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Abstract.

Experiments have shown that long cylinders buckle into localized pat-
terns axially. It is argued that traditional linear or nonlinear analysis is
unlikely to capture such modes, nor the effective buckling load at which
such responses stabilise. However, the inherent translational indeterminacy
of localised buckling is well captured by considering infinitely long cylinders
and seeking homoclinic solutions of the von Karman—Donnell equations.
This exploits the dynamical analogy of such structural problems, so that
symmetry arguments and numerical techniques developed for dynamical
systems may be used. The method is illustrated by successful application
to a cylinder which has well documented experimental results.

1. Introduction

A fruitful approach to certain statics problems posed over long domains
has been to treat them as dynamical systems (see, for example, the con-
tribution by J.M.T. Thompson in these proceedings). Localized responses
of such systems, which energy arguments often reveal as being important
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physically, may be modelled by homoclinic solutions of ordinary differential
equations differential equations (ODEs) posed on the real line.

We aim to show succinctly that the buckling of long thin, cylindrical
shells is a classically hard problem that is well explained using this ap-
proach. The equilibrium of the shell is governed by the von Kdrman—Donnell
partial differential equations (PDEs), which may be viewed as a dynami-
cal system in the axial length of the cylinder. The difficulty for traditional
analysis (using modal decomposition or finite element techniques) is that
buckling is violently sub-critical, so that linear theory can over-predict the
true experimentally observed load by as much as 400% (see, for example,
Figure 1(a) where the true buckling load is near the turning point of the
post-buckled curve). Therefore, the nature of post buckling behaviour is
fundamental in predicting the true failure loads and displacements.

Figure 1 reproduces some experimental work from the 1970s depict-
ing elastic buckling deformations of moderately long cylinders under end
loading. Several features are worthy of note. First, buckling is typically lo-
calized to some portion of the axial length of the cylinder. Secondly, there
is a translational indeterminacy axially in the location of the buckled por-
tion (compare (c) and (d)). Thirdly, for each buckle there is a well defined
circumferential ‘wave number’, which is not fixed by the geometry of the
cylinder. Finally, there are two forms of buckle pattern (cf. Figure 1(b),(d))
which in the following we refer to as symmetric and cross-symmetric respec-
tively.

In this paper we show how our numerical methods, based on the dy-
namical systems analogy, captures all the features of Von Efflinger and
Geier’s experiments both qualitatively and quantitatively. We consider an
infinitely long cylinder and discretize the von Karman—Donnell equations
circumferentially by a Galerkin method. This yields a large system of ODEs
in the axial variable z, for which we seek homoclinic, i.e. axially localized,
solutions. We seek forms of solutions which are either symmetric or cross-
symmetric, implying reversibilities of the ODEs.

In earlier work (Lord, Champneys & Hunt 19974, Lord, Champneys &
Hunt 1997b), we confirmed numerically the existence of homoclinic orbit
solutions to these equations and obtained good agreement with experimen-
tal data on a cylinder due to Yamaki (1984). We also described in detail
the numerical techniques used to compute those solutions, which are based
on extension to the current PDE setting of existing methods for homoclinic
solutions or ODEs (e.g. (Beyn 1990, Friedman & Doedel 1994)). We are
interested here in “primary” or “uni—modal” homoclinic orbits. However
recent work by Peterhof, Sandstede & Scheel (1997) strongly suggests the
existence of “multi-modal” or n-pulse homoclinic orbits such as computed
in Lord et al. (1997a).
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(a) (b)

Figure 1. Experimental results after Von Efilinger 1970 and Von Efllinger & Geier
1972. (a) Load vs end-shortening bifurcation diagram taken from experiment (1970).
(b) Symmetric solution found on a short cylinder (1972). (c) Cross-symmetric solution
localized close to one end of cylinder (1970), and (d) cross-symmetric solution localized
just off centre of cylinder(1970). In (b) and (d) we see an axial translation of the same
buckle pattern.

In Section 2, we describe the von Karman—Donnell equations, their
Galerkin approximation and how to exploit symmetries in the problem.
Section 3 then presents numerical results and compares them to the ex-
periments. All our computations were performed using the numerical con-
tinuation code AUTO (Doedel, Keller & Kernévez 1991). Finally, Section 4
draws conclusions.

2. The von Karman—Donnell equations and their approximation
as a dynamical system

Consider an infinitely long, thin cylindrical shell of radius R and shell thick-
ness t. The classical equilibrium equations for the in—plane stress function
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¢ and displacement w in the post—buckling regime of the cylinder are given
by the von Karman-Donnell equations:

K2V4’U) + ANgg — pdgr = wxw¢yy + wyy¢ww - 2wwy¢wy (1)
V4(]5 + pwg, = ('wacy)2 — Wz Wyy, (2)

where V* denotes the two dimensional bi-harmonic operator; z € IR is the
axial and y € [0,27R) is the circumferential co-ordinate. The parameters
appearing in (1) and (2) are the curvature p := 1/R, k% := #2/12(1 — v?),
where v is Poisson’s ratio, and the load parameter A := P/FEt, where P is
the compressive axial load (force per unit length) and E is Young’s modulus.
The form of solutions we seek suggest that equations (1) and (2) should
be supplemented with periodic boundary conditions in y and asymptotic
boundary conditions in the axial direction z:

(w, )(,0) = (w, ¢)(z, 27 R),

(’U), ¢)(.’L', y)7 (’U), ¢):E("B’ y)7 (’U), ¢)ww($a y)a (’U), ¢)CECECE($5 y) —0as z — iO(O)
3
The system (1) and (2) has a rich structure of symmetries, see (Hunt,
Williams & Cowell 1986, Wohlever & Healey 1995). In accordance with
observed deformation patterns, we seek solutions that are even periodic
solutions in ¢y and which remain within the subspace corresponding to in-
variance under rotation through 27/s. Hence we use the following cosine

functions as the basis functions in the Galerkin approximation

w(y) = i am, cos(mspy); d(y) = i b cos(mspy), s € IN.

m=0 m=0

We refer to cos(spy) as the seed mode.

Substituting into the von Kidrmin-Donnell equations, taking the L?
inner product and expanding the nonlinear terms we find a system of ODEs
for the Fourier modes a,, and b,, for m =0, ..., 00 which we may formally
write as

a% = Lapy + Fm(am)a b?}z = Lby, + Fm(bm)’ (4)

where superscripts denote differentiation with respect to z (see (Lord et al.
1997a) for the details). The Galerkin approximation is formed by taking
equations (4) for m =0,---, M — 1, for some finite M.

We think of equations (4) as a dynamical system, with the axial variable
z taking a time-like role. Systems of the form (4), arising from elliptic
PDEs, were considered in detail by Mielke (1991), and shown to have a
Hamiltonian structure.
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There is a further symmetry of von Karman—Donnell equations that
plays an important role in the localised buckling solutions observed physi-
cally. The buckling modes observed experimentally, tend to be either sym-
metric (as in Figure 1(b)) or cross-symmetric (Figure 2(d)) about a hori-
zontal cross-section of the cylinder. A solution to (1), (2) that is symmetric
about the cross-section x = T satisfies

’U)(.'II,y) :w(2T_$ay) & ¢($7y) = ¢(2T—$7y)' (5)

Equations (5) impose the natural symmetric conditions on the Fourier
modes a,, and by, for m =0,--- M —1atz="1T,
(1) = ap, (T) = by, (T) = by, (T) = 0. (6)

m

In contrast, a cross-symmetric solution satisfies, for some seed mode s,
’U)(.’L',y) = ’U)(2T—.72,y—|—7TR/S) & ¢($ay) = (ZS(QT—.’L‘,y-I—ﬂ'R/S) . (7)

Thus, in terms of the Fourier modes, we have that

am(T) = bu(T) = ay, (T') = b, (T') = 0, m=1,3,5,-

It is not difficult to see that the symmetries of (1) and (2) defined by
(5) and (7) define a reversibility of the ODEs (4), as in (Devaney 1976),
with fixed point sets, S, forming 4 M—dimensional sub—manifolds of phase
space IR®M | Hence we can use as a boundary condition that the solution
am(T), by (T), lie in the the 4M—dimensional space S.

Note, finally, that there is a “degeneracy” in equations (4) for the zero
mode (m = 0) such that these could be solved with initial conditions for
ay,ay', by, by independently of the initial conditions for ag, by and ag, and
by. This corresponds to a trivial translational symmetry in the problem
(sometimes termed a rigid body mode). This translation invariance plays
an important role. In our formulation the localization may occur at any
point along the length of the cylinder. Indeed this translation invariance is
observed experimentally (see for example Figures 3 and 4 in Von ESlinger
(1970), reproduced partially in Figure 1.

A standard periodic analysis of the von Karman—Donnell equations
seeks the minimum load A = A; and corresponding axial and circumfer-
ential wavelengths such that a bifurcation occurs. One may easily show in
this way that Ay = 2pk. Wavelengths for which A\ = A4 lie on a circle in
axial/circumferential wave space as first elucidated by Koiter (1945). The
weakly nonlinear analysis of Hunt & Lucena Neto (1991), interpreted in
the present context, suggests that once a circumferential wave number has
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been chosen, then there is a small amplitude bifurcation of (a pair of) ho-
moclinic solutions at A = Az as in the normal form of a Hamiltonian-Hopf
bifurcation (Iooss & Peroueme 1993).

In order to compute the true localised buckling load, we numerically
extend the weakly nonlinear analysis, by computing homoclinic solutions
to (4) truncated for some M. Note that the single mode approximation
found by taking M =1 (m = 0 only) in (4) yields a linear system for which
there are no homoclinic solutions. Thus the simplest approximation we can
take that may admit a homoclinic solution is the two mode approximation
found by taking M =2 (m =0,1) in (4).

The numerical method, described in detail in Lord et al. (19974), makes
full use of the reversibility and symmetry properties of (4) regarded as a
dynamical system. Specifically, we solve for symmetric or cross-symmetric
homoclinic solutions as a boundary-value problem (BVP) on a truncated
domain, with left-hand projection boundary conditions that place the solu-
tion in the linearised unstable manifold of the origin (see, e.g. (Beyn 1990)).
At the right-hand boundary conditions, we exploit the symmetric section
conditions (6), (8). This BVP can be solved by a regular continuation code
to compute load-deflection bifurcation diagrams, but may require careful
steps to be taken in order to compute initial approximations.

3. Numerical results

To compare with the experiments of Von Eflinger & Geier (1972) calcula-
tions were performed for a shell with

p=0.0lmm™, t = 0.190mm, v=0.3, E =411 GPa. (9)

In the figures below z is plotted on [0,2T] unless otherwise indicated and
z,y,w(z,y) and Fourier coefficients aj are measured in mm. All computa-
tions were performed using the numerical continuation code AUTO (Doedel
et al. 1991) and, unless otherwise stated, the number of collocation intervals
NTST=20.

Note that the shell we compare to here is of length L = 100 mm and
so hardly qualifies as long as its aspect ratio (length to diameter) is only
L/2R =0.5.

We compare with experiments the ratio of loads A\p,/Ag where \y =
2pK = 1.1499 x 10~2 denotes the smallest value of A at which the funda-
mental solution bifurcates, and A, is the minimum post buckling load (the
first local minimum in the bifurcation diagram, see Figures 2 & 3 (a)). For
the numerical simulations, A, was taken to be the first limit point on the
branch of homoclinics as the loading parameter was decreased from Ag.

In the computations the half length of the cylinder T' was taken to
be either T" = 100 or T' = 250. We chose a 6 mode approximation (ie
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m =0,1,2,3,4,5) since it was found in (Lord et al. 1997a) that gave a good
compromise between spatial convergence and tractability of the problem.

In the bifurcation diagrams, Figure 2 (a) and Figure 3(a), we plot the
load A against a measure of the end shortening defined by arc-length for
a symmetric case and a cross-symmetric case. Note that the trivial branch
(corresponding to the diagonal line in Figure 1 (a) is equivalent to the A-
axis here - since the von Karman—Donnell equations factor out the overall
squash of the cylinder. The curve of homoclinic orbits originates, in both
cases, from the bifurcation point Ay ~ 1.1499 x 1072 on the )\ axis. The
limit point A, is at the first minimum value of the loading parameter A
along the curve originating at A4.

(a) (b)
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Figure 2. Symmetric form of solution computed for seed s = 7 with M = 6 modes.
(a) Bifurcation diagram, (b) Fourier modes a (mm) for displacement, (c) reconstructed
displacement w (mm), (d) reconstructed stress function ¢.

In Figures 2 and 3 (b) we have plotted the Fourier modes aj for the
displacement w for the symmetric and cross symmetric cases respectively.



8 G. J. LORD ET AL.

Note that the Fourier modes a4 and as are very small - indicating conver-
gence as the spatial resolution is increased.

(a) (b)
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Figure 8. Cross-symmetric form of solution computed for seed s = 7 with M = 6 modes.
(a) Bifurcation diagram, (b) Fourier modes an (mm) for displacement, (c) reconstructed
displacement w (mm), (d) reconstructed stress function ¢.

The 3-dimensional plot in Figures 2 and 3 (c) show the full reconstructed
displacement w(z,y) plotted over the deformed cylinder. The (cross-) sym-
metric nature of the solutions is clearly evident. Qualitatively, all the 3-
dimensional plots compare well with the experimental evidence of Von Efllinger
& Geier (1972). In Figures 2 and 3 (d) we have reconstructed the stress
function ¢ and plotted that over the deformed cylinder.

We now consider a quantative comparison between our numerics and
experimental results. For the symmetric case we found a difference of ~
20% in the experimental to computed ratio A,,/\4. This discrepancy is dis-
cussed below. In the cross-symmetric case excellent quantative agreement
was obtained, as presented in Table 1.
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S \ 10 11 12 13

Present 0.1843 0.2027 0.2277 0.2538
Experimental | 0.197  0.208  0.228  0.257

TABLE 1. Comparison of the ratio Ay, /Mg of our results
with the experiments of Von Efilinger & Geier (1972) for
cross-symmetric forms of the solution.

4. Conclusion

We presented numerical results for the buckling cylinder problem and com-
pared our results with experimental data. Qualitatively, we find good agree-
ment for both the symmetric and cross-symmetric forms of solutions.

In the symmetric case there are some discrepancies between the numer-
ical and experimental results. However, the experiments of Von Eflinger
& Geier (1972) indicate that a symmetric buckle pattern is not observed
in longer cylinders. In addition, for the relatively short cylinder presented
here, they find that the symmetric modes occur at lower-post buckling
loads. This evidence is corroborated in (Yamaki 1984) who finds mostly
cross-symmetric solutions. Furthermore symmetric modes appear less local-
ized than cross-symmetric, and we would therefore not expect our analysis
on this relatively short cylinder to be as quantatively accurate. For longer
cylinders, for which there is little experimental evidence of the symmetric
pattern, we would expect better agreement.

For the cross-symmetric case, more commonly observed experimentally,
we have found excellent agreement quantatively even for the relatively short
cylinder. For longer cylinders we expect a yet closer match to the experi-
ments.

Our results suggest that the buckling of a long thin axially compressed
cylinder is well described by a localization theory based on homoclinic so-
lutions, independently of any imperfections in the cylinder. Significantly,
this allows for the translational indeterminacy inherent in observations (cf.
Figure 1). As such, we claim, it is provides a useful complement to finite ele-
ment approaches with realistic boundary conditions, which may suffer from
multiplicities of (near) solutions. This demonstrates that the correspond-
ing asymptotic boundary conditions are the natural boundary conditions
for the computation of buckling solutions of long cylinders.
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