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Abstract

The coupled traveling wave model is a popular tool for investigating longitudinal
dynamical effects in semiconductor lasers, for example, sensitivity to delayed optical
feedback. This model consists of a hyperbolic linear system of partial differential
equations with one spatial dimension, which is nonlinearly coupled with a slow sub-
system of ordinary differential equations. We first prove the basic statements about
the existence of solutions of the initial-boundary-value problem and their smooth
dependence on initial values and parameters. Hence, the model constitutes a smooth
infinite-dimensional dynamical system. Then we exploit this fact and the particular
slow-fast structure of the system to construct a low-dimensional attracting invariant
manifold for certain parameter constellations. The flow on this invariant manifold is
described by a system of ordinary differential equations that is accessible to classical
bifurcation theory and numerical tools like such as AUTO.

Key words: laser dynamics, invariant manifold theory, strongly continuous
semigroup

1 Introduction

Semiconductor lasers are known to be extremely sensitive to delayed opti-
cal feedback. Even small amounts of feedback may destabilize the laser and
cause a variety of nonlinear effects. Self-pulsations, excitability, coexistence
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SRC grant GR/R72020/01.
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of several stable regimes, and chaotic behavior have been observed both in
experiments and in numerical simulations [1], [2], [3], [4], [5], [6]. Due to their
inherent speed, semiconductor lasers are of great interest for modern opti-
cal data transmission and telecommunication technology if these nonlinear
feedback effects can be cultivated and controlled. Potential applications in-
clude, for example, clock recovery [7], [8], generation of pulse trains [9] or
high-frequency oscillations [10], and pulse reshaping [11].

Typically, these applications utilize the laser in a non-stationary mode, for
example, to produce high-frequency oscillations or pulse trains. Multi-section
DFB (distributed feedback) lasers allow one to engineer these nonlinear effects
by designing the longitudinal structure of the device [4], [12]. If mathematical
modeling is to be helpful in guiding this difficult and expensive design process
it has to use models that are, on one hand, as accurate as possible and, on the
other hand, give insight into the nature of the observed nonlinear phenomena.
The latter is only possible by a detailed bifurcation analysis, while only models
involving partial differential equations (PDEs) describe the effects with the
necessary accuracy.

We focus in this paper on the coupled traveling wave model with gain disper-
sion. This model is a system of PDEs (one-dimensional in space) coupled to
ordinary differential equations (ODEs). It is accurate enough to show quanti-
tatively good correspondence with the experiments and more detailed models
[13,14,6]. We prove in this paper that the model can be reduced to a low-
dimensional system of ODEs analytically. This makes the model accessible
to well-established and powerful numerical bifurcation analysis tools such as
Auto [15]. This in turn allows us to construct detailed and accurate numeri-
cal bifurcation diagrams for many practically relevant situations; see [16], [6]
for recent results and section 7 for an example.

We achieve the central goal of our paper, the proof of the model reduction, in
several steps. First, we show that the PDE system establishing the traveling
wave model is a smooth infinite-dimensional dynamical system, that is, it gen-
erates a semiflow that is strongly continuous in time and smooth with respect
to initial values and parameters. Then, we exploit the particular structure of
the model which is of the form

Ė = H(n)E

ṅ = εf(n, |E|) (1)

where the light amplitude E ∈ L
2([0, L]; C4) is infinite-dimensional and the

effective carrier density n ∈ R
m is finite-dimensional. The small parameter

ε expresses that the carrier density n operates on a much slower time-scale
than E. Hence, we investigate in the second step the spectral properties of
the linear differential operator H for fixed n and how the growth properties of
the semigroup generated by H depend on the spectrum of H. In the last step
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we construct a low-dimensional invariant manifold for small ε using the gen-
eral theory on the persistence and properties of normally hyperbolic invariant
manifolds for strongly continuous semiflows in Banach spaces [17], [18], [19].

The paper is organized as follows. In Section 2, we introduce the coupled trav-
eling wave model as described in [20] and explain the physical background of
all variables and parameters. Section 3 summarizes the results of the paper
in a non-technical but precise fashion. It points out the difficulties and the
methods and theory used in the proofs. In Section 4 we formulate the PDE
system as an abstract evolution equation in a Hilbert space and prove that it
establishes a smooth infinite-dimensional system in this setting. In this sec-
tion, we consider also inhomogeneous boundary conditions in (1) modeling
optical injection into the laser. In Section 5 we investigate the spectral prop-
erties of the operator H for fixed n and periodic or Dirichlet type boundary
conditions, thus, extending results of [21] and [22]. Section 6 is concerned with
the construction of a finite-dimensional attracting invariant manifold, where
we make use of the slow-fast structure of (1) and the results of Section 4 and
Section 5.

Finally, in Section 7 we explain how the system of ODEs obtained in Section 6
can be made accessible to standard numerical bifurcation analysis tools like
AUTO. We present a numerical bifurcation diagram for a particluar configu-
ration as an example to demonstrate the usefulness of the model reduction.
Moreover, we extend the model reduction theorem of Section 6 to the Lang-
Kobayashi system, a delay-differential equation, which is a popular model for
a single-mode laser subject to delayed optical feedback from one external re-
flection [23].

2 The coupled traveling wave model with nonlinear gain dispersion

The coupled traveling wave model, a hyperbolic system of PDEs coupled with
a system of ODEs is a well known model describing the longitudinal effects
in narrow edge-emitting laser diodes [24], [25], [26]. It has been derived from
Maxwell’s equations for an electro-magnetic field in a periodically modulated
waveguide [24], [20] assuming that transversal and longitudinal effects can be
separated. In this section we introduce the corresponding system of differential
equations, explain the physical interpretation of its coefficients and specify
some physically sensible assumptions about these coefficients.

The dynamics in a multi-section laser is described by the evolution of the fol-
lowing quantities. The variable ψ(t, z) ∈ C

2 describes the complex amplitude
of the slowly varying envelope of the optical field split into a forward and a
backward traveling wave. The variable p(t, z) ∈ C

2 describes the correspond-
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Fig. 1. Typical geometric configuration of the domain in a laser with 3 sections.

ing nonlinear polarization of the material. Both quantities depend on time
and the one-dimensional spatial variable z ∈ [0, L] (the longitudinal direction
within the laser; see Figure 1). A prominent feature of multi-section lasers is
the splitting of the overall interval [0, L] into sections, that is, m subinter-
vals Sk that represent sections with separate electric contacts. We treat the
carrier density within the active zone of the waveguide as a section-wise spa-
tially averaged quantity n(t) ∈ R

m (see Fig. 1). In dimensionless form the
initial-boundary value problem for ψ, p, and n reads as:

∂tψ(t, z) =







−∂z + β(n(t), z) −iκ(z)
−iκ(z) ∂z + β(n(t), z)





ψ(t, z) + ρ(n(t), z) p(t, z)(2)

∂tp(t, z) = [iΩr(n(t), z) − Γ(n(t), z)] · p(t, z) + Γ(n(t), z)ψ(t, z) (3)

d

dt
nk(t) = Ik −

nk(t)

τk
− P

lk
[Gk(nk(t)) − ρk(nk(t))]

∫

Sk

ψ(t, z)∗ψ(t, z) dz

−P
lk
ρk(nk(t)) Re

(∫

Sk

ψ(t, z)∗p(t, z) dz
)

for k = 1 . . .m (4)

subject to the inhomogeneous boundary conditions for ψ

ψ1(t, 0) = r0ψ2(t, 0) + α(t), ψ2(t, L) = rLψ1(t, L) (5)

and the initial conditions

ψ(0, z) = ψ0(z), p(0, z) = p0(z), n(0) = n0. (6)

The Hermitian transpose of a C
2-vector ψ is denoted by ψ∗ in (4). We will de-

fine the appropriate function spaces and discuss the possible solution concepts
in sections 3 and 4. The quantities and coefficients appearing above have the
following meaning (see also Tab. 1 and Fig. 1). L is the length of the laser.
The laser is subdivided into m sections Sk of length lk with starting points zk

for k = 1 . . .m. We scale the system such that l1 = 1 and denote zm+1 = L.
Thus, Sk = [zk, zk+1]. All coefficients are supposed to be spatially constant in
each section and to depend only on the carrier density in that section, that is,
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typical range explanation

ψ(t, z) C
2 optical field,

forward and backward traveling wave

i · p(t, z) C
2 nonlinear polarization

nk(t) (n,∞) spatially averaged carrier density in section Sk

in multiples of the transparency carrier density

Imβ0
k R frequency detuning

Reβ0
k < 0, O(1) decay rate due to internal losses

αH,k (0, 10) negative of line-width enhancement factor

g̃k ≈ 1 differential gain in active sections Sk

κk (−10, 10) real coupling coefficients for the optical field ψ

due to Bragg grating in DFB sections

ρk ≥ 0, O(1) maximum of the gain curve

Γk O(102) half width of half maximum of the gain curve

Ωr,k O(10) resonance frequency

Ik O(10−2) current injection

τk O(102) spontaneous lifetime for the carriers

P (0,∞) scale of (ψ, p) (can be chosen arbitrarily)

r0, rL C, |r0|, |rL| < 1 facet reflectivities

Table 1
Ranges and explanations of the variables and coefficients appearing in (2)-(18). See
also [20], [27] to inspect their relations to the originally used physical quantities and
scales.

if z ∈ Sk,

κ(z) = κk, Γ(n, z) = Γk(nk),

β(n, z) = βk(nk), ρ(n, z) = ρk(nk).

Table 1 collects the physical interpretation and the sensible ranges of all co-
efficients and variables. The model for the growth coefficient βk(nk) ∈ C in
section Sk is

βk(ν) = dk + (1 + iαH,k)Gk(ν) − ρk(ν)

where dk ∈ C accounts for the internal losses (hence, Re dk < 0) and the
frequency detuning, and αH,k ∈ R is the negative of the linewidth enhancement
(or Henry) factor. A section Sk is either passive, then the functions Gk and
ρk are identically zero, or Sk is active. In the active case Gk : (n,∞) → R
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is a smooth strictly monotone increasing function satisfying Gk(1) = 0 and
G′

k(1) > 0. Its limits are limν↘nGk(ν) = −∞, limν→∞Gk(ν) = ∞. We assume
that n ≤ 0 for the lower limit point n of Gk. Typical models for Gk in active
sections are

Gk(ν) = g̃k log ν (n = 0) or

Gk(ν) = g̃k · (ν − 1) (n = −∞)

with a differential gain g̃k = G′
k(1) > 0. In active sections Sk, that is, if

Gk 6≡ 0, the gain maximum ρk(ν) is bounded for ν < 1. Moreover, we suppose
that ρk, Ωr,k, and Γk : (n,∞) → R are smooth and Lipschitz continuous, and
Γk(ν) > 1. For passive sections Sk the variable nk is decoupled from all other
equations and can be dropped from the system.

A remark about the meaning of the quantities p, ρ, Ωr and Γ: System (2)–(3)
models the gain curve of the waveguide material as a Lorentzian. That is, a
monochromatic light-wave ψ1(t, z) = eiωtϕ(z) in an uncoupled and stationary
waveguide (κ = 0, ṅ = 0) is amplified according to the equation

∂z|ϕ(z)|2 = [2 Re β(z) + 2 Reχ(iω, z)] |ϕ(z)|2

where

χ(iω, z) =
ρ(z)Γ(z)

iω − iΩr(z) + Γ(z)
.

Hence, ρ is the maximum, Ωr the location of the maximum, and Γ the half
width at half maximum of the gain curve Reχ(iω) of the waveguide material.
The polarization has been included into the coupled traveling wave model for
a more realistic account of nonlinear gain dispersion effects [20], [27].

The facet reflectivities r0 and rL in (5) are complex with modulus less than
1. The inhomogeneity α(t) is complex and models optical input at the facet
z = 0. We assume it to be L

2 in time on finite time intervals to permit
discontinuous optical input.

The form of the right-hand-side of the equation (4) for the carrier density can
be clarified by introducing the Hermitian form

gk(ν)













ψ

p





 ,







ϕ

q











 =
1

lk

∫

Sk

(ψ∗(z), p∗(z))
(

Gk(ν)−ρk(ν) 1

2
ρk(ν)

1

2
ρk(ν) 0

)







ϕ(z)

q(z)





 dz. (7)

Using the notation
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fk(ν, (ψ, p)) = Ik −
ν

τk
− Pgk(ν)













ψ

p





 ,







ψ

p











 (8)

for ν ∈ (n,∞) and ψ,ϕ, p, q ∈ L
2(Sk; C

2) the carrier density equation (4)
reads

d

dt
nk = fk(nk, (ψ, p)) for k = 1 . . .m. (9)

3 Non-technical overview

In this section we state the main results of the paper in a non-technical but
precise manner and summarize the methods used in the proofs of these results.
We have split this section into four parts. First we show that system (2)–(4)
generates a smooth infinite-dimensional dynamical system. Then we introduce
a small parameter. In the next step we investigate the dynamics of the (linear)
infinite-dimensional fast subsystem, and finally we construct a low-dimensional
attracting invariant manifold.

3.1 Existence theory

In a first step we investigate in which sense system (2)–(4) generates a semiflow
depending smoothly on its initial values and all parameters; for details see
section 4. We want to write (2)–(4) as an abstract evolution equation in the
form

d

dt
u = Au+ g(u)

in a Hilbert space V where A is a linear differential operator that gener-
ates a strongly continuous semigroup S(t) and g is smooth in V . A natu-
ral space for the variables ψ and p is L

2([0, L]; C2), such that V could be
L

2([0, L]; C2)×L
2([0, L]; C2)×R

m for the variable u = (ψ, p, n). However, the
inhomogeneity α in the boundary condition (5) poses a conceptual difficulty
in this framework. Common workarounds are boundary homogenization (used
in [8]) or appending α as an auxiliary variable and an additional equation of
the form

d

dt
α(t) = a(t)

where a is the derivative of α (used in [28]). Then, the nonlinearity g in the
evolution equation depends explicitly on t and it has the same regularity with
respect to t as the time derivative of α. Hence, both approaches require a high
degree of regularity of α in time which is quite unnatural as the laser still
works with discontinuous input. An alternative would be the introduction of
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a concept of “weakly mild” solutions as was done in [29]. However, this would
require the extension of all needed classical results of the theory of strongly
continuous semigroups to this type of solutions.

Here, we choose an approach that is similar to that in [28] but does not
require any regularity of the inhomogeneity. We introduce the auxiliary space-
dependent variable a(t, x) (x ∈ [0,∞)) satisfying the equation

∂ta(t, x) = ∂xa(t, x) (10)

and change the boundary condition for z = 0 in (5) into

ψ1(t, 0) = r0ψ2(t, 0) + a(t, 0).

One may think of an infinitely long fibre [0,∞) storing all future optical inputs
and transporting them to the laser facet z = x = 0 by the transport equation
(10). If we choose a(0, x) = α(x) as initial value for a the value of a at the
boundary x = 0 at time t is α(t). In this way, the formerly inhomogeneous
boundary condition becomes linear in the variables ψ and a requiring no reg-
ularity for a. To keep the space V a Hilbert space, we choose a weighted L

2

norm for a that contains L
∞, that is, ‖a(t, ·)‖2 =

∫∞
0 |a(t, x)|2(1+x2)η dx with

η < −1/2.

With this modification we can work within the framework of the theory
of strongly continuous semigroups [30]. The variable u has the components
(ψ, p, n, a) ∈ V = L

2([0, L]; C2)×L
2([0, L]; C2)×R

m ×L
2
η([0,∞); C). We have

a certain freedom how to choose the splitting of the right-hand-side between A
and g. We keep A as simple as possible, including only the unbounded terms

A





















ψ

p

n

a





















:=



































−∂zψ1

∂zψ2







0

0

∂xa





























.

In this way, it is easy to prove that A generates a strongly continuous semi-
group S(t) by constructing S explicitly. The nonlinearity g is smooth because
it is a superposition operator of smooth coefficient functions, and all com-
ponents either depend only linearly on the infinite-dimensional components
ψ and p, or map into R

m. Then, the existence of a semiflow S(t;u) that is
strongly continuous in t and smooth with respect to u and parameters follows
from an a-priori estimate. This a-priori estimate has to be slightly more subtle
than in [8]. It uses the fact that the same functions Gk and ρk appear on the
right-hand-side of (2) and on that of (4) but with opposing signs. Due to this
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fact we can show that the function

P

2
‖ψ(t)‖2 +

m
∑

k=1

lk(nk(t) − n∗)

remains non-negative for sufficiently small n∗ and, hence, bounded, giving rise
to a bounded invariant ball in V .

3.2 Introduction of a small parameter

For all results about the long-time behavior of system (2)–(4) we restrict
ourselves to autonomous boundary conditions for ψ, that is,

ψ1(t, 0) = r0ψ2(t, 0), ψ2(t, L) = rLψ1(t, L). (11)

The inhomogeneous case is an open question for future work. However, un-
derstanding the dynamics of the autonomous laser is not only an intermediate
step but an important goal in itself since many experiments and simulations
focus on this case; see for example [13] for further references.

Examination of system (2)–(4) reveals that the space dependent subsystem is
linear in ψ and p:

∂t







ψ

p





 = H(n)







ψ

p





 . (12)

The linear operator

H(n) =





















−∂z + β(n) −iκ
−iκ ∂z + β(n)





 ρ(n)

Γ(n) iΩr(n) − Γ(n)















(13)

acts from

Y := {(ψ, p) ∈ H
1([0, L]; C2) × L

2([0, L]; C2) : ψ satisfying (11)}

into X = L
2([0, L]; C2) × L

2([0, L]; C2). H(n) generates a C0 semigroup Tn(t)
acting inX. Its coefficients κ, and, for each n ∈ R

m, β(n), Ωr(n), Γ(n) and ρ(n)
are linear operators in L

2([0, L]; C2) defined by the corresponding coefficients
in (2), (3). The maps β, ρ,Γ,Ωr : R

m → L(L2([0, L]; C2)) are smooth.

Furthermore, we observe that Ik and τ−1
k in (8) are approximately two orders

of magnitude smaller than 1 (see Tab. 1). Hence, we can introduce a small
parameter ε and set P = ε in (4), such that the carrier density equation (9)
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reads as
d

dt
nk = fk (nk, E) = ε(Fk(nk) − gk(nk)[E,E]) (14)

for E ∈ X where the coefficients in Fk(nk) = ε−1(Ik − nkτ
−1
k ) are of order 1.

Although ε is not directly accessible, we treat it as a parameter and consider
the limit ε → 0 while keeping Fk fixed. At ε = 0, the carrier density n is
constant. It enters the linear subsystem (12) as a parameter. Consequently, the
spectral properties ofH(n) with fixed n determine the longtime behavior of the
system for ε = 0. In particular, we are interested in n where an isolated non-
empty but finite set of eigenvalues of H(n) is located exactly on the imaginary
axis. In this case, we can expect a finite-dimensional invariant manifold to
persist for nonzero ε in the spirit of Fenichel’s geometric singular perturbation
theory [33]. Thus, we would like to understand the spectral properties of the
operatorH for fixed n and their correspondence to the growth of the semigroup
T generated by H in the next step.

3.3 Spectral properties of H(n)

We drop the argument n in this paragraph for brevity. The goal of this part
is to show that (for realistic n) we can find a rate ξ < 0 and a splitting of
X = X1 ⊕X2 into two H-invariant subspaces where X1 is finite-dimensional
and the semigroup T restricted to X2 decays with rate ξ:

‖T (t)‖ ≤Meξt for a constant M ≥ 1 and all t ≥ 0;

for details see section 5. Since T is not an analytical or eventually compact
semigroup there are no general theorems implying our result. However, the
operator H has a characteristic function h(λ) defined in C \ W where W =
{iΩr,k −Γk : k = 1, . . . ,m} (note that ReW < −1). The function h is analytic
in C \ W and known explicitly. Hence, most questions about the spectrum
of H can be answered by finding the roots of h. In particular, the spectrum
of H is discrete in C \ W , that is, it consists only of eigenvalues of finite
algebraic multiplicity. In order to obtain our result, we have to distinguish
two cases, r0rL = 0 (that is, (11) are Dirichlet boundary conditions) and
r0rL 6= 0 (periodic boundary conditions).

It turns out that the semigroup T is eventually differentiable if r0rL = 0. In
this case, we can split X into two H-invariant subspaces. One corresponds to
the spectrum close to W . Thus, H is bounded and T decaying in this sub-
space. The semigroup T restricted to the complementary invariant subspace
is eventually compact. Hence, the desired result follows from the theory of
eventually compact semigroups [31].

If r0rL 6= 0 (the hyperbolic case), we treat the operator as a perturbation of
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its diagonal part similar to [21]. Before applying the same result as [21], the
invariant subspace corresponding to the spectrum close to W has to be split
off and treated separately in the same way as in the case r0rL = 0.

In essence, the result of section 5 implies that we can treatH like a matrix: The
dominant eigenvalues determine the growth of the corresponding semigroup.

3.4 Existence of a low-dimensional invariant manifold

Let us assume that there exists a simple connected open set U ⊂ R
m of carrier

densities n such that H(n) has a uniform spectral gap for all n ∈ U in a strip
of the negative complex half-plane {z ∈ C : ξ ≤ Re z ≤ ξ/k} (ξ < 0, integer
k > 2), and that the dominant part of the spectrum of H(n) is finite. Hence,
the spectral projection Pc(n) onto the H(n)-invariant subspace corresponding
to the dominant part of the spectrum has constant rank q. This spectral gap
assumption is quite natural and follows for example from the existence of non-
trivial dynamics that is uniformly bounded for ε→ 0 (e.g., relative equilibria,
i.e., solutions of the form E(t) = E0e

iωt, n = const) if r0rL = 0. We can
split any E ∈ X into E = B(n)Ec + Es where B(n) is a basis of ImPc(n)
depending smoothly on n, Ec ∈ C

q, and Es ∈ X is E−Pc(n)B(n)Ec. The map
R : X × U → C

q × U given by (E, n) → (B(n)−1Pc(n)E, n) is well defined,
smooth and Lipschitz continuous on any closed subset of X × U . Then, the
main model reduction theorem is as follows.

Theorem 1 (Model reduction)
Let ε0 > 0 be sufficiently small, ∆ ∈ (ξ, 0), and N be a closed bounded subset
of C

q × U . Then, for all ε ∈ [0, ε0) there exists a Ck manifold C ⊂ X × R
m

satisfying:

(i) (Invariance) C is S(t, ·)-invariant relative to R−1N . That is, if (E, n) ∈ C,
t ≥ 0, and S([0, t]; (E, n)) ⊂ R−1N , then S([0, t]; (E, n)) ⊂ C.

(ii) (Representation) C can be represented as the graph of a map which maps

(Ec, n, ε) ∈ N × [0, ε0) → ([B(n) + εν(Ec, n, ε)]Ec, n) ∈ X × R
m

where ν : N × [0, ε0) → L(Cq;X) is Ck−2 with respect to all arguments.
Denote the X-component of C by

EX(Ec, n, ε) = [B(n) + εν(Ec, n, ε)]Ec ∈ X.

(iii) (Exponential attraction) Let Υ ⊂ X×R
m be a bounded set with RΥ ⊂ N

and a positive distance to the boundary of N . Then, there exist a constant
M and a time tc ≥ 0 with the following property: For any (E, n) ∈ Υ there
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exists a (Ec, nc) ∈ N such that

‖S(t+ tc; (E, n)) − S(t; (EX(Ec, nc, ε), nc))‖ ≤Me∆t

for all t ≥ 0 with S([0, t+ tc]; (E, n)) ⊂ Υ.
(iv) (Flow) The flow on C ∩ R−1N is differentiable with respect to t and

governed by the following system of ODEs:

d

dt
Ec =

[

Hc(n) + εa1(Ec, n, ε) + ε2a2(Ec, n, ε)ν(Ec, n, ε)
]

Ec

d

dt
n = εF (Ec, n, ε)

(15)

where

Hc(n) = B(n)−1H(n)Pc(n)B(n)

a1(Ec, n, ε) = −B(n)−1Pc(n)∂nB(n)F (Ec, n, ε)

a2(Ec, n, ε) = B(n)−1∂nPc(n)F (Ec, n, ε)(Id− Pc(n))

F (Ec, n, ε) = (Fk(nk) − gk(nk)[EX(Ec, nc, ε), EX(Ec, nc, ε)])
m
k=1 .

The idea to choose n-dependent coordinates for E in the construction of a
reduced model was introduced already in [24] by physicists. This choice has
the advantage that the graph of the center manifold itself enters the flow (15)
on the center manifold only in the form O(ε2)ν. This fact has been pointed
out first in [32] where the same model reduction result has been proven for
ODEs of the structure (1) using Fenichel’s Theorem for singularly perturbed
systems of ODEs [33]. Since Fenichel’s Theorem is not available for infinite-
dimensional systems, we have to adapt the proof in [33] to our case starting
from the general results in [17], [18], [19] about invariant manifolds of semiflows
in Banach spaces. In particular, we apply the cut-off modifications done in
[33] only to the finite-dimensional components Ec and n outside of the set
N of interest. Moreover, we adapt the modifications such that the invariant
manifold for ε = 0 is compact without boundary as required by the theorems
in [17].

Truncating all terms of order O(ε2) in (15) gives rise to a system of ODEs in
C

q×R
m where all terms in the right-hand-side can be expressed analytically as

functions of the eigenvalues of H. The truncated system (15) is called the mode
approximation. It is an implicit system of ODEs because the eigenvalues of H
are given only implicitly as roots of the characteristic function h of H. The
dimension of (15) is typically low: q is often either 1 or 2. The consideration
of mode approximations has proven to be extremely useful for numerical and
analytical investigations of longitudinal effects in multi-section semiconductor
lasers; see for example [7], [16], [6].
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4 Existence and Uniqueness of Classical and Mild Solutions

In this section, we treat the inhomogeneous initial-boundary value problem
(2)-(5) as an autonomous nonlinear evolution equation

d

dt
u(t) = Au(t) + g(u(t)), u(0) = u0 (16)

where u(t) is an element of a Hilbert space V , A is a generator of a C0 semi-
group S(t), and g : U ⊆ V → V is smooth and locally Lipschitz continuous
in an open set U ⊆ V . The inhomogeneity in (5) is included in (16) as a
component of u.

4.1 Notation

The Hilbert space V is defined by

V := L
2([0, L]; C2) × L

2([0, L]; C2) × R
m × L

2
η([0,∞); C) (17)

where L
2
η([0,∞); C) is the space of weighted square integrable functions. The

scalar product of L
2
η([0,∞); C) is defined by

(v, w)η := Re
∫ ∞

0
v̄(x) · w(x)(1 + x2)ηdx.

We choose η < −1/2 such that the space L
∞([0,∞); C) is continuously em-

bedded in L
2
η([0,∞); C). The complex plane is treated as two-dimensional real

plane in the definition of the vector space V such that the standard L
2 scalar

product (·, ·)V of V is differentiable. The corresponding components of v ∈ V
are denoted by

v = (ψ, p, n, a).

Here, ψ and p have two complex components and n ∈ R
m. The spatial variable

in ψ and p is denoted by z ∈ [0, L], whereas the spatial variable in a is
denoted by x ∈ [0,∞). The Hilbert space H

1
η([0,∞); C) equipped with the

scalar product

(v, w)1,η := (v, w)η + (∂xv, ∂xw)η

is densely and continuously embedded in L
2
η([0,∞); C). Moreover, its elements

are continuous [34]. Consequently, the Hilbert spaces

W := H
1([0, L]; C2) × L

2([0, L]; C2) × R
m × H

1
η([0,∞); C), and

WBC := {(ψ, p, n, a) ∈W : ψ1(0) = r0ψ2(0) + a(0), ψ2(L) = rLψ1(L)}
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are densely and continuously embedded in V . The linear functionals ψ1(0) −
r0ψ2(0) − a(0) and ψ2(L) − rLψ1(L) are continuous from W → R. We define
the linear operator A : WBC → V by

A





















ψ

p

n

a





















:=



































−∂zψ1

∂zψ2







0

0

∂xa





























.

The definition of A and WBC treat the inhomogeneity α in the boundary
condition (5) as the boundary value at 0 of the variable a. We define the open
set U ⊆ V by

U := {(ψ, p, n, a) ∈ V : nk > n for k = 1 . . .m},

and the nonlinear function g : U → V by

g(ψ, p, n, a) =































β(n)ψ − iκ







0 1

1 0





ψ + ρ(n)p

(iΩr(n) − Γ(n))p+ Γ(n)ψ

(fk(nk, (ψ, p)))
m
k=1

0































. (18)

The corresponding coefficients of (2)–(4) define the smooth maps β : (n,∞)m →
L(L2([0, L]; C2)) and ρ,Ωr,Γ : R

m → L(L2([0, L]; C2)). The function g is con-
tinuously differentiable to any order with respect to all arguments and its
Frechet derivative is bounded in any closed bounded ball B ⊂ U [28].

According to the theory of C0 semigroups, there are two solution concepts
[30]:

Definition 2 Let T > 0. A solution u : [0, T ] → V is a classical solution of
(16) if u(t) ∈ WBC ∩ U for all t ∈ [0, T ], u ∈ C1([0, T ];V ), u(0) = u0, and
equation (16) is valid in V for all t ∈ (0, T ).

The inhomogeneous initial-boundary value problem (2)-(6) and the auton-
omous evolution system (16) are equivalent in the following sense: Suppose
α ∈ H

1([0, T ); C) in (5). Let u = (ψ, p, n, a) be a classical solution of (16).
Then, u satisfies (2)-(3), and (6) in L

2 and (4), (5) for each t ∈ [0, T ] if and only
if a0|[0,T ] = α. On the other hand, assume that (ψ, p, n) satisfies (2)-(3), and (6)
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in L
2 and (4), (5) for each t ∈ [0, T ]. Then, we can choose a a0 ∈ H

1
η([0,∞); C)

such that a0|[0,T ] = α and obtain that u(t) = (ψ(t), p(t), n(t), a0(t + ·)) is a
classical solution of (16) in [0, T ].

Definition 3 Let T > 0, A be a generator of a C0 semigroup S(t) of bounded
operators in V . A solution u : [0, T ] → V is a mild solution of (16) if u(t) ∈ U
for all t ∈ [0, T ], and u(t) satisfies the variation of constants formula in V

u(t) = S(t)u0 +
∫ t

0
S(t− s)g(u(s))ds. (19)

We prove in Lemma 4 that A generates a C0 semigroup in V . Mild solutions of
(16) are a reasonable generalization of the classical solution concept of (2)-(5)
to boundary conditions including discontinuous inputs α ∈ L

2
η([0,∞); C).

4.2 Global Existence and Uniqueness of Solutions for the Truncated Problem

In order to prove uniqueness and global existence of solutions of (16), we apply
the theory of strongly continuous semigroups [30].

Lemma 4 A : WBC ⊂ V → V generates a C0 semigroup S(t) of bounded
operators in V .

PROOF. We specify the C0 semigroup S(t) explicitly. Denote the compo-
nents of S(t)((ψ0

1, ψ
0
2), p

0, n0, a0) by ((ψ1(t, z), ψ2(t, z)), p(t, z), n(t), a(t, x)) for
z ∈ [0, L], x ∈ [0,∞), and let t ≤ L.

ψ1(t, z) =











ψ0
1(z − t) for z > t

r0ψ
0
2(t− z) + a0(t− z) for z ≤ t

ψ2(t, z) =











ψ0
2(z + t) for z < L− t

rLψ
0
1(2L− t− z) for z ≥ L− t

p(t, z) = 0

n(t) = 0

a(t, x) = a0(x+ t).

For t > L we define inductively S(t)u = S(L)S(t−L)u. This procedure defines
a semigroup of bounded operators in V since

‖ψ1(t, ·)‖2 + ‖ψ2(t, ·)‖2 + ‖a(t, ·)‖2 ≤ 2(1 + t2)−η
(

‖ψ0
1‖ + ‖ψ0

2‖ + ‖a0‖
)
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for t ≤ L. The strong continuity of S is a direct consequence of the continuity
in the mean in L

2. It remains to be shown that S is generated by A.

Let u = ((ψ0
1, ψ

0
2), p

0, n0, a0) satisfy limt→0
1
t
(S(t)u − u) ∈ V , define ϕt(z) :=

1
t
(ψ1(t, z) − ψ0

1(z)), ϕ0 = limt→0 ϕt, and let δ > 0 be small. Firstly, we prove
that u ∈ WBC. ϕt coincides with the difference quotient 1

t
(ψ0

1(z − t) − ψ0
1(z))

for t < δ and z ∈ [δ, L]. Thus, ∂zψ
0
1 ∈ L

2([δ, L]; C) exists. Furthermore,
ϕt(· + t) → ϕ0 in L

2([0, L − δ]; C). Since ϕt(· + t) = 1
t
(ψ0

1(z) − ψ0
1(z + t)),

∂zψ
0
1 exists also in L

2([0, L − δ]; C). Consequently ψ0
1 ∈ H

1([0, L]; C). The
same argument holds for ψ0

2 ∈ H
1([0, L]; C) and for a0 ∈ H

1
η([0,∞); C).

In order to verify that u satisfies the boundary conditions we write

ϕt(z) =















z ∈ [t, L] : − 1
t

∫ z
z−t ∂zψ

0
1(ζ)dζ

z ∈ [0, t] : 1
t

(

r0
∫ t−z
0 ∂zψ

0
2(ζ) + ∂za

0(ζ)dζ − ∫ z
0 ∂zψ

0
1(ζ)dζ

)

+

+1
t
(r0ψ

0
2(0) + a0(0) − ψ0

1(0))

(20)
Consequently, the limit ϕ0 is in L

2([0, L]; C) if and only if r0ψ
0
2(0) + a0(0) −

ψ0
1(0) = 0. The same argument using 1

t
(ψ2(t, z) − ψ0

2(z)) implies rLψ
0
1(L) −

ψ0
2(L) = 0.

Finally, we prove that for any u ∈ WBC we have limt→0
1
t
(S(t)u − u) = Au.

Using the notation ϕt introduced above, we have
∫ t
0 |ϕt(z)|2dz →t→0 0 due to

(20). Hence, ϕt →t→0 −∂zψ
0
1 on [0, L]. Again, we can use the same arguments

to obtain the limits ∂zψ
0
2 and ∂xa

0. 2

The operators S(t) have a uniform upper bound

‖S(t)‖ ≤ Ceγt (21)

within finite intervals [0, T ]. In order to apply the results of the C0 semigroup
theory [30], we truncate the nonlinearity g smoothly: For any bounded ball
B ⊂ U which is closed w.r.t. V , we choose gB : V → V such that gB is smooth,
globally Lipschitz continuous, and gB(u) = g(u) for all u ∈ B. This is possible
because the Frechet derivative of g is bounded in B and the scalar product in
V is differentiable with respect to its arguments. We call

d

dt
u(t) = Au(t) + gB(u(t)), u(0) = u0 (22)

the truncated problem (16). The following Lemma 5 is a consequence of the
results in [30].

Lemma 5 (global existence for the truncated problem)
The truncated problem (22) has a unique global mild solution u(t) for any
u0 ∈ V . If u0 ∈ WBC, u(t) is a classical solution of (22).
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Corollary 6 (local existence) Let u0 ∈ U . There exists a tloc > 0 such that
the evolution problem (16) has a unique mild solution u(t) on the interval
[0, tloc]. If u0 ∈ WBC ∩ U , u(t) is a classical solution of (16) in [0, tloc].

4.3 A-priori Estimate — Existence of Semiflow

In order to state the existence result of Lemma 5 for the original system
(16), we need the following a-priori estimate for the solutions of the truncated
problem (22).

Lemma 7 Let T > 0, u0 ∈ U . If n > −∞, we suppose Ikτk > n for all
k = 1 . . .m. Then, there exists a closed bounded ball B such that B ⊂ U and
the solution u(t) of the B-truncated problem (22) starting at u0 stays in B for
all t ∈ [0, T ].

PROOF. First, let u0 = (ψ0, p0, n0, a0) ∈ D(A) = WBC ∩ U .

Preliminary consideration
Let n∗ ∈ (n, n0

k) be such that Gk(n∗) − ρk(n∗) < 0 for all k = 1 . . .m where
Gk 6≡ 0 (i.e., for all active sections Sk). Let t1 > 0 be such that the solution of
the non-truncated problem (16) u(t) = (ψ(t), p(t), n(t), a(t)) exists in [0, t1],
and nk(t) ≥ n∗ for all k = 1 . . .m and t ∈ [0, t1].

h(t) :=
P

2
‖ψ(t)‖2 +

m
∑

k=1

lk(nk(t) − n∗).

Because of the structure of the nonlinearity g, which is linear in ψ in its
first component, u(t) is classical in [0, t1]. Hence, h(t) is differentiable and the
differential equations (2) and (4) imply

d

dt
h(t)≤ J + sup

z∈C

{|r0z + a0(t)|2 − |z|2} −
m
∑

k=1

(

lk
τk
nk + P Re dk

∫

Sk

|ψ(z)|2 dz
)

≤ J +
|a0(t)|2
1 − |r0|2

− τ̃−1n∗ − γh(t), (23)

where

J :=
m
∑

k=1

lkIk, τ̃−1 :=
m
∑

k=1

lkτ
−1
k , γ := min

{

τ−1
k ,−Re dk

2
: k = 1 . . .m

}

> 0.

Consequently,
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h(t)≤h(0) + Jt− τ̃−1t n∗ +
1

1 − |r0|2
∫ t

0
|a0(s)|2 ds

≤h(0) + JT + τ̃−1T |n∗| +
(1 + T 2)−η

1 − |r0|2
‖a0‖2

≤
(

P

2
‖ψ0‖2 +

m
∑

k=1

lkn
0
k + JT +

(1 + T 2)−η

1 − |r0|2
‖a0‖2

)

+
(

L+ τ̃−1T
)

|n∗|

≤M + ξ |n∗| (24)

for all t ∈ [0, t1] where M and ξ do not depend on n∗. The inequality (24)
remains valid even if u0 ∈ (V \WBC)∩U (i.e., u(t) is not classical but mild) as
both sides of (24) depend only on the V -norm of u but not on its WBC-norm.
Since nk(t) ≥ n∗ in [0, t1] for all k = 1 . . .m, the estimate (24) for h(t) and
the differential equation (3) for p imply bounds for ψ, p and n in [0, t1]:

‖ψ(t)‖2 ≤S(n∗)
2 := 2P−1(M + ξ |n∗|)

‖p(t)‖≤‖p0‖ + S(n∗) (25)

nk ∈
[

n∗, n∗ + (2lk)
−1PS(n∗)

2
]

.

Hence, fk(n∗, (ψ(t), p(t))) is greater than

Ik −
n∗

τk
− P

lk
max
Θ∈R

[

(Gk(n∗) − ρk(n∗))Θ
2 + |ρk(n∗)|(|p0‖ + S(n∗))Θ

]

(26)

for all k = 1 . . .m and t ∈ [0, t1].

Construction of B
Since Gk(ν) →ν→n −∞ and ρk(ν) bounded for ν → n, or Gk = ρk = 0, we can
find a n∗ such that the expression (26) is greater than 0 for all k = 1 . . .m.
Then, we choose B such that u = (ψ, p, n, a) ∈ B if ψ, p and n satisfy (25) for
the chosen n∗ and a = a0(t+ ·) for t ∈ [0, T ].

Indirect proof of invariance of B
Assume that the solution v(t) = (ψ(t), p(t), n(t), a(t)) of the B-truncated
problem leaves B. The preliminary consideration and the construction of
B imply that there exists a t1 such that u(t) exists in [0, t1], and, for one
k ∈ {1 . . .m}, nk(t1) = n∗ and nk(t) > n∗ for all t ∈ [0, t1]. Consequently,
ṅk(t1) = fk(nk(t1), (ψ(t1), p(t1))) < 0. However, this contradicts to the con-
struction of n∗ such that (26) is greater than 0. 2

Lemma 7 implies the following global existence theorem for mild and classical
solutions:

Theorem 8 (global existence and uniqueness)
Let T > 0, u0 ∈ U . If n > −∞, let Ikτk > n for all k = 1 . . .m. There exists
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a unique mild solution u(t) of (16) in [0, T ]. Furthermore, if u0 ∈ WBC ∩ U ,
u(t) is a classical solution of (16).

If the component a is globally bounded, i.e., a0 ∈ L∞, the ball B constructed
in the a-priori estimate of Lemma 7 does not depend on the end T of the time
interval either. Thus, the solutions are globally bounded if a0 is bounded:

Corollary 9 (global boundedness)
Let u0 = (ψ0, p0, n0, a0) ∈ U and ‖a0‖∞ <∞. There exists a constant C such
that ‖u(t)‖V ≤ C.

PROOF. It is sufficient to prove that the constants M and ξ in the estimate
(24) for h(t) do not depend on T if ‖a0‖∞ < ∞. The estimate (23) for ḣ(t)
implies

h(t)≤max

{

h(0),
1

γ

(

J +
‖a0‖∞

1 − |r0|2
− n∗

τ̃

)}

≤
(

P

2
‖ψ0‖2 +

m
∑

k=1

lkn
0
k + L|n∗|

)

+
1

γ

(

J +
‖a0‖∞

1 − |r0|2
+

|n∗|
τ̃

)

≤
(

P

2
‖ψ0‖2 +

m
∑

k=1

lkn
0
k +

1

γ

[

J +
‖a0‖∞

1 − |r0|2
])

+

(

L+
1

γτ̃

)

|n∗|

≤M + ξ |n∗| (27)

where now M and ξ do not depend on T . Hence, the bounds (25) can now
be derived from (27) in the same way as in the proof of Lemma 7 using the
T -independent bounds M and ξ. Consequently, we can choose n∗ independent
of T and, hence, the ball B does not depend on T (see proof of Lemma 7). 2

Let us define the semiflow map S : [0,∞) × U → U by S(t;u0) := u(t)
where u(t) is the mild solution of the evolution equation (16) with initial
value u(0) = u0. The following corollary is an immediate consequence of the
general theory of C0 semigroups [30] and the smoothness of the nonlinearity
g in the evolution equation (16):

Corollary 10 (smooth dependence on initial values)
The map (t, u0) → S(t;u0) is smooth with respect to u0 and strongly continuous
with respect to t.

The smooth dependence of the solution on all parameters within a bounded
parameter region is also a direct consequence of the C0 semigroup theory. The
restrictions imposed on the parameters in Section 2 and Lemma 7 have to
be satisfied uniformly in the considered parameter range in order to obtain
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a uniform a-priori estimate. In particular, we point out that the ball in the
a-priori estimate of Lemma 7 can be chosen uniform for Ik → 0 (if n < 0) and
τ−1
k → 0.

5 Asymptotic behavior of the linear part — spectral properties of
H(n) for fixed n

We restrict ourselves to the autonomous system (2)–(4) in the following. The
boundary conditions are

ψ1(t, 0) = r0ψ2(t, 0), ψ2(t, L) = rLψ1(t, L) (28)

in the autonomous case.

As mentioned in Section 3, the long-time behavior of the overall system at
ε = 0 in (14) (i.e., ṅk = 0 for k = 1 . . .m) is determined by the behavior of
the linear space-dependent subsystem (12), that is, the spectral properties of
the operator H(n). In this section we treat n as a parameter, dropping the
corresponding argument from the coefficients β, ρ, Ωr, and Γ for brevity.

Define the set of complex “resonance frequencies”

W = {c ∈ C : c = iΩr,k − Γk for at least one k ∈ {1 . . .m}} ⊂ C

and χ : C \W → L(L2([0, L]; C2)) (see section 2 for explanation and [20], [27]
for details) by

χ(λ) =
ρΓ

λ− iΩr + Γ
∈ L(L2([0, L]; C2)) for each λ ∈ C \W .

For λ ∈ C \ W , the following relation follows from (13): λ is in the resolvent
set of H if and only if the boundary value problem







−∂z + β + χ(λ) − λ −iκ
−iκ ∂z + β + χ(λ) − λ





 ϕ = 0

with b. c. ϕ1(t, 0) = r0ϕ2(t, 0), ϕ2(t, L) = rLϕ1(t, L)

(29)

has only the trivial solution ϕ = 0 in H
1([0, L]; C2). The transfer matrix

corresponding to (29) is

Tk(z, λ) =
e−γkz

2γk







γk + µk + e2γkz(γk − µk) iκk (1 − e2γkz)

−iκk (1 − e2γkz) γk − µk + e2γkz(γk + µk)





 (30)
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for z ∈ Sk where µk = λ − χk(λ) − βk and γk =
√

µ2
k + κ2

k [24], [21]. The
right-hand-side of (30) does not depend on the branch of the square root in
γk since the expression is even with respect to γk. Denote the overall transfer
matrix of (29) by T (z1, z2;λ) for z1, z2 ∈ [0, L]. The function

h(λ) =
(

rL, −1

)

T (L, 0;λ)







r0

1





 =
(

rL −1

) 1
∏

k=m

Tk(lk;λ)







r0

1





 (31)

defined in C\W is the characteristic function ofH: Its roots are the eigenvalues
of H and R := {λ ∈ C \ W : h(λ) 6= 0} is the resolvent set. Consequently,
all λ ∈ C \ W are either eigenvalues of H or in R, i. e., there is no essential
(continuous or residual) spectrum in C\W . We note that max ReW � −1 for
physically sensible parameter constellations. Let ζ ∈ L

2([0, L]; C2). We denote
the solution ϕ of the inhomogeneous boundary value problem







−∂z + β + χ(λ) − λ −iκ
−iκ ∂z + β + χ(λ) − λ





 ϕ+ ζ = 0

with b. c. ϕ1(t, 0) = r0ϕ2(t, 0), ϕ2(t, L) = rLϕ1(t, L)

(32)

by R1(λ)ζ. An expression for R1(λ)ζ is

[R1(λ)ζ](z) =
1

h(λ)
T (z, 0;λ)







r0

1





 (rL,−1)

L
∫

0

T (L, s;λ)







−1 0

0 1





 ζ(s) ds−

z
∫

0

T (z, s;λ)







−1 0

0 1





 ζ(s) ds.

(33)

Hence, R1(λ) : L
2([0, L]; C2) → L

2([0, L]; C2) is compact for λ ∈ R. The
resolvent of H, R(λ) := (λId−H)−1 : X → X for λ ∈ R is

R(λ)







ψ

p





 =







R1(λ)
(

ψ + ρp
λ−iΩr+Γ

)

1
λ−iΩr+Γ

[

p+ ΓR1(λ)
(

ψ + ρp
λ−iΩr+Γ

)]





 (34)

which is a compact perturbation of the operator (ψ, p) → (0, (λ− iΩr + Γ)−1p).

The following lemma provides an approximate upper bound for the real parts
of the eigenvalues.

Lemma 11 Let λ ∈ C\W be in the point spectrum of H. Then, λ is geomet-
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rically simple, and its real part satisfies the estimate

Reλ ≤ Λu := max
k=1...m

{

−Γk

2
,Re βk + 2ρk

}

.

PROOF. Let (ψ, p) be an eigenvector associated to λ. Then, ψ is a multiple
of T (z, 0;λ) ( r0

1 ), and p = Γψ/(λ− iΩr + Γ). Thus, λ is geometrically simple.
Partial integration of the eigenvalue equation (29) and its complex conjugate
equation yields:

2 Reλ ≤ 2 max
k=1...m

(Re βk + Reχk(λ)) . (35)

For Reλ > −Γk/2, we get Reχk(λ) ≤ |χk(λ)| ≤ 2ρ. 2

It turns out that we have to treat the cases r0rL = 0 and r0rL 6= 0 differently
for more detailed analysis of the spectrum of H and the growth properties of
the semigroup T (t) generated by H.

5.1 The differentiable case: r0rL = 0

According to the notations in [30], [31] we denote:

Definition 12 A C0 semigroup T (t) is called eventually differentiable if there
exists a t0 ≥ 0 such that t→ T (t)x is differentiable for all x ∈ X and t > t0. It
is called eventually compact if there exists a t0 ≥ 0 such that T (t) is a compact
operator for all t > t0.

Theorem 13 If r0rL = 0 in (28), then the C0 semigroup T (t) generated by
H is eventually differentiable.

PROOF. Let M , ω be such that ‖T (t)‖ ≤Meωt for all t ≥ 0. The constants
M and ω exist since H generates a C0 semigroup. According to [30], it is
sufficient to find constants a > 0, b > 0, and C > 0 such that

(1) R ⊃ Σ(a, b) := {λ : bReλ+ log | Imλ| ≥ a}, and
(2) ‖R(λ)‖ ≤ C| Imλ| for all λ ∈ Σ(a, b) with Reλ ≤ ω.

See Figure 2 for an illustration how Σ(a, b) looks like qualitatively.

Firstly, we prove property 1. We know that Cω := {λ : Reλ > ω} ⊂ R because
of ‖T (t)‖ ≤Meωt. Consider the following two sets

S1 := {λ : Imλ > 1} \ Cω

S2 := {λ : Imλ < −1} \ Cω.
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Within each of both sets, we can choose the branch of the square root for γk

satisfying
lim

|λ|→∞
γk(λ) − µk(λ) = lim

|λ|→∞
γk(λ) − λ = 0. (36)

Consider the function

h̃(λ) = h(λ) exp

(

−
m
∑

k=1

γk(λ)lk

)

= (rL,−1)
1
∏

k=m

(

Tk(lk;λ)e−lkγk(λ)
)







r0

1







(37)

which is a multiple of the characteristic function h(λ) of H. (36) implies that
the factor matrices T̃k(λ) = e−lkγk(λ)Tk(lk;λ) of h̃ have the form

T̃k(λ) =







e−2lkγk(λ) 0

0 1





+ Ak(λ)

where all coefficients of Ak satisfy the inequality

|Ak,ij(λ)| ≤ ck|λ|−1e−2lk Re λ (38)

for some ck > 0 in S1 and in S2. Hence, we can expand the matrix product in
(37) into a sum such that h̃(λ) reads:

h̃(λ) = r0rL exp

(

m
∑

k=1

γk(λ)lk

)

− 1 + r(λ).

The first summand is zero and the remainder r(λ) is bounded by

|r(λ)| ≤ c|λ|−1e−2L Re λ (39)

for some c > 0 in S1 and S2. If we choose b > 2L, then

lim
|λ|→∞

λ∈Σ(a,b)

|λ|−1e−2L Re λ = 0 for all a > 0.

Thus, we can choose a sufficiently large such that Σ(a, b) \ Cω ⊂ S1 ∪ S2 and

c|λ|−1e−2L Re λ < 1/2 for all λ ∈ Σ(a, b) \ Cω.

Hence, |r(λ)| < 1/2, and |h̃(λ)| > 1/2 for all λ ∈ Σ(a, b) \ Cω. Consequently,
Σ(a, b) ⊂ R.

Concerning property 2: The only term which is unbounded w.r.t. λ for |λ| → ∞
in the right-hand-side of (34) isR1(λ). We substitute h(λ) = h̃(λ) exp (

∑m
k=1 lkγk(λ))

in (33) and estimate
|Tk(z;λ)| ≤ ce−lk Re λ (40)
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for all λ ∈ S1 and S2 due to (36). (40) and h̃(λ) > 1/2 imply

‖R1(λ)‖ ≤ ce−3L Re λ (41)

for all λ ∈ S1 and S2. Hence, if we choose b > 3L in the definition of Σ(a, b),
property 2 is also satisfied in Σ(a, b). 2

finite

spectrum

C

Reλ

Imλ

ω

|Imλ| = exp(a − bReλ)

W ξ

Path γ

. . .

. . .

.
.
.

.
.
.

0

Σ(a, b) ⊂ R

Fig. 2. Spectrum for the differentiable case. The sketch illustrates the location of
the path γ and the set Σ(a, b) in the complex plane constructed in the proof of
Theorem 13.

The next theorem establishes precisely how the growth properties of the semi-
group T (t) are related to the spectrum of H.

Theorem 14 Let ξ > max ReW, and denote Cξ := {λ ∈ C : Reλ ≥ ξ}, and
σ+ := specH ∩ Cξ. Then, σ+ consists of at most finitely many eigenvalues of
H. All eigenvalues λ ∈ σ+ have only finite algebraic multiplicity. The space X
can be decomposed into two closed subspaces X1 ⊕ X2 invariant with respect
to H and T (t) such that

(1) dimX1 < ∞, specH|X1
= σ+ and X1 is spanned by the finitely many

generalized eigenvectors of H associated to the eigenvalues of H in σ+.
(2) There exists a M > 0 such that ‖T (t)|X2

‖ ≤Meξt for all t > 0.

PROOF. See also Figure 2 for an illustration of the spectral splitting. Let
γ ∈ C \ Cξ be a smooth closed path around W . Since the spectrum of H is
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discrete in C \W , we can choose γ such that γ ⊂ R. Define the projectors

P :=
1

2πi

∮

γ
R(λ) dλ

Q := Id− P .

These projectors decompose X into two closed subspaces XP = ImP , and
XQ = ImQ which are invariant with respect to H. The resolvent of H|XQ

,
QR(λ), is compact since

Q







0

(λ− iΩr + Γ)−1p





 = 0,

and R1(λ) is compact. Since T (t) is eventually differentiable, there exists a t0
such that T (t) is continuous with respect to t in the uniform operator topology
for all t ≥ t0, i.e., ‖T (t+ h) − T (t)‖ →h→0 0 for all t ≥ t0 [30]. Thus, T (t)|XQ

is continuous with respect to t in the uniform operator topology for all t ≥ t0.
Consequently, T (t)|XQ

is eventually compact, i.e., compact for t ≥ t0 [30].
This permits us to split the closed subspace XQ further: At most finitely many
eigenvalues of H|XQ

, the generator of T (t)|XQ
, are situated in Cξ, and they

have at most finite algebraic multiplicity [31]. We denote the corresponding
finite-dimensional eigenspace by X1, and its invariant closed complement by
X2,Q. Then, the spaces X1 and X2 = XP ⊕X2,Q satisfy the assertions of the
theorem: HXP

is a bounded operator, and its spectrum outside the discrete set
W is discrete. Hence, the growth of T (t)|XP

is restricted by ‖T (t)|XP
‖ ≤Meξt

for some M > 1 as the path γ is contained in C \ Cξ. Likewise, the growth of
the eventually compact semigroup T (t)|X2,Q

is bounded by the spectral bound
of H|X2,Q

which is less than ξ: ‖T (t)|X2,Q
‖ ≤Meξt for some M > 1 [31]. 2

5.2 The hyperbolic case: r0rL 6= 0

In order to prove a theorem similar to Theorem 14 for the case r0rL 6= 0, we
treat the operator H as a perturbation of the operator

H0 =





















−∂z + β 0

0 ∂z + β





 0

0 iΩr − Γ















defined in Y ⊂ X (see also [28], [21], [22]). The spectrum of H0 consists of W
and the sequence of simple eigenvalues

λ0
j :=

1

L

[

m
∑

k=1

βklk +
1

2
log(r0rL) + jπi

]

for j ∈ Z.
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The eigenvector of H0 associated to λ0
j is

b0j :=
(

e(−λ0

j
z+
∫ z

0
β(z) dz)r0, e

(λ0

j
z−
∫ z

0
β(z) dz), 0, 0

)T

.

The sequence {b0j : j ∈ Z} establishes a basis of L
2([0, L]; C2)×{0}, i.e., there

exists an automorphism of X mapping an orthonormal basis of L
2([0, L]; C2)×

{0} onto {b0j : j ∈ Z}. Firstly, we prove an estimate for the location of the

≤
C
|j|

λ
0

j

λj

Reλ
0

0

finite

spectrum

C

Reλ

Imλ

W

ξ 0 Λu
Λl

Path γ2

Path γ1

Bj

Bj

Bj0+1

B
−j0−1

Bj enlarged

.

.

.

.

.

.

Fig. 3. Spectrum in the hyperbolic case. The sketch illustrates the location of the
paths γ1 and γ2 constructed in the proof of Theorem 17 and the balls Bj around λ0

j

containing the eigenvalues λj of H for large |j| described in Lemma 15.

eigenvalues of H (see Lemma 11 for the definition of Λu and Figure 3 for
illustration):

Lemma 15 Let r0rl 6= 0. Then, there exists a vertical strip S := {λ ∈ C :
Reλ ∈ [Λl,Λu] such that specH ⊂ S. There exist constants R > 0 and C > 0
such that the following holds:

(1) If λ is an eigenvalue of H and |λ| > R, then λ is algebraically simple and
there exists a j ∈ Z such that |λ− λ0

j | < C/|j| < π/(2L).
(2) If |λ0

j | > R, then there is exactly one eigenvalue of H in the ball Bj of
radius π/(2L) around λ0

j .

PROOF. We choose the branch of the square root such that γk(λ)−µk(λ) →
0 and γk(λ) − λ → 0 for |λ| → ∞ in the negative half-plane of C. Hence,
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e2lkγk(λ) →Re λ→−∞ 0. Consequently, the matrices

elkγk(λ)Tk(lk;λ) →Re λ→−∞







1 0

0 0





 .

Accordingly, the multiple of the characteristic function of H converges for
Reλ→ −∞:

exp

(

m
∑

k=1

lkγk(λ)

)

h(λ) →Re λ→−∞ r0rL 6= 0,

and this limit is uniform for Imλ. Consequently, there exists a Λl < 0 such that
h(λ) 6= 0 if Reλ < Λl. The upper limit for the strip S has been constructed
in Lemma 11.

Consider the function

h0(λ) = r0rL exp

(

m
∑

k=1

βklk − λL

)

− exp

(

−
m
∑

k=1

βklk + λL

)

.

The characteristic function h converges to h0 within the vertical strip S for
| Imλ| → ∞:

|h(λ) − h0(λ)| ≤ C/| Imλ| for λ ∈ S and some C > 0. (42)

The function h0 has the period 2π with respect to Imλ, and its roots are
λ0

j (j ∈ Z). Outside of the neighborhood of the roots λ0
j , |h0| is uniformly

bounded from below within S: |h0| > c > 0. Furthermore,

h′0(λ
0
j) = (−1)j+12L

√
r0rL 6= 0.

Hence, all λ0
j are uniformly simple roots of h0. Since h and h0 are analytic in

S \W , the convergence (42) implies the assertions 1 and 2 of the lemma. 2

Corollary 16 There exists a ball B, and constants j0 ≥ 0 and C > 0 such
that there is a one-to-one correspondence between eigenvalues of H in C \ B
and the elements of {λ0

j : |j| ≥ j0}. If we denote the eigenvalue corresponding
to λ0

j by λj, then the eigenvector bj associated to λj satisfies

∥

∥

∥bj − b0j
∥

∥

∥ ≤ C

|j|
if bj is scaled appropriately.

PROOF. If we choose B around 0 of radius R according to Lemma 15, then
we can associate the eigenvalue of H located in the ball Bj = Bπ/(2L)(λ

0
j) to

λ0
j .
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The eigenvector b of H associated to λ can be scaled such that it has the form

b(z) =





















T (z, 0;λ)







r0

1







Γ(z)
λ−iΩr(z)+Γ(z)

T (z, 0;λ)







r0

1



























. (43)

Within the strip S, the expressions e±lkγk(λ) are uniformly bounded, and we
can choose a branch of the square root such that γk(λ) − λ →Im λ→∞ 0, and
γk(λ) − µk(λ) →Im λ→∞ 0. Hence, the off-diagonal terms of each matrix Tk

are of order O(| Imλ|−1), and the diagonal terms have the form e±(βk−λ)z +
O(| Imλ|−1). 2

We can now state a theorem similar to Theorem 14:

Theorem 17 Let r0rL 6= 0, and ξ > max{max ReW ,Reλ0
0}. Then, the space

X can be decomposed into two closed subspaces X1 ⊕X2 which are invariant
with respect to H and have the following properties:

(1) dimX1 < ∞, and X1 is spanned by at most finitely many generalized
eigenvectors of H.

(2) There exists a M > 0 such that ‖T (t)|X2
‖ ≤Meξt for all t ≥ 0.

PROOF. We define the family of operators Y → X

Hθ =





















−∂z + β(n) −iθκ
−iθκ ∂z + β(n)





 θρ

θΓ iΩr − Γ















.

The operator H corresponds to θ = 1 and H0 to θ = 0. The strip S, the ball
B and the constants j0 and C from Lemma 15 and Corollary 16 can be chosen
uniformly for the family of operators Hθ.

Since {b0j : j ∈ Z} is a basis of L
2([0, L]; C2) × {0} [28], [22], there exists a

constant c such that for any sequence (xj) ∈ `2 the inequality c
∑

j∈Z |xj|2 ≤
‖∑j∈Z xjb

0
j‖2 holds.

We choose the constant j0 sufficiently large such that Lemma 15 and Corollary
16 hold for j0, Reλj < ξ for all |j| > j0, and such that

∑

|j|>j0

‖bj − b0j‖2 < c. (44)
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Next, we define the rectifiable path γ1 as the border of the rectangle [Λl +
i(Imλ0

j0
+ π/(2L)), Λl + i(Imλ0

−j0
− π/(2L)), Λu + i(Imλ0

−j0
− π/(2L)), Λu +

i(Imλ0
j0

+ π/(2L))]. Thus, γ1 is located in the resolvent set of Hθ for all θ ∈
[0, 1]. See also Figure 3 for an illustration. The spectral projections

Pθ :=
1

2πi

∮

γ1

(λId−Hθ)
−1 dλ Qθ := Id− Pθ

split X into the closed subspaces XP,θ = ImPθ and XQ,θ = ImQθ which are
invariant with respect to Hθ.

Next, we will construct a map K : X → X which is injective, a compact
perturbation of Id in X and maps XQ,0 into XQ,1 by mapping b0j → bj for
|j| > j0:

The projections Pθ and Qθ depend continuously on θ. Define a sufficiently fine
mesh {θl : l = 0 . . . N} such that ‖Pθl

− Pθl−1
‖ < 1 for all l = 1 . . . N . Then

Pl +Ql−1 and Pl−1 +Ql are automorphisms of X. Moreover, they are compact
perturbations of Id since the resolvent (λId−Hθ)

−1 is a compact perturbation
of the operator (ψ, p) → (0, (λ− iΩr + Γ)−1p). Let J :=

∏1
l=N(Pθl

+ Qθl−1
),

and J̃ :=
∏N

l=1(Qθl
+ Pθl−1

). J and J̃ are automorphisms of X, and compact

perturbations of Id. J maps injectively XP,0 into XP,1, and J̃ maps injectively
XP,1 into XP,0. Thus, J is an isomorphism from XP,0 onto XP,1. We define
K in the following way: Let x =

∑

|j|>j0 xjb
0
j + xP where xP ∈ XP,0. Then,

Kx :=
∑

|j|>j0 xjbj + JxP . K is injective due to (44) and since J is injective,
and K is a compact perturbation of Id [35].

Consequently, K is also surjective. Hence, it maps XQ,0 onto XQ,1, i. e. the
set {bj : |j| > j0} establishes a L

2 basis of XQ,1. This implies that there exists
a M > 0 such that ‖T (t)|XQ,1

‖ ≤M ξt since Reλj < ξ for all |j| > j0.

Let γ2 be a smooth closed path in R encircling W , and situated in the half-
plane {λ : Reλ < ξ} and in the interior of γ1. Define the spectral projection

P2 :=
1

2πi

∮

γ2

R(λ) dλ,

and its image by XW . H|XW
is a bounded operator which has a discrete spec-

trum outside of W . Hence, there exists a M > 0 such that ‖T (t)|XW
‖ ≤Meξt.

Moreover, the projections P1 and P2 commute, and the image of P1 − P2 is
finite-dimensional since the spectrum of H is discrete between the paths γ1

and γ2.

Consequently, we can define X1 = Im(P1 −P2), and X2 = XQ,1 ⊕XW to meet
the assertions of the theorem. 2
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The Theorems 14 and 17 assert basically the same growth properties for the
semigroup T (t) despite the different constructions. We collect both results in
the following corollary.

Corollary 18 Denote

ξ0 :=











max{Reλ0
0,max ReW} if r0rL 6= 0,

max ReW if r0rL = 0.

Let ξ > ξ0. Then, there are at most finitely many eigenvalues of H of finite
algebraic multiplicity in the right half-plane Cξ := {λ ∈ C : Reλ ≥ ξ}.
Moreover, X can be decomposed into two T (t)-invariant subspaces

X = X+ ⊕X−

where X+ is at most finite-dimensional and spanned by the generalized eigen-
vectors associated to the eigenvalues of H in Cξ. There exists a constant M
such that the restriction of T (t) to X− is bounded according to

‖T (t)|X−
‖ ≤Meξt (45)

in any norm which is equivalent to the X-norm.

Remark: The eigenvalues of H can be computed numerically by solving the
complex equation h(λ) = 0. The eigenvalues of H0 in C\W form the sequence
λ0

j for κ = 0, ρ = 0, r0
0r

0
L 6= 0 (see Theorem 17). The roots of the characteristic

function h can be obtained by continuing along the parameter path θκ, θρ,
r0
0 + θ(r0 − r0

0), r
0
L + θ(rL − r0

L) for θ ∈ [0, 1].

6 Existence and properties of the finite-dimensional center mani-
fold

In this section we construct a low-dimensional attracting invariant manifold
for system (12), (14) using the general theorems about the persistence and
properties of normally hyperbolic invariant manifolds in Banach spaces [17],
[18], [19]. The statements of the theorem and the proofs rely only on the
system’s structure

d

dt
E = H(n)E

d

dt
nk = ε(Fk(nk) − gk(nk)[E,E]) for k = 1, . . . ,m,

(46)

the spectral properties of H for fixed n, the smoothness of the semiflow S(t; ·)
generated by (46) with respect to parameters and initial values, and the small-

30



ness of ε. In addition to the results of Corollary 18 we make the following
assumption about the spectrum of H and its dependence on n:

Assumption 19 (Uniform spectral gap at imaginary axis) Assume there
exists a simple connected compact set K ⊂ R

m with the following properties:

(1) The constant ξ0 defined in Corollary 18, which now depends on n is uni-
formly bounded from above by a constant less than zero, i.e., there exists
a constant c independent of n ∈ K such that

ξ0(n) ≤ −c < 0 for all n ∈ K. (47)

(2) There exists a constant ξ ∈ (−c, 0) independent of n ∈ K such that the
spectrum of H(n) can be split uniformly for all n ∈ K into a non-empty
non-negative part and a part with real part less than ξ:

specH(n) = σc(n) ∪ σs(n) where

Re σc(n)≥ 0

Re σs(n)<ξ < 0.

Assumption 19 asserts that there exists a set of n such that H(n) has a
uniform spectral gap at the imaginary axis. In general, this can only be verified
by actually computing the eigenvalues of H(n) and their dependence on n
numerically. However, the following lemma illustrates that Assumption 19 is
natural in the sense that it is a consequence of the existence of nontrivial
dynamics that is bounded uniformly for ε → 0. In Lemma 20, we consider
system (46) as a family of evolution equations depending on the parameter ε
in an interval [0, ε0).

Lemma 20 Assume that there exist a one-parameter family of trajectories
(E(t; ε), n(t; ε)) (t ≥ 0) of system (46), and a compact set N ⊂ (n,∞)m and
constants Eu ≥ El > 0, and c > 0 that do not depend on ε ∈ [0, ε0) with the
following properties:

(1) ξ0(n(0, ε)) ≤ −c < 0,
(2) n(0; ε) ∈ N , and
(3) ‖E(t; ε)‖ ∈ [El, Eu] for all t ≥ 0.

Then, H satisfies Assumption 19.

PROOF. Since N is compact, there exists a sequence εk →k→∞ 0 such that
n(0, εk) converges to some n0 ∈ N . The value of ξ0 depends continuously on n.
Hence, ξ0(n0) ≤ −c. If max Re specH(n0) ≥ 0, Corollary 18 implies Assump-
tion 19 for K = {n0}. Thus, we have to show only that max Re specH(n0) < 0
contradicts the assumptions about the bounds for E(t; ε).
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Let us assume max Re specH(n0) < 0. We denote the semigroup generated
by H(n0) by T0(t). Then, the estimate (45) in Corollary 18 is satisfied for the
whole semigroup T0(t) with some M ≥ 1 and ξ < 0:

‖T0(t)‖ ≤Meξt for t ≥ 0.

We choose a time te > ξ−1(logEl − log(MEu)). Thus, ‖T0(te)‖Eu < El.
The semiflow S(t; (E, n)) generated by (46) depends continuously on ε in
ε = 0 and on (E, n) (see Corollary 10 and the remarks thereafter). At ε =
0, S(t; (E, n0)) = (T0(t)E, n0) for all E ∈ X. Consequently, ‖E(te; εk) −
T0(te)E(0; εk)‖ →k→∞ 0. Hence, ‖E(te; εk)‖ < El if ‖E(0; εk)‖ < Eu for suffi-
ciently large k. This contradicts the uniform boundedness of E(t; ε). 2

A practically relevant example for the type of uniformly bounded dynamics as-
sumed to exist in Lemma 20 are relative equilibria, that is, solutions of the type
(E(t), n(t)) = (E0e

iωt, n0). The location of relative equilibria does not depend
on ε. Numerical evidence shows that there exist relative equilibria satisfying
the first point of Assumption 19 for the set K = {n0} for physically sensible
parameters, that is, κk 6= 0 or ρk 6= 0 for at least one k ∈ {1, . . . ,m}. Since
iω ∈ specH(n0) for a relative equilibrium (E0e

iωt, n0), the non-negative part
σc(n0) of specH(n0) is non-empty. Indeed, σc(n) is situated on the imaginary
axis in all practically relevant cases [7,1,16].

Due to Corollary 18, the number of elements of σc(n) is finite and, hence,
constant in K if the eigenvalues are counted according to their algebraic mul-
tiplicity. We denote this number by q. Moreover, for each γ ∈ [ξ, 0) there exists
a bounded simple connected open set Uγ ⊃ K with rectifiable boundary such
that the splitting of specH(n) can be can be extended to Uγ in the following
manner:

specH(n) = σc(n) ∪ σs(n) where

Re σc(n) > γ,

Re σs(n) < ξ for all n ∈ clUγ .

There exist spectral projections of H(n), Pc(n) and Ps(n) ∈ L(X), corre-
sponding to this splitting. They are well defined and unique for all n ∈ Uξ and
depend smoothly on n. We define the corresponding closed invariant subspaces
of X by Xc(n) = ImPc(n) = kerPs(n) and Xs(n) = ImPs(n) = kerPc(n). The
complex dimension of Xc(n) is q. Let B(n) : C

q → X be a basis of Xc(n) which
depends smoothly on n. B(·) is well defined in Uξ because Uξ is simply con-
nected, has rectifiable boundary and H has a uniform spectral splitting on
clUξ. The existence of the basis B and the spectral projection Pc and their
smooth dependence on n ∈ Uξ imply that the map R : X × Uξ → C

q × Uξ

defined by
R(E, n) := (B(n)−1Pc(n)E, n)
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is well defined and smooth. Using these notations, we can state the following
theorem:

Theorem 21 (Model reduction)
Let k > 2 be an integer number, ∆ ∈ (ξ, 0), and N be a closed bounded subset
of C

q × Uξ/k. Then, there exists an ε0 > 0 such that the following holds. For
all ε ∈ [0, ε0), there exists a Ck manifold C ⊂ X × R

m satisfying:

(i) (Invariance) C is S(t, ·)-invariant relative to R−1N . That is, if (E, n) ∈ C,
t ≥ 0, and S([0, t]; (E, n)) ⊂ R−1N , then S([0, t]; (E, n)) ⊂ C.

(ii) (Representation) C can be represented as the graph of a map which maps

(Ec, n, ε) ∈ N × [0, ε0) → ([B(n) + εν(Ec, n, ε)]Ec, n) ∈ X × R
m

where ν : N × [0, ε0) → L(Cq;X) is Ck−2 with respect to all arguments.
Denote the X-component of C by

EX(Ec, n, ε) = [B(n) + εν(Ec, n, ε)]Ec ∈ X.

(iii) (Exponential attraction) Let Υ ⊂ X×R
m be a bounded set with RΥ ⊂ N

and a positive distance to the boundary of N . Then, there exist a constant
M and a time tc ≥ 0 with the following property: For any (E, n) ∈ Υ there
exists a (Ec, nc) ∈ N such that

‖S(t+ tc; (E, n)) − S(t; (EX(Ec, nc, ε), nc))‖ ≤Me∆t (48)

for all t ≥ 0 with S([0, t+ tc]; (E, n)) ⊂ Υ.
(iv) (Flow) The values ν(Ec, n, ε)Ec are in Y and their Pc(n)-component is

0 for all (Ec, n, ε) ∈ N × [0, ε0). The flow on C ∩ R−1N is differentiable
with respect to t and governed by the following system of ODEs:

d

dt
Ec =

[

Hc(n) + εa1(Ec, n, ε) + ε2a2(Ec, n, ε)ν(Ec, n, ε)
]

Ec

d

dt
n = εF (Ec, n, ε)

(49)

where

Hc(n) = B(n)−1H(n)Pc(n)B(n)

a1(Ec, n, ε) = −B(n)−1Pc(n)∂nB(n)F (Ec, n, ε)

a2(Ec, n, ε) = B(n)−1∂nPc(n)F (Ec, n, ε)(Id− Pc(n))

F (Ec, n, ε) = (Fk(nk) − gk(nk)[EX(Ec, nc, ε), EX(Ec, nc, ε)])
m
k=1 .

System (49) is symmetric with respect to rotation Ec → Ece
iϕ and ν

satisfies the relation ν(eiϕEc, n, ε) = ν(Ec, n, ε) for all ϕ ∈ [0, 2π).

Remark: This theorem follows from the general results of [17], [18], [19]. In
this case, the invariant manifold is even finite-dimensional and exponentially
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stable. The proof is mostly concerned with the proper definition of the coordi-
nates and describes in detail the appropriate cut-off modification of the system
outside of the region of interest to make the unperturbed invariant manifold
compact. A similar result about model reduction for systems of ODEs with
the structure (1) has been presented already by [32] using Fenichel’s Theorem
[33].

PROOF.
Existence, representation, and smoothness
Firstly, we introduce a splitting of E ∈ X which is valid for n ∈ Uξ. Let
n ∈ Uξ. For any E ∈ X, we define Ec = B(n)−1Pc(n)E ∈ C

q and Es =
Ps(n)E ∈ Xs(n). Then, E = B(n)Ec + Es, and a decomposition of (12) by
B(n)−1Pc(n) and Ps(n) implies that Ec ∈ C

q, Es ∈ Xs(n) ⊂ X, and n ∈ R
m

satisfy the system

d

dt
Ec =Hc(n)Ec + a11(Ec, Es, n)Ec + a12(Ec, Es, n)Es (50)

d

dt
Es =Hs(n)Es + a21(Ec, Es, n)Ec + a22(Ec, Es, n)Es (51)

d

dt
nk = fk(Ec, Es, n) for k = 1 . . .m (52)

where Hc, a11 : C
q → C

q, a12 : X → C
q, a21 : C

q → X, a22 : X → X, and
Hs : Y → X are linear operators defined by

Hc(n) = B−1HPcB Hs(n) = HPs − 2ξPc

a11(Ec, Es, n) = −B−1Pc∂nBf a12(Ec, Es, n) = B−1∂nPcfPs

a21(Ec, Es, n) = −Ps∂nBf a22(Ec, Es, n) = −Pc∂nPcfPs

fk(Ec, Es, n) = ε (Fk(nk) − gk(nk)[B(n)Ec + Es, B(n)Ec + Es])

for k = 1 . . .m. We introduced the term −2ξPcEs which is 0 artificially in (51).
System (50)–(52) couples a system of ODEs in C

q, an evolution equation in
X, and a system of ODEs in R

m. The right-hand-side of (50)–(52) is only
properly defined as long as n stays in Uξ.

In the next step, we modify system (50)–(52) such that it is globally defined
and generates a semiflow. Beforehand, we introduce some notation.

Let d : R → [0, 1] be a smooth monotone function such that

d(x) =







0 x ≤ 0

1 x ≥ 1.
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There exists a smooth and globally Lipschitz continuous map N : R
m → R

m

such that

N(n) =







n if there exists a Ec ∈ C
q such that (Ec, n) ∈ N

∈ Uξ/k otherwise.

Using the map N we can modify the map R outside of N , thus, extending it
smoothly to the whole space X × R

m:

R̃(E, n) := R(E,N(n)).

Since R̃ is identical to R on the set N , R̃−1N ⊇ R−1N . Let σ > 0 and

nmax := max
(Ec,n)∈N

|n|

Emax := max
(Ec,n)∈N

|Ec|

R :=
√

6 + E2
max + n2

max,

s(x,Ec, n) := |Ec|2 + |n|2 + x2 −R2 for x ∈ R, Ec ∈ C
q, n ∈ R

m,

D(Ec, n) := d
(

|Ec|2 + |n|2 − E2
max − n2

max

)

.

The functions s and D are smooth with respect to their arguments. Consider
the following modification of system (50)–(52):

d

dt
Ec =Hc(N(n))Ec + ã11Ec + ã12Es (53)

−D(Ec, n) [Hc(N(n))Ec + ã11Ec + ã12Es + σs(x,Ec, n)Ec]

d

dt
Es =Hs(N(n))Es + ã21Ec + ã22Es (54)

d

dt
nk = f̃k(Ec, Es, n) −D(Ec, n)

[

f̃k(Ec, Es, n) + σs(x,Ec, n)nk

]

(55)

for k = 1 . . .m, augmented by a differential equation for the auxiliary real
variable x:

d

dt
x = g̃(x,Ec) − σs(x,Ec, n)x (56)
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where

ã11(Ec, Es, n) = −B(N(n))−1Pc(N(n))∂nB(N(n))∂nN(n)f̃(Ec, Es, n)

ã12(Ec, Es, n) = B(N(n))−1∂nPc(N(n))∂nN(n)f̃(Ec, Es, n)Ps(N(n))

ã21(Ec, Es, n) = −Ps(N(n))∂nB(N(n))∂nN(n)f̃(Ec, Es, n)

ã22(Ec, Es, n) = −Pc(N(n))∂nPc(N(n))∂nN(n)f̃(Ec, Es, n)Ps(N(n))

f̃k(Ec, Es, n) = fk(Ec, Es, N(n)) for k = 1 . . .m,

g̃(x,Ec) =







[

− 1
2x

d
dt

(|Ec|2 + |n|2)
]

d(|x| − 1) for |x| > 1

0 for |x| ≤ 1.

The right-hand-side of system (53)–(56) is smooth and globally defined. It
generates a semiflow S̃(t; (Ec, Es, n, x)) on C

q×X×R
m×R. The modification

has no effect if (Ec, n) ∈ N . The equation for ẋ implies

ṡ =







−2σsx2 for |x| ≥ 2

−2σs [(1 − d(|x| − 1))(|Ec|2 + |n|2) + x2] for |x| < 2

in the vicinity of M0 := {(Ec, Es, n, x) : s(x,Ec, n) = 0}. Thus M0 is an
invariant manifold of S̃ which has an exponential attraction rate greater than
2σ. Moreover, system (53)–(56) implies:

d

dt
(Pc(N(n))Es) = (∂nPc∂nNf̃ − 2ξId)(Pc(N(n))Es).

Hence, the manifold M1 := {(Ec, Es, n, x) : Pc(N(n))Es = 0} is invariant with
respect to (53)–(56). For bounded Ec and Es, the rate of attraction towards
M1 is close to 2|ξ|.

There is a one-to-one correspondence between the semiflows S(t; ·) and S̃(t, ·)
in the following sense: The map acting from

{(Ec, Es, n, x) ∈ M0 ∩M1 : (Ec, n) ∈ N} → X × Uξ/k defined by

(Ec, Es, n, x) → (B(n)Ec + Es, n)
(57)

is injective, Lipschitz continuous and maps S̃ onto S. The inverse

(E, n) →
(

B(n)−1Pc(n)E,Ps(n)E, n,
√

R2 − |B(n)−1Pc(n)E|2 − |n|2
)

(58)

is properly defined in R̃−1N .

At ε = 0, f̃ and all ãij vanish. Hence,

C̃ := {(Ec, Es, n, x) ∈ C
q ×X × R

m : Es = 0, s(x,Ec, n) = 0}

is a smooth compact invariant manifold of (53)–(56). Es decays with a rate
greater than |ξ|. Hence, if 2σ > |ξ|, the attraction rate transversal to C̃ is
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greater than |ξ|. The generalized Lyapunov numbers for the component of the
linearization of S̃ tangent to C are greater or equal than ξ/k. The perturbation
to nonzero ε is C1 small, and all derivatives of the perturbation with respect
to (Ec, Es, n, x), and ε up to order k are bounded uniformly for small ε in the
vicinity of C̃. Consequently, the general theorems of [17], [18], [19] imply:

There exists an ε0 such that for all ε ∈ [0, ε0) there exists a compact invariant
Ck manifold C̃ for S̃(t, ·). C̃ is a C1 small perturbation of C̃. Hence, its Es-
component can be represented as a Ck graph

Es = η0(Ec, n, x, ε).

The contraction rates towards M0 and M1 are greater than |ξ| close to C̃.
Consequently, C̃ ⊂ M0 ∩M1. The evolution of Ec, Es and n does not depend
on x if (Ec, n) ∈ N . Hence, η0(Ec, n, x, ε) does not depend on x if (Ec, n) ∈ N .

The existence of C̃ and the one-to-one correspondence between S and S̃ imply
that the manifold

C := {(B(n)Ec + η0(Ec, n, ε), n) : (Ec, n) ∈ N}

is an invariant Ck manifold of S relative to R̃−1N . The flow on C is governed
by

d

dt
Ec = [Hc(n) + a11(Ec, η0(Ec, n, ε), n, ε)]Ec

+ a21(Ec, η0(Ec, n, ε), n, ε)η0(Ec, n, ε)

d

dt
nk = fk(Ec, η0(Ec, n, ε), n).

(59)

The rotational symmetry of the semiflow S implies

η0(e
iϕEc, n, ε) = eiϕη0(Ec, n, ε) (60)

for all (Ec, n, ε) ∈ N × [0, ε) and ϕ ∈ [0, 2π).

Expansion of the graph η0

The graph η0 satisfies

η0(Ec, n, 0) = 0 for all (Ec, n) ∈ N . (61)

Furthermore, the manifold E := {(E, n) ∈ X ×Uξ/k : E = 0} is invariant with

respect to S for positive ε. On E , Ė = 0, and ṅk = εFk(nk) for k = 1 . . .m.
Consequently, E ∩ R̃−1N ⊂ C, i.e.,

η0(0, n, ε) = 0 for (0, n) ∈ N , ε ∈ [0, ε0). (62)

Finally, we observe that the right-hand-side of (53)–(56) depends smoothly
on Ec and ε. Exploiting the identities (61) and (62), we may expand
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η0(Ec, n, ε) =
∫ 1

0
∂1η0(sEc, n, ε) dsEc

= ε
∫ 1

0

∫ 1

0
∂1∂3η0(sEc, n, rε) dr dsEc. (63)

Denoting the double integral term in (63) by ν, we obtain

η0(Ec, n, ε) = εν(Ec, n, ε)Ec. (64)

We obtain the assertion iv of the theorem by inserting (64) into system (59)
for the flow on C. The invariance of ν with respect to rotation of Ec is a direct
consequence of (60).

Exponential attraction of C
The theorems of [17], [18], [19] imply that the set of all points that stay
in a small tubular neighborhood of a compact normally hyperbolic invariant
manifold M for all t ≥ 0 form a center-stable manifold which is foliated by
stable fibers of attraction rate close to the generalized Lyapunov numbers in
the stable part of the linearization of the semiflow along M.

The existence of the map (58) on Υ and the evolution equation (54) for Es

imply that there exist constants C1, C2,and γ > 0 such that the inequality

‖Ps(n(s))E(s)‖ ≤ C1e
−γs + εC2

∫ s

0
e−γr dr = C1e

−γs + ε
C2

γ
(65)

holds for all trajectories S([0, t]; (E, n)) ⊂ Υ [30]. Consequently, there exists a
time t0 such that the map (58) maps S(t0; Υ) ∩R−1N into the small tubular
neighborhood U of C̃ that is foliated by stable fibers. This foliation implies
that there exists a constant M0 such that for all u ∈ U there exists a fiber
base point u∗ ∈ C̃ such that

‖S̃(t;u) − S̃(t;u∗)‖ ≤M0e
∆t. (66)

We may have to decrease ε0 (if necessary) in order to keep the decay rate at
|∆| in (66).

Let t1 ≥ 0 be such thatMe∆t1 is less than the distance between the set RΥ and
the boundary of N . Then, we can choose tc = t0+t1 to obtain assertion iii of the
theorem: Let (E, n) ∈ Υ and t ≥ 0 be such that S([0, t+tc]; (E, n)) ⊂ Υ, and u
be the image of S(tc; (E, n)) under map (58). Then, u ∈ U , and, furthermore,
the fiber base point u∗ = (Ec, Es, nc, xc) for u satisfies (Ec, nc) ∈ N . Hence,
inequality (66) implies the inequality (48) for (Ec, nc) if we choose the constant
M as M0 multiplied by the Lipschitz constant of the map (57). 2
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7 Practical application and possible generalizations of the model
reduction theorem

Mode approximation The graph of the invariant manifold enters the de-
scription (49) of the flow on C only in the form O(ε2)ν. All other terms ap-
pearing in (49) can be expressed analytically as functions of the eigenvalues
of H(n). Systems of the form (49) but replacing ν by 0 are called Mode ap-
proximation models. These models are implicit systems of ODEs because the
eigenvalues of H are given only implicitly as roots of the characteristic func-
tion h of H. The consideration of mode approximations has proven to be
extremely useful for numerical and analytical investigations of longitudinal
effects in multi-section semiconductor lasers because the dimension of system
(49) is typically low (q is often either 1 or 2); see, e.g., [24], [36], [7], [1], [37],
[38], [12], [6]. For illustration, Fig. 4 shows a two-parameter bifurcation dia-
gram for a two-section laser that imitates an optical feedback experiment [6]:
a laser (section S1) is subject to optical feedback from the facet rL of the pas-
sive section S2. In the parameter range covered by the diagram the dimension
of the invariant manifold C is 4 or less, (m = 1 since section S2 is passive,
q = 2). A detailed numerical comparison of Fig. 4 with simulation results for
the PDE model (2)–(4) and more accurate models can be found in [14].

GH degenerate Hopf
NC saddle-node on closed orbit
FH fold-Hopf interaction
1:2 1:2 resonance
CU cusp

excitability
fast oscillations
slow oscillations

fold of limit cycle
torus bifurcation
period doubling
homoclinic
fold
Hopf

GH

CU

NC

GH

FH

1:2

η

0.6

0

ϕ0 2π

Fig. 4. Bifurcation diagram for the two-section laser investigated in [6]. The param-
eters are: l2 = 1.136, r0 = 10−5, rL = ηeiϕ, d1 = −0.275, κ1 = 3.96, g̃1 = 2.145
(linear gain model), α1 = 5, ρ1 = 0.44, Γ1 = 90, Ωr,1 = −20, I1 = 6.757 · 10−3,
τ1 = 359, κ2 = β2 = ρ2 = 0. The bifurcation parameters are the strength η and the
phase ϕ of the feedback from the facet rL of section S2. In the experiment these
parameters can be varied by changing the current in S2. The highlighted dynamical
regimes are of particular practical interest.
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The Lang-Kobayashi system There is an obvious generalization of The-
orem 21 to another class of laser models. A very popular model for the in-
vestigation of delayed optical feedback effects in semiconductor lasers is the
Lang-Kobayashi system [39]; see, e.g., [23] and references therein. It reads

d

dt
E(t) = (1 + iα)nE(t) + ηeiϕE(t− 1)

d

dt
n(t) = ε

(

F (n) − g(n)|E(t)|2
)

(67)

if its scaling is appropriate to the situation of a short external cavity [40].
System (67) generates a semiflow in the Banach space C([−1, 0]; C) × R and
has also the structure (1). The parameters have the same sense as in (2)–(4)
(we have dropped the indices since there is only one section). The parameter
ε is small if the external cavity is short. The operator H is a delay operator
in (67). According to [31], Corollary 18 is also valid for the delay operator H
(ξ0 is −∞ in Corollary 18). Moreover, the cut-off modification performed in
the proof of Theorem 21 manipulates only the finite-dimensional components
Ec and n. Hence, the proof does not rely on the ability to cut-off a smooth
map smoothly in the infinite-dimensional space X which is the Hilbert space
X = L

2([0, L]; C2)×L
2([0, L]; C2) in Section 6 but a Banach space for system

(67). The only property of the operator H(n) used in the proof is the existence
of a spectral splitting according to Assumption 19 accompanied by the results
of Corollary 18, and the smooth dependence of the dominating subspace Xc

on n. Consequently, if Assumption 19 is satisfied, Theorem 21 applies to (67)
as well. The set K supposed to exist in Assumption 19 is a point n0 in R

(typically referred to as threshold carrier density) in the case of a scalar n. Its
existence can be shown analytically for the Lang-Kobayashi model (67).

There are other models in the spirit of (67) for different experimental situa-
tions, e.g., for lasers subject to dispersive feedback or for two lasers interacting
with each other. All have the structure of (1) where H is a delay operator
smoothly depending on n, and ε is small if the external cavity is short. Hence,
Theorem 21 allows to reduce these models locally to low-dimensional systems
of ODEs.
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switching in DFB-lasers: Theory versus experiment, IEEE J. Selected Topics in
Quantum Electronics 3 (1997) 270–278.

[2] T. Erneux, F. Rogister, A. Gavrielides, V. Kovanis, Bifurcation to mixed
external cavity mode solutions for semiconductor lasers subject to external
feedback, Opt. Comm. 183 (2000) 467–477.

[3] J. Mork, B. Tromborg, J. Mark, Chaos in Semiconductor Lasers with Optical
Feedback: Theory and Experiment, IEEE J. of Quant. El. 28 (1) (1992) 93–108.

[4] M. Radziunas, H.-J. Wünsche, B. Sartorius, O. Brox, D. Hoffmann,
K. Schneider, D. Marcenac, Modeling Self-Pulsating DFB Lasers with
Integrated Phase Tuning Section, IEEE J. of Quant. El. 36 (9) (2000) 1026–
1034.

[5] A. A. Tager, K. Petermann, High-Frequency Oscillations and Self-Mode Locking
in Short External-Cavity Laser Diodes, IEEE J. of Quant. El. 30 (7) (1994)
1553–1561.

[6] H. J. Wünsche, O. Brox, M. Radziunas, F. Henneberger, Excitability of a
semiconductor laser by a two-mode homoclinic bifurcation, Phys. Rev. Lett.
88.

[7] U. Bandelow, L. Recke, B. Sandstede, Frequency regions for forced locking of
self-pulsating multi-section DFB lasers, Opt. Comm. 147 (1998) 212–218.

[8] D. Peterhof, B. Sandstede, All-optical clock recovery using multisection
distributed-feedback lasers, J. Nonlinear Sci. 9 (1999) 575–613.

[9] E. A. Avrutin, J. H. Marsh, J. M. Arnold, Modelling of semiconductorlaser
structures for passive harmonic mode locking at terahertz frequencies, Int. J.
of Optoelectronics 10 (6) (1995) 427–432.

[10] O. Brox et al., Tunable high-frequency generation in dfb-lasers with amplified
feedback, submitted to JQE.

[11] B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, M. Wolfrum, Excitability
and self-pulsations near homoclinic bifurcations in laser systems, Opt. Comm.
215 (2003) 367–379.

[12] H. Wenzel, U. Bandelow, H.-J. Wünsche, J. Rehberg, Mechanisms of fast self
pulsations in two-section DFB lasers, IEEE J. of Quant. El. 32 (1) (1996) 69–79.

[13] O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius,
H.-J. Wnsche, High-frequency pulsations in dfb-lasers with amplified feedback,
preprint 849, WIAS, submitted to JQE (2003).

[14] M. Radziunas, H.-J. Wünsche, Dynamics of multi-section DFB semiconductor
laser: Traveling wave and mode approximation models, Preprint 713, WIAS,
submitted to SPIE (2002).

41



[15] E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov,
B. Sandstede, X. Wang, AUTO97, Continuation and bifurcation software for
ordinary differential equations (1998).

[16] J. Sieber, Numerical bifurcation analysis for multi-section semiconductor lasers,
SIAM J. of Appl. Dyn. Sys. 1(2) (2002) 248–270.

[17] P. W. Bates, K. Lu, C. Zeng, Existence and persistence of invariant manifolds
for semiflows in Banach spaces, Mem. Amer. Math. Soc. 135.

[18] P. W. Bates, K. Lu, C. Zeng, Persistence of overflowing manifolds for semiflow,
Comm. Pure Appl. Math. 52 (8).

[19] P. W. Bates, K. Lu, C. Zeng, Invariant foliations near normally hyperbolic
invariant manifolds for semiflows, Trans. Amer. Math. Soc. 352 (2000) 4641–
4676.

[20] U. Bandelow, M. Wolfrum, M. Radziunas, J. Sieber, Impact of Gain Dispersion
on the Spatio-temporal Dynamics of Multisection Lasers, IEEE J. of Quant El.
37 (2) (2001) 183–189.

[21] L. Recke, K. Schneider, V. Strygin, Spectral properties of coupled wave
equations, Z. angew. Math. Phys. 50 (1999) 923–933.

[22] J. Rehberg, H.-J. Wünsche, U. Bandelow, H. Wenzel, Spectral Properties of a
System Describing fast Pulsating DFB Lasers, ZAMM 77 (1) (1997) 75–77.

[23] G. H. M. van Tartwijk, G. P. Agrawal, Laser instabilites: a modern perspective,
Prog. in Quant. El. 22 (1998) 43–122.

[24] U. Bandelow, Theorie longitudinaler Effekte in 1.55 µm Mehrsektions DFB-
Laserdioden, Ph.D. thesis, Humboldt-Universität Berlin (1994).

[25] D. Marcenac, Fundamentals of laser modelling, Ph.D. thesis, University of
Cambridge (1993).

[26] B. Tromborg, H. E. Lassen, H. Olesen, Travelling Wave Analysis of
Semiconductor Lasers, IEEE J. of Quant. El. 30 (5) (1994) 939–956.

[27] J. Sieber, U. Bandelow, H. Wenzel, M. Wolfrum, H.-J. Wünsche, Travelling
wave equations for semiconductor lasers with gain dispersion, Preprint 459,
WIAS (1998).

[28] S. Friese, Existenz und Stabilität von Lösungen eines Randanfangswertproblems
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