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Efficient learning beyond saturation by
single-layered neural networks

S Coombes and C Campbell

Neural Computing Research Group, Department of Engineering Mathematics,
Queens Building, University Walk, University of Bristol, Bristol, BS8 1TR, UK

Abstract.

We present two distinct learning rules that can be applied to the problem of
constructing a dichotomy of an arbitrary pattern set. Both rules are given in closed
form and are discussed within the context of a single layered network of N nodes
storing P patterns. For P < N both rules realize dichotomies of a pattern set and can
guarantee perfect storage up to a maximal capacity of P = N. Beyond this maximal
capacity the rules can be used to give efficient solutions with a small number of
errors. Their efficiency for learning beyond saturation and the simple closed form of
these solutions make them ideal for use in constructive algorithms. Generalization
performance and the issue of pattern stability in the regime of perfect storage are
also examined and theoretical predictions are compared with simulations.
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1. Introduction

The Perceptron rule [1] is a fast and efficient algorithm but, since it is a rule for single-
layered learning, it is unable to store pattern sets which are not linearly separable.
However, a number of authors have recently proposed constructive algorithms in which
single-layered learning rules are used during the generation of a multi-layered neural
network capable of performing arbitrary mappings. Typically a rule such as Perceptron
learning is used and the task at each step is to store all the patterns or maximize
the number of patterns that can be stored and grow further hidden nodes to store
the remaining patterns. Examples of such constructive algorithms are the Upstart
algorithm [2], Perceptron Cascade [3], the Target Switch algorithms [4] and other
algorithms for generating neural networks with a single hidden layer [5] or two hidden
layers [6].

The performance of these constructive algorithms relies on the underlying rule for
single-layered learning. A good rule should be able to perfectly store the pattern set if
this is possible or, if trained beyond saturation, it should be able to store a maximal
fraction of the patterns correctly. A good rule should also be fast and preferably in
closed form.

The storage capacity of a single layer network that is able to correctly classify
P patterns using a network of N nodes and one binary valued output is defined as
a = P/N. The maximal storage capacity, a., of a single layer network with real
valued weights is a, = 2 for randomly chosen real input patterns [7, 8]. This maximal
storage capacity can actually be achieved using the Perceptron rule. Thus if 5;7 are
real inputs, with g =1...P,j = 1...N, and n* are the corresponding target values
(m* € {—1,+41}) then we find the weights using the following algorithm

1 Start with random weights w§-0)

2 Present all the patterns, u = 1... P, and for each pattern calculate

Xt =gty wit) M
J
if X# < 0 then
i = w4 g 2)

3 If all the patterns are stored correctly, X* > 0, Vu = 1... P, or some maximum
number of iterations are completed then stop, else, goto step 2.

It has recently been shown that a. can be less than 2 if similar patterns are mapped
onto different outputs and vice-versa [9]. Furthermore, optimal basins of attraction
are known to be small in the regime 1 < a < 2 [10]. Hence, in practice algorithms
that can guarantee a maximal storage capacity of a, = 1 for patterns drawn from
arbitrary distributions are of interest.

In this Letter we present two such rules for single-layered learning. The closed form
solution of both learning strategies allows the use of efficient numerical techniques for
their construction. However, more traditional iterative neural algorithms also exist
for this purpose.

The task of mapping N input patterns to N outputs is easily accomplished with the
aid of a set of N independent single output Perceptrons. Introducing the notation w;;
for the j*" weight of the i*? Perceptron the problem of association becomes equivalent



to demanding that the NP Gardner conditions [8] are satisfied:
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if the real pattern vector £&# with components f;f is to be associated with the target
value & € {—1,+1},i # j. & is a positive stability parameter [§], that provides
robustness to noise, although at the expense of a decreased maximal storage capacity
(as will be discussed later).

Hence, if a set of weights w;; satisfies the Gardner conditions then a solution to a
reduced single layer network problem classifying the pairs (£#,£;) is given by:

w; = Wit (4)

We now discuss two recent learning rules that achieve the NP Gardner conditions and
consider their reduction to single layer learning, with one output node.

1.1. The Inverse-Hebb Rule

The Inverse-Hebb rule may be used to classify N arbitrary patterns in a net of NV
nodes [11, 12]. To classify less than N patterns requires the introduction of some
arbitrary pattern vectors to increase the total number in the pattern set to N. The
rule does not provide the network with any stability in the sense that the Gardner
parameters, v£, are zero V i, u. The Inverse-Hebb rule is so called because it takes the
form:

M
1
wig =—(C™)y; Cij=17) &€} M=N (5)
p=1

The stabilization algorithm [12, 13] is able to increase the Gardner parameters for a
subset of patterns stored using the Inverse-Hebb rule. The analogue of the Inverse-
Hebb rule for the single layer network with one output node is obtained via (4) and
the corresponding stabilization algorithm takes the form:

P

Sw; = % 3 {e—*n“h“nﬂ(gf - h“wi)} W= wigt ¢ A>0 (6)

=1 J#1

where n# = &' and € and X are learning rates (example values are given in section
2). The first term performs gradient descent on the convex function exp(—An*h*)
which is bounded from below ensuring that a minimum exists. Since this function is
a continuous decreasing function of —n*h#, the minimum is to be found for as large a
value of n#*h* as possible. The second term is a form of weight decay, such that at the
fixed point || w ||= 1. Hence, the stability parameter p*h* || w ||~! is also maximized.
The stabilization algorithm is local, does not require the choice of a stability parameter
prior to learning and actually has learning times that decrease with increasing capacity
[12]. These properties contrast favourably with more traditional Perceptron learning
algorithms based upon the Gardner algorithm [8].

1.2. The Feature Matrix

The Feature Matrix also achieves a maximal storage capacity of a, = 1 for patterns
drawn from an arbitrary pattern distribution [14]. In common with the closed form
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of the Pseudo-Inverse rule [15, 16] it is a projection operator on the pattern subspace
with components given by:

P P
1
wig =3 S D ICulf =X Cy= 5 ) € (7)
a=1 ] u:l

Where the label a orders the eigenvalues A* of the correlation matrix by decreasing
value. It has the advantage over the closed form of the Pseudo-Inverse rule in that
it is not restricted to the case in which the patterns must be linearly independent.
It is worth mentioning that the Inverse-Hebb matrix is also a projector, explicitly
onto the subspace spanned by the training patterns. The Feature Matrix is so called
since it is built from the features or principal components of a pattern set. The rule
ensures that the local field, hY =" i wjfj-‘, of a pattern is the optimal (in the least
squares sense) linear reconstruction of the target vector ¢, for a given pattern index
- The Gardner conditions are satisfied since the local field of the pattern points
in the same direction as the target vector [14]. A consequence of self-averaging in
the thermodynamic limit is that Feature Matrix yields the same distribution p(vy) for
the pattern stabilities as the Pseudo-Inverse rule, namely p(y) = d(y — 70), where
Y% = /(1 —a)/a, for patterns drawn from a random unbiased distribution. Again,
the analogue of the Feature Matrix storage rule for the single layer network with one
output node is obtained via (4).

2. Simulations

In this section we explore the performance of the two algorithms presented in section
1. As a benchmark we make comparisons with the performance of a single layer
network possessing a theoretically optimal architecture rather than with other existing
training algorithms. We have simulated networks with 100 inputs and averaged over
a 100 typical implementations. Explicitly, we consider random unbiased binary input-
output mappings from 100 dimensions to 1. The critical storage capacity of a, =1 is
still reached by both algorithms when considering biased patterns.

The symmetry and positive definite properties of the pattern correlation matrix
allows one to use algorithms such as Cholesky decomposition in the construction of the
Inverse-Hebb rule requiring O(N?3/6) operations (see [17] for appropriate numerical
routines).

The Feature Matrix is easily obtainable with traditional numerical routines that
extract eigenvectors, although many neural learning algorithms also exist to obtain
principal components [18, 19]. Again, one may exploit the properties of the pattern
correlation matrix and perform a Householder reduction on it (requiring O(4N3/3)
operations). An algorithm such as QL may be used to obtain the eigenvectors
and eigenvalues of such a real symmetric, tri-diagonal matrix (requiring O(3N?)
operations).

A discussion of alternative neural mechanisms for the construction of both rules
may be found in [12] and [14].

In figure 1 we show the value of « for the Feature Matrix and also for the fixed point
of the stabilization algorithm (primed with the Inverse-Hebb rule). Also shown is the
optimal Gardner result ag (k) and the Feature Matrix result ap (k) = 1/(1+ &?) for
random unbiased patterns. The stabilization of pattern subsets was catered for using
(6) with € = 2.0 and A = 0.1 and the results demonstrate the ability of this algorithm
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Figure 1. Storage capacity as a function of stability for the combination Inverse-
Hebb and stabilisation algorithm (+) and Feature Matrix rule (¢). The lower dashed
line is the theoretical curve describing the stability of the Feature Matrix rule whilst
the upper is the optimal Gardner result.

to enhance pattern stabilities away from zero towards the upper limit obtained by
Gardner. The close agreement between theory and simulation for the stability of the
Feature Matrix, combined with the proximity of results to the Gardner optimum for
a < 0.8 demonstrates the effectiveness of this closed form solution. Although still
achieving the same level of storage as the Feature Matrix, the combination of Inverse-
Hebb and stabilization algorithm does not, in practice, yield comparable stabilities.
However, as we shall demonstrate, the Inverse-Hebb rule has favourable performance
gains in the regime beyond saturation.

Since the Inverse-Hebb matrix is built from exactly N patterns one first needs
to decide how to extend its definition in the regime beyond saturation before any
generalization properties can be investigated. To this end we extend the definition of
the rule (5) in the regime beyond saturation (ie P > N) by setting M = P. Figure 2
demonstrates the graceful degradation achieved when using the Inverse-Hebb rule in
the regime beyond saturation by plotting the fraction of errors developed in a single
layer network trying to store more than N random unbiased patterns. It is apparent
that the Feature Matrix suffers far more serious performance losses in this regime.

In this figure we also show the theoretical result obtained in [8, 20] for k = 0. This
is an optimal curve for Perceptron performance and in practice numerical simulations
of Perceptron learning algorithms (including Optimal Perceptron learning) fall well
short of this result.

The Inverse-Hebb rule performs more favourably in the regime beyond saturation
than the Feature Matrix. For example, at a = 2, the Feature Matrix shows a drastic
performance depreciation, but the Inverse-Hebb rule shows only a relatively small
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Figure 2. Fraction of errors generated by the Inverse-Hebb rule (+), and Feature
Matrix (¢) beyond saturation. Solid line corresponds to the theoretical optimal
Gardner scenario with k = 0.

degradation in performance. However, in comparison to the Perceptron rule (and
indeed variants on the rule such as Minover [21] and Adatron [22]) extra criteria for
obtaining local optima of negative stability do not have to be introduced in the regime
beyond saturation. Recently Imhoff has introduced the RECOMI algorithm which is a
polynomially fast algorithm for searching optimally stable solutions of the Perceptron
learning problem [23]. Although simulations have shown that it can operate in the
regime beyond saturation, there is as yet no proof of convergence. Furthermore, it
requires O(N*) operations which is an order of magnitude larger than required for the
construction of either the Inverse-Hebb rule or the Feature Matrix.

Figure 3 shows the training errors for the Feature Matrix and Inverse-Hebb rules
learning a realizable rule. A realizable rule is one for which training pairs can be
generated by a teacher network of the same architecture as the student single layer
architecture. In the simulations, teacher weights are generated at random from an
unbiased distribution and all results are averaged over a hundred instances of the
teacher. The Inverse-Hebb rule is able to increase its storage capacity beyond one, to
about 1.5, in contrast to the Feature Matrix which retains a storage capacity of one.

In figure 4 we show the generalization performance for this task. The Feature
Matrix shows the unusual property of over-fitting the data in the storage regime
causing a decrease in the generalization performance as P — N. This is also true
for the Pseudo-Inverse rule and has been investigated theoretically for the case of
a linear Perceptron by several authors [24, 25, 26]. The generalization properties of
single layer networks learning realizable rules with the stability distribution p(7) of the
Pseudo-Inverse rule have been studied in [27]. Since the Feature Matrix also possesses
this distribution of stabilities we plot the corresponding theoretical generalization
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Figure 3. Training error for the Inverse-Hebb rule (¢) and Feature Matrix (4)
learning a realizable rule.

curve for comparison. There is reasonable agreement between theory and experiment,
particularly in the regime of over-fitting where a < 1. Also plotted is the theoretical
prediction for the Optimal Perceptron learning rule [27]. (A numerical error [28] in
the original plot of this curve in [27] has been corrected for). A comparison of results
from the Inverse-Hebb rule and this curve is apt since the rule was originally derived
by examining the properties of a Perceptron in the limit of high capacity. Although
not fitting the Inverse-Hebb data it does bound both the simulation results for the
two rules as expected.

3. Discussion

Unlike the Feature Matrix, the combination of the Inverse-Hebb rule and the
stabilization algorithm does not produce the same value for all the P stability
parameters. The inability of the stabilization algorithm to increase the stability
parameters at the same rate is the reason for this. Although the Feature Matrix
achieves a higher level of stability in the storage regime it does not perform as well
as the Inverse-Hebb rule beyond saturation. This is reflected in the rapid rise of the
network error level. However, it is the generalization properties of these rules that are
of more consequence than their storage properties. Although both rules perform well
at learning a realizable rule it is again the Inverse-Hebb rule that performs best. Also
noteworthy is the fact that it almost doubles its storage capacity for this case, coming
closer to the theoretical maximum. The generalization error for the Inverse-Hebb rule
is currently being investigated by us using replica techniques.

Single layer learning rules are limited in the sense that they can only realism
dichotomies for pattern sets which are linearly separable. However, a number of
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Figure 4. Generalization error for the Inverse-Hebb rule (4+) and Feature Matrix
(o) learning a realizable rule. The theoretical generalization curve for the Feature
Matrix (- - - -) and the optimal Perceptron (— - —) are also shown.

authors have proposed constructive algorithms that generate the architecture of a
feed-forward network in addition to determining the number of weights required for a
given pattern classification task. For example, the Target Switch algorithm [4] can be
used to generate feed-forward architectures by composing sets of single layer elements
into a larger structure. Each of the single layer elements can be trained with any
of the existing single layer algorithms. Hence, both the rules discussed in this paper
find ready application in constructive algorithms. The performance gains that are
available when using these rules is being investigated for a class of dichotomy based
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constructive learning algorithms and will be presented elsewhere.
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