E% University of
OPEN (2" ACCESS BRISTOL

Green, K., & Krauskopf, B. (2003). Sudden transitions to chaosin a
semiconductor laser with optical delay.

Early version, also known as pre-print

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html


http://research-information.bristol.ac.uk/en/publications/sudden-transitions-to-chaos-in-a-semiconductor-laser-with-optical-delay(fbdbaa96-b0da-4636-9f0b-210d322f8ef3).html
http://research-information.bristol.ac.uk/en/publications/sudden-transitions-to-chaos-in-a-semiconductor-laser-with-optical-delay(fbdbaa96-b0da-4636-9f0b-210d322f8ef3).html

August 26, 2003 15:20 WSPC/Trim Size: 9in x 6in for Proceedings gr'kra

SUDDEN TRANSITIONS TO CHAOS IN A
SEMICONDUCTOR LASER WITH OPTICAL DELAY

K. GREEN*

Department of Computer Science
Katholieke Universiteit Leuven
Celestignenlaan 200A
3001 Heverlee, Belgium
E-mail: kirk.green@cs.kuleuven.ac.be

B. KRAUSKOPF'

Department of Engineering Mathematics
University of Bristol
Bristol BS8 1TR, UK
E-mail: b.krauskopf@bristol.ac.uk

Work is presented of how a new method to compute 1D unstable manifolds of saddle
periodic orbits of delay equations can be used to identify transitions to chaos in
a physical system that is subject to delayed feedback. Specifically, we study an
interior crisis bifurcation and an intermittent transition in a semiconductor laser
subject to phase-conjugate feedback.

Sudden transitions to chaos in dynamical systems are characterised by
jumps in the size of the attracting solution, for example, from an attracting
periodic solution to a much larger chaotic attractor. Generally called crisis
bifurcations,® this phenomenon is due to a rearrangement of the stable
and unstable manifolds of suitable saddle points. Advances in numerical
tools allowing the computation of stable and unstable manifolds in systems
described by maps® have led to greater insight into such bifurcations.”

Recently, we developed the first algorithm for computing one-
dimensional unstable manifolds of a fixed point of a suitable Poincaré map
in delay differential equations (DDEs).* Briefly, this method computes the
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manifold as a sequence of points in a suitable plane of intersection trans-
verse to the flow. A linear approximation for the manifold is used between
neighbouring points. The distance between these points is adapted accord-
ing to the curvature of the manifold in the plane. We remark that in the
plane of intersection, the 1D unstable manifold may self-intersect due to
the projection from an infinite dimensional space. For further details see
the companion paper Ref. [5]. Note that it is not possible to compute the
infinite-dimensional stable manifold of a DDE.

In this paper, we compute unstable manifolds to study sudden transi-
tions to chaos in a DDE describing a semiconductor laser subject to phase-
conjugate feedback (PCF). Physically, understanding such transitions is
very important as near such points a small change of parameter, possibly
due to noise, could lead to vast changes in the observed dynamics. For ex-
ample, in the PCF laser this could lead to a switch between stable periodic
output and chaotic fluctuations of the laser light. Furthermore, near the
bifurcation point, the transients of the system behave chaotically. Specif-
ically, we show here a sudden transition due to the break-up of a torus
culminating in a crisis bifurcation and an intermittent transition to chaos.

A laser subject to PCF can be described by the three-dimensional DDE

‘il_f = % —iaGN(N(t) — Neot) + (G(t) - %)] E@t) +sE"(t—1) (1)
AN I N(t) R
¢ —G() |E(1)]

for the evolution of the slowly varying complex electric field E(t) = E,(t)+
iE,(t) and the population inversion N (¢). Nonlinear gain is included in the
term G(t) = Gn (N (t)—No)(1—€P(t)) where P(t) = |E(t)|? is the intensity.
All other parameters were set to realistic values corresponding to a Ga-
Al-As semiconductor laser.?® The phase-conjugate feedback term involves
the feedback rate k and the external cavity round-trip time 7 = 2/3ns,
corresponding to an external cavity length Leyy &~ 10cm. In this study,
we consider the dimensionless bifurcation parameter k7. Finally, we note
that (1) has Zs-symmetry given by the transformation (E, N) — (—E, N).
Consequently, every invariant set is either symmetric or has a counterpart
under this symmetry. The fact that its solutions are isolated make the PCF
laser an ideal test case for numerical continuation' and unstable manifold
computations.

The general dynamics of the PCF laser consists of stable periodic output
interspersed with chaotic dynamics 2. Furthermore, these periodic solutions
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Figure 1. Bifurcation diagrams of the PCF laser obtained by simulation showing the
second ‘bubble’ of complicated dynamics (a), with two enlargements (b) and (c) near
the boundaries of the chaotic region

(known as external cavity modes of the PCF laser) were shown to be inter-
connected via an unstable steady state solution. It is the purpose of this
paper to study the sudden transitions from the stable periodic operation
to the regions of chaos.

Figure 1 shows the second ‘bubble’ of chaos of the PCF laser. A periodic
solution is seen to undergo a torus bifurcation at k7 =~ 2.307. We then
observe quasiperiodic modulation until the laser frequency locks to a period
five solution, at kKT ~ 2.440, in a saddle-node bifurcation of limit cycles.?
This periodic solution is itself seen to undergo a torus bifurcation at x7
2.556, before a sudden jump to the chaotic region is observed at k7
2.570; see Fig. 1 (b). At k7 =~ 4.141 we observe a second sudden jump in
the dynamics of the PCF laser from chaotic dynamics to stable periodic

~
~
~
~
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Figure 2. Crisis bifurcation. One branch of the 1D unstable manifold (black curve) of
the saddle point (+) and the associated main attractor (grey dots), before the crisis for
kT = 2.568 (a), and after the crisis for k7 = 2.572 (b).

operation; see Fig. 1 (c¢). This stable periodic solution is created, together
with a saddle periodic solution, in a saddle-node bifurcation of limit cycles.?
In both transitions we see a sudden change in size or shape of the attracting
solution.

To shed more light on these transitions, we compute suitable 1D unsta-
ble manifolds. Figure 2 (a) shows one branch of the unstable manifold of one
of the five saddle points for k7T =~ 2.568, before the bifurcation point, while
Fig. 2 (b) shows the same branch of the unstable manifold for k7 ~ 2.572,
after the bifurcation. Just prior to the bifurcation, the unstable manifold
is confined to the basin of attraction of the torus. Eventually the manifold
converges to the attracting invariant circle (in grey) defined by the inter-
section of the torus with the plane; see Fig. 2 (a). After the bifurcation,
the attracting torus has disappeared to be replaced by a chaotic attractor
(in grey); see Fig. 2 (b). Notice that the chaotic attractor resembles the
unstable manifold prior to the transition and the unstable manifold, which
still has essentially the same shape as that shown in Fig. 2 (a), accumulates
on this new attractor. This is indicative of a crisis bifurcation.®

Figure 3 shows the unstable manifold of a saddle periodic orbit born
at kT &~ 4.141. In each panel a short branch is seen that ends up at an
attracting fixed point, while the other branch is longer and more complex.
For orientation we overlay the chaotic attractor just before it disappears,
for k7 = 4.14. This shows that the long branch of the unstable manifold



August 26, 2003 15:20 WSPC/Trim Size: 9in x 6in for Proceedings gr'kra

Y Y

0 0

-3 -3
7.57 7.62 N 7.68 7.57 7.62 N 7.68

El/ EU

0 0

-3 -3
7.57 7.62 N 7.68 7.57 7.62 N 7.68

Figure 3. Intermittent transition. Both branches of the 1D unstable manifold of the
saddle point (+). The short branch converges to the attractor (x) while the long branch
is confined to the chaotic attractor (grey) that exists before the transition. From (a) to
(d) k7 takes the values 4.15, 4.20, 4.25 and 4.30.

essentially resembles the chaotic attractor. As one moves away from the
bifurcation point [Figs. 3 (a) to (d)] the short branch grows but always ends
up at the attracting fixed point. In contrast, the long branch makes long ex-
cursions, ‘following’ the old chaotic attractor leading to chaotic transients.

This is indicative of an intermittent transition (or saddle-node bifurca-
tion taking place on a chaotic attractor). At the transition itself, the long,
more chaotic branch (technically the unique unstable branch of the center
manifold) forms the chaotic attractor.
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In conclusion, we have used a recently developed algorithm for comput-

ing 1D unstable manifolds in DDEs to investigate two sudden transitions
to chaos in the PCF laser. Specifically, we showed how a route to chaos via
the break-up of a torus culminated in a crisis bifurcation. This region of
chaos was shown to end abruptly due to a saddle-node bifurcation taking
place on a chaotic attractor, also known as an intermittent transition.

More generally, our investigation shows how new numerical tools can be

used to provide deeper insight into physical systems modelled by DDEs.
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