = —0.078, formed by the merging of two bands of
asymmetric chaos.

V. CONCLUSIONS

We have discussed the occurrence of stable asymmet-
ric solutions and chaos in relay feedback systems. In so
doing, we confirmed the conjecture first reported in [16]
that stable asymmetric orbit can exist in unforced and
symmetric relay feedback configurations. In particular,
we showed that standard bifurcations and novel transi-
tions involving sliding give rise to an intricate bifurcation
scenario. Namely, the occurrence of stable asymmetric
orbits at a so-called multisliding bifurcation point is then
linked with the existence of both stable asymmetric and
symmetric chaotic attractors. Numerical evidence has
been detailed to the case of a third-order representative
example. We anticipate that similar results can be ob-
tained in the case of other relay feedback systems with
sliding.

Current work is addressing the derivation of an ap-
propriate analytical explanation of the scenario observed
through the derivation of appropriate normal form map-
pings in the neighborhood of the bifurcation points.
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