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We study the occurrence of an interesting class of bifurcations in piecewise smooth dynamical
systems. These bifurcations, termed sliding bifurcations, are shown to be the mechanism underlying
the formation of periodic solutions evolving partly within the system discontinuity set. Numerical
evidence of the existence of these sliding orbits and their bifurcations is presented. A possible
framework to carry out their analytical investigation is also proposed.
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Piecewise smooth dynamical systems are increasingly
used in many different branches of applied science to
model the most diverse physical devices [1-5]. These
systems are typically described by set of ODEs of the
form

&= f(z,t,p) (1)

where x € R" is the state vector, p € R™ is the parame-
ter vector and f : R("+m+1) 3 R™ is piecewise smooth.

From a geometric viewpoint, the phase space of (1)
can be divided into countably many regions, say G;,i =
1,2,..,k. In each region, the system is described by a
smooth functional form. At the boundaries, ®; between
these regions, the trajectory of the system is continu-
ous but non-differentiable, since the system switches to
a different configuration whenever the system trajectory
crosses one of these boundaries.

It has been shown that a family of nonstandard bifur-
cations, named border-collisions, often characterise the
dynamical behaviour of a piecewise smooth system [6,7].
Specifically, border-collision bifurcations occur whenever
the system trajectory (or part of it) becomes tangent to
one of the phase space boundaries ®;. When this occurs,
seemingly exotic dynamical transitions are often observed
which are unique to nonsmooth dynamical systems (as for
instance the sudden transition from a periodic solution
to a chaotic evolution).

It is also well known that a piecewise smooth system
can exhibit a peculiar type of solution, the so-called slid-
ing motion [8,9]. This solution is characterised by lying
within the system discontinuity set (boundaries in phase
space) and can be heuristically seen as associated to an
infinite number of switchings between different system
configurations. Specifically, suppose that the direction
of the system vector field points towards the switching
hyperplane, S, on both sides of it. Then, when the sys-
tem trajectory hits the switching surface, it will be con-

strained to evolve on it, until the direction of the vector
field on one side or the other changes. Hence, by study-
ing the gradient of the system vector field in a neighbor-
hood of S we can identify regions S C S where sliding
is possible, which we will term sliding regions. It has
been shown, that the system dynamics within a sliding
region can be studied by looking at an appropriate re-
duced order system. This can be obtained by applying
Utkin’s equivalent control method [9] or Filippov’s con-
vex method [8].

As recently shown by the authors, periodic solutions of
the system can connect the sliding set with itself, giving
rise to so-called sliding orbits [10,11]. (Some additional
evidence of the existence of sliding orbits was also re-
ported independently in the Russian literature [12] and
in [15].) These orbits are characterised by lying partially
within the system discontinuity set and have been found
in several systems of relevance in applications as for in-
stance power converters [10], relay feedback systems [11]
and friction oscillators [15].

In this Letter, we propose that the formation of peri-
odic solutions with sliding is due to a novel, more general
class of bifurcations in piecewise smooth dynamical sys-
tems. These bifurcations describe the metamorphosis of
a regular (non-sliding) periodic solution into a sliding or-
bit. The occurrence of these sliding bifurcations, is anal-
ysed through appropriately defined Poincaré maps and
numerical evidence of their existence is presented. As a
simple representative example, we will consider the case
of a nonsmooth system often used in applications, the
relay feedback system [13].

It is relevant to point out that the analysis presented
here can be applied, without major modifications, to
other relevant systems where sliding solutions play an
important role in organising the system dynamics [10].
We anticipate that sliding bifurcations are also the reason



for the onset of stick-slip oscillations in friction oscillators

[5]

The relay feedback systems of interest are of the form:

¢ = Ax + Bu (2)
y=Cz ()
u = —signy, (4)

where signy = 1 if y > 0, signy = —1if y < 0, and
signy € [-1,1] if y = 0. In what follows, for the sake
of clarity, we will restrict our attention to the case of
a third-order system characterised by the matrices (in

canonical form):
1 0 k
0 1>,B:<2kap>, (5)
0 0 kp?

—(2¢w + A)

A= (—(QCw + w?)
—Aw?

andC=(10 O)T where k > 0, A > 0. In particular, the

parameters values are fixed to k =1,0 = -1,A=1,{ =

1 and p € (—20, 10).

Notice that in this case the switching hyperplane S
can be defined as S := {z € R™ : Cz = 0}, while as
shown later, the sliding region can be derived to be the
strip S = {z € S : CAz < CB}. Some typical peri-
odic solutions of this system, including a sliding orbit,
are depicted in Fig. 2.

To study the existence and stability of these solutions
we can introduce a set of appropriate Poincaré maps.
Specifically, say II : /S +— S the map from the switch-
ing plane (excluding the sliding region) back to itself and
let ¥ : S +— 0S5 be the sliding map from the sliding re-
gion to its boundary (C S). Then, a non-sliding solution
can be described by the corresponding fixed point, z* of
the map II, while a sliding orbit by the fixed point of the
composition ITo Y. Hence, a set of necessary conditions of
existence for periodic orbits, with or without sliding, can
be obtained by looking for fixed points of these Poincaré
maps. Moreover, their stability properties can be inves-
tigated by deriving the map Jacobian in a neighborhood
of these fixed points.

For instance, in the case of the third-order relay sys-
tem considered here, the Poincaré map, II : (t,,2,) —
(tnt1,Tnt1), from the switching plane to itself can be
easily constructed. (Note that is often convenient to em-
bed the switching time instants, ¢,, in the map defini-
tion.) Specifically, given a generic initial condition on
the switching plane, say zo = z(0) € S, the solution of
(2)-(4) can be easily written as

z(t) = N(t)zo — M(t) (6)
foru = -1, or
z(t) = N(t)zo + M(t) (7)

for u = +1, where N(t) = exp(At) and M (t) = (N(t) —
I)A’IB, assuming that A is nonsingular. Therefore,

starting from the pair (¢,,z,), assuming v = —1, by
using (6), the state at the successive switching can be
written as

Ty = N((sru)xn - M((sm)a (8)
where d,, is the time interval from ¢,, to the next switch-
ing time instant, i.e., £, = (¢, +Jp, ). The time variable
On, is implicitly defined by the following switching con-
dition:

CFn = C[N(0n,)&n — M(6,,)] = 0. 9)

After t = t,, + d,, the system will evolve on the other
side of the switching plane, i.e., the output will become
negative and the input will be w = 1. The state at the
next switching time instant z,+1 = z(tn+1) will then be
given by

Tnt1 = N(Ony)Zn + M (0n,) (10)

where t,41 = tp + 0n, + n, and d,, is implicitly defined
by the following switching condition:

Cpy1 = C[N(6py)N(0p, ) 20—
N(6n2)M(6n1) + M(6n2)] =0. (11)

The Poincaré map can be obtained by substituting (8)
in (10), thus providing

Tpt1 = N(5n2)N(6n1)xn - N(6n2)M(5n1) + M(5n2)7
(12)

where d,,, and 4, are implicitly defined by (9) and (11).

Similarly the sliding map % can be constructed by con-
sidering the equations of the reduced order system de-
scribing the system evolution within the sliding region.
In the case of the relay feedback system considered here,
the equations of such a reduced order system, obtained
by applying Utkin’s equivalent control method [9] are de-

rived to be:
. [ —20p 1
z= ( _p? 0) z, (13)

where the state z consists of the second and third compo-
nents of z. The application of Utkin’s method also allows
the derivation of the sliding region. In facts, in order to
have sliding, the method requires the system states to
satisfy the following constraint:

|(CB) 'CAz| < 1. (14)

By substituting the system matrices (5) in (14), it is
straightforward to see that (14) corresponds to |za| < 1.
Hence, in this case the sliding region corresponds to a
strip on S whose boundaries are defined by |z2| < 1 (see
fig. 2). As shown in Fig. 2(b) for some values of the
system parameters a stable periodic trajectory connects
the sliding strip with itself.



Using the Poincaré maps derived previously, we can
now obtain conditions for the existence and local stabil-
ity of the system periodic solutions. We will detail the
derivation to the case of nonsliding solutions. Similar
conditions for sliding orbits can be readily derived by ap-
propriately modifying the expression for the non-sliding
orbit given below.

It is simple to show that the equilibrium point of the
Poincaré map (12) can be written as

z=[I-N@§]™ [I- N@E)]MO), (15)

where we assumed that the orbit is symmetric, i.e.,
8p, = 0p, = 4. A necessary condition for the existence of
such a periodic solution is given by (9) at steady state,
i.e., by the scalar equation

C [N(S) (I-N@28) " (I - N©)) M) - M(S)] =0.
(16)

By solving (16) we obtain candidate time intervals § (and
the corresponding fixed points from (15)) for possible
limit cycles. Once a candidate 6§ has been obtained, the
existence of the corresponding orbits and their stability
must be verified.

To investigate the stability of the periodic solutions lo-
cated using the necessary conditions of existence outlined
above, we now illustrate the derivation of the Jacobian
of the Poincaré map around an equilibrium point corre-
sponding to a given periodic solution.

Introducing the vector A, = (8,,,6n,)" , map (12) can
be rewritten as follows:

Tpy1 = f(@n, Ay) (17)

and the switching conditions (9) and (11) can be rewrit-
ten in vector form as

(@n, An) = 0. (18)

By using implicit differentiation, the Jacobian can be
computed as

g _Of _of (ou)ou

~dx, Oz, OA, \0A, Oz,
After some algebraic manipulation, we get
1 i

J=NoN, — —— N [xn Ciy C+

Cz,Cz, .,

ite (a'é,j ON, — Noi, C)] Ny, (19)

where No = N(0,,), Ni = N(6n,), &, = A#, — B,
a?": = A%, + B, and #,,, = Awx,y1 + B. Note that
the Jacobian is derived for the general case with asym-
metric orbits. Eq. (19) can be used to check stability of
symmetric orbits by assuming that z,+1 = x, = & and

Spt1 = 6, = 4 in (19) and then computing the eigenval-
ues of the corresponding Jacobian [11].

We, now, seek to uncover the mechanisms underlying
the formation of sliding orbits by carrying out an inves-
tigation of the system parameter space. In so doing, we
will restrict our attention to the case of the third order
relay feedback system introduced above, described by eq.
(2)-(4). Preliminary evidence for the existence of similar
scenarios in other piecewise smooth dynamical systems
has also been reported in [10].

Careful numerical computations show that as p is var-
ied, the system undergoes several bifurcations. These
are summarised in the bifurcation diagram depicted in
Fig. 1, where the second component of the Poincaré map
is shown versus p.

For decreasing values of p, we see that a non-sliding
orbit turns into a sliding orbit at p ~ 2.1. Then,
for p € (—9.4,0) the origin is globally stable while for
p < —9.4 a non-sliding orbit is present. The transition
from a non-sliding to a sliding orbit can be better out-
lined when the phase-space evolution of the system is
investigated on both side of the sliding bifurcation point.
In particular, as shown in Figs. 2-3, we observed that
the fixed point of the switching map corresponding to
the non-sliding orbit enters the sliding strip at the bi-
furcation point and sliding orbits are then generated for
further parameter variations.

Using the maps presented in the previous section, we
can now locate the sliding bifurcation point analytically.
In facts, at the bifurcation point the fixed point of the
Poincaré map II, say z*, corresponding to the non-sliding
orbit undergoing the bifurcation, lies on the boundary of
the sliding region 8S. Thus, the exact bifurcation point
p* can be isolated by imposing this extra condition on
the map, together with the necessary conditions of exis-
tence for non-sliding solutions (16). In the case of the re-
lay feedback system considered previously this additional
constraint is zo = £1.

Solving this system of equations using a numerical
package, such as Maple, the bifurcation point (i.e. the pa-
rameter value at which the fixed point sits on the bound-
ary of the sliding strip) was found to be p* = 2.098841.

For further parameter variation, the newly formed slid-
ing orbit is characterised by a longer and longer sliding
section until for p = 0 the origin becomes the only stable
attractor. As depicted in Fig. 1, this remains the only
equilibrium until at p & —9.4, a new simple limit cycle is
generated after a saddle-node bifurcation. Again, using
the analytical tools devised above, this bifurcation was
located analytically and shown to be a saddle-node bi-
furcation of the system switching map, characterised by
having both the eigenvalues of the map Jacobian crossing
the unit circle at +1. This bifurcation, actually, gener-
ates a pair of equilibria, one stable and the other unsta-
ble, hence the existence of a corresponding stable and
unstable simple orbits was also detected.

A further bifurcation at p ~ 0.5 was also detected and
recently identified as a symmetry breaking bifurcation



giving rise to a branch of highly unstable asymmetric
solutions (for further details see [14]).

In conclusion, in this Letter, we have discussed the oc-
currence of a general class of bifurcations in piecewise
smooth dynamical systems, describing the formation of
so-called sliding orbits. In particular, the sliding bifurca-
tion was defined as the transition from a simple limit cy-
cle to a sliding orbit, occurring when the fixed point ,z*,
of the Poincaré map, II, crosses the boundary of the slid-
ing region on the switching hyperplane S, i.e. z* € 885.
A method to analyse the existence and stability of these
orbits and to locate analytically the sliding bifurcation
point has been presented.

As shown in [10], sliding orbits can be particularly rel-
evant in affecting the dynamical behaviour of a piecewise
smooth dynamical system. In facts, sliding orbits have
been shown to organise bifurcation diagrams of periodic
orbits characterised by an increasing number of switch-
ings which have the shape of an intertwined double spiral.
Thus, we believe that the further study of these bifurca-
tion could be particularly relevant in applications. Cur-
rent work is addressing the derivation of an appropriate
local analysis around the bifurcation point (normal form
derivation). Moreover, some preliminary evidence shows
the occurrence of more complex phenomena due to slid-
ing bifurcations such as the formation of multi-sliding
orbits and seemingly unpredictable dynamics.
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FIG. 1. Bifurcation diagram of system (3), when p is var-

ied. The second component of the Poincaré map is plotted
against p in (a). A zoom of the transition from simple to
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sliding orbit is shown in (b).

FIG. 2. Phase space diagrams before (a) and after (b) the
bifurcation point with p = 3 (a) and p =1 (b). The apparent
change of the size of the sliding strip is only due to a change
of scale.

FIG. 3. Phase space diagrams of the simple limit cycle at
the bifurcation point (p = 2.1). It can be clearly seen that
the orbit intersects the switching plane on the boundary of
the sliding strip



