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Due to possible applications, such as mode locking, phase locking, and frequency control, there has been
considerable interest recently in the nonlinear dynamics of a semiconductor laser subject to phase-conjugate
feedback (PCF). It is now known that the PCF laser exhibits a wealth of dynamics, including stable periodic
operation, quasiperiodic motion and chaos!?. Transitions to chaos were recently studied with a combination
of bifurcation diagrams and phase plots?. However, the PCF laser is a delay differential system with an
infinite dimensional phase space®?, and this makes it difficult to study, both analytically and with numerical
tools that go beyond mere simulation.

We present a detailed study of bifurcations to chaos involving tori in the system. This is made possible
by the new numerical technique of computing what are called unstable manifolds of periodic orbits of saddle
type, which we developed for this purpose. These manifolds are one-dimensional curves in a suitable Poincaré
section, and knowing them is tentamount to knowing the dynamics of the system.

A single-mode semiconductor laser subject to weak (instantaneous) PCF is described by the rate equations?
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for the complex electric field E(t) and for the inversion N (¢). The main parameter we study is the dimen-
sionless product k7 of the feedback rate x and the external-cavity round trip time 7, where we set all other
parameters to realistic values as in Ref. [2].

Notice that (1) and (2) are a three-dimensional delay-differential system that decribes how the history,
defined on the interval [—7,0) with values in (E, N)-space, evolves in time. Because one needs to specify
values of E and N over the entire interval [—7,0] as ‘initial condition’, the system actually has an infinite
dimensional phase space. As is common, we consider the time-evolution in the three-dimensional (E, N)-
space, but it is important to keep in mind that this is a projection of the infinite-dimensional dynamics. An
important property of Egs. (1) and (2) is their symmetry with respect to the transformation E — —E, which
is physically a phase shift by 7. As a consequence, any attractor is either symmetric or it has a symmetric
counterpart?.

As k7 is changed the dynamics of the PCF laser is organised in regions with stable periodic output
with ‘bubbles’ in between. These bubbles correspond to more complicated dynamics and one finds period-
doublings and torus bifurcations?. However, a detailed understanding of routes to chaos in this infinite-
dimensional system is still missing.

Here we consider in detail a transition to chaos at the beginning of one such bubble, shown in Fig. 1(a).
For each k7 we allowed the system to settle down to an attractor and then plotted a normalised value of the
inversion IV when the trajectory crosses the value of avarage power in the positive direction. In other words,
Fig. 1(a) was created by numerically integrating Eqgs. (1) and (2). For k7 < 2.307 there is a single point in
this bifurcation diagram, corresponding to a stable periodic orbit. At k7 & 2.307 one notices the birth of a
torus, on which the dynamics is initially quasiperiodic. At k7 & 2.440 the dynamics on the torus becomes
locked to a stable periodic orbit. A feature not found earlier in this system is the fact that the new stable
periodic orbit undergoes a torus bifurcation itself at k7 & 2.556. Then this torus suddenly disappears and
the dynamics is chaotic for k7 > 2.571.

In order to understand the details of this transition to chaos it is not sufficient to use mere numerical
simulation, because for 2.440 < k7 < 2.555 one will only get an image of the stable periodic orbit, and not
of the torus on which it lies. This is why we computed the unstable manifold of the saddle-periodic orbit



on the torus in a suitable Poincaré map. This is shown in Fig. 1(b), where the whole torus for k7 = 2.480
can be seen in cross section with the Poincaré section {N = N,y = 7.620 x 108}. The crosses mark the five
intersection points of a saddle-type periodic orbit on the torus with the section. It was computed by rotating
the stable orbit around the orbit by a suitable angle and, starting from this initial condition, ‘following the
stable manifold’ towards the periodic orbit of saddle type. From each cross there emanate two branches
of the unstable manifold, which converge to two neighboring stable points (intersection points of the stable
periodic orbit) in a spiralling fashion. This physically corresponds to damped modulations of the periodic
laser output. The unstable manifold was computed by iterating suitable initial conditions near the saddle-
type periodic orbit (approximately along the direction of the unstable eigenspace). Our computations show
that the torus (which was smooth just after the torus bifurcation at k7 = 2.307) has lost its smoothness by
starting to ‘curl up’ along the stable periodic orbit. Nevertheless, the torus is still present as a continuous
object, as evidenced by the continuous (but not smooth) closed loop in Fig. 1(b). Notice that the different
branches of the unstable manifold intersect each other, which is allowed because we are again looking at a
two-dimensional projection of an infinite-dimensional system.
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Fig. 1. Detail of the bifurcation diagram (a) and the torus with locked dynamics for kT = 2.480 (b).

Our new numerical technique revealed the following bifurcation scenario as k7 is varied from 2.3 to 2.6 as
in Fig. 1(a). The stable periodic orbit undergoes a torus bifurcation at k7 &~ 2.307, and then the dynamics
on the torus locks at k7 = 2.440, but the torus is still smooth. Smoothness of the torus is lost at k7 = 2.445,
after which there is spiralling around the stable, locked solution; see Fig. 1(b). At k7 = 2.556 this new
stable solution undergoes a torus bifurcation itself, which leads to a new smooth torus that looks much like a
closed long piece of garden hose. The unstable manifold of the saddle-type periodic orbit goes to and spirals
around this new torus. In what appears to be an attractor crisis, the new attracting torus disappears and
chaotic dynamics is born at k7 & 2.571. The shape of the ensuing chaotic attractor is that of the unstable
manifold of the saddle-type periodic orbit just before the crisis.

In summary, we have demonstrated how our new method for computing one-dimensional unstable man-
ifolds in delay differential systems can be used to understand complicated transitions to chaos in the PCF
laser. The example we used is a particularily interesting sequence to chaos involving several tori, which can-
not be studied by mere simulation of the rate equations. Other routes to chaos, involving sudden transitions
of folded and high-dimensional tori will be studied with this new method in the future. We expect that
this will reveal important information of the types of chaos in the PCF laser. This is relevant for possible
applications of chaotic signals, such as communication schemes using a chaotic carrier.
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