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Sliding bifurcations: a novel mechanism for the sudden onset of

chaos in dry-friction oscillators

M. di Bernardo ∗, P. Kowalczyk∗†, A. Nordmark‡

August 12, 2003

Abstract

Recent investigations of non-smooth dynamical systems have resulted in the study
of a class of novel bifurcations termed as sliding bifurcations. These bifurcations are a
characteristic feature of so-called Filippov systems, that is systems of ordinary differen-
tial equations (ODEs) with discontinuous right-hand sides. In this paper we show that
sliding bifurcations also play an important role in organising the dynamics of dry friction
oscillators, which are a subclass of non-smooth systems. After introducing the possible
codimension-1 sliding bifurcations of limit cycles, we show that these bifurcations organise
different types of ”slip to stick-slip” transitions in dry friction oscillators. In particular, we
show both numerically and analytically that a sliding bifurcation is an important mecha-
nism causing the sudden jump to chaos previously unexplained in the literature on friction
systems. To analyse such bifurcations we make use of a new analytical method based
on the study of appropriate normal form maps describing sliding bifurcations. Also, we
explain the circumstances under which the theory of so-called border-collision bifurcations
can be used in order to explain the onset of complex behaviour in stick-slip systems.

1 Introduction

In engineering, friction plays an important role. It is the source of self-sustained oscillations
termed stick-slip vibrations. These oscillations often have undesired effects in many areas of
engineering. Examples include torsional stick-slip vibrations in drill strings, squeaking doors
and squealing railway wheels.
Thus, it is not surprising that systems with friction have been attracting the attention of
scientists for decades [Hartog, 1931], [Andronov et al., 1965], [Pratt and Williams, 1981].
However, only in recent years, due to the introduction of new analytical techniques, these
systems have been studied using bifurcation theory.

In [Popp and Stelter, 1990], four different models are introduced including a single-degree-
of-freedom oscillator with external forcing where chaotic behaviour characterised by stick-slip
motion is found. Moreover, different routes to chaos (intermittency, period-doubling) and
different modes of stick-slip behaviour are found. In [Stelter, 1992], a simple beam system
is studied to determine how continuous structures behave under the action of dry friction
forces. Here, a chaotic mode characterised by stick-slip motion is also found. In a further
study, the bifurcation behaviour of a non-smooth friction oscillator under pure self and/or
external-excitation is treated [Popp et al., 1995], [Hinrichs et al., 1998]. In the case of external
excitation, the system is shown to exhibit a sensitive dependence on the bifurcation parameter,

∗Department of Engineering Mathematics, University of Bristol BS8 1TR U.K.
m.dibernardo@bristol.ac.uk

†Corresponding Author. Department of Engineering Mathematics, University of Bristol BS8 1TR U.K.
Tel. +44(0)1179289798, fax +44(0)117 9251154 E-mail: p.kowalczyk@bristol.ac.uk

‡Department of Mechanics, Royal Institute of Technology, Sweden nordmark@mech.kth.se

1



with a rich class of bifurcations being observed under parameter variations. The theoretical
results were verified experimentally together with the bifurcation diagrams of the system for
different types of excitation.

Work carried out by Galvanetto addresses the problem of bifurcations in a two block stick-
slip system [Galvanetto and Bishop, 1998], [Galvanetto, 1997], [Galvanetto, 2001]. A one
dimensional map is introduced for studying bifurcations in the four dimensional system. The
bifurcation scenarios observed include a class of bifurcations leading to the onset of stick-slip
motion. Non-standard bifurcations have also been detected in a simple damped oscillator
[Galvanetto and Bishop, 1998].

So-called grazing bifurcations [Nordmark, 1991] were shown to trigger abrupt transitions
of periodic solutions to different attractors in an impact oscillator featuring dry friction [Virgin
and Begley, 1999]. In [Virgin and Begley, 1999] the investigators try to link grazing bifurcations
with slip to stick-slip transitions, thus conjecturing that similar abrupt qualitative change of
the system attractors could be observed when slip to stick-slip transitions take place.

A self-excited vibrating system with dry-friction was studied by Yoshitake and Sueoka
in [Yoshitake and Sueoka, 2000], in which the authors report an interesting route to chaos.
It is shown that a period-doubling cascade is abruptly terminated by an outburst of chaotic
behaviour due to the transition from slip to stick-slip motion. The authors conjecture that the
onset of chaotic stick-slip vibrations is associated somehow with the occurrence of so-called
border-collision bifurcations. These bifurcations can only be observed in dynamical systems
with discontinuous non-linearities and have been shown to characterise the dynamics of a wide
range of systems of relevance in applications [Nusse and Yorke, 1995], [Nusse and Yorke, 1992],
[Nusse and Yorke, 1994], [Yuan et al., 1998]. Border-collisions, for example, were shown to
be fundamental in organising the dynamics of DC/DC converters in power electronics (see
for example [di Bernardo et al., 1998]), walking mechanisms and vibro-impacting mechanical
systems [Brogliato, 1999]. One of the most common features of these bifurcations is the
abrupt transition from a periodic to a chaotic solution. This is a very similar feature to the
one reported in [Yoshitake and Sueoka, 2000] for a friction oscillator which might imply that
border-collisions are indeed at play also in friction systems. However, this conjecture, proves
hard to be characterised analytically as there is a fundamental problem recently outlined in
[di Bernardo et al., 2001b], [di Bernardo et al., 2001a]. As shown in [di Bernardo et al., 2001b],
[di Bernardo et al., 2001a], the theory of border-collisions can only be used to characterise the
behaviour of continuous-time systems when a periodic orbit hits tangentially a non-smooth
manifold at a ”corner” between phase space regions associated with different functional forms
of the system under investigation. Only in this case the normal form map associated to
the bifurcation is piecewise linear and hence the classification strategy for bifurcations in
piecewise linear maps can be used to characterise the transition observed in the continuous-
time system. In general, this is not the case for friction oscillators where the phase space
discontinuity boundary associated to the dry friction characteristics is a sufficiently smooth
manifold; see Sec. 4 for further details. The problem then is how to characterise and classify
abrupt transitions, such as the one observed in [Yoshitake and Sueoka, 2000] for a friction
oscillator which (i) cannot be explained in terms of bifurcations also observed in smooth
systems and (ii) involve a “slip to stick-slip” transition.

In this paper, we show that many of the bifurcations associated to the onset of stick-slip
motion in friction oscillators can actually be explained in terms of a novel class of bifurcations,
termed as sliding bifurcations, whose occurrence was independently reported in [Feigin, 1994]
and [di Bernardo et al., 2001c].

As reported in [Shaw, 1986], the starting point is to note that the stick phase in dry
friction oscillators can be linked with the so-called sliding mode studied in [Filippov, 1988] and
[Utkin, 1992]. Thus, periodic stick-slip motion in friction oscillators correspond to periodic
orbits characterised by segments of a sliding mode, or sliding orbits as they were recently
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Figure 1: Phase space topology of a system with discontinuous vector fields

termed in the literature [di Bernardo et al., 2001c]. In [Kowalczyk and di Bernardo, 2001], it
was shown that there are four distinct bifurcation scenarios termed as sliding bifurcations

associated to the birth and bifurcations of an orbit with a sliding segment. Sliding bifurcations
were shown to organise a variety of bifurcation scenarios including novel routes to chaos,
sliding-adding scenarios and multisliding behaviour; for further details see [di Bernardo et
al., 2001c].

We propose that these four distinct scenarios can also explain stick to stick-slip transitions
in dry-friction oscillators and bifurcations involving stick-slip periodic solutions. Recently, it
was shown that certain types of sliding bifurcations can be associated, under certain conditions,
to piecewise-linear normal form maps [di Bernardo et al., 2002]. Thus, as our analysis proves,
the onset of stick-slip chaos in friction systems can be rigorously classified using the theory
of border-collisions. Moreover, it can be shown that different types of sliding bifurcations are
associated with different functional forms of their normal form maps. Therefore, we anticipate
that they can be used to explain other bifurcation scenarios in friction oscillators which have
been left unexplained in the literature.

The rest of the paper is outlined as follows. In Sec. 2, the phase space topology we are
concerned with is introduced. Sliding bifurcations are defined and the four distinct sliding
bifurcation scenarios are presented. In Sec. 3, an analytical method to studying periodic
orbits undergoing sliding bifurcations is detailed. Particular attention is paid to the so called
grazing-sliding case. A discussion of the possible dynamical scenarios following grazing-sliding
bifurcations and how to classify them is also included. In Sec. 4 the dry friction oscillator
studied in [Yoshitake and Sueoka, 2000] is shown to exhibit grazing-sliding bifurcation. In
Sec. 5, the grazing-sliding bifurcation in the system of interest is examined using analytical
tools introduced in Sec. 3.1. Finally in Sec. 6, conclusions are drawn.

2 Sliding Bifurcations: an overview

2.1 Phase Space Topology

We focus our attention to systems with discontinuous vector fields. Such systems are char-
acterised by the presence of discontinuity boundaries in phase space between regions where
the vector field is smooth and continuous. We consider a sufficiently small region D ⊂ Rn of
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phase space where the equations governing the system flow can be written as:

ẋ =

{

F1(x, µ) for H(x) > 0,

F2(x, µ) for H(x) < 0,
(1)

where F1, F2 are sufficiently smooth vector functions and H(x) is some scalar function
depending on the system states. D is split into two subspaces, say G1 and G2, with smooth
and continuous dynamics. The discontinuity boundary between G1 and G2 we assume to be
a smooth hyperplane, say Σ. Namely:

G1 := {x ∈ Rn : H(x) > 0}, (2)

G2 := {x ∈ Rn : H(x) < 0}. (3)

Σ := {x ∈ Rn : H(x) = 0}. (4)

The resulting topology in the case of a three-dimensional vector field is shown schematically
in Fig. 1. If the vector field points towards Σ from both subspaces G1 and G2, a trajectory
hitting Σ is forced to evolve within the discontinuity set until reaching some point on it where
one of the two vector fields, F1 or F2, changes its direction (the boundary of the shaded region
in Fig. 1 denoted by Σ̂). The solution which lies within the system discontinuity set is termed
as sliding motion and the region of the discontinuity set where such a motion may occur is
labelled sliding region. Throughout this region the following condition must hold:

〈∇H,F2〉 − 〈∇H,F1〉 > 0, (5)

where ∇H denotes a vector which is normal to Σ and 〈∇H,Fi〉 denotes the component of the
vector field Fi along the normal to Σ. Following Utkin’s equivalent control method [Utkin,

Σ

2F

F1

Fs

Figure 2: Geometrical construction of the vector field Fs, which governs the flow within a
system discontinuity set Σ

1992], we can derive the vector field Fs, which governs the flow within the sliding region, as a
vector function belonging to the convex hull of F1 and F2:

Fs =
F1 + F2

2
+Hu

F2 − F1

2
, (6)

where −1 ≤ Hu ≤ 1. Hu(x) can be obtained in terms of F1 and F2 by considering that Fs

must be tangential to the switching manifold, i.e. 〈∇H,Fs〉 = 0.
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Using this condition, we have

Hu(x) = −
〈∇H,F1〉+ 〈∇H,F2〉
〈∇H,F2〉 − 〈∇H,F1〉

. (7)

Note that Utkin’s method is derived from straightforward geometric considerations as
illustrated by Fig. 2. In particular, the sliding vector field is obtained by considering a vector
function tangential to the switching manifold. Using this function, we can now define the
sliding region as:

Σ̂ := {x ∈ Σ : |Hu(x)| < 1}, (8)

and its boundaries:
∂Σ̂− := {x ∈ Σ : Hu(x) = −1}, (9)

∂Σ̂+ := {x ∈ Σ : Hu(x) = 1}. (10)

2.2 The four possible cases

We define sliding bifurcations as bifurcations due to interactions between a system periodic
solution and the boundary of the sliding region ∂Σ̂±. Following [Feigin, 1994], [Kowalczyk
and di Bernardo, 2001], [di Bernardo et al., 2002] we can distinguish four possible bifurcation
scenarios involving sliding (see Fig. 3). Figure 3-(a) depicts the scenario we term as sliding

c

b

a

b
c

a

c b a

b

a

c

(a) (b)

(c) (d)

Figure 3: The four possible bifurcation scenarios involving collision of a segment of the tra-
jectory with the boundary of the sliding region

bifurcation of type I. Under parameter variations, a piece of a trajectory (denoted by a
letter b in 3-(a) ) hits the boundary of the sliding region. Further variation of the parameters
causes the trajectory to hit Σ within Σ̂, yielding the formation of an additional segment of
the trajectory lying within the system discontinuity set (see in Fig. 3-(a) trajectory c).
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BIFURCATION sliding I grazing-sliding sliding II multisliding

CONDITION 1 H(x∗) = 0, ∇H(x∗) 6= 0

CONDITION 2 Hu(x
∗) = −1, ⇔ Fs = F1 ⇔ 〈∇H,F1〉 = 0 at x∗

CONDITION 3 〈∇H, ∂F1
∂x

F1〉 > 0 〈∇H, ∂F1
∂x

F1〉 < 0 〈∇H, ∂F1
∂x

F1〉 = 0

CONDITION 4 no condition defined 〈∇H,
(∂F1
∂x

)2
F1〉 < 0

Table 1: Analytical conditions for sliding bifurcations

In the case presented in Fig. 3-(b), instead, a section of trajectory lying in region G1

or G2 grazes the boundary of the sliding region from above (or below). Again, this causes
the formation of a section of sliding motion. This bifurcation is termed as grazing-sliding
bifurcation and as will be shown later in the paper it may cause a sudden jump to chaos.

A different bifurcation event, which we shall call sliding bifurcation of type II or
switching-sliding, is depicted in Fig. 3-(c). This scenario is similar to the sliding bifurcation
of type I shown in Fig. 3-(a). We see a section of the trajectory crossing transversally the
boundary of the sliding region. Now, though, the trajectory stays locally within the sliding
region instead of zooming off the switching manifold Σ.

The fourth and last case is the so-called multisliding bifurcation, shown in Fig. 3-(d). It
differs from the scenarios presented above since the segment of the trajectory which undergoes
the bifurcation lies entirely within the sliding region Σ̂. Namely, as parameters are varied, a
sliding section of the system trajectory hits tangentially (grazes) the boundary of the sliding
region. Further variations of the parameter cause the formation of an additional segment of
trajectory lying above or below the switching manifold, i.e. in region G1 or G2.

To each of these four scenarios, we can associate a set of analytical conditions describing
the system properties at the bifurcation point [di Bernardo et al., 2002]. These are summarised
in Table 1.

3 Classification of sliding bifurcations

Once a bifurcation event has been detected in a system of interest, a fundamental problem is to
predict the dynamical scenario associated with it. For example, when bifurcations in smooth
systems are considered, the derivation of appropriate normal forms allows the classification
of different bifurcation types such as saddle-nodes, Hopf and period-doublings [Kuznetsov,
1995]. As shown in [di Bernardo et al., 2002] and discussed above, piecewise smooth systems
exhibit bifurcations, such as those involving sliding, which cannot be classified using standard
techniques. In particular, the same bifurcation event can be associated to different dynamical
scenarios according to the properties of the system vector field locally to the bifurcation point.

Recently, a new classification strategy has been proposed to identify the dynamical scenar-
ios due to the onset of a sliding bifurcation, and more generally a non-standard bifurcation in
piecewise smooth systems. To illustrate the methodology we take as a representative example
the case of a periodic orbit undergoing a grazing-sliding bifurcation such as the one depicted
in Fig. 2(b). A similar procedure can be used to classify other types of sliding bifurcations.

3.1 The Grazing-Sliding case

For the sake of clarity, we consider the simplest possible scenario for a periodic orbit to undergo
a grazing-sliding bifurcation. Namely, we consider the periodic orbit, shown in Fig.4, that goes
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through a point A on the boundary of the sliding region Σ̂ satisfying conditions for this case,
but otherwise lying entirely in region G1.

Π2

Π1

 A

B

Figure 4: Simplest orbit undergoing grazing-sliding bifurcation

To study stability and bifurcations, we then consider a section Π1 transversal to the flow
in region G1 and a section Π2 := {x ∈ Rn : Hu(x) = −1} going through point A transversal
to flow φ1. The full Poincaré map, P , maps Π1 back to itself and is obtained by composition
of the following mappings:

• P12 : Π1 7→ Π2,

• P22 : Π2 7→ Π2,

• P21 : Π2 7→ Π1.

Note that P12 and P21 are smooth maps and of full rank since they are obtained from the flow
φ1, i.e. by considering the system evolution in region G1. The mapping P22, instead, is the
one whose effect is to take into account the presence along the trajectory of the sliding region.
In particular, such mapping is simply the identity if the trajectory does not interact with the
sliding region (i.e. before the bifurcation event) while introduces a discontinuity otherwise. In
order to classify the dynamical scenarios following a grazing-sliding we then need to:

1. derive the analytical form of the mapping P22 (the discontinuity map);

2. study the dynamics of the Poincaré map of the bifurcating orbit.

It is worth mentioning here that, as recently shown in [di Bernardo et al., 2002], the
functional form of the discontinuity map depends uniquely on the bifurcation type considered
and can be obtained in closed form through a combination of asymptotics and Taylor series
expansion.

Note that in the case of periodically forced systems the discontinuity map P22 and mappings
P12, P22 correspond to “parts of” a stroboscopic map. Hence, the correction brought about
by the discontinuity map should be such that the period of the orbit remains unperturbed. In
this case P22 is often termed as a zero-time discontinuity map or ZDM.

In the case of non-periodically forced systems or when the introduction of a stroboscopic
map is not possible, the ZDM needs to be composed with some projection mapping M , which
maps the correction back to section Π2. The composition of the ZDM and the projection
mapping M is then referred to as a Poincaré Discontinuity Mapping or PDM.

In what follows, we outline briefly the derivation of the ZDM for the grazing-sliding bi-
furcation under investigation. This will be used later in Sec. 4 to characterise the complex
behaviour of a dry-friction oscillator. (More details about the methodology used is presented
in [di Bernardo et al., 2002], where the derivation of normal form maps for all types of sliding
bifurcations can be found.)
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Σ

ZDM

Σ̂

x0

x̄x̂

φ1(x̂,−∆+ δ)

φ1(εx0,−δ)

φs(x̄,∆)

G2

G1

x1

Figure 5: Schematic representation of constructing the ZDM for the case of grazing sliding
bifurcation

3.1.1 The Grazing-Sliding Discontinuity Map

The key to derive the normal form map of a grazing-sliding bifurcation is to use the idea
recently introduced in [Nordmark, 1991]. This is graphically sketched in Fig. 5 where the
periodic orbit is shown after the grazing-sliding bifurcation and therefore contains a sliding
segment (denoted by a solid line joining x̄ and x̂ points).

Namely, there are two alternative ways of describing the evolution of the sliding orbit in
Fig. 5. The first is to use flow φ1 until reaching the sliding region (point x̂), switching then
to the natural, sliding flow φs, until the trajectory reaches the boundary of Σ̂ when flow φ1 is
used again.

The other way to describe the orbit shown in Fig. 5 is to use flow φ1 all way through (even
if the orbit crosses the sliding region), applying an appropriate correction at an intermediate
point to account for the presence of the sliding region. Such a correction is actually the
discontinuity map and contains all the crucial information concerning the influence of the
sliding region on the evolving trajectory (the map from x0 to x1 in Fig. 5).

To construct an analytical approximation of the ZDM, the methodology presented in [di
Bernardo et al., 2002] can be used. This is based on three different steps: (i) firstly, we consider
the evolution of the trajectory from the point x0 backward in time to the point x̄ ∈ Σ̂; (ii)
we then study the sliding motion from x̄ to the boundary of the sliding region (point x̂) (iii)
finally, we consider the evolution along φ1 from the point x̂ to some final point x1. In so doing,
we require that the elapsed time to get from the point x0 to x1 is equal to 0. Note that the
final point x1 does not lie on the boundary of the sliding region ( section Π2 in Fig. 4) since
it is evaluated from x̂ following flow φ1.

Using a combination of Taylor series expansion and asymptotics (as detailed in [di Bernardo
et al., 2002]), it can be shown that the grazing-sliding bifurcation is associated to leading-order
to the following discontinuity map (P22):

x1 = D(x0) =







x0 if 〈∇H,x0〉 ≥ 0

x0 − 〈∇H,x0〉
〈∇H,F2〉(F2 − F1) +O(ε3/2) if 〈∇H,x0〉 < 0

, (11)

Note that (11) is the identity below the sliding region (region G1) and contains a linear
leading-order term otherwise.

From (11) we see that the correction brought about by the ZDM, in the grazing-sliding
case cannot be parallel to the vector field F1, as it has the direction of (F2 − F1). If, in fact,
(F2−F1) were parallel to F1, then sliding would not be possible. Hence, when non-stroboscopic
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mapping are considered, the composition of the ZDM with the projection map M does not
cancel out the leading-order term and the discontinuity is still of linear order.

From what mentioned above, the derivative of the Poincaré map P describing the periodic
orbit is discontinuous at the bifurcation point. Naturally the same holds true for the strobo-
scopic map composed directly with the ZDM for grazing-sliding. Thus, for such mappings we
cannot conclude that the periodic orbit will persist under parameter variations that would force
it to acquire a sliding portion. To classify the bifurcation scenarios following a grazing-sliding
event, one should therefore refer to the literature concerning border-collision bifurcations in
piecewise-linear maps [Nusse and Yorke, 1995, Nusse and Yorke, 1992, di Bernardo et al., 1999]
(see Sec. 5 for further details).

Finally, if the orbit survives the bifurcation, we can expect a jump in eigenvalues as the
periodic orbit acquires a sliding portion. The jump in eigenvalues is nicely illustrated by
the fact that a sliding periodic orbit must have at least one eigenvalue 0, whereas no such
restriction exists for an orbit lying entirely in region G1.

3.2 Discontinuity maps of other sliding bifurcations

As shown in [di Bernardo et al., 2002], other types of sliding bifurcations in general are
associated with discontinuity maps of the form :

x 7→
{

A1x+Bµ, if cTx < 0

A2x+D(cTx)γ +Bµ, if cTx > 0.
(12)

where A1, A2, B, c
T and D are appropriate matrices and:

• γ = 1 in the grazing-sliding case (scenario (b) in Fig. 3);

• γ = 2 in the multisliding case ((scenario (d) in Fig. 3);

• γ = 2 in the sliding bifurcation type I (scenario (a) in Fig. 3);

• γ = 3 in the sliding bifurcation type II (scenario (c) in Fig. 3)

Normal form maps are therefore characterised by different nonlinearities according to the
bifurcation scenario they describe. Piecewise-linear normal form maps are only associated to
the grazing-sliding case.

4 Sliding Bifurcations in Dry Friction Oscillators

As anticipated in the introduction, the stick phase of the dynamics of friction oscillators can be
analysed as a segment of sliding motion [Shaw, 1986]. Thus, the sliding bifurcation scenarios
presented in the previous section are likely to occur in this important class of dynamical
systems and can be used to explain the complex dynamics often reported in the literature.

Evidence to support this conjecture can be found in [Hinrichs et al., 1998], where a class
of friction oscillators is subject to an extensive experimental and numerical investigation. The
oscillator studied therein exhibits transitions from periodic orbits without any stick phase to
periodic orbits characterised by one or more stick phases per period. In view of our results,
such transition can be classified as a sliding bifurcation type I. The formation of an orbit
characterised by a multiple number of stick phases per period observed in the paper clearly
indicates the occurrence of a cascade of sliding bifurcations.

A more intriguing scenario is exhibited by the dry friction oscillator studied in [Yoshitake
and Sueoka, 2000], which is numerically shown to exhibit a route to chaos characterised by the
abrupt transition from slip periodic motion to stick-slip chaotic behaviour. The bifurcation
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Figure 6: Orbit of the period 4T undergoing grazing-sliding bifurcation for ν = 1.7077997
(a); Zoom of the region where grazing-sliding occurs - segment of an orbit at and before the
bifurcation (b). The dash-dotted segment correspond to the periodic orbit for ν = 1.7082 that
clearly does not reach the switching manifold. Variation of the parameter ν below 1.7077997
causes the birth of aperiodic mode of stick-slip motion.

mechanism causing the onset of such aperiodic motion is left unexplained by the authors who
conjecture that it must be due to some type of non-smooth bifurcation without offering any
analytical explanation.

In what follows we will use the theory of sliding bifurcations and their normal form maps
to unfold this bifurcation scenario. We will use the oscillator presented in [Yoshitake and
Sueoka, 2000] as an illustrative example to propose sliding bifurcations as a fundamental
mechanism in organising the dynamics of friction oscillators.

Following [Yoshitake and Sueoka, 2000], the dry friction oscillator under investigation in
the dimensionless form can be expressed as:

ÿ + y = f(1− ẏ) + F cos(νt), (13)

where:
f(1− ẏ) = α0sgn(1− ẏ)− α1(1− ẏ) + α2(1− ẏ)3 (14)

is a kinematic friction characteristic and 1− ẏ corresponds to a relative velocity between the
driving belt and moving block. In the case when 1 − ẏ = 0 the relative velocity is 0 and the
kinematic friction is set valued i.e.: −α0 < f(1 − ẏ) < α0. The coefficients of the kinematic
friction characteristic i.e.: α0, α1, α2 are positive constants. F is an amplitude, ν a normalised
angular velocity and T a period of the forcing term.

An extensive numerical study of the aforementioned oscillator allowed the detection of var-
ious dynamical scenarios including incomplete period doubling cascade, abrupt transitions to
chaos and different modes of subharmonic motion (for details we refer the reader to [Yoshitake
and Sueoka, 2000]).

We focus, in particular, on the bifurcation scenario giving rise to the sudden emergence of
chaotic stick-slip motion shown in Fig. 6(a). The bifurcation was detected for parameter values
α0 = 1.5, α1 = 1.5, α2 = 0.45, F = 0.1, under variation of the bifurcation parameter ν in a
neighbourhood of ν = 1.7078. As shown in Fig. 6(a), at the bifurcation point, a 4T -periodic
orbit grazes the switching manifold at the boundary of the sliding region (denoted in the
figure by a short vertical line) for ν = 1.7077997. According to what mentioned earlier in the
paper, the observed scenario corresponds to a grazing-sliding bifurcation, as the bifurcating
orbit grazes from below the boundary of the region where stick motion can take place. This
can be more clearly seen in Fig. 6(b).
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Figure 7: Bifurcation diagram obtained from the numerical integration of the system un-
der consideration (a) and a period chaotic trajectory in the neighbourhood of the switching
manifold.

The existence of a chaotic attractor for ν < 1.7077997 was confirmed by computing the
Lyapunov exponents as reported in [Yoshitake and Sueoka, 2000]. As shown in Fig. 7(b) the
chaotic motion is characterised by stick-slip motion.

Using the analytical approach presented in the previous sections, we will now try to char-
acterise these numerical results by carrying out an appropriate analysis of the system at the
bifurcation point.

We start by putting system (13) under consideration in the general form (1). Setting
νt = τ , x1 = y, x2 = ẏ, we can express (13) as a set of first order ODE’s with discontinuous
right-hand side of the form:

ẋ1 = x2, (15)

ẋ2 = −x1 + α0sgn(1− x2)− α1(1− x2) + α2(1− x2)
3 + F cos(τ), (16)

τ̇ = ν. (17)

The switching surface Σ, in this case can be defined as:

Σ := {x ∈ R3 : H(x) = 1− x2 = 0}, (18)

where x =
[

x1 x2 τ
]T

and H(x) = 1 − x2 is a scalar function defining the switching
manifold.

Thus, the normal to Σ is the vector:

∇H =
[

0 −1 0
]

. (19)

The dynamics of the system is smooth and continuous when H(x) is non-zero and is governed
by the vector fields:

F1 =





x2

−x1 + α0 − α1(1− x2) + α2(1− x2)
3 + F cos(τ)

ν



 when H(x) > 0 (20)

and

F2 =





x2

−x1 − α0 − α1(1− x2) + α2(1− x2)
3 + F cos(τ)

ν



 when H(x) < 0 (21)
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According to our analysis, sliding motion (stick) is possible if condition (5) is satisfied, i.e. if:

α0 > 0 (22)

The condition above holds true since it is assumed that the coefficients of the kinematic friction
characteristic (14) are positive.

Using Utkin’s equivalent control method we can define the vector field Fs which governs
the flow on the switching manifold, as described in (6). Substituting (20) and (21) into (6),
we then get the following expression for the sliding flow Fs :

Fs =





x2

−x1 − α1(1− x2) + α2(1− x2)
3 + F cos(τ)−Hu(x)α0

ν



 (23)

where −1 < Hu(x) < 1. Since, the vector field Fs must lie on the switching manifold Σ, we
have:

〈∇H,Fs〉 = 0, (24)

and using (7), we can express Hu(x) as:

Hu(x) = −
x1 + α1(1− x2)− α2(1− x2)

3 − F cos(τ)

α0
. (25)

The sliding region Σ̂ can then be defined as:

Σ̂ = {x ∈ Σ : −1 ≤ −x1 + F cos(τ)

α0
≤ 1}. (26)

To carry out the analytical investigation of the bifurcation point under consideration, it is
useful to assume that the bifurcation point x∗ occurs at the origin. Since, in our case the bifur-
cation point is

(

x∗1 x∗2 τ∗
)

=
(

α0 + F cos(τ ∗) 1 τ∗
)

=
(

1.41987 1.00000 3.78286
)

we consider an appropriate translation of the system coordinates. Namely, we choose the new
set of local coordinates as x̃1 = x1 − x∗1, x̃2 = x2 − x∗2, τ̃ = τ − τ ∗. Under this choice of
coordinates, the vector fields F1, F2 and Fs become:

F̃1 =





1 + x̃2

f2

ν



 , (27)

F̃2 =





1 + x̃2

−2α0 + f2

ν



 , (28)

and

F̃s =





1 + x̃2

0
ν



 , (29)

where
f2 = −x̃1 + α1x̃2 − α2x̃

3
2 + F (cos(τ ∗ + τ̃)− cos(τ ∗)) . (30)

Similarly, we obtain the functions H̃ and H̃u as:

H̃(x̃) = −x̃2, (31)

H̃u(x̃) = −1 +
f2

α0
. (32)
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By definition the bifurcation point in a new set of coordinates is translated to the origin
i.e.:

(

x̃∗1 x̃∗2 x̃∗3
)

=
(

0 0 0
)

therefore, we can write:

F̃1(0) = F̃s(0) =





x∗2
0
ν



 . (33)

We can now check that the set of analytical conditions which identify a grazing-sliding
bifurcations (see Tab. 1) are indeed satisfied at the bifurcation point under investigation. In
fact, we get:

1. H̃(0) = 0,

2. H̃u(0) = −1,

3. 〈∇H̃, ∂F̃1
∂x

F̃1〉 = 1 + νF sin(τ ∗) = 0.8971661 > 0.

Thus, at the aforementioned value of x∗, the system satisfies all three conditions and it
is therefore proven that the bifurcation event described in [Yoshitake and Sueoka, 2000] is
indeed due to a grazing-sliding bifurcation. We now show how knowledge of this can be
used to classify analytically the observed bifurcation scenario and hence explain the sudden
appearance of a chaotic attractor using the theory of border-collisions.

5 Explaining the onset of chaotic behaviour

5.1 Classification of grazing-sliding: the discontinuity map

Following the analysis introduced in the previous section, the first step to characterise the
occurrence of the grazing-sliding bifurcation detected in the friction oscillator of interest (see
Fig. 6) is to derive an appropriate Poincaré mapping describing the bifurcating solution. In
our case, we have a forced dynamical system with the bifurcating orbit being of period 4T ,
i.e. four times the period T of the external forcing. Thus, the natural Poincaré map is a
4T -stroboscopic mapping, say P4T , which we assume to be affine and well represented by its
linear terms, i.e.

P4T : x̃n+1 = Ax̃n +Bν̃ =

(

a11 a12

a21 a22

)

x̃n +

(

b1
b2

)

ν̃ (34)

where x̃n is the two-dimensional state vector x̃n =
[

x̃1n x̃2n

]T
and ν = ν̃ + ν∗ with

ν∗ = 1.7077997, obtained by sampling the system states at time instants multiples of 4T.
Note that we assume the map to be affine and sufficiently smooth away from the bifurcation

point, i.e. when the orbit does not contain any segment of sliding (stick) motion. Smoothness
is lost under parameter variation as the orbit grazes and then enters the sliding region.

For the 4T periodic orbit of interest computed earlier when ν∗ = 1.7077997, we find that:

a11 =
∂x̃1n+1

∂x̃1n
= −1.85, a12 =

∂x̃1n+1

∂x̃2n
= 4.396, a21 =

∂x̃2n+1

∂x̃1n
= −1.14,

a22 =
∂x̃2n+1

∂x̃2n
= 2.704, b1 =

∂x̃1n+1

∂ν
= 4.498 b2 =

∂x̃2n+1

∂ν
= −1.755 (35)

The coefficients of matrices A and B shown above can be obtained numerically by con-
sidering small perturbations of each component of vector x̃ and parameter ν while the other
components and parameters are kept fixed. Note, that the matrix A involved is nonsingular,
which is all that is required for the linear approximation to be valid.
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Figure 8: Numerical and analytical mappings at the bifurcation value of the control parameter
ν

To capture the influence of the grazing-sliding event, according to what presented above,
we then need to compose (34) with the normal-form map for grazing-sliding given by (11). In
the case of the friction oscillator (13) under discussion, this mapping takes the form:

D(x̃n) =











x̃n if 〈∇H̃, x̃n〉 ≥ 0,

x̃n − 〈∇H̃, x̃n〉
〈∇H̃, F̃

〉
2

(F̃2 − F̃1) if 〈∇H̃, x̃〉 < 0,
(36)

Substituting (19), (27), (28) for ∇H̃, F̃1, F̃2 respectively and considering that the state
variables of interest are x1 and x2, (36) becomes:

D(x̃n) =

{

x̃n if x̃2n < 0,

x̃n + Cx̃n if x̃2n > 0.
(37)

where C =

(

0 0
0 −1

)

. To obtain the complete Poincaré mapping describing the orbit close

to the bifurcation point, we now compose (37) with (34). Hence, we get that such Poincaré
map is given by:

x̃n+1 =

{

A1x̃n +Bν̃ if x̃2n < 0,

A2x̃n +Bν̃ if x̃2n > 0,
(38)

where A1 = A and A2 = A+AC; or equivalently,

x̃n+1 =























(

a11 a12

a21 a22

)

x̃n +

(

b1

b2

)

ν̃ if x̃2n < 0,

(

a11 0

a21 0

)

x̃n +

(

b1

b2

)

ν̃ if x̃2n > 0.

(39)

The comparison between a map obtained numerically and the analytical mapping (39) is
shown in Fig. 8. The figure depicts one dimensional projections of the 2-dimensional mapping
(39). Coordinates x̃1n+1 and x̃2n+1 are plotted versus x̃2n with x̃1n ≡ 0 ∀n.

It is worth mentioning here that to retrieve a map obtained from numerical simulations of
a system under consideration the stroboscopic map needs to be applied at some value of x̃1,

say x̃1 ≡ x̃10 ∀n such that x̃10 6= 0 but is applied at the close neighbourhood of 0.
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The stroboscopic mapping of the bifurcating orbit has a piece-wise linear functional form
(39). Hence the grazing sliding of the periodic solution under investigation correspond to
a so-called border-collision of its corresponding map. In practice, as the periodic orbit hits
tangentially the boundary of the sliding region (grazing sliding), the associated fixed point of
map (39) crosses the boundary x̃2 = 0 across which the map takes two different functional
forms.

5.2 Classification of grazing-sliding: border-collision scenario

To predict and classify the scenario exhibited by the system past the bifurcation point, we
can now use the classification scheme for border-collision bifurcations in piecewise-linear maps
recently proposed in [di Bernardo et al., 1999]. According to this strategy, to predict analyt-
ically the dynamical behaviour of the system at the grazing-sliding bifurcation, one needs to
count the number of real eigenvalues of map (39) on both sides of the discontinuity boundary
i.e.: for x̃2n < 0 and x̃2n > 0. Namely, we denote by σ+

1 and σ+
2 the number of real eigenvalues

greater than 1 of matrices A1 and A2 respectively in equation (38). Similarly, we term σ−1 ,
σ−2 the number of real eigenvalues lower than −1 of the same matrices.

It is then possible to show that using these quantities, one can classify among the three
following simplest scenarios (see [di Bernardo et al., 1999] for further details).

1. Border-crossing: if σ+
1 +σ+

2 is even, the bifurcating orbit (without any stick phase) will
simply change into an orbit characterised by a sliding segment of the same periodicity
(i.e. a stick-slip periodic motion);

2. Nonsmooth saddle-node: if σ+
1 + σ+

2 is odd the bifurcating orbit will collide with an
unstable sliding one on the boundary of the sliding region and disappear;

3. Nonsmooth period-doubling: if σ−1 + σ−2 is odd, a period-doubling will be observed
and the bifurcation will cause the formation of a sliding orbit with doubled period (with
respect to bifurcating periodic solution).

In the case under investigation, the eigenvalues of A1 in (39) are λ11 = 0.0107, λ12 = 0.8433
while those of A2 are λ21 = 0, λ22 = −1.8500. Hence, σ+

1 +σ+
2 = 0 is even while σ−1 +σ−2 = 1 is

odd. Therefore, according to the classification strategy presented in [di Bernardo et al., 1999],
at the grazing-sliding bifurcation point we will observe the transition from the non-sticking
bifurcating orbit to two coexisting sliding solutions; an orbit sharing the same periodicity of
the bifurcating one and a period-doubled periodic solution.

Moreover, since λ22 is outside of the unit circle, the sliding orbit born through the aforemen-
tioned smooth transition will be unstable. Similarly, as the eigenvalues of the second-iterate
of map (39) also lie outside the unit circle, the nonsmooth period-doubling will give rise to an
unstable orbit.

Hence, we can conclude that at the grazing-sliding, the bifurcating orbit will not persist.
Namely, the transition will be observed from the stable 4T -periodic solution (without any
stick phase) to at least two coexisting unstable solutions: an unstable sliding orbit of period
4T and an unstable 8T -periodic solutions.

Note that because of its applicability to general n-dimensional systems, the classification
strategy above does not offer any information on the possible existence of aperiodic solutions
or periodic orbits of periodicity higher than 2 past the bifurcation point. This must be checked
a posteriori by using appropriate tools from nonlinear dynamics and is only feasible, as we
write, for low-dimensional maps.

In our case, as the Poincaré map of the orbit under investigation is two-dimensional
we can gather this extra information by using the classification of border-collisions in two-
dimensional piecewise-linear maps recently presented in [Nusse and Yorke, 1995], [Banerjee
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and Grebogi, 1999]. Briefly, this strategy consists of a set of inequalities involving the trace
and the determinant of the map matrices on both sides of the boundary. Here, we present
only the final results. For a more detailed description of the method, we refer the reader to
[Banerjee and Grebogi, 1999].

Following, [Nusse and Yorke, 1995], [Banerjee and Grebogi, 1999] we calculate the appro-
priate quantities and find that they satisfy the following inequality:

1. 2
√
δ1 < τ1 < (1 + δ1),

2. τ2 < −(1 + δ2),

where δ1 = λ11λ12 = 0.009, δ2 = λ21λ22 = 0, τ1 = λ11 + λ12 = 0.8540, τ2 = λ21 + λ22 = −1.85
are the determinants and traces of the map matrices A1 and A2 on both sides of the boundary.
As shown in in [Banerjee and Grebogi, 1999], this implies that a chaotic attractor will be
coexisting with the unstable orbits detected above past the grazing-sliding bifurcation point.

Hence, the numerical results reported in [Yoshitake and Sueoka, 2000] and depicted in Fig.7
are confirmed and explained analytically, confirming the role of grazing-sliding in causing the
transition from periodic non-sticking solutions to fully blown chaotic stick-slip motion.

6 Conclusions

It was shown that a novel class of bifurcations, so-called sliding bifurcations, play an impor-
tant role in dry friction oscillators. Normal form maps (discontinuity maps) describing these
bifurcations were introduced. These normal form maps allow us to derive the Poincaré map
describing the system behaviour close to the bifurcation point. This map can then be used to
classify hence predict analytically the scenarios following a sliding bifurcation.

A dry friction oscillator, recently reported in the literature, was used as an illustrative ex-
ample and analysed from the standpoint of sliding bifurcation theory. It was shown that the
bifurcation of a periodic orbit leading to the onset of chaotic motion (reported in [Yoshitake
and Sueoka, 2000]), accompanied by a slip to stick-slip transition, can be explained in terms
of a grazing-sliding bifurcation. Detailed analysis showed how the grazing sliding bifurcation
translates into a piecewise linear Poincaré map (PWL) describing the system dynamics close to
the bifurcation point. Thus, the conjecture, often made in the literature, that bifurcations in
friction oscillators correspond to so-called border-collisions of piecewise linear maps, was rigor-
ously proven and linked to the occurrence of grazing-sliding bifurcations of the corresponding
flow.

We wish to emphasise that only in this case, the classification schemes developed for
border-collision in PWL maps ([di Bernardo et al., 1999], [Banerjee and Grebogi, 1999]) can
be used to predict the dynamical scenario following the bifurcation. Their application was
reported for the friction oscillator under investigation. It was shown that the route to chaos
in this system is associated to a grazing-sliding bifurcation causing the sudden appearance of
chaotic stick-slip motion.

We anticipate that sliding bifurcations are bound to be a common feature in friction
systems and more generally vibro-impacting mechanical systems. The approach described in
this paper can then be used effectively to explain the occurrence of complex behaviour and
predict unwanted dynamics.

Further work will be directed towards the analysis of other types of sliding bifurcations in
friction oscillators and other systems of relevance in applications, with particular attention to
higher-dimensional systems. A pressing open problem is the classification of border-collisions
in maps which are locally piecewise-smooth but not piecewise-linear.
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Hinrichs, N., Öestreich, M. and Popp, K. [1998] ”On the modelling of friction oscillators”,
Journal of Sound and Vibration 216(3), pp. 435–459.

Nordmark, A. B. [1991] ”Non-periodic motion caused by grazing incidence in impact oscilla-
tors”, Journal of Sound and Vibration 2, pp. 279–297.

Nusse, H. E. and Yorke, J. A. [1992] ”Border-collision bifurcations including ‘period two to
period three’ for piecewise smooth systems”, Physica D 57, pp. 39–57.

Nusse, H. E. and Yorke, J. A. [1994] ”Border collision bifurcation: an explanation for observed
bifurcation phenomena”, Physical Review E 49, pp. 1073–1076.

Nusse, H. E. and Yorke, J. A. [1995] ”Border–collision bifurcations for piece-wise smooth
one-dimensional maps”, International Journal of Bifurcation and Chaos 5, pp. 189–207.
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