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Abstract

An analysis is presented of the homoclinic bifurcations occurring in a generic un-
folding of a saddle-node/Hopf singularity (also known as a Gavrilov-Guckenheimer
point). Specifically, an explanation is given of previously numerically observed oscil-
lations of loci of homoclinic orbits to two different saddle focus equilibria. These os-
cillation occur within an exponentially thin wedge of parameter space that emerges
from the codimension-two point. The frequency of oscillation tends to zero as the
codimension-two point is approached. Earlier theory by Gaspard showed that ho-
moclinic orbits must exist inside the parameter wedge. This result is here extended
to give the frequency and amplitude of the oscillations of the homoclinic loci within
the wedge. It is also shown how the two loci are related to each other, and, in the
case of only cubic perturbations of the normal form, that they are precisely out of
phase. The analysis is shown to agree with numerical results on perturbed normal
forms and in two model systems arising in applications to atmospheric dynamics
and to calcium wave propagation.

Key words: codimension-two point, saddle-node/Hopf, Shil’nikov homoclinic
orbit, beyond all orders
PACS: 02.30.Hq 02.30.Oz

1 Introduction

A frequently used tool in the analysis of the dynamics associated with a
parametrised system of differential equations is the construction of a bifur-
cation set showing the location of bifurcations of the system as one or more
parameter is varied. When the system has two or more parameters it is com-
mon to draw two-parameter bifurcation sets; in this context, codimension-
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one bifurcations are located on one-dimensional curves in the bifurcation set
and codimension-two bifurcations occur at isolated points. The codimension-
two points can be regarded as organising centres for the bifurcation set, with
several curves of codimension-one bifurcations typically emerging from each
codimension-two point. Thus, an understanding of common codimension-two
bifurcations is of great help in the study of systems with two or more param-
eters.

One of the simplest codimension-two bifurcations is the saddle-node/Hopf
(SNH) instability, where there is simultaneously a saddle-node bifurcation and
a Hopf bifurcation, so that the linearisation of the vector field evaluated at
an equilibrium solution and restricted to the centre manifold has eigenvalues
0,±iω. The dynamics associated with the SNH instability has been extensively
studied; overviews of results are given in [10,13], with further results and
references in [7,12]. The normal form for the bifurcation can be written as:

q̇ = q (λ + iω +
∑

2m+n≥1

αm,n|q|2mzn), (1.1)

ż =µ +
∑

2m+n≥2

γm,n|q|2mzn, (1.2)

where q, αm,n ∈ C, z, γm,n ∈ R and λ, µ ∈ R are unfolding parameters. De-
pending on the signs of the coefficients α0,1 and γ0,2 (assuming, without loss
of generality, that γ1,0 = −1), four qualitatively different cases of the nor-
mal form can be identified [10,13]. In two of these cases, the dynamics seen
in unfoldings of the normal form is straightforward, consisting just of fixed
points and periodic orbits arising through the primary saddle-node and Hopf
bifurcations. In the other two cases, there are additional secondary bifurcation
resulting from the interaction of the primary bifurcations, and the dynamics
near the co-dimension two bifurcation can be quite complicated. This paper
shall explicitly involve one of the latter cases; α0,1 > 0, γ0,2 < 0.

The normal form (1.1), (1.2) is equivariant with respect to an S1 symmetry,
corresponding to cylindrical symmetry about the z-axis, which renders the
dynamics to be effectively planar. This symmetry is a result of the procedure
of reduction to normal form; there is a nonlinear change of coordinates that
will remove nonresonant terms up to any given finite order, leaving just sym-
metric terms in the normal form. However, when faced with a true example
system undergoing a saddle-node/Hopf bifurcation, it will not in general pos-
sess this symmetry. The normal form procedure can impose this symmetry
up to any finite order, by removal of all non-resonant terms, but symmetry-
breaking terms will always be present beyond all algebraic orders. In other
words, the normal form (1.1), (1.2) is not a topological normal form [13] (or
versal unfolding [10]) of the bifurcation.
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Fig. 1. Entwined wiggling of homoclinic bifurcations of saddle-foci in a cubic per-
turbation of the saddle-node/Hopf normal form, after [12], see Sec. 4.1 below.

Thus, to fully understand the dynamics associated with this instability, it is
necessary to consider the effect of breaking the normal form symmetry. It is
also most desirable to keep the symmetry-breaking terms at the lowest order
possible. Specifically, they should enter at the next order to the truncated
normal form of lowest order necessary to describe the steady state bifurcations
in the system. In this case, we consider symmetry-breaking perturbations that
are to lowest order cubic; see (2.1), (2.2) below.

Several authors have shown that, in the absence of the normal form symme-
try, there may be homoclinic and heteroclinic bifurcations and chaotic dynam-
ics occurring arbitrarily close to a SNH bifurcation point (see, for example,
[4,7,9]). In particular Gaspard [7] showed that, in the case under consider-
ation here, homoclinic bifurcations of Shil’nikov type must occur near the
codimension-two point, lying inside a thin wedge of parameter space emanat-
ing from the codimension-two point. He further showed that, in the case of
purely cubic perturbations to the normal form, the wedge is in fact exponen-
tially thin, and he computed a linear approximation to it. Other dynamical
features can be seen to occur inside this wedge including chaotic attractors,
heteroclinic tangencies, and the merging of resonance tongues; see e.g. [4,12].

In a numerical study of the perturbed normal form, Kirk [12] noticed that
within the wedge, there are loci of primary homoclinic bifurcations involv-
ing two different equilibria, with these loci displaying a distinctive entwined
oscillation about each other – see Fig. 1. Similar wiggly homoclinic bifurca-
tion curves have also been observed in systems arising from applications in
which SNH bifurcations occur as part of a larger bifurcation set. For example,
Balmforth et al. [1] found just such an oscillatory curve of Shil’nikov homo-
clinic bifurcations, and (erroneously) conjectured that the additional structure
gained by the homoclinic loop as it traverses a wiggle in parameter space is
caused by an additional local bifurcation. Also, Shil’nikov, Nicolis & Nicolis
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[16] studied a certain third-order atmospheric model due to Lorenz (a mod-
ification of his famous equations), and found two highly-oscillatory branches
of homoclinic bifurcations emerging from the codimension-two point. Interest-
ingly, one of these branches has the property that as it oscillates it repeatedly
collides with a branch of saddle-node bifurcations causing codimension-two
non-central saddle-node bifurcations. More recently, van Veen et al. [21] have
found the same homoclinic branches occurring in a more accurate, higher-order
model of the same atmospheric phenomenon. Similar wiggly curves have been
found in different models of chaotic lasers, e.g. [18]. Finally we mention a
problem in the study of intracellular calcium wave propagation, where pulses
in calcium concentration correspond to Shil’nikov-type homoclinic orbits of
a system of travelling-wave ordinary differential equations [20]. In a plot of
wave speed versus system parameter, a branch of travelling waves is found to
approach a SNH point via oscillation within a thin wedge, in the same way
as in the examples above. Recently a second branch of homoclinic orbits to
another equilibrium has also been found in this model, forming the entwined
partner to the first branch of homoclinic orbits [19]. A feature of particular
interest in this model is that at the other end of the main homoclinic branch
(i.e., not at its limit at the SNH point), the homoclinic orbits arise as the
gluing together of two unstable fronts, and yet can be shown to give rise to
stable pulses of the underlying partial differential equation [15].

The ubiquitous and regular nature of the numerically observed wiggly ho-
moclinic bifurcations suggests that some underlying generic feature of the
instability is causing the wiggling, but until now, there seems to have been no
explanation of this feature of the dynamics. The purpose of this paper then,
is to present a rational explanation of this characteristic wiggling emanating
from the SNH instability of the type (α0,1 > 0, γ0,2 < 0), which has been
seen repeatedly in examples. In particular, we shall obtain precise estimates
of the frequency and amplitude of the oscillations (‘wiggles’) of the two pri-
mary homoclinic bifurcation curves emerging from the codimension-two point
and show how the bifurcation curves are related to each other.

In section 2, we describe the dynamics associated with the normal form for
the case of the SNH bifurcation that we are interested in. In section 3, we first
summarise some results of Gaspard [7]. Then we show how his perturbation
analysis can be extended to yield estimates for the amplitude and frequency
of the oscillations, first in the case of cubic perturbations to the normal form,
and then for arbitrary analytic perturbations. In section 4 we compare the
predictions of our analysis with numerical results from the perturbed normal
form equations and from two model systems arising in applications to atmo-
spheric dynamics and to calcium wave propagation. Conclusions are given in
section 5. Our analytic results depend on knowing the asymptotic behaviour of
certain integrals, the calculation of which is given in Appendix A. Appendix B
contains some technical details of the convergence of a particular power series
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we use in our calculations.

2 Saddle-node/Hopf normal form and its perturbation.

After appropriate co-ordinate transformations, any sufficiently smooth three-
dimensional system in a neighbourhood of a SNH bifurcation point may be
written in the form of the truncated unfolded normal form plus higher-order
terms:

q̇ =(λ + iω)q + (α + iβ)zq + F (q, q, z), (2.1)

ż =µ− z2 + s|q|2 + G(q, q, z), (2.2)

for z ∈ R, q ∈ C. Here λ and µ unfold the Hopf and saddle-node bifurcations
respectively, s = ±1, and α 6= 0, β and ω > 0 are normal-form parameters that
may be further simplified if necessary by rescaling of time and co-ordinates.
The functions F ∈ C and G ∈ R are assumed to be analytic, that is, their
Taylor series

F (q, q, z) =
∑

j+k+l≥3

cjklq
jqkzl, G(q, q, z) =

∑

j+k+l≥3

djklq
jqkzl (2.3)

converge for all (q, z) in some sufficiently large ball B(0, 0). In general, cjkl, djkl ∈
C, but owing to the requirement that G be real we have

djkl = dkjl, d00l ∈ R. (2.4)

Note that the terms in F proportional to cjkl with j = k + 1 and those in G
proportional to djkl with k = j are resonant terms which are present in the
normal form (1.1),(1.2).

The second-order truncated normal form (henceforth referred to as the trun-

cated system) is obtained by setting F = G ≡ 0 in (2.1), (2.2). Its dynamics is
well understood [10,13]. Four cases can be identified, from the combinations
of the signs of s and α. We consider the case that α > 0 and s = −1, in which
case upon setting q = reiφ, the truncated system reduces to

ṙ = λr + αrz ,

ż = µ− z2 − r2 ,

φ̇ = ω + βz .

(2.5)
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Fig. 2. Bifurcation set and phase portraits for the truncated normal form (2.5), after
[10]. Phase portraits have r on the horizontal axis, z on the vertical axis; to recover
three-dimensional phase portraits, rotate each phase portrait about the z-axis.

Note that the equations for ṙ and ż are independent of φ, which implies that
the truncated system is equivariant with respect to rotations about the z-
axis. Without loss of generality, we may assume that β = 0. This follows from
making a near-identity rescaling of time (for z � β/ω)

tnew = told(1 + βz/ω), (2.6)

then a redefinition of z

znew = zold +
µβ

2ω
. (2.7)

Substituting these formulae into (2.5) we recover (up to quadratic order in
(µ, λ, z, r)) equations of the form of (2.5) but with

βnew = 0, αnew = αold − λoldβold/ω, (2.8)

and λ and µ re-defined as

λnew = λold −
αoldµoldβold

2ω
+ h.o.t., µnew = µold −

µ2
oldβ

2
old

4ω2
+ h.o.t.

Note that this transformation leads to a rescaled definition of the coefficients
cijk, dijk, obtained by applying the transformation (2.6), (2.7) to the Taylor
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series expansions for F and G. Henceforth then, we assume β = 0 without
loss of generality.

The dynamics of the truncated system is summarised in Fig. 2. There exist
two fixed points for positive µ which are born in a saddle-node bifurcation at
µ = 0. These are given by

P± : (q, z) = (0,±√µ),

which have eigenvalues

λ + α
√

µ± iω, −2
√

µ, for P+,

−λ− α
√

µ± iω, 2
√

µ, for P−.

Thus, when |λ| < α
√

µ, P+ has a two-dimensional unstable manifold and
a one-dimensional stable manifold, while P− has a two-dimensional stable
manifold and a one-dimensional unstable manifold.

When λ = 0, the system is conservative with a constant of the motion

H =
1

2
α|q|2/α

(

|q|2
α + 1

+ z2 − µ

)

.

In this case the two equilibria are connected in a heteroclinic cycle, which cor-
responds to the choice H = 0. This cycle is comprised of [7]: a one-dimensional
connection from P− to P+ formed from one component of the stable manifold
of P+

Ws(P+) : qs0(t) = 0, (2.9)

zs0(t) =
√

µ tanh
√

µt ; (2.10)

and a two-dimensional surface of connections which is the entire unstable
manifold of P+

Wu(P+) : qu0(t) =
√

µ(α + 1)1/2 ei(θ+ωt)

cosh(−α
√

µt)
, (2.11)

zu0(t) =
√

µ tanh (−α
√

µt). (2.12)

Here the parameter θ ∈ [0, 2π) parametrises individual trajectories in the
two-dimensional manifold, Wu(P+).

The work of Gaspard [7] involves unfolding this structurally unstable hetero-
clinic connection for the full system and showing that homoclinic connections
from either P+ or P− to itself are inevitable (see Fig. 3). He shows that, in the
presence of only cubic terms in the perturbations F and G, such connections

7



(b)

W u(P+)

W s(P+)

W s(P−)

Σ− : |q̂| = ∆

Σ+ : z = ∆

(a)

Fig. 3. The unfolding of the structurally unstable heteroclinic cycle; (a) schematic
representation of the stable and unstable manifolds of P+ and P−, also showing the
sets Σ± used later; (b) possible homoclinic orbit to P + in the unfolding.

occur within a certain exponentially thin wedge of the (λ, µ)-plane. We shall
adopt his approach to further reveal the precise asymptotic behaviour of these
loci of homoclinic connections under arbitrary analytic perturbations F and
G.

3 Asymptotics of the homoclinic curves

In this section we adopt the perturbation method used in [7] to find explicit
formulae for the loci of the primary homoclinic bifurcations of P+ and P−
in the limit of small µ. To be concrete, consider first homoclinic connections
to P+. We then start (Sec. 3.1) by finding expressions for the stable and
unstable manifolds of P+ and then (Sec. 3.2) determine the intersections of
these manifolds in the limit µ → 0 in the presence of purely cubic terms in
F and G. By keeping careful track of the phase dependence of the beyond-
all-orders part of this intersection, we are then able in Sec. 3.3 to extend
Gaspard’s analysis in order to obtain asymptotic expressions for the amplitude
and frequency of the oscillations of the homoclinic bifurcation curve. Section
3.4 considers the extra effects brought about by arbitrary, not necessarily
cubic, perturbations F and G. All terms in the Taylor series expansions of
F and G are found to contribute to the required integrals at the same order,
but our results are qualitatively unchanged by the inclusion of higher-order
terms. Finally, Sec. 3.5 considers a simple transformation of the coordinates
and coefficients in (2.1),(2.2) to obtain the locus of homoclinic connections to
P− immediately from our expressions calculated for P+.

We note that there are two necessary conditions for the existence of homoclinic
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orbits of the fixed points P+ and P−: that the z-axis in the phase space not be
dynamically invariant and that the two-dimensional manifolds W u(P+) and
W s(P−) not be coincident. The former condition is satisfied only if c00l 6= 0
in (2.3) for some l ≥ 3, in which case the latter condition is also satisfied. We
henceforth assume that at least one of the c00l is non-zero in the perturbations
we take.

3.1 Perturbed stable and unstable manifolds

The key idea is to consider as independent perturbations λ 6= 0 and a ficti-
tious parameter ε > 0 that multiplies both F and G, and then to perform
a generalised Melnikov analysis with respect to these two parameters; this
process allows the calculation of first-order correction terms to the one- and
two-dimensional heteroclinic connections (qs0(t), zs0(t)) and (qu0(t), zs0(t)). In
truth ε should be set to unity, but note that it can be seen as a book-keeping
parameter since q, z = O(

√
µ) for the solutions of interest and therefore

F, G = O(µ3/2) to leading order. See [7, Sec. 3] for more details.

It is straightforward to see that the perturbed equilibria can be written as

P± : q± =
−F (0, 0,±√µ)

iω ± α
√

µ
, z± = ±√µ± G(0, 0,±√µ)

2
√

µ
,

for all λ. A careful calculation following the procedure described in [7] then
gives the following leading-order asymptotic expressions for the first-order
corrections to the stable and unstable manifolds of P+ as they approach the
equilibrium P−.

For the one-dimensional manifold:

as t → −∞ zsλ → 0 (3.1)

qsλ → 0 (3.2)

zsε ∼ −
G(0, 0,−√µ)

2
√

µ
(3.3)

qsε ∼ q− −
Is

2α
eiωt−α

√
µt, (3.4)

where

Is =

∞
∫

−∞

dτF (0, 0, zs0)
e−iωτ

(cosh
√

µτ)α
, (3.5)

and subscripts sλ and sε refer to the first-order corrections to (qs0, zs0) with
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respect to the two perturbation parameters.

For the two-dimensional manifold:

as t → +∞ zuλ ∼ −
Iλe

2
√

µt

(2
√

µ)1+2/α(1 + α)1+1/α
(3.6)

quλ ∼ −
αIλe

iθeiωt+(2−α)
√

µt

(

2
√

µ(1 + α)
)1+2/α

zuε ∼ −
G(0, 0,−√µ)

2
√

µ
− Iu(θ)e

2
√

µt

(2
√

µ)1+2/α(1 + α)1+1/α
(3.7)

quε ∼ q− −
αIu(θ)e

iθeiωt+(2−α)
√

µt

(

2
√

µ(1 + α)
)1+2/α

,

where

Iλ = 2

∞
∫

−∞

dτ |qu0|2+2/α, (3.8)

Iu(θ) = 2

∞
∫

−∞

dτ |qu0|2/α(Re(qu0Fu0) + (1 + α)zu0Gu0), (3.9)

and a subscript u0 on F or G refers to their evaluation at (q, z) = (qu0, zu0).

The key to what follows is the asymptotics of the integrals Iu, Is and Iλ as
µ → 0.

3.2 Asymptotic behaviour of Iu, Is and Iλ as µ → 0

The integral Iλ is by definition independent of F and G. The integrals Is,u do
depend on the form of F and G. Hence we may write

Is,u = I (3)
s,u + I (4)

s,u + I (5)
s,u + . . .

where the superscript (n) refers to taking only nth-order (j+k+l = n) terms in
the Taylor expansions (2.3) of F and G. For simplicity as in [7,11], we initially
consider only the effects of the cubic terms in F and G; that is replace Is,u by
I(3)
s,u. Later, in Sec. 3.4, we show that higher-order terms in F and G essentially

do not change the arguments that follow, provided adjustments are made to
the definition of certain constants.
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The following asymptotic relation as µ → 0 will be helpful (see Appendix A):

∞
∫

−∞

dτ
[sinh(τ)]p

[cosh(τ)]Λ
e

i Kτ√
µ ∼ 2π(i sgn(K))p

(

|K|√
µ

)Λ−1
1

Γ(Λ)
e
− |K|π

2
√

µ , (3.10)

where p is a non-negative integer, Λ > p but is in general non-integer, and
K 6= 0 is a real constant that is independent of µ. Also, we have [6,8]

∞
∫

−∞

dτ

[cosh(τ)]Λ
= B(1/2, Λ/2) =

√
π

Γ(Λ
2
)

Γ(1+Λ
2

)
. (3.11)

Consider first the integral Iλ. Upon substitution of (2.11) into (3.8), and mak-
ing use of relation (3.11), one obtains (cf. [7, eq. (4.4)])

Iλ = 2
√

π
√

µ1+2/α(α + 1)1/α Γ(2 + 1/α)

Γ(3/2 + 1/α)
, (3.12)

which is real and positive.

Next consider I (3)
s . From the definition (3.5) note that I (3)

s consists of a single
term

I(3)
s = c003µ

∞
∫

−∞

dτ
[sinh(τ)]3

[cosh(τ)]3+α
e
−i ωτ√

µ .

Hence, using relation (3.10), we find that as µ → 0

I(3)
s ∼ 2πi

c003µ

Γ(3 + α)

(

ω√
µ

)2+α

e
−ωπ
2
√

µ , (3.13)

which is exponentially small in µ.

Finally, consider I (3)
u . This consists of several terms, one for each coefficient

cjkl and djkl with j+k+l = 3. However, certain of these terms lead to integrals
that are asymptotically smaller than others. In particular, note from the form
of qu0 and zu0 in (2.11) and (2.12), that those terms in the integrand of (3.9)
that are functions of |q| and z (and hence do not break the circular symmetry
of the normal form), do not have any exponential factor in the integrand.
These terms come from monomials in F and G with coefficients

c102, c210, d003, d111, (3.14)

which are the resonant terms present in the cubic truncated normal form.
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Each of the corresponding terms in Iu leads to an integral of the form (3.11),
which may be seen by making the substitution

τ = α
√

µt, (3.15)

and using the expansion of even powers of sinh τ in terms of cosh τ . Let this
non-exponentially small portion of the integral be termed I

(3)
u0 . Repeated use

of (3.11) and some manipulation of the Γ functions yields

I
(3)
u0 =

√
µ3+2/αK

(3)
0

√
π(1 + α)1/α Γ(2 + 1/α)

Γ(3/2 + 1/α)
, (3.16)

where

K
(3)
0 =

1

3α + 2
(2αRe c102 + 4(α + 1)2Re c210 + 3α2d003 + 2α(α + 1)d111). (3.17)

Given the form of (2.11) and (2.12), note that all cubic terms in F and G other
than (3.14) lead to terms in the integrand of I (3)

u that contain ei(θ+ωτ) to some
power, ±p, where p = j−k for terms with coefficient djkl and p = j−k−1 for
coefficients cjkl. Under the co-ordinate transformation (3.15), all these terms
lead to integrals of the form (3.10) with K = pω/α, from which we note that
the exponentially biggest contributions come from p = ±1. We refer to all
such contributions to I (3)

u as I
(3)
u1 . Hence we have

I
(3)
u1 =2

(α + 1)1/α

α

√
µ3+2/αRe







∞
∫

−∞

dτ
[

c003s
3 + (α + 1)c111s

] e−iθe
− iωτ

α
√

µ

[cosh(τ)]4+2/α
+

[

(α + 1)c201s + 2(α + 1)5/2d210s + 2(α + 1)3/2d102s
3
] eiθe

iωτ
α
√

µ

[cosh(τ)]4+2/α







,

where s = sinh τ and we have reduced the number of terms using the relation
(2.4). Using (3.10) on each term, we obtain

I
(3)
u1 = 4π

(α + 1)1/α

αΓ(4 + 2/α)

(

ω

α

)2/α (

K(3)
r cos θ + K

(3)
i sin θ

)

e
− ωπ

2α
√

µ , (3.18)

:= γ(3)(θ)e
− ωπ

2α
√

µ , (3.19)

where

K(3)
r =

(

ω

α

)3

Im
[

−2(α + 1)5/2d210 + 2(α + 1)3/2d102 + (α + 1)(c111 − c201)− c003

]

,
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K
(3)
i =

(

ω

α

)3

Re
[

−2(α + 1)5/2d210 + 2(α + 1)3/2d102 − (α + 1)(c201 + c111) + c003

]

.

Thus we have

I(3)
u = I

(3)
u0 + I

(3)
u1 + O

(

e
− ωπ

α
√

µ

)

, (3.20)

where I
(3)
u0 is given by (3.16) (also computed in [7]), and I

(3)
u1 is given by (3.19),

which we have calculated explicitly here for the first time.

3.3 Intersections of manifolds

Now that we have expressions for the stable and unstable manifolds of P+

in the limit of small µ, we find homoclinic connections to P+ by locating
intersections of these manifolds in a neighbourhood of P−. As in [7, Sec. 3.6],
we define a cylinder U surrounding P− with surfaces Σ±, defined by:

Σ+ : z − z− = ∆

Σ− : |q − q−| = ∆

where
∆ = δ

√
µ

for some µ-independent constant δ � 1. See Fig. 3. We define local co-
ordinates (q̂, ẑ) within U as follows:

q = q− + q̂, z = z− + ẑ.

We shall seek intersections of W s(P+) and W u(P+) on Σ−.

To find W s(P+) ∩ Σ− we use the first-order approximation for W s(P+) to
locate the point W s(P+) ∩ Σ+, then use the vector field inside U to find the
preimage on Σ− of this point, i.e., W s(P+) ∩ Σ−. Now by standard estimates
(see [17, Lemma 13.5]), the vector field within U can be estimated by its linear
part plus an error term

q̂(t) =Aeiωt−α
√

µt + O
(

e−J
√

µt
)

, (3.21)

ẑ(t) =Be2
√

µt + O
(

e−(K−2)
√

µt
)

, (3.22)

for some initial conditions q(0) = A and z(0) = B, and constants J > α
and K > 2. (There is a slight abuse of notation here; actually the error

terms are o(e−J̃
√

µt) and o(e−(K̃−2)
√

µt) for any α < J̃ < min(α + 2, 2α) and
2 < K̃ < min(α + 2, 4)).
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Using expressions (2.9), (2.10), (3.1)-(3.4), we find T+ such that zs(T+) =
∆−√µ:

T+ = − 1

2
√

µ
ln

(

2
√

µ

∆

)

, (3.23)

and correspondingly,

qs(T+) = q− −
I(3)
s

2α

(

2
√

µ

∆

)α
2
− iω

2
√

µ

.

Matching the local and global coordinates for W s(P+) ∩ Σ+ (i.e., finding A
and B such that zs(T+) = ẑs(T+), qs(T+) = q̂s(T+)) yields

A = −I(3)
s

2α
, B = 2

√
µ.

Using the linearised equations inside U , we find the intersection W s(P+)∩Σ−

occurs at time T = T+ + Tu where Tu is determined by solving |q̂s| = ∆:

Tu =
1

α
√

µ
ln

(

|A|
∆

)

.

Using (3.21), (3.22) and this expression for Tu, we obtain the leading-order
expressions for the coordinates of W s(P+) ∩ Σ−:

q̂s =
A

|A|∆ exp

(

i
ω

α
√

µ
ln
|A|
∆

)

+ O

(

|A|
∆

)
J−α

α

(3.24)

ẑs =2
√

µ

(

|A|
∆

)2/α

+ O

(

|A|
∆

)K
α

, (3.25)

where A was given above.

In contrast, W u(P+) ∩ Σ− is a curve parametrised by θ. Its leading-order
expression follows from solving (2.11) for T−, the positive time at which |q| =
∆ then substituting this time into (3.6) and (3.7). Specifically, it is found that

T− ≈
1

α
√

µ
ln





2
√

µ(α + 1)

∆





from which it follows that

q̂u(θ) = ∆eiθ exp

(

i
ω

α
√

µ
ln

(

2
√

µ(1 + α)1/2

∆

))

, (3.26)
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ẑu(θ) =− I(3)
u (θ) + λIλ

2
√

µ(1 + α)∆2/α
. (3.27)

In deriving this expression for q̂u(θ) we use the previously derived asymptotic
behaviour of I (3)

u (3.16)-(3.20) and Iλ (3.12) and assume λ = o(
√

µ). This last
assumption is justified by our subsequent calculation that for λ, µ near zero,
the homoclinic bifurcations of interest occur in an exponentially thin wedge
centred on a curve λ = constant× µ + O(µ2).

In what follows it will be crucial how each of these intersections scale as µ → 0.
Consider first the one-dimensional manifold. The argument of A is

arg(A) = arg(I (3)
s ) + π

which is independent of µ since from (3.13) arg(I (3)
s ) is independent of µ. Hence

from (3.24), after substitution of Is from (3.13), and writing q = q−+∆eiφ̂ for
q ∈ Σ−, the φ̂ co-ordinate of W s(P+) ∩ Σ− is

φ̂s = arg(A) +
ω

α
√

µ
ln

(

|A|
∆

)

+ O





1

∆

(

|A|
∆

)
J−α

α





= arg(A) +

(

ω

α
√

µ

)

ln





1

δ
√

µ

2πµ|c003|
2αΓ(3 + α)

(

ω√
µ

)2+α (
2

δ

)α/2

e
− πω

2
√

µ



+ o(1)

= −π

2

ω2

αµ
+ O

(

1√
µ

)

, (3.28)

which is proportional to 1/µ as µ → 0. Note that the o(1) term comes about
since J > α and |A| is exponentially small.

The z–coordinate of W s(P+) ∩ Σ−, ẑs given by (3.25), can be simplified to
read

ẑs =

√
µ

2(δ
√

µ)2/α



|I(3)
s |2/α + O





(

1
√

µ
|I(3)

s |
)K/α









=

√
µ

2(δ
√

µ)2/α

(

2πµ|c003|
Γ(3 + α)

)2/α (
ω√
µ

)2(2+α)/α

e
−ωπ
α
√

µ + h.o.t.

:= k(3)
s

√
µ−(2+α)/αe

−ωπ
α
√

µ + h.o.t., (3.29)

where k(3)
s is independent of µ and the higher-order terms are asymptotically

smaller since K > 2.
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Consider next the two-dimensional manifold. From (3.26) we have that

φ̂u = θ +
ω

α
√

µ
ln

(

2
√

µ(1 + α)1/2

∆

)

, (3.30)

which is proportional to 1/
√

µ as µ → 0. The z-component ẑu is given by
(3.27) and can be written as

ẑu(θ) = − I
(3)
u0 + λIλ

2
√

µ(1 + α)∆2/α
+

I
(3)
u1 (θ)

2
√

µ(1 + α)∆2/α

:= σ(3) + κ(3)(θ),

where σ(3) contains the algebraic in µ terms and κ(3) contains the terms which,
according to (3.18) are proportional to exp[−πω/(2α

√
µ)]. Specifically, from

(3.12) and (3.16) we have, to lowest order in
√

µ, that

σ(3) = − 2λ + µK
(3)
0

2(1 + α)1−1/αδ2/α

√
πΓ(2 + 1/α)

Γ(3/2 + 1/α)

and from (3.18)

κ(3) =
γ(3)(θ)e

− ωπ
2α
√

µ

2
√

µ1+2/α(1 + α)δ2/α
.

Now the curve in the (λ, µ)-plane defined by σ(3) = 0 defines the parameter
values for which the two-dimensional unstable manifold W u(P+) returns along
the two-dimensional stable manifold of W s(P−), up to exponentially small
terms. Using (3.17) we see that this curve is given explicitly by

λ = h(3)(µ) := − µ

2(3α + 2)
[2αRe c102 + 4(α + 1)2Re c210 + 3α2d003

+2α(α + 1)d111] . (3.31)

In fact, this curve is the linear in µ approximation to a lot of different bifur-
cation events, which occur exponentially nearby in µ. These include a pair of
heteroclinic tangencies between the two two-dimensional manifolds, and the
inherent Smale horseshoe dynamics that results. We shall refer to the curve
λ = h(3)(µ) as the homoclinic axis.

Note from the above asymptotic estimates that the beyond-algebraic-in-µ term
in the z-component of the two-dimensional manifold is asymptotically larger
than the z-component of the one-dimensional manifold given by (3.29), al-
though both are exponentially small in µ. Also, the phase φ̂u of W u(P+)∩Σ−,
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given by (3.30), for fixed θ varies asymptotically slower with µ than that of
W s(P+) ∩ Σ− given by (3.28). It will be helpful then in what follows to make
a µ-dependent co-ordinate transformation that renders the two-dimensional
manifold stationary as µ varies. Then we can consider the locus of the one-
dimensional manifold as a function of µ and consider its intersection with the
two-dimensional manifold parametrised by θ and λ. To this end we define

z̃ =
ẑ

κ(3)(θ
(3)
max)

, φ̃ = φ̂− θ(3)
max −

ω

α
√

µ
ln

(

2
√

µ(1 + α)1/α

∆

)

, (3.32)

where θ(3)
max is the θ-value leading to a positive maximum of I

(3)
u1 (θ). Specifically,

from (3.18) we have

θ(3)
max = arctan(K

(3)
i /K(3)

r ) +
1

2
(1− signK(3)

r )π. (3.33)

Now, after applying the co-ordinate transformation the unstable manifold be-
comes simply

z̃u(θ) = σ̃ + cos(θ − θ(3)
max), φ̃u(θ) = θ − θ(3)

max,

where

σ̃ =
σ(3)

κ(3)(θ
(3)
max)

.

The stable manifold W s(P+) ∩ Σ−, using (3.28) and (3.29), becomes

z̃s =
k(3)

s µ−(2+α)/α

κ(3)(θ
(3)
max)

e
−ωπ
α
√

µ =
2k(3)

s (1 + α)δ2/α

γ(3)(θ
(3)
max)

e
− ωπ

2α
√

µ

:= k̃(3)
s e

− πω
2α
√

µ ,

φ̃s = −π

2

ω2

αµ
+ o

(

1

µ

)

.

As anticipated, in the new co-ordinate system W u(P+) ∩ Σ− is independent
of µ but is parametrised by θ and moves up and down with σ̃. By contrast, in
the new coordinates, W s(P+)(θ) ∩ Σ− varies with µ, sweeping out a curve in
the (z̃, φ̃)-plane as shown in Fig. 4. Thus, to locate the homoclinic bifurcation
involving P+, we fix σ̃, thus fixing W u(P+) ∩ Σ− in the (z̃, φ̃)-plane, and find
a value of µ for which the locus of W s(P+)(θ) ∩ Σ− intersects W u(P+) ∩ Σ−.
In Fig. 4 we show schematically the relative positions of W s(P+)(θ)∩Σ− and
W u(P+) ∩ Σ− for three different values of σ̃.
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µn+1

µn+1 µn

z̃

z̃

z̃

σ̃
σ̃ ≈ −1

σ̃ = 0 σ̃ ≈ 1(a) (b)

(d)

W u(P+)(θ)

µ

φ̃

φ̃

(c)
2π

2π

2π

µn

φ̃

W s(P+)(µ)

Fig. 4. The construction of the wiggly curve of homoclinic orbits to P+. (a)–(c) In-
tersections between W u(P+) and W s(P+) in the rescaled (φ̃, z̃)–co-ordinates of Σ−

for three different σ̃-values. W u(P+)∩Σ− is independent of µ while W s(P+)∩Σ−

sweeps out a curve in the (z̃, φ̃)-plane as µ is varied. For each fixed σ̃ intersections be-
tween W u(P+) and W s(P+) occur at isolated values of µ; a subset of such µ-values
are shown in each case. (d) Locus of intersection points in the (σ̃, µ) parameter
plane.

Note from this construction that if σ̃ = 0 there are infinitely many µ-values at
which there are homoclinic connections (Fig. 4(a)). Consider one such µ-value
µ = µn, say, corresponding to φ̃ = φ̃n. Upon increasing σ̃, such a point of
intersection is destroyed when (Fig. 4(b))

φ̃ ≈ π, z̃u = σ̃ − 1 = z̃s + O
(

e
− πω

2α
√

µn

)

.

That is, undoing the co-ordinate transformation (3.32),

σ(3) = κ(3)(θ(3)
max) + O

(

e
− πω

α
√

µn

)

.

Similarly, upon decreasing σ̃ the homoclinic orbit is destroyed when

σ(3) = −κ(3)(θ(3)
max) + h.o.t.

From the definition of σ(3) and κ(3), these expressions give the envelope of the
wiggly homoclinic bifurcation curve in the original (λ, µ) co-ordinates. Specif-
ically the homoclinic locus is given by the homoclinic axis plus an oscillatory
function that sits between the two curves defined by

λ = h(3)(µ)± Γ(3/2 + 1/α)

2
√

πΓ(2 + 1/α)

1

(1 + α)
1
α
√

µ1+2/α
γ(3)(θ(3)

max)e
− πω

2α
√

µ , (3.34)

18



λ = h(µ)

O(4α
ω

µ2)

µ

λ

O(
√

µ(1+2/α) exp(− πω
2α
√

µ
))

Fig. 5. The asymptotics of the wiggly curve of homoclinic orbits in the original µ, λ

parameter plane.

where h(3) is defined by (3.31) and γ(3) by (3.19). See Fig. 5.

We can also obtain the frequency of the wiggly curve within this envelope.
To do this note that the phases of two alternate µ-values, µn and µn+1, corre-
sponding to successive intersections between the stable and unstable manifolds
of P+ at σ̃ = 0, satisfy

φ̃(µn) ≈ φ̃(µn+1) + π,

which implies that

−π

2

ω2

αµn

= −π

2

ω2

αµn+1

+ π + h.o.t. (3.35)

Hence

µn − µn+1 = 2
α

ω2
µnµn+1 + h.o.t = 2

α

ω2
µ2

n + h.o.t, (3.36)

so that the distance between alternate turning points on the wiggly homoclinic
bifurcation curve as illustrated in Fig. 5 goes like 4αµ2

ω2 as µ → 0.

3.4 Effect of higher-order terms

So far, we have calculated the loci of the homoclinic bifurcations of P+ for
the case that the perturbations F and G in (2.1), (2.2) contain cubic terms
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only. We now modify our calculations to allow for terms of arbitrary order
≥ 3 in the Taylor series for F and G (2.3). The effect that this has on the
above analysis is simply to replace I (3)

s,u by Is,u in all our calculations. We
do however need to calculate new asymptotic estimates for the general case
Is,u =

∑

n≥3 I(n)
s,u . One might naively think that terms I (n)

s,u for n > 3 contribute
to these integrals at lower order in

√
µ than for n = 3. We shall show that

this is not the case for the exponentially small integrals Is and Iu1, for which
all nonlinear terms in F and G contribute at the same order. However, we can
show that the contribution from this infinite number of terms is summable,
because of the assumption that F and G are analytic. Similarly, the algebraic-
in-µ integral Iu0 can be shown to be a convergent power series in µ, and hence
the homoclinic axis λ = hu(µ) is an analytic curve.

Consider first the integral Is. By definition (3.5) the contribution from nth-
order terms in the Taylor expansion is

I(n)
s =

√
µn−1c00n

∞
∫

−∞

dτ
[sinh(τ)]n

[cosh(τ)]n+α
e
−i ω√

µ
τ
,

which, using (3.10), is

∼ (−1)n 2π(i)nc00nωn−1+α

n!
√

µαΓ(α)
e
− πω

2
√

µ , as µ → 0.

Hence

Is ∼
2πωα

√
µαΓ(α)

e
− πω

2
√

µ

∞
∑

n

(−i)nc00n
ωn−1

n!
. (3.37)

Now, the constants c00n are coefficients of a convergent Taylor series with a
finite radius of convergence R, say. Hence |c00(n+1)|/|c00n| ≤ R for n sufficiently
large, and hence the sum in (3.37) converges by the ratio test. Thus Is has
precisely the same asymptotic form as I (3)

s , i.e. Is ∝
√

µ−α exp(− πω
2
√

µ
), but

with a different constant of proportionality.

Consider next the algebraic-in-µ portion of Iu, i.e., Iu0. Contributions to this
come from terms in F and G with coefficients

cjkl with j = k + 1, djkl with j = k, (3.38)

Observe in the case that n = j +k + l is even that all terms of the form (3.38)
lead to terms in the expression for Iu that are odd in zu0. Since |qu0| is an even
function of t and zu0 is an odd function of t, we are faced with integrals from
−∞ to ∞ of a sum of odd functions. Hence I

(n)
u0 = 0 for n even.
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So the only contributions to Iu0 come from odd n. Simple book-keeping shows
the µ-dependence of each of the terms

I
(n)
u0 =

√
π(1 + α)1/α Γ(2 + 1/α)

Γ(3/2 + 1/α)
K

(n)
0

√
µn+2/α, n odd, (3.39)

for certain α-dependent constants K
(n)
0 . The evaluation of K

(3)
0 was given in

(3.17), and a similar calculation reveals

K
(5)
0 =

1

(5α + 2)(3α + 2)

[

6α2Re c104 + 4α(1 + α)2Re c212

+8(2α + 1)(1 + α)3Re c320 + 15α3d005 +

6α2(1 + α)d113 + 4α(1 + α)3d221

]

. (3.40)

This leads to a redefinition of σ:

σ =
∞
∑

m=1

σ(2m+1) = −2λ +
∑∞

m=1 µmK
(2m+1)
0

2(1 + α)1−1/αδ2/α

√
πΓ(2 + 1/α)

Γ(3/2 + 1/α)
,

and the homoclinic axis

λ = h(µ) =
∞
∑

m=1

h(2m+1)(µ) = −1

2

∞
∑

m=1

µmK
(2m+1)
0 . (3.41)

This then is an asymptotic expansion in µ for the homoclinic axis, where each
coefficient is independent of µ. In fact, our assumption about the analyticity
of the system means that this series actually converges, for sufficiently small
µ, as the argument in Appendix B shows. Hence the homoclinic axis is indeed
a smooth curve as depicted in Fig. 4.

Finally, consider general terms in Iu1, which come from terms in the inte-
grand of Iu that are proportional to exp(±i(θ + ωτ)). Such terms come from
coefficients in the Taylor expansion of F and G within the set S1 defined by

S1 := {cjkl with j = k or j = k + 2, djkl with j = k ± 1} . (3.42)

Reasoning similar to that leading to (3.18) then shows that

I
(n)
u1 ∼ 4π

(α + 1)1/α

αΓ(n + 1 + 2/α)

(

ω

α

)n+2/α

(C(n)
r cos θ + C

(n)
i sin θ)e

− πω
2α
√

µ .(3.43)

Here, each coefficient C
(n)
r,i is a function of α only and is sum of at most

4n terms, corresponding to (3.42) with j + k + l = n, where each term has
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magnitude |cjkl| or |djkl| multiplied by a factor (
√

1 + α)q for some 0 ≤ q ≤
(2 + n). Hence we can bound

|C(n)
r,i | ≤ 4n(1 + α)1+n/2dn where dn = max

j+k+l=n
{|cjlk|, |djkl| ∈ S1} .(3.44)

By definition of the Γ function, we can write

Iu1 ∼ 4π
(α + 1)1/α

αΓ(2/α)

(

ω

α

)2/α

e
− πω

2α
√

µ

∞
∑

n=3

(K(n)
r cos θ + K

(n)
i sin θ)

where

∣

∣

∣K
(n)
r,i

∣

∣

∣ =
1

(n + 2/α)(n− 1 + 2/α) . . . (2/α)

(

ω

α

)n ∣
∣

∣C
(n)
r,i

∣

∣

∣ ≤ dn

n!

(

ω

α

)n

4n(1 + α)1+n/2.(3.45)

Now, {dn}n≥3 is a bounded sequence since the coefficients cjkl and djkl are from
a convergent Taylor series. Hence by the Dominated Convergence Theorem,
(3.45) shows that the sequences {K (n)

r }n≥3 and {K(n)
i }n≥3 converge. Let their

limits be respectively Kr and Ki. Then we have

Iu1 ∼ 4π
(α + 1)1/α

αΓ(2/α)

(

ω

α

)2/α

(Kr cos θ + Ki sin θ)e
− πω

2α
√

µ := γ(θ)e
− πω

2α
√

µ ,

This has precisely the same form as the expression (3.18) with the bounded

real constants K(n)
r and K

(n)
i replaced by the bounded real constants Kr and

Ki.

In summary, we have shown in this section that with the inclusion of arbitrary
terms rather than just cubic in the perturbation to the normal form, similar
expressions apply for all the various asymptotic quantities needed in the anal-
ysis in Section 3.3 above. In fact, one simply needs to drop all superscripts (3),
and the analysis of that section applies almost verbatim. The homoclinic axis,
which was linear in µ, becomes a general curve λ = h(µ), passing through
(λ, µ) = (0, 0), for which h(3), given by (3.31), gives only its linear part. Its
quadratic part is given by (3.41). The envelope of the homoclinic locus re-
mains an exponentially thin wedge around the homoclinic axis (3.34), with
the constant γ(3)(θ(3)

max) replaced by γ(θmax) and where θmax is defined by the
removal of the superscript (3) in the formula (3.33). The asymptotic formulae
(3.36) for the frequency of the oscillations of the locus within this wedge is
entirely unaffected.
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3.5 Homoclinic orbits to P−

Note that the following transformation applied to the full perturbed dynamical
system (2.1), (2.2)

z 7→ −z, t 7→ −t, (ω, λ) 7→ (−ω,−λ), (3.46)

cjkl 7→ −cjkl iff l even, djkl 7→ −djkl iff l odd, (3.47)

results in a new system in which the equilibrium P− is mapped to P+ and vice

versa. Now we can simply apply this transformation to the locus of homoclinic
orbits to P+ computed above and we obtain the locus of homoclinic orbits to
P−.

Consider first the homoclinic axis λ = h(µ) given by (3.41). By construction
h(µ) is a sum of terms with coefficients

cjkl with j + k + l odd and j = k + 1; hence l is even,

djkl with j + k + l odd and j = k; hence l is odd.

Note that all such terms change their sign under the transformation (3.46),
(3.47). Hence, since λ → −λ under this transformation the curve λ = h(µ)
is invariant under the transformation, and the homoclinic axis for homoclinic
orbits to P− is the same as that for P+.

Next we consider the wiggling within the exponentially thin wedge around the
homoclinic axis. By construction the integral Is is formed of terms proportional
to c00l, so if we write I−s for the transformation of Is under (3.46), (3.47) we
find

I−s = I (3)
s − I (4)

s + I (5)
s + . . . =

∞
∑

3

(−1)n+1I(n)
s . (3.48)

Similarly, I
(n)
u1 is determined by terms:

cjkl with j + k + l = n and j = k or j = k + 2; hence l is even iff n is even;

djkl with j + k + l = n and j = k ± 1; hence l is odd iff n is even. (3.49)

So, we find that I−u1, the transformation of Iu1 under (3.46), (3.47), satisfies

I−u1 =
∞
∑

3

(−1)n+1I
(n)
u1 .
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λ

µµ

λ

(b)(a)

Fig. 6. Entwined wiggling of loci of homoclinic orbits to P+ and P−: (a) with just
cubic perturbation terms; (b) with general perturbations.

Hence in the case of purely cubic perturbations, we find that K (3)
r and K

(3)
i

change sign under the transformation (3.46), (3.47), from which we deduce
that

θ(3)
max 7→ θ(3)

max − π, γ(3)(θ(3)
max) 7→ γ(3)(θ(3)

max). (3.50)

Thus, in the case of purely cubic perturbations the locus of homoclinic orbits
to P− is precisely out of phase with the locus of homoclinic orbits to P+, but the
curves lie inside the same exponentially thin wedge around the homoclinic axis.
This agrees with the numerical results in [12] where only cubic perturbations
were used. See Fig. 6(a).

However, in the presence of arbitrary perturbations F and G, all the coeffi-
cients of Is and Iu1 generically change under the transformation (3.46), (3.47),
including θmax and γ(θmax). This means that although the curves of homo-
clinic bifurcations to P− and P+ have the same asymptotics (i.e., in the limit
µ → 0 the curves are tangent to the same line and have the same frequency of
oscillation) the curves wiggle inside different exponentially thin wedges around
the homoclinic axis, and the phases of the oscillations within these wedges are
uncorrelated with one another.

4 Numerical results

In this section we compare our theoretical predictions with numerical studies
on three systems with SNH instabilities of the appropriate type (α > 0, s =
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−1). In all cases we compute homoclinic curves as two parameters are varied
using auto [5]. This is done by first following a branch of periodic orbits up
to large period, well away from the SNH point, and then following orbits of
fixed large period toward the SNH point.

4.1 Cubically perturbed normal form equations

We first consider the equations

q̇ =(λ + 1.25i)q + 3zq + c111z|q|2 + c003z
3, (4.1)

ż =µ− z2 − |q|2 − d003z
3. (4.2)

These arise as a special case of equations (2.1), (2.2), corresponding to the
choice ω = 1.25, α = 3, β = 0, and with all terms in F and G vanishing
except the cubic terms with coefficients c111, c003 and d003. The choice

c111 = 0.4, c003 = 0.05, d003 = −0.4, (4.3)

leads to precisely the equations studied in [11,12]. There, entwined wiggly
curves of homoclinic bifurcations were found to emanate from the SNH in-
stability at (λ, µ) = (0, 0). We have recomputed these curves here, with the
results shown in Fig. 1. These results agree qualitatively with the predictions
of Sec. 3.3; the homoclinic bifurcation curves appear to oscillate within a com-
mon envelope, with the two bifurcation curves having oscillations of similar
frequency, but being precisely out of phase.

The numerical results also have reasonable quantitative agreement with our
theoretical predictions, as demonstrated in Fig. 7. In constructing this figure,
we calculated the µ values for turning points on each of the homoclinic bifurca-
tion curves. From (3.36) we expect the change in µ between adjacent maxima
(with respect to λ) on one of the homoclinic bifurcation curves to scale with
µ as

µn − µn+1 ∼
4α

ω2
µ2

n = 7.68µ2
n,

or √
µn − µn+1 ∼ 2.77µn.

The µ values for adjacent minima have the same scaling. In Fig. 7(a) we plot
the theoretical prediction f(µ) = 2.77µ (solid line in the figure) and four data
sets:

√
µn − µn+1 versus µn for successive maxima of one wiggly curve, then

successive minima of that curve, and similarly successive maxima/minima of
the other wiggly curve. We see that all the data sets lie close to the theoretical
prediction even though our prediction is for asymptotically small µ and the

25



0.04 0.08 0.12

−30

−20

−10

0 0.005 0.01 0.015
0

0.01

0.02

0.03

0.04

µn
√

µ

(a) (b)
√

µ
n
+

1
−

µ
n

lo
g
((

λ
+
−

λ
−

)/
2
)

Fig. 7. Comparison of theory and numerics for the homoclinic bifurcations curves
associated with the SNH point at (λ, µ) = (0, 0) in (4.1), (4.2) at parameter values
(4.3). Panel (a) shows the data for the scaling of the frequency of the oscillations,
plotting difference between successive maxima (‘x’ and ‘∗’) and minima (‘+’ and
◦) on the two homoclinic curves respectively. This is compared with the theoretical
prediction (straight line). (b) Shows the exponential scaling of the envelope of the
locus, by taking half the difference between the λ-values on the two out-of-phase
curves at the maximum points of one of the loci, and plotting the µ-dependence of
this quantity on an appropriate scale. The solid line shows the theoretical prediction
(4.4).

numerical results are for only moderately small µ. Fig. 7(a) shows clearly the
relationship between the phases of oscillation for the two wiggly curves; the
data points corresponding to maxima of one curve lie almost on top of the
data points corresponding to minima of the other curve, confirming that the
wiggles are out of phase as predicted for the case of cubic perturbations of
the normal form. This phase correspondence is not expected to hold in the
case of arbitrary perturbation of the normal form, and an illustration of this
situation will be seen in the next example.

The quantitative agreement between theory and numerics for this example is
further illustrated by Fig. 7(b). Recall from (3.34) that the difference between
the envelope of the homoclinic locus and the homoclinic axis is (to lowest
order)

k(α)
√

µ−(1+2/α) exp(−πω/2α
√

µ)

where

k(α) =
Γ(3/2 + 1/α)

2
√

πΓ(2 + 1/α)

1

(1 + α)
1
α

γ(3)(θmax)

where γ(3)(θmax) was defined in (3.19).

For the values of the parameters used here, we have that θmax = −π/2 and
hence k(α) = 0.00397. Because the homoclinic loci in this example are out-
of-phase, we can estimate the difference between the homoclinic axis and the
envelope by half the difference between the λ values on the homoclinic loci at
the maximum points of one of the loci. Fig. 7(b) plots the logarithm of this
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estimate versus
√

µ; once again we get good fit between theory and numerics
with the data lying remarkably close to the theoretically predicted curve

log[(λ1 − λ2)/2] = log(k(α))− (1 + 2/α) log(
√

µ)− πω/(2α
√

µ) (4.4)

despite the fact that
√

µ > 0.07 for these data.

In summary, we find good qualitative and quantitative agreement between
theory and numerics for this example of a cubic perturbation of the normal
form, even though the theory is derived for asymptotically small µ but the
numerics have only moderately small µ.

4.2 A model for calcium wave propagation

As part of a study of a model for intracellular calcium wave propagation,
Sneyd et al. [20] numerically investigate the equations

c′= d, (4.5)

d′=
1
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sd− 28

(

phφ1

φ1p + φ−1

)4

+
1.2c2

0.0324 + c2
− 0.2



 , (4.6)

sh′= φ3(1− h)−
(

φ1φ2p

φ1p + φ−1

)

h, (4.7)

where

φ1(c) =
100c

6 + c
, φ−1(c) =

44

50 + c
, φ2(c) =

26.5 + 20c

50 + c
, φ3(c) =

1.6

1.6 + c
.

In these equations, c, d and h are real variables while p and s are bifurcation
parameters. See [20] for details of the derivation of the model and for the
physiological significance of the variables and parameters. Sneyd et al. were
particularly interested in the existence of homoclinic orbits in these equations;
such orbits correspond to isolated travelling wave solutions in an underlying
PDE model for calcium wave propagation. They located two SNH instabilities
in their model (called LP1 and LP2 in [20]), one of which (LP2, at (p, s) =
(0.24594, 5.4177)) is of the type of interest to us. They located a wiggly curve of
homoclinic bifurcations, which they denoted branch C, emanating from LP2.
Sim [19] investigated some aspects of this model further, and found a second
wiggly curve of homoclinic bifurcations (branch D in [19]) coming out of LP2.
Figure 8 shows the loci of branches C and D for values of the parameters p
and s near LP2. A striking feature of this figure is that the two bifurcation
curves do not look alike and in particular the frequencies of oscillation of the
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Fig. 8. Loci of homoclinic bifurcation curves near LP2 for (4.5)-(4.7).

two curves do not appear to be close, in contrast to our prediction that as LP2
is approached the frequencies of oscillation should become equal. However, we
note from (3.35) and (3.28) that the rate of crossing of the homoclinic axis as
µ → 0 goes like 1/µ+O(1/

√
µ). The O(1/µ) term should be the same for both

homoclinic loci, but the error term will in general depend on Iu and Is and
hence is different for the two different loci. Since the values of the parameters
p and s at the parts of the homoclinic loci shown in Fig. 8 are still some way
off their values at the SNH point, the effect of the O(1/

√
µ) term may be quite

large, leading to apparent discrepancies in the frequency of oscillation of the
two homoclinic loci. In fact, if we zoom in on the homoclinic loci near the SNH
point we do indeed find that, consistent with our predictions, the shapes of the
two bifurcation curves and their frequencies of oscillation become more similar
as LP2 is approached. We note that, although their phases are uncorrelated,
the two wiggly curves approximately lie within a common envelope.

To make quantitative comparisons between theory and numerics for this ex-
ample, it is necessary to do a normal form reduction near LP2. Application of
the procedure in [13, Sec. 8.5] yields the unfolded normal form, truncated at
quadratic order:

ṙ =(0.0400ŝ + 4.12352p̂)r + 0.9778rz, (4.8)

θ̇ =0.1368 + 1.1858z, (4.9)

ż =−2.4812p̂− r2 − z2, (4.10)

where we write p = p0+p̂, s = s0+ŝ, and the SNH point is at (p, s) = (p0, s0) ≡
(0.24594, 5.4177). We identify α = 0.9778, ω = 0.1368 by comparing equations
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homoclinic bifurcations curves associated with the SNH point of the calcium wave
model (4.5)–(4.7). The figure is drawn similarly to Fig. 7(a).

(4.8)-(4.10) with equations (2.5). Note that the removal of β from this normal
form will in general alter α (see (2.8)) but only at higher order. So, precisely
at the singularity, α remains unaffected. Hence, our analysis predicts that the
p values for alternate turning points on each of branches C and D will, in the
limit of p → p0 scale as

pn+1 − pn ∼
4α

ω2
(2.4812)(pn − p0)

2 = 518.6(pn − p0)
2

where pn is the p value at the n-th maximum or minimum of the relevant
homoclinic locus.

Fig. 9 shows a comparison between theory and numerics for the calcium wave
model (4.5)–(4.7). In this figure, the solid line shows the theoretical prediction,
and the four data sets (represented by ‘x’, ‘∗’, ‘+’, and ◦ respectively) are
derived from the p and s values of the turning points on the two homoclinic
branches, just as described for the example in Sec. 4.1 which produced Fig. 7.
Quantitative agreement between our theory and the numerics is evident in
Fig. 9, with the fit improving as the SNH point is approached, as expected.

4.3 The ‘other’ Lorenz equations

In [16], Shil’nikov, Nicolis and Nicolis perform a bifurcation analysis of the
system of equations originally due to Lorenz [14]
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Ẋ =−Y 2 − Z2 +
1

4
(F −X), (4.11)

Ẏ =XY − 4XZ − Y + G, (4.12)

Ż =4XY + XZ − Z. (4.13)

This system arises as a low-order truncation of a model for atmospheric circu-
lation, where X represents a globally averaged westerly current strength, and
Y and Z the components of a generalised superimposed wave. The parameters
F and G represent thermal forcings. The specific details of the atmospheric
model do not concern us here. Instead we wish to focus on a SNH point that
was identified in [16], from which were found to emanate two wiggly curves
of saddle-focus homoclinic orbits one of which was shown to organise the
creation of strange attractors. (Note that this mechanism is unlike the more
famous Lorenz equations, where the theory of homoclinic explosions involving
symmetric equilibria plays a key role.)

Specifically, the SNH occurs at (F, G) ≈ (1.6829, 1.6840). In Fig. 10 we have
computed the two curves of homoclinic orbits that arise out of this point.
Note that, as in the example in the previous section, the accumulation rate
of oscillations does not appear to be the same for the two curves, at least
on the scale used to draw the figure. Again we note that the homoclinic loci
shown are still some way off the SNH point, and the O(1/

√
µ) error term in

our prediction may produce a discrepancy in the accumulation rates such as
that observed. When translated into the co-ordinates plotted in Fig. 11, such
an error term would give rise to a quadratic correction to the straight line
that is the theoretical prediction as the SNH point is approached. The data
plotted in Fig. 11 is indeed consistent with curves that become tangent to the
straight line as µ → 0.

In computing the theoretical prediction in Fig. 11, we needed to derive the
normal form for the SNH bifurcation. Again following the procedure in [13,
Sec. 8.5] one finds the unfolded, truncated normal form to be:

ṙ =λ(F, G)r + 4.062rz,

θ̇ =4.526 + 11.930z,

ż =0.3075(0.2626(F − F0)− 0.1745(G−G0))− r2 − z2,

where the SNH bifurcation occurs at (F, G) = (F0, G0) ≡ (1.6829, 1.6840),
and where λ(F, G) is some linear combination of the parameters F and G.
We identify α = 4.062 and ω = 4.526, and note that as in the previous
example, rescaling to remove β will not affect α at lowest order. Writing µ =
0.2626(F − F0) − 0.1745(G − G0), our analysis predicts that the µ values
for alternate turning points on each of the homoclinic loci will, in the limit
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Fig. 10. (a) Homoclinic curves in the Lorenz model (4.11)-(4.13). (b) A zoom near
the SNH point. (c) An orbit on branch A, which is homoclinic to the lower equilib-
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F → F0, G → G0, scale as

µn+1 − µn ∼
4α

ω2
(0.3075)µ2

n = 0.244µ2
n.

This equation was used in drawing the curve showing the theoretical prediction
in Fig. 11.

5 Conclusion

In this paper, we have extended the perturbation analysis of Gaspard [7] to get
the precise asymptotics of the wiggly curves of primary homoclinic bifurcations
emerging from a saddle-node/Hopf instability of type s = −1, α > 0 (see
equations (2.1), (2.2)). Our main result is the expressions we obtain for the
amplitude of the oscillations in the homoclinic bifurcation curves (3.34) (with
or without the superscript (3)) and for the frequency of oscillation (3.36) in
the limit µ → 0, where µ is one of the parameters used to unfold the normal
form for the instability. Gaspard found an expression for the homoclinic axis,
i.e., a linear approximation to the homoclinic bifurcation curves arising from
the SNH point, in the case of cubic perturbations to the normal form. We have
been able to extend his results to the case of arbitrary analytic perturbations
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The figure is drawn similarly to Fig. 7(a).

of the normal form, and to find the amplitude and frequency of the oscillations
of the homoclinic bifurcation curves around the homoclinic axis.

The mechanism underlying the formation of wiggles in the homoclinic bifur-
cation curves has a simple geometric explanation. Specifically, consider the
intersections of the stable and unstable manifolds of P+ with the cylindrical
surface Σ− (defined in section 3.3). W u(P+) ∩ Σ− is a one-dimensional curve
having one maximum and one minimum value of z as Σ− is traversed, while
W s(P+) ∩ Σ− is a point (see Figure 4). As µ decreases the relative positions
of W u(P+)∩Σ− and W s(P+)∩Σ− change. We defined a coordinate system in
which W u(P+) ∩ Σ− is stationary as µ varies and W s(P+) ∩ Σ− sweeps out a
curve on Σ−. In this coordinate system, it is easily seen that if an intersection
between W u(P+)∩Σ− and W s(P+)∩Σ− is to be maintained as µ is decreased
(i.e., if we follow the homoclinic bifurcation curve toward the SNH instability)
then we must alternately increase and decrease the other unfolding parameter,
λ. This gives us the characteristic wiggly homoclinic bifurcation curves seen
in two-parameter unfoldings of this instability.

We have compared our results with numerical studies of three systems with
SNH instabilities, i.e., cubically perturbed normal form equations, a model for
calcium wave propagation, and a low-order model for atmospheric circulation.
We find qualitative and quantitative agreement between our theoretical pre-
dictions and the numerical results. Our analysis predicts that the two primary
homoclinic bifurcation curves emerging from the SNH points will have the
same frequency of oscillation in the limit of approach to the instability. Our
numerical results are consistent with this prediction. However, we emphasise
that our result is an asymptotic one, and that the two frequencies of oscillation
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can be quite different away from the instability. This was particularly notice-
able for the example in Sec. 4.3, where the data suggests the frequencies of
oscillation do indeed converge to the theoretical limit, but that the quadratic
correction is still large for µ = 0.1. This of course serves to illustrate that in
order to observe the true asymptotic scalings it is often hard to say a priori
how small the unfolding parameter needs to be. Nevertheless, even for this
example, the broad qualitative features predicted by the analysis – that there
are two entwined wiggly curves – remains true in an O(1) region of parameter
space.

Our analysis also gives the leading-order exponential scaling of the envelope of
the homoclinic bifurcation curves. In the case of cubically perturbed normal
form equations, we were able to compare our prediction with numerical results
and found good agreement as the SNH point was approached.

A further prediction of our analysis is that the difference in phase of the
oscillations of the two homoclinic bifurcation curves can take any value. This
prediction is consistent with the numerical examples in section 4. We have
shown that the observation in [12] that the loci of homoclinic orbits to the
two saddle-foci are precisely out of phase with each other is a property of the
fact that only cubic perturbations to the normal form were considered in that
paper.

Homoclinic bifurcations are of course just a part of the dynamics occurring
near a SNH bifurcation, and are confined to an asymptotically thin wedge of
the parameter space near the instability. Other studies have looked at other
features of the dynamics, including the appearance of heteroclinic tangencies,
quasi-periodic solutions and mode-locking when the normal form symmetry
is broken (see, for instance, [7,12] and references therein). However, the ap-
pearance of homoclinic bifurcations through a SNH instability sometimes has
major implications for the dynamics at parameter values far from the insta-
bility. For instance, in the example arising from calcium wave propagation
discussed in section 4, homoclinic orbits in the system correspond to travel-
ling pulses in an underlying partial differential equation model, and one of the
SNH bifurcations in the example has a major role as an organising centre for
the various curves of homoclinic orbits in the system [19,20].

One possible application of our work arises within the framework of numerical
bifurcation analysis. It may be possible to numerically exploit the asymptotics
we have developed for how the Shil’nikov homoclinic bifurcations emerge from
the SNH point. This could lead to algorithms for starting homoclinic orbit
continuation from an equilibrium point that undergoes a SNH codimension-
two bifurcation. Such a philosophy was developed by Beyn [2] for starting
homoclinic curves in the simpler case of a Takens–Bogdanov bifurcation (see
also [3]).
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Finally, note that we have focussed only on the location of homoclinic bifur-
cations near a SNH bifurcation, not on the dynamics associated with these
homoclinic bifurcations. In fact, as others have shown, all the complicated dy-
namics normally associated with homoclinic bifurcations of saddle-foci can be
found near SNH instabilities of this type. Specifically, in the case 0 < α < 2 in
the normal form equations (2.1), (2.2), P+ and P− are saddle-foci of Shil’nikov
type, with associated horseshoe dynamics. Thus, we find a wedge of homoclinic
chaos emerging (in parameter space) from the instability. Furthermore the ho-
moclinic bifurcation to P+ can occur within a trapping region in the phase
space; there is an attractor in the region and it may be chaotic. We refer
interested readers to Gaspard [7] for more details.
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A Evaluation of integrals

Here we derive the asymptotic estimate (3.10) for integrals of the form

∞
∫

−∞

dτ
[sinh(τ)]p

[cosh(τ)]Λ
eiKτ/

√
µ, (A.1)

where Λ > p but is in general non-integer, p is a non-negative integer, and
K 6= 0 is a real constant that is independent of µ.

Suppose to begin with that K > 0. Because even powers of sinh(τ) can be
written as polynomials in cosh τ , all cases can be reduced to one of the cases
p = 1 and p = 0, with a change in Λ if necessary. Further, the case p = 1 can
be reduced to the case p = 0 as integration by parts yields

∞
∫

−∞

dτ
sinh(τ)

[cosh(τ)]Λ
eiKτ/

√
µ =

iK

(Λ− 1)
√

µ

∞
∫

−∞

dτ
eiKτ/

√
µ

[cosh(τ)]Λ−1
. (A.2)

since Λ 6= 1.

The integral with p = 0 can be shown to have leading-order asymptotics

∞
∫

−∞

eiKτ/
√

µ

[cosh(τ)]Λ
dτ ∼ 2π

Γ(Λ)

(

K√
µ

)Λ−1

e
− Kπ

2
√

µ + o
(√

µ1−Λe
− Kπ

2
√

µ

)

. (A.3)

This estimate may be obtained by using the the known exact formula for the
integral [8, 3.985.1]

∞
∫

−∞

dτ
eiKτ/

√
µ

[cosh(τ)]Λ
= 2Λ−1

Γ
(

Λ
2

+ i K
2
√

µ

)

Γ
(

Λ
2
− i K

2
√

µ

)

Γ(Λ)

and then approximating each of the Gamma functions using Stirling’s formula
(see [6, p.76]).

Combining (A.3) and (A.2), using properties of the Gamma function we find
that the asymptotic expression for the integral (A.1) with p = 1 is just i times
that with p = 0

∞
∫

−∞

dτ
sinh(τ)

[cosh(τ)]Λ
eiKτ/

√
µ ∼ 2πi

Γ(Λ)

(

K√
µ

)Λ−1

e
− Kπ

2
√

µ + o
(√

µ1−Λe
− Kπ

2
√

µ

)

.(A.4)
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More generally, for p > 1, we can reduce to the case p = 1 or p = 0 by
replacing even powers of sinh(τ) in the integrand by the sum of even powers
of cosh(τ) plus a constant term. This constant term is ip and it provides the
leading-order contribution to the integral. Hence we get the relation (3.10).

The case with K < 0 may be obtained from the case K > 0 by applying the
transformation τ 7→ −τ .

B Analyticity of the homoclinic axis

Consider the expression for the homoclinic axis (3.41)

λ = h(µ) =
∞
∑

m=1

h(2m+1)(µ) = −1

2

∞
∑

m=1

µmK
(2m+1)
0 (B.1)

where the coefficients K
(2m+1)
0 come from the evaluation (3.39) of I

(n)
u0 . The

contribution to K
(2m+1)
0 from the term in F with coefficient cjkl (for the case

j = k + 1, j + k + l = n = 2m + 1) can be calculated using the formula (3.9)
for Iu0, making use of (3.11) noting that l is necessarily even. In particular,
we find that the contribution from cijk to

√
πK

(2m+1)
0

Γ(2 + 1/α)

Γ(3/2 + 1/α)

is

kijk :=
2

α
Re(cjkl)(α + 1)j

∞
∫

−∞

[sinh(τ)]l

[cosh(τ)]n+1+2/α
dτ

=
2
√

π

α
Re(cjkl)(α + 1)j

l/2
∑

s=0







l/2

s





 (−1)s
Γ
(

n+1−l+2s
2

+ 1
α

)

Γ
(

n+2−l+2s
2

+ 1
α

) .

where







l/2

s





 is the binomial coefficient. The ratio of the Γ functions in each

term in the sum is strictly less than 1. Therefore, after summing the binomial
coefficients we have that

|kijk| <
2
√

π

α
|Re(cjkl)|(α + 1)j2l/2 ≤ [2(1 + α)]mc̃mM̃(α)

where c̃m is the maximum modulus of all the cijk being considered and M̃(α)
is an m-independent constant. There are m + 1 such terms contributing to
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K
(2m+1)
0 . Similar calculations show that the term proportional to djkl (j =

k, j + k + l = n = 2m + 1) has a similar bound, and there are m + 1 such
terms. Hence

|K(2m+1)
0 | ≤ (2m + 2)cm[2(1 + α)]mM(α)

where cm is the maximum modulus of all the coefficients cijk and dijk con-

tributing to the term K
(2m+1)
0 and M(α) is some m-independent constant.

Now, since the Taylor series for F and G converge with a finite radius of
convergence, R say, we have cm ≤ KR−2m for some bounded positive constant
K. Hence, for m sufficiently large we have

∣

∣

∣K
(2m+1
0 )

∣

∣

∣ ≤ KM(α)

(

4(1 + α)

R2

)m

.

Thus, the power series (B.1) represents a convergent Taylor series with radius
of convergence |µ| ≤ R2/4(1 + α).
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