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Two—parameter Sliding Bifurcations of Limit Cycles
in Filippov Systems

P. Kowalczyk! M. di Bernardo |

June 30, 2003

Abstract

This paper is concerned with the extension of the theory of sliding bifur-
cations in Filippov systems to the case of codimension-two degenerate sliding
bifurcations. The analysis is carried out for generic n-dimensional piecewise
smooth systems. The possible degenerate scenarios are classified and unfolded.
It is shown that several branches of codimension-one sliding bifurcations orig-
inate from each of the degenerate codimension-two point. Such branches are
appropriately classified. A friction oscillator is used as a representative example
to illustrate and confirm the theoretical derivations.

PACS codes: 05.45.4+b, 02.30.Hq, 03.20.4i, 84.30.Ng
keywords: bifurcation, piecewise smooth, sliding, grazing

1 Introduction

Nonsmooth dynamical systems have been shown to exhibit many bifurcation
phenomena that cannot be explained in terms of classical bifurcation theory for
smooth systems [1, 7]. In particular, the existence of a new class of bifurca-
tions, or C-bifurcations, has been suggested for these systems. C-bifurcations
involve nontrivial interactions between the system Q-limit set and phase-space
boundaries where the system vector field (or state) is discontinuous.

They can be classified in border-collisions [19, 6] if they involve fixed points
of nonsmooth maps or grazings [18] if limit cycles in nonsmooth flows are con-
sidered. While in the former case, under parameter variations a fixed point
crosses the nonsmooth boundary, in the latter a limit cycle becomes tangential
to it. Recently, it was shown that border-collisions and grazings can be uni-
fied by considering a set of appropriate normal form maps (see [4] for further
details).

Instances of these bifurcations have been found in many systems of relevance
in applications. Experimental observations of C-bifurcations were reported in
power electronics circuits, mechanical systems etc. [1].

Systems with discontinuous vector fields (or Filippov systems) were recently
shown to exhibit a novel class of C-bifurcations termed as sliding bifurcations
[11]. Namely, these bifurcation phenomena occur when the limit cycle of a
nonsmooth system interacts with a region of the switching manifold which is
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simultaneously attracting from both of its sides. When this occurs, in the
simplest case, the orbit has been shown to acquire an additional segment of
trajectory lying within such a region (or sliding motion). Sliding bifurcations
were recently shown to be the cause for the onset of complex transitions to
stick-slip periodic behaviour and chaos in frictionoscillators [10].

Most of the existing theory of C-bifurcations deals with the case of codimension-
1 events, observed under variation of one bifurcation parameter. As recently
highlighted in [13], there is the need to extend the theory to encompass the case
of codimension-two bifurcations. The only mention to these events found in the
literature was reported in [12]. Rather than being a mere academic exercise, the
classification and unfolding of such codimension-two bifurcations is essential to
construct appropriate branching routines to be used for the numerical contin-
uation of limit cycles in Filippov systems. As will be shown later in Sec. 6,
for example, codimension-two phenomena are found to organise the bifurcation
diagrams of friction oscillators.

A first attempt to classify the possible codimension-two scenarios involving
C-bifurcations can be found in [13, 14]. In this paper, we focus on the case of
codimension-two sliding bifurcations, i.e. bifurcations associated to the degen-
eracy of one of the analytical conditions characterising codimension-one sliding
bifurcations [11]. In particular, starting with a brief overview of codimension-
one sliding bifurcations, in Sec. 3 and 4 we present a first classification of
degenerate sliding bifurcations, carrying out a local unfolding of each different
case. We show that locally to the codimension-two bifurcation point, several
different codimension-1 scenarios are possible. Using a combination of asymp-
totics and Taylor series expansions, analytical approximations of phase-space
boundaries between regions associated to different qualititative behaviour are
found in Sec. 5. Such boundaries are then used to unfold the codimension-two
bifurcation in parameter space.

Branches of codimension-1 sliding bifurcations are shown to originate from
the codimension-two point and are classified through the investigation of the
local phase-space topology and the derivation of appropriate normal form maps.
For the sake of brevity, the analysis is detailed for one of the four possible cases.
A friction oscillator is used in Sec. 6 as a representative example to illustrate
and confirm the theoretical derivations.

1.1 Systems of interest

We focus our attention on systems with discontinuous vector fields. Such sys-
tems are characterised by the presence of discontinuity boundaries in phase
space between regions where the vector field is smooth and continuous. We
consider a sufficiently small region D C R™ of phase space where the equations
governing the system flow can be written as:
5 Fi(z,pu) for H(x) >0, ()
Fy(z,p) for H(z) <O,

where F, F» are sufficiently smooth vector functions and H (z) is some scalar
function depending on the system states. D is split into two subspaces, say G1
and G2, with smooth and continuous dynamics. The discontinuity boundary
between G1 and G2 we assume to be a smooth hyperplane, say ¥.. Namely:

Gi:={z € R : H(z) > 0}, (2)

Gy:={z eR": H(z) <0}, (3)
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Figure 1: Phase space topology of a system with discontinuous vector fields

Y:={zxeR":H(z) =0}. (4)

The resulting topology in the case of a representative three-dimensional phase
space is shown schematically in Fig. 1. If the vector fields point towards ¥ from
both subspaces G1 and G2, a trajectory hitting ¥ is forced to evolve within the
discontinuity set until reaching some point on it where one of the two vector
fields, F; or F», changes its direction (the boundary of the shaded region in
Fig. 1 denoted by ¥). The solution which lies within the system discontinuity
set is termed as sliding motion and the region of the discontinuity set where
such a motion may occur is labelled sliding region. Throughout this region the
following condition must hold:

<VH, F2> — <VH, F1> >0, (5)

where VH denotes a vector which is normal to ¥ and (VH, F;) is the projection
of the vector field F; along the normal to X.

Following Utkin’s equivalent control method [20], we can derive the vector
field F; which governs the flow within the sliding region as a vector function
belonging to the convex hull of F; and F>, defined by:

_ F+F R-F

Fy 5 + H, 5 (6)

where —1 < H, < 1. H,(z) can be obtained in terms of F; and F5> by consid-
ering that F,; must be tangential to the switching manifold, i.e. (VH, F;) = 0.
Using this condition, we then have

(VH,F}) + (VH, Fy)

@) = = TH By = (VE, By’ @)
We can now define the sliding region as:
Si={r € T:|Hy(a)| <1}, (8)
and its boundaries as:
L™ :={z €% : Hy(z) = -1}, (9)



oLt :={zeX: H,(z) =1}. (10)

The normal vector to the boundary 9%~ can be expressed in terms of vector
fields Fy, F; and VH (see [11] for details) yielding:

B 2 OF,

The denominator of (11) is positive which follows from (5) and (8).

Without loss of generality, we assume that both ¥ and 0¥~ can be flattened by
making a series of appropriate near-identity transformations (for further details
see [11]).

2 One-parameter Sliding Bifurcations

Codimension-1 sliding bifurcations of limit cycles, termed also as global sliding
bifurcations [17] have been extensively studied in the literature [8, 16, 15, 11].
It has been shown that there are four distinct types of codimension-1 sliding
bifurcations [16, 15, 11] which may lead to dramatic dynamical scenarios [10].

We refer the reader to [11] for a detailed description of codimension-1 sliding
bifurcations as well as for the normal form map derivations. A schematic picture
of all the possible cases is shown in Fig. 2. We assume w.l.o.g. that every

Figure 2: The four possible bifurcation scenarios involving collision of a segment of
the trajectory with the boundary of the sliding region 93~. (a) crossing-sliding; (b)
grazing-sliding; (c) switching-sliding; (d) adding-sliding.

bifurcation scenario takes place at the boundary of the sliding region, o3,
and is at the origin in some local set of coordinates.

The grazing sliding, crossing sliding and switching sliding cases (in [11] cross-
ing sliding is termed as sliding type I and switching sliding as sliding type IT)



are determined by conditions![11]:

VH(z") #0, (12)
(VH, F7) =0, (13)
(vH, 25y 20 (14)

Condition (12) states that ¥ is a well defined manifold, (13) implies that at the
bifurcation the vector field is tangential to ¥ and, finally, (14) implies that the
vector field points outside or inside of the sliding region 3.

Let us now consider the fourth case namely what happens when the bifurcat-
ing trajectory is contained in the sliding set 3 and undergoes a bifurcation. In
the codimension-1 case this amounts to the adding-sliding scenario (see [11] for
the description of the adding sliding bifurcation which was termed in the afore-
mentioned work as the multisliding bifurcation). The adding sliding scenario is
determined by conditions (12), (13) with

oF

(VH, 5LF7) =0 (15)
(VH, (‘95) Fr) <0 (16)

3 Codimension-2 Degenerate Sliding Bifurcations

Now, we focus our attention on the possible cases of higher codimension sliding
bifurcations. Namely, we consider those bifurcations which are originated from
the violation of one of the nondegeneracy conditions at a codimension-1 sliding
bifurcation point, namely conditions (14) or condition (16). Thus, the work
presented in what follows is an extension of the analysis of sliding bifurcations
presented in [11].

!superscript * denotes quantities evaluated at the bifurcation point which is set at the origin
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Figure 3: Classification tree of different degenerate codimension-2 sliding bifurca-
tions

Degeneracy of condition (14) leads to
OFy
(VH, —;F;‘) =0. (17)

which states that at the bifurcation point the vector field is tangential to 8% .
An additional condition on the curvature of the vector field with respect to the
boundary of the sliding region determines the possible codimension-2 sliding
bifurcation scenarios.

In particular, we can distinguish the following instances:

e degenerate crossing-sliding:

N 2
(VH, (66%1) Fry >0, (18)



e degenerate grazing- or switching-sliding:

(VH, (66—1;?>2F1*) <0 (19)

We classify as codimension-2, sliding bifurcations determined by conditions
(12), (13), (17) and (18) or (19), because one additional independent parameter
variation is required to make condition (14) degenerate. Note, that, generically,
the case when the quantity in (18) and (19) is 0 would imply another degeneracy
and in consequence would be a codimension-3 event. This is true unless the
bifurcating trajectory evolves within the switching manifold approaching the
codimension-2 node from within . Thus, considering the case:

aFF\*
VH, (=% ) F)=0. 20
@, (55 ) (20)
the bifurcation scenario will be determined by an additional condition which
describes the change of the curvature at the bifurcation point. Since, it was as-
sumed that the sliding bifurcation occurs on the boundary 8%, the additional
condition determining the degenerate bifurcation event in this case reads:

e degenerate sliding-adding:

(VH, <6B—FE)3F1*) <0. (21)

Should we consider the boundary 8fl+, conditions for codimension-2 sliding
bifurcations (18), (19), (21) would yield an opposite sign.

4 Main Results

We now summarise the main features of our derivation for each of the degenerate
cases under investigation. Namely, we will:

1. outline the local phase space portrait corresponding to the analytical con-
ditions for each of the codimension-two bifurcation points;

2. illustrate the unfolding in parameter space around each of these points;

For the sake of clarity, we will detail in Sec. 5 how these features were
obtained and analysed by taking one of the four codimension-two cases as a
representative example. It is worth mentioning here that similar analytical
derivations can be given for each of the other cases.

4.1 Case I: Degenerate Crossing-Sliding

We shall start our considerations with the codimension-2 scenario associated to
conditions (12),(13), (17) and (18). The vector field at the bifurcation point is
tangential to the switching manifold ¥ (condition (13)) and to the boundary
0¥~ (condition (17)). Additionally, the trajectory is characterised by a local
maximum with respect to this boundary (condition (18)). The phase space
portrait locally to the bifurcation point is schematically depicted in Fig. 4.

Locally to the codimension-two bifurcation point, different perturbations
will lead to the formation of different types of trajectories. For instance, the
trajectory labelled as T'1 in Fig. 4 will contain an additional segment of sliding
motion, while the one labelled as T2 will additionally present an extra section
of trajectory in region G;.
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Figure 4: Segment of a trajectory undergoing degenerate sliding bifurcation Case
I. At the bifurcation point, the trajectory crosses the switching manifold at the
codimension two node denoted by the letter A in Fig. 4. Dashed curves denote
projection of the vector field onto the switching manifold 3. The local maximum of
the vector field is clearly visible.

4.1.1 TUnfolding in parameter space

As will be detailed later in Sec. 5, these features of the local phase space portrait
about the codimension-two point translate into the local unfolding in parameter
space depicted in Fig. 5. Here we see that three codimension-1 boundaries in
parameter space associated to three different codimension-1 sliding bifurcations
meet at the codimension-two point. Schematic orbit diagrams are reported in
the figure to show the orbit topology on each of the boundaries and how it
changes when different boundaries are crossed. It will be proved (see Sec. 5 for
further details) that the three boundaries merge smoothly up to second-order.
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Figure 5: Qualitatively different types of trajectories around the codimension-2
bifurcation point

Note that the fact that three codimension-one boundaries are found to merge
at the degenerate point does not contradict the codimension-2 nature of the bi-
furcation under investigation. Specifically, two of the three boundaries are char-
acterised by the same analytical conditions that can be associated to different
topologies of the local phase-space.

4.2 Case II: degenerate switching-sliding and Case III:
degenerate grazing-sliding

Another possibility, as explained earlier in Sec. 3, is that conditions (12),(13),
(17) and (19) are satisfied. In this case, the negative sign of the additional
condition (19) implies that the trajectory exhibits a local minimum of the vector
field with respect to the boundary 0% .

These conditions can be actually associated to two alternative local phase
space portraits. Specifically, as shown in Fig. 6 and Fig. 7, there are two possible
codimension-two scenarios associated to the same analytical conditions. They
differ with respect to the nature of the incoming bifurcating trajectory. Namely,
point A in Fig. 6 is reached by a trajectory generated by flow ®5 in region Gs
(case IT), while in Fig. 7 the same point is associated to an incoming trajectory
generated by flow ®; in region G (case III). Notwithstanding these differences,
the character of the outcoming flows remains the same.

Despite sharing the same analytical condition, the difference between the two
cases becomes clearer when the local unfolding in parameter space is considered.




G, T1 TO T2

Figure 6: Segment of a trajectory undergoing degenerate codimension-2 sliding bi-
furcation scenario Case II.

G,

T1
To\
G2

Figure 7: Segment of a trajectory undergoing degenerate sliding bifurcations: Case
IT1



4.2.1 Case II: Unfolding in parameter space

Different local perturbations away from the codimension-two bifurcation point
will lead to different trajectories. The resulting behaviour can be unfolded again
in parameter space in terms of boundaries associated to codimension-1 sliding
bifurcations. In particular, perturbations applied around the bifurcation point
result in either classical codimension-1 switching sliding bifurcation scenario or
in switching, or adding sliding behaviour (see Fig. 6).

g

Figure 8: Qualitatively different types of trajectories around the codimension-2
bifurcation point

This is associated to the local unfolding in parameter space shown in Fig. 8.
Three boundaries associated to codimension-one sliding bifurcations (sliding-
crossing, sliding-switching and sliding-adding) meet at the codimension-two
node. Our analysis shows that at the merging point the three boundaries meet
smoothly up to quadratic-order.

4.2.2 Case III: Unfolding in parameter space

Perturbations applied around the codimension-2 node will lead to the birth of
two branches of codimension-1 sliding bifurcations namely to grazing-sliding
and adding sliding bifurcation scenarios (see Fig. 7). The local unfolding in
parameter space is depicted in Fig. 9. Note that in this case the two branches
merge nonsmoothly at the codimension-two point.
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Figure 9: Qualitatively different types of trajectories around the codimension-2
bifurcation point

4.3 CaselV

Now, we shall consider the final case of degenerate codimension-2 sliding bi-
furcations. This case is brought about by the violation of the nondegeneracy
condition (19). This yields that the local minimum of the vector field with
respect to the boundary of the sliding region, characterising the previous bifur-
cation scenarios, changes into a turning point.

The phase portrait associated to these conditions, thus, becomes the one
depicted in Fig. 10. Note, that the bifurcating trajectory must approach A
from within the sliding set as assumed in Sec. 3 otherwise conditions (12), (13),
(17), (20) and (21) describing the bifurcation would imply a codimension-3

event. T ﬁ \

G,

Figure 10: Segment of a trajectory undergoing degenerate sliding bifurcations: Case
v



4.3.1 Unfolding in parameter space

The vector field has locally a cubic character with respect to the bifurcation
boundary 0¥ ~. Small perturbations applied to the bifurcating trajectory will
result into the local unfolding shown in Fig. 11 Here, at the codimension-2 node,
we observe the branching of two boundaries associated to different codimension-
1 sliding bifurcations; namely adding-sliding and grazing-sliding (similarly to
what described for Case III).

We shall now explain in more details how the results presented in this section
were obtained by discussing Case I as a representative example. All the other
scenarios were investigated in a likewise manner (the derivation is not reported
here for the sake of brevity).

N

M2 |

\

M1

J

Figure 11: Qualitatively different types of trajectories around the codimension-2
bifurcation point

5 Analysis of degenerate sliding-crossing

To perform a proper unfolding of a codimension-2 degenerate sliding bifurcation
point we need to (i) determine local phase portraits about the bifurcation point
of interest; (ii) identify the boundaries in parameter space associated to different
codimension-one bifurcations branching out of the codimension-two node.

In what follows we will detail the derivation for Case I. All other cases can
be treated in a similar manner.

5.1 Local Phase-Space Portrait

Let us focus our attention on Fig. 12. In the figure we schematically sketch
the phase space topology locally to the codimension-2 bifurcation node. As
discussed in Sec. 4, perturbations about the bifurcation point will lead to three
different, types of trajectories. We can therefore divide the switching manifold
Y into three regions denoted by R;, Rs and Rj3 so that:



e Trajectories starting from region R; leave the switching manifold towards
region G (see trajectory TO in Fig. 12);

e trajectories starting from region Rj still leave the switching surface to-
wards (i1 but, after some finite time, will hit the switching manifold again
within the sliding region ¥. They then evolve according to the sliding flow
until crossing the boundary 62*, where they finally leave the switching
manifold (see trajectory T1 in Fig. 12);

e trajectories rooted in Region Rz will evolve according to the sliding flow
until ¥~ is reached. Then, they will leave the switching manifold towards
Gi.

Figure 12: Phase space topology around the codimension-2

To characterise the codimension-two node, we now need to obtain analytical
expressions of the boundaries in phase space between these three regions.

Let us first assume that point A is placed at the origin in an appropriately
defined set of local coordinates. Obviously, the boundary of the sliding region
o3 is by definition also the boundary between R3 and R; U Rs.

We know that at the point A the vector field governing the system dynamics
is tangential to the boundary and has a local maximum as implied by conditions

(17) and (18). Therefore, the quantity (VH, %%Fl) evaluated for z € 9%~

must change sign when z is varied past A along 8%. We define:

Co :={x€dX : (VH, %Fl) > 0}. (22)
and
Cp:={zx € d%™ : (VH, %FI) <0} (23)

Now, we need to define the boundary between regions R; and Rs and deter-
mine the bifurcation scenario which is observed when this boundary is crossed.
It has been mentioned that trajectories starting from region R; leave the switch-
ing surface whereas trajectories starting from region Ry return to the switching
manifold crossing it within the sliding region. Then, after reaching 3%~ they
leave the switching surface.

Therefore, points belonging to the boundary between regions R; and Rs
(denoted by C, in Fig. 12) must be associated to trajectories which just graze
the boundary of the sliding region (see Fig. 13). In order for this to occur,
these trajectories must evolve within region G; until hitting tangentially o3,

14



i.e. at the point of tangency the vector field must satisfy conditions associated
to a grazing-sliding trajectory.
% lc
b

Figure 13: Codimension-1 grazing-sliding bifurcations unfolded from the
codimension-2 node

As these conditions can only be satisfied along Cy, it is therefore possible to
deduce that C,, is the inverse image of C, under the action of flow ®;. Thus,
we can define C,, as:

-1
C,={zeD:Cy 253}, (24)

where ®,! refers to the inverse flow governing the dynamics in subspace G1.

5.2 Analytical Derivation of C,

We can derive an analytical approximation of the boundary C, expanding the
flow ®; as a Taylor series about the codimension-two point, assuming evolution
in reverse time. We proceed as follows:

e we expand flow ®; originated from C}, in the close neighbourhood of the
point A;

e we derive an approximate expression for the time, say d, which is required
to hit the switching manifold ¥ as a function of initial perturbation ey
along Cl;

e we then obtain an approximate expression for C.;
e finally, we explore how smoothly C, joins with C,.
Expanding the flow as a Taylor series, we can approximate the first intersection,
Z, of the trajectory with ¥ in reverse time as:
T = @1(67’, —(5) =er— Fi6+ a152 — bietd +

25
—¢10° — dy(e7)% + e1e76% + O(e?). (25)

Coeflicients a1, b1, ¢1, di, e1 are coeflicients of Taylor series expansion and can
be found in the appendix. For our purpose it is sufficient to obtain an expression
for Z up to the third order. Since (VH,Z) = 0 we then get:

<VH, .'1_7) X EToH — Figd+ a1H62 - €(b1T0)H(5 +

26
—ClH(53 - (d1T02)H62(5 + (eng)H6(52 + 0(64) =0 ( )

where subscript H denotes dot products with the vector VH. The first four
terms on the right hand side in (26) can be easily shown to vanish. Moreover,
due to the fact that both ¥ and Y~ are flat manifolds, (di73)m is equal

15



to nought (see [11] for further details). Therefore, we obtain that § can be
expressed as:

§ = me + e’ + v3ed, (27)
with
(VH, 617’0)
= 7 -/ 28
! (VH, c1) (28)

Substituting the appropriate expressions for ¢; and e;, we can further evaluate

1 as:
oF\’
v, (52) w

(VH, (@)21@'

Mm=3 (29)

ox

For the sake of brevity we do not present expressions for v2 and 3. In the next
step we substitute (27) into (25) and collect terms at subsequent powers of e.
Thus, we get:

z=¢e(r—nF) +e*(—nFi +via — b)) + O(3). (30)

Expression (30) is the local approximation of C,.

As mentioned at the beginning of this section we want to determine the way
in which C, joins with C, (as this allows to make plausible predictions to the
nature of different bifurcations around the codimension-2 point). To this aim
we need to monitor one component of vector Z only. Namely, we are interested
in the component of Z projected onto the normal to 9%~ (we also assume this
vector to be coplanar with X). Therefore, we apply VH, to Z. 2 Thus, we get:

(VHy,z) ~ e(VHy, (10 — 1 F1)) + eX(VHy, (-2 F1 + via1 — v1bim)).  (31)

It is trivial to show that both two terms of (31) standing at ¢ vanish, similarly
the first term standing at £2. Thus, we can write (VH,, ) to leading order as:

oF\ 2
(VH, (—) o)?

(VH.3) ~ | 2va, 2R 0z /.
2 Ox OF,; )
(VH, Dr F)

OF\*
6F1 <VH7 (E) TO)

o)
oz A\ 2
i () B

We can further simplify the equation above through appropriate algebraic
manipulations (omitted here for the sake of brevity). Thus, finally, we get:

3(VH,

(32)

OF\° .,
s (E)

(VH,,T) =~ —¢ E—
(VH, F,) <VH’<8F1) )

(33)

ox

*Note that VH, does not necessarily need to be coplanar with X. Therefore, to get the appro-
priate quantitative description we need to project VH, onto X. Then, the obtained vector needs to
be normalised. In this way we can obtain orthonormal to i) o, coplanar with . These operations
alter the vector VH,, which is applied to z but these are purely algebraic manipulations which

generically do not change the leading order approximation of ([here ref])
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Therefore, the component of Z along the normal to 9% at the codimension-two
node scales quadratically with the initial perturbation erg. Thus, C, merges
smoothly with C,, at the bifurcation point.

5.3 Classification of the dynamics across C,, C3 and C,

Having explained the phase space topology locally to the codimension-2 node,
we now give a general description of the normal form map which captures the
essential dynamics of the system around the codimension-2 node. In so doing we
make use the concept of zero-time discontinuity mapping (or ZDM) presented
in [2, 5]. The normal form (which is derived in the Appendix), in the current
case captures the influence of an additional sliding segment of a trajectory born
in the bifurcation around the codimension-2 node. It consists of two distinct
expressions. We can write this map in the following form:

D(z) = x+ Mp+ Nv when =z € Ry, (34)
z+ D{C,z)*/? + O(e?) + Mu+ Nv when =z € R3,

where C' is some row vector and D, M, N are some column matrices. For the

detailed and qualitative description of the normal form derivation see Appendix.

Note that, when region R is reached we need first to evaluate the trajectory

using flow ®; which is the "natural” flow onto which ®, switches after reaching

Y (see Appendix for details) and then apply the ZDM.

Clearly, from our heuristic description of the phase space topology around
the codimension-2 node and the normal form map (34) we can infer much
information about the dynamics of a bifurcating limit cycle. As shown in [9] the
discontinuity type which is found in the ZDM describing a particular bifurcation
scenario, generically characterises the global Poincaré map describing behaviour
of a bifurcating limit cycle. The normal form map which captures the local
dynamics is therefore found to be smooth (at least C* differentiable) across the
different bifurcation boundaries.

We can therefore conclude that in a neighborhood of the degenerate codimension-
2 node, the bifurcating limit cycle preserves its stability properties and period
under parameter perturbations. Depending upon which boundary around the
codimension-2 node is crossed the perturbed trajectory will acquire a different
number of additional segments. These observations will be important to unfold
the codimension-two event in parameter space.

5.4 Unfolding in Parameter Space

It is now important to evaluate how the phase-space boundaries Cy, Cs and C
are mapped to corresponding bifurcation boundaries in parameter space. To
address this question, we start by noting that, as discussed above, perturbed
trajectories about the codimension-two node persist. Thus, using the normal
form map presented above, a local map can be constructed from the switching
manifold back to itself such that its fixed points are associated to corresponding
limit cycles in phase space. The origin of this map will correspond to the
bifurcating limit cycle undergoing the codimension-2 event discussed here.

As highlighted in [5, 3], it is possible to show that such mapping is an affine
transformation of the form:

z,,, = Az, + Bp (35)

where p is an m—dimensional parameter vector, z, an n—dimensional state
vector and A, B correspondingly constant matrices.
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In general this map is (n — 1)-dimensional. Therefore to obtain an unfolding
of the codimension-two bifurcation in a two-dimensional parameter plane, we
need to consider an appropriate projection of z and the curves Cy, Cg and C,.
In our case, to obtain this two dimensional representation we first project C,,
C.,, and Cg onto the plane spanned by the normal to 9%~ and the vector tangent
to O . (This plane is such that the smoothness property of the boundaries at
the codimension-two point are preserved.)

The images of C,, C, and Cp in parameter space are then obtained by
considering the set of parameter perturbations which make the fixed point at
the origin move along C,, Cy and Cg respectively. We define such boundaries
as follows:

Bgs = {ieR*:z*€C,} (36)
Bss = {p€eR?:z*€Cs} (37)
Bes = {€R*:2* €Cy} (38)
where z* is the fixed point of map (35) with p = f, i.e.
z* = Az* + Bji. (39)

From (35) it can be inferred that the qualitative character of the bifurcation
boundaries has the same features as these of C,, C,, and Cg curves. Thus,
Bgs, Bss and Beg are smooth curves in parameter space (as depicted in Fig.
5) originating from the codimension-two node. Moreover, Bgs and Bcos merge
smoothly at this point. This is an important result for the development of
continuation techniques for sliding bifurcations. It provides us with essential
information of branching scenarios encountered when codimension-1 sliding bi-
furcations are traced and become degenerate.

5.5 Example

We construct a simple example of a system which captures the features of the
phase-space locally to the codimension-two node to illustrate and confirm our
theoretical derivations. Let us consider a system of the form:

—T2 0 2
F1 = I3 , Fs = I3 , F2 = 0 , (40)
-1 -1 0

where Fj is the vector field describing the sliding flow, F} describes the vector
field in the subspace G; defined as {x € R® : z; > 0} and F» the vector field
in subspace Gy defined as {x € R® : z; < 0}. Note that z; = 0 defines the
switching manifold ¥ and z> = 0 defines the boundary of the sliding region
0X~. The bifurcation point, say A, lies at the origin and the sliding region is
entered if zo > 0 and zy = 0. Thus, the set of points such that z» < 0 and
z1 = 0 lie outside of the sliding region.

Such a simple system captures the dynamics expected in a neighborhood of
a degenerate crossing-sliding bifurcation (case I) as it can be easily verified that
the set of analytical conditions (12), (13), (17) and (18) are satisfied.

Moreover, in this case we have:

Cy = {2 €85~ : 23 <0} (41)

. To find an analytical approximation for C', we consider the following initial
conditions lying on C:

10 =0, =0, xz30=7 for 7<0. (42)
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Solving the set of ODEs governing the flow ®; (Eq. 40) yields:

1 1

1 = T19 — Toot — .73307525 + 6t3 (43)
1

To = Too + T30t — §t2 (44)

I3 = T30 — t. (45)

We seek to find some time ¢ such that z; = 0. Thus, solving (43) yields
t = 37. Since, we demand 7 to be negative this solution agrees with our
assumption that we are seeking solutions in reverse time. Then, parametrising
2 and z3 by 7 yields:
3
Ty = —ETQ, (46)
x3 = —27. (47)

Thus, combining (46) and (47) we get:

3
C, = {xEZ:mg—i—ga:%:O, xz3 > 0}. (48)
Obviously, (48) is differentiable at the origin. Thus, C, and C, join at the
codimension-2 node in a smooth fashion.
It is worth mentioning here that (46) and (47) can be also obtained by the
straightforward application of equation (31). We note, that:

VH,=[0 1 0], (49)

which is coplanar with ¥ and of unit length. Therefore formula (31) can be di-
rectly applied to our system and compared with (46)-(47). It is straightforward
to show that the denominator of (31) is equal to 2. Finally, since vector e7g can
be written as [ 0 0 €79 ], we get:

(VH,,2) = 5 (em)’ (50)

where T denotes an approximate expression of the vector describing z» and z3
on C,. This agrees with the expressions found earlier.

We can also check the linear term of (30) which as expected for our example
yields:

[0 0 —2m]. (51)

6 An application: the friction oscillator

Let us consider a dry-friction oscillator with external forcing, which in the non-
dimensionalised form can be expressed as:

%+ z = sin(wt) — Fsgn(z), (52)

where x is the position of the oscillating mass, # its velocity while w and F
represent the frequency of the forcing term and the amplitude of the friction
characteristic respectively. The system has been extensively studied in [12] but
never from the standpoint of bifurcation theory of piecewise smooth systems
(PWS). The existence of some of the codimension-2 nodes found by Feigin in [12]
have been verified numerically. In particular, the numerical exploration of the w,
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F parameter space led to the detection of a degenerate codimension-2 crossing-
sliding bifurcation. An orbit undergoing such a bifurcation has been found at
the parameter values: w* = %, F* = % with the degenerate sliding-crossing
occurring at x = —1.3399, £ = 0, wt = %77. The period of the oscillations is
given by T = 2% = 47. The bifurcating orbit is depicted in the 3-dimensional
phase space in Fig. 14. Before we examine the phase space locally around

1

velocity

sliding region

0.5

-0.5

25

0
position -1

Figure 14: Bifurcating trajectory in 3-dimensional phase space

15- ,
. boundaries of the sliding set
1
1k codimension—2
node s

0.5

Figure 15: Projection of the bifurcating trajectory onto time-space coordinates. x1
denotes position and z3 the time coordinate.

the codimension-2 node let us first check if the set of analytical conditions
determining the bifurcation is satisfied.
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6.1 System representation

To proceed with our analysis, let us first express the system under consideration
as a set of first order autonomous ODEs. Setting the variables z1 = z, 2 = &
and wt = 7, (52) becomes:

T2
&= | —=z +sin(r) — Fsgn(za) |. (53)
w

The system trajectory evolves smoothly in two subspaces defined by the sign
of the scalar function H(z) = z2. We can write (53) as:

F if H
Fy(z) if H(z) <0
where
()
Fi = —r1 + Sin(T) - F R (55)
w
T2
FB=| -z +sin(r)+F |. (56)
w
The switching manifold ¥ is defined as:
Y:={zeR: H(z) =z = 0} (57)

with the normal to ¥ given by VH = [ 0 1 0 ]. The necessary condition
((VH, F») — (VH, F;) > 0), which needs to be satisfied for the sliding region to
be simultaneously attracting implies the condition 2F > 0, which holds since
the amplitude of the friction characteristic is positive. Therefore, using Utkin’s
equivalent control method [20] we can obtain the vector field F,, which governs
the flow within ¥, as:

x2,
F,=| —z; +sin(r) + H,F |. (58)
w.

The equivalent control H,, defined by (7) yields:

1 1

H,= 7T F sin(7) (59)
and we can define the sliding region as:
Si={ze¥:-1< Hy(z) <1}, (60)
or equivalently:
Si=fmen:-1<2 - Lanm <1y (61)
={z : ST TF sin(7) < 1}.
The boundaries of the sliding region ¥ are:
S 0L ) = —
X" ={zeX: T F sin(r) = -1} (62)
and
o5t = {wex: 8 _ Lgnm) =1y, (63)
F F
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6.2 Degenerate crossing sliding

Having represented the system of interest in the appropriate form we are now
ready to check if the set of analytical conditions determining the degenerate
crossing sliding is satisfied at the bifurcation point. Once, we establish this re-
sult we can further numerically analyse the phase space around the codimension-
2 node and determine if our numerical findings agree with the discussion pre-
sented in Sec. 5.1. Before, checking conditions (12) - (18), we should note that
we derived these conditions under the assumption that the boundary of the
sliding region is a well-defined and flat manifold (at least up to O(4)). In our
case the boundary of the sliding region is well defined but not flat (see Eq. 62).
Therefore to check analytical conditions (12)-(18) we need to apply a set of
transformations which will flatten the boundary of the sliding region around
the bifurcation node. For our purpose it is sufficient to flatten the boundary up
to the quadratic order. Therefore, we introduce the following set of coordinate
transformations:

Ty =21 — %(T - %71')2, (64)
Ty = T2, (65)
T=T. (66)
In the new set of coordinates we can write (55) as:
_ Ty — (77_ - %ﬂ-)wa
Fi=| -z, - {7 -3m)?+sin(7) - F, |. (67)
w

Conditions (12) is trivially satisfied as we lie on the switching manifold ¥ at
the bifurcation point. Condition (13) is 0 within the numerically accuracy.
Condition (17) reads:

3 3
—z5 (T — 57r)w* + (-7 + o7+ cos(7"))w* (68)
which is identically 0. Finally, we need to verify condition (18) which yields:

1 . . 1
21+ 51" = gﬂz = sin(7) + F + ™ = —0.006 + ; > 0. (69)

6.2.1 Phase space topology around the codimension-2 node

Having successfully verified that the codimension-2 node is indeed a degenerate
crossing sliding point we will now present our numerical results describing the
phase space topology around the node.

From our analytical predictions three different regions R;, R, and R3 asso-
ciated to different system qualitative behaviour can be identified locally to the
bifurcation point. The boundaries between R3 and R; U Rs coincide with the
boundary of the sliding region (see Fig. 16). The boundary between R; and
Ry was obtained by reverse numerical integration of points lying on Cy. It is
clearly seen that C, and C,, are found to join smoothly at the bifurcation point
as predicted by our analytical derivations.

To confirm the different nature of trajectories rooted in each of the three
regions mentioned above, time series of the system evolution with different
initial conditions are reported in Fig. 17. Again the numerical simulations
agree with what was expected from the analysis.
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Figure 16: Boundaries in the phase space around the degenerate crossing codimen-
sion 2 node
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Figure 17: Qualitatively different trajectories around the codimension-2 node start-
ing from regions Ri, Re and R3.Time series representing the velocity coordinate of
the trajectories starting in every of the three regions are shown in each of the panels.
Each panel is labelled with the letter indicating the starting point in phase space as
shown in Fig. 16.
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6.2.2 Classification of the dynamics around the codimension-2
node

Now, we can attempt to predict the bifurcation scenario around the codimension-
2 node. We first need to determine if the bifurcating limit cycle is an hyperbolic
cycle. To this aim we evaluate eigenvalues of the Jacobian matrix, say J of a
T—time map of the flow built around the periodic point of the bifurcating or-
bit. In the current case it is sufficient to calculate the eigenvalues of the map
obtained by considering the evolution along the half period %— as the orbit is
symmetric.
It is easy to verify that the sought matrix J has the following form:

_{ cos(T/2) sin(T/2)

T= ( _sin(T/2) cos(T/2) ) (70)
Note, that at the bifurcation node w* = % and %— = % therefore the bifurcat-
ing orbit is non-hyperbolic. Thus, it would seem that we are dealing with a
codimension-3 event that cannot be solely determined based on our previous
discussion.

In fact, in the current case we can show that the bifurcation scenario is
indeed a codimension-2 event. Namely, it can be shown that a simple symmetric
orbit (e.g. an orbit with no sliding segment of period T' = %”, crossing the
switching manifold twice per period) undergoing a codimension-two degenerate
crossing sliding bifurcation must be non-hyperbolic.

Let us assume such an orbit exists. Then, it will cross the switching manifold
at the codimension-two point, say (x¢,0,79). Solving the system ODEs with
initial conditions (x¢,0,79), we get:

7\ _ cos(Z)Fw? + cos(F)xow? — Fw? + sin(J)w cos(ro) + F N
\w)~ (—1 +w?) -
+ cos(Z) sin(rg) — cos(L)F — cos(Z) o + sin(r)

C1+u?)

where 79 denotes initial phase and z¢ initial position.
_ From condition (13), we know that the initial point belongs to the boundary
0%~ which implies o = —F + sin(7°). Moreover, conditions (17)—(18) require

that the initial phase must be equal to 2’271

Furthermore noting that z(Z) = —zo and &(ZX) = 0 we can write the
following set of two equations which need to be satisfied at the degenerate
codimension-2 node:

sin(z)w2
w
—=7 __ =), 72
-1+ w? (72)
1w?(cos(Z) +1
F:——L—Ql—l. (73)
2 1—w?

Thus, we find that the codimension-two bifurcation can only occur for pa-
rameter values F* and w* satisfying (72), (73). In particular, for (72) to be
non-singular and identically nought we require that w = % withn =2,3,...,.
As we require friction to be non zero F' # 0, from (73) we can rule out odd
integers of n. Therefore, we must have:

" 1
W = %7 (74)
w*2
F* =
1—w*? (75)



Note that in the friction oscillator under investigation, the codimension-two
bifurcation was located for w* = % and F* = :1)7 which clearly satisfy (74) and
(75).

It can be clearly seen that for any w* satisfying (74), the Jacobian matrix
(70) turns out to be singular. This confirms our conjecture that the degenerate
crossing-sliding detected in the friction oscillator is a codimension-two event.

We can finally classify the bifurcation scenarios around the codimension-2
node. In particular we are interested in understanding the bifurcation events
detected when w and F' are varied in a sufficiently small neighborhood of w*
and F*. Note that:

e the stability of a simple orbit is determined by the eigenvalues of the
Jacobian (70) which are always within the unit circle for any value of
w # w*;

e it can be trivially shown that in this case additional sliding segments
cannot destabilise a given orbit;

Therefore, the only effect of varying the parameter about the codimension-
two point is to cause the bifurcating orbit to acquire or loose additional segments
of trajectory belonging to region G or/and the sliding region 3. Since, crossing
of the codimension-1 sliding bifurcation boundaries around the codimension-2
node cannot change the stability properties of bifurcating orbit this, in turn im-
plies that there are no unstable orbits around the codimension-2 node. Thus,
it has been confirmed that in our particular case due to the degenerate crossing
sliding we can not observe sudden jumps to different attractors. Crossing of
different boundaries forces an orbit to acquire additional segments of the tra-
jectory but the orbit preserves its stability and period. This has been confirmed
by our numerical simulations.

7 Conclusions

In this paper, we have discussed codimension-2 sliding bifurcations which can
be observed in Filippov type systems due to the violation of the non degener-
acy conditions for sliding bifurcations of codimension-1. We have shown that
four different codimension-2 sliding bifurcations can be found (see Fig. 3). We
discussed the phase space topology and the associated unfolding in parame-
ter space around each of the degenerate bifurcation nodes under considera-
tion. We focused our attention on the degenerate crossing sliding case. Based
on the discussion of the phase space topology we showed how three curves of
codimension-1 sliding bifurcations join at the codimension-2 node. Since, the
bifurcation boundaries form a curve which separates smoothly into two branches
at the codimension-2 node we assumed that this scenario should be translated
onto the normal form describing the bifurcation. Derivation of the normal form
confirmed that the discontinuity can be encountered in the higher order terms
of the normal form map, therefore a hyperbolic orbit undergoing this type of
sliding bifurcations preserves its stability properties and period when crossing
the different bifurcation boundaries around the codimension-2 node. This is a
very crucial remark since in the classical grazing sliding case (one of the three
boundaries joining in the node is the grazing sliding boundary) the normal form
map is PWL which in turn implies that a sudden jump to different attractors
is possible. In Sec. 6 we investigated numerically a dry-friction oscillator where
degenerate crossing sliding bifurcations has been found. We showed that sim-
ple symmetric orbit due to the degenerate crossing sliding bifurcation acquires
additional segments but preserves its stability and period thus confirming our
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analytical predictions. Here, we should note however that the orbit was non-
hyperbolic. We showed that non-hyperbolicity of the orbit is in fact triggered
by to the violation of non-degeneracy condition (17).

We anticipate that the results presented in the paper will be particularly
relevant for the development of algorithms and routines for the numerical con-
tinuation of C-bifurcations in piecewise-smooth systems. Namely, the local
unfolding presented here will be useful to design appropriate branching rou-
tines to be embedded in an appropriate continuation tool for systems with
discontinuities. Future work will be directed towards the development and ap-
plication of such numerical tools as well as the investigation of other classes of
codimension-two phenomena.
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A Appendix. Normal form map of the degen-
erate crossing-sliding bifurcations

We consider degenerate Case I codimension-2 sliding bifurcation scenario. To
derive the ZDM normal form map which captures the dynamics locally to the
bifurcation node we need to refer to the concept of the zero time discontinuity
mapping (ZDM). In case of sliding bifurcations the ZDM captures the influence
of additional segment of a trajectory which is born in the bifurcation (see [11]
for details). Therefore, we need to pose a question what is the new segment of
a flow which arises around the codimension-2 node when the degenerate Case
I sliding bifurcation takes place. Let us refer to Fig. 12. If region R; is hit no
bifurcation takes place in the system. The evolving trajectory switches between
flows ¢2 and ¢; at the discontinuity set ¥ (¢ refers to the flow generated by
the vector field Fy governing the dynamics in subspace G2 and ¢; refers to
the vector field F; governing the dynamics in subspace G see Sec 1.1). We
shall now consider what happens when switchings occur within R3 or R» parts
of ¥. If R3 is encountered we observe the following transition of flows: from
¢2 to ¢s (¢s governs the sliding dynamics on — see Sec 1.1) and then after
the boundary 9%~ is reached ¢s switches to ¢1. Finally, if switching occurs
within R, the trajectory first switches to flow ¢; and then reaches the sliding
subset thus evolving within 3 until reaching the boundary 8%~. Then, again
the trajectory follows ¢1. We can describe how the vector fields switch around
the codimension-2 node depending on the region where the switching occurs in
the symbolic way as:

¢2 — ¢1  region R; no bifurcation
¢2 — ¢s —> 1 region Rs,
¢ — ¢ — ¢y —> ¢ region R,.

Obviously, the additional segment of the flow born in the bifurcation is the
sliding segment generated by flow ¢,. Thus, we can describe the switchings
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around the codimension-2 node using only flows ¢ and ¢; and the ZDM as
follows:

¢2 — ¢1  region R; no bifurcation
¢s — ZDM — ¢1 region Rs,

¢ — ¢y — ZDM — ¢; region R,.

Therefore, we need to derive the ZDM map which captures the influence of
the sliding flow on the system dynamics locally around the codimension-2 bi-
furcation node. Let us focus on the case depicted in Fig. 18. The bifurcating
trajectory is crossing the switching manifold ¥ at the bifurcation point A lying
on the boundary 9% ~. In order to derive the ZDM we shall proceed in two

Figure 18: Construction of the ZDM in the degenerate Case I of sliding bifurcations:
Mapping D

steps: (1) we evaluate the trajectory from some point, say exo to the point %
lying at the boundary of the sliding strip using flow ¢;; (ii) then we follow ¢
for some time, —d until we reach the final point z;. Therefore, the total time
which elapsed to get from exzg to =y is 0. The desired ZDM is a map from exg
to zf (see Fig. 18). To carry out the derivation, we will assume that the vector
fields Fi, F», F; are well defined over the entire phase space region of interest.
Therefore, we will suppose that the corresponding flows can be expanded as a

Taylor series about the bifurcation point 2* = 0, t* = 0 as:
¢i(z,t) = o + Fit + a;t® + bixt + c;it® + dix’t + e;at® + W
+fit* + gt + hix?t? + jixt® + O(5),

where i = 1, s, O(5) indicates terms of order equal or higher than five and:
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Note that we have used a shorthand notation here for the higher-order
derivative terms, for example
O3F; , O3F;
T =

3
ox o123 OTnTmTp

TnTmTp -

In what follows, we shall continue to use this shorthand, with care taken to
correctly evaluate the derivative tensors when required.

A.1 First step

Let 2, (t) = ¢5(0,t) be the trajectory which undergoes the degenerate crossing
sliding bifurcation. We consider e—perturbations of z, (t) of the form:

z(t) = ¢1(ezo, t) ()
for some zy which we assume to be such that:
(VH,y,z0) > 0. (4)

Condition (4) ensures that, for € > 0, the trajectory crosses the switching
manifold within the sliding region X. Firstly, we evaluate flow ¢, from some
point ez until the trajectory intersects boundary of the the sliding region at
some point, say Z. Assume such intersection to take place after some time &,
we have:
T = ¢1(exo,0) mexo + 6F; + 8%a, + edb,xo + 8¢, + 62(5dsa:§ +
+ed’e o + 61 fy + e30gad + €26 hyxk + £6° . (5)
We wish to define  to be the time such that H(Z) = 0, which since H,(0) = —1
and 9%~ is flat, implies:
(VH,,z) = 0. (6)

Using (5) for Z, (6) yields to leading order:

exon, + OFsu, + 0%asm, +e6(bswo)n, + 6°csm, +626(dsx3)Hu +e6%(eswo)m, +

+6* fomr, +€30(gsxd) 1, + €26% (hsxd) g, + 6% (jsxo)m, = 0.

At the bifurcation point, we have (VH,, F1) = 0 (see condition (17) and equa-
tion (11)), thus the second term of (7) vanishes.
Solving (7) for ¢ as an asymptotic expansion in 1/ with the lowest term of

O(y/¢) gives:

8 = 71VE + 126 + 136%2 + O(?), (8)
where:
VH,,
i = _%_ ©)
(VH,, 52 F,)

Note that the analytical conditions for this case (see (4), (18) and (11)) guar-
antee that such asymptotic expansion is consistent.

Finally, substituting (8) into (5), we get the following expression for Z (we
shall consider terms up to 3/2 terms):

T =+ex1 +exa + %y, (10)
where:
x1 = mkFy, (11)
X2 = o+ 7Fs+1ias, (12)
X3 = 73Fs + 2717205 +yics + y1bso. (13)
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A.2 Second step

Having derived an expression for Z, now we need to consider the subsequent
motion from Z. In particular, the system trajectory starting from z will evolve
along the vector field F; for some time, say —d, until reaching the final point

Zf.
Using again Taylor series expansion, we can get an approximate expression
for z; = ¢1(z,—9) as:

Ty & X — oF + 62(11 —0biz — (5301 — (5d1.€f2
+(52€1.’I_3 + (54f1 — (591533 + (52h1.'l_3'2 - (53jli'. (].4)

Collecting terms at subsequent powers of ¢ will yield to the leading order:

zp & (—y3F + x3 — (X172 + X27)b1 + xi€17: — Xamdi + 2717201 — 71301)53/2 +

+ (x2 +72a1 — 2 F — x1imbi)e + 01 — nF)ve.
(15)

It can be shown that the first two terms (at 1/ and €) cancel out. Finally, we
can write an approximate expression for z; as:

1

3(F> = F)(VH,, .7:0))63/2 + O@?). (16)

xfzsxo-i-%(

Therefore, the ZDM in the current case can be expressed as:

(17)

D(z) = T+ Myip+ Nyv when (VHy,z) >0
lz+v+HOT. + Mip+ Nyv when (VH,,x0) <0

with v =7, (%(Fz - Fl)(VHu,xo)) €3/ and My, N; some column matrices.
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