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GEODESIC PARAMETRIZATION OF
GLOBAL INVARIANT MANIFOLDS
OR
WHAT DOES THE EQUADIFF 2003 POSTER SHOW?

B. KRAUSKOPF AND H.M. OSINGA

Department of Engineering Mathematics, Queen’s Building,
University of Bristol, BS8 1TR, United Kingdom

We demonstrate the use of an algorithm to compute a two-dimensional global
invariant manifold as a sequence of approximate geodesic level sets. The resulting
information of the parametrization by geodesic distance can be used to visualize
and even crochet the manifold. This is illustrated with the example of the stable
manifold of the origin in the Lorenz system, which is also shown on the Equadiff
2003 poster.

Applications often give rise to mathematical models in the form of a low-
dimensional system of ordinary differential equations. Well-known exam-
ples are periodically forced systems, Chua’s circuit and the Lorenz system?,
which we use as the guiding example below. In order to understand the
global dynamics one needs to find invariant objects, such as equilibria, pe-
riodic orbits and, if they are of saddle-type, also their stable and unstable
manifolds. These manifolds are global objects that need to be computed
numerically.

For definitenes, we consider here only the case of a saddle point of a
vector field in R®. To be even more specific, we use throughout the example
of the stable manifold of the origin in the Lorenz system?

.’i,':U(y—.T),
y=or—y—uz, (1)
Z=uxy— f[z.

We use the standard values of the parameters ¢ = 10, ¢ = 28, and 8 =
8/3. The stable manifold of the origin globally organizes how trajectories
approach and subsequently follow the well-known Lorenz attractor. This
global manifold has emerged as a kind of benchmark example for computing
global (un)stable manifolds.
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In this paper we explain how the manifold can found by computing
geodesic level sets for increasing geodesic distance — effectively finding
a set of growing smooth topological circles in R3. The idea of viewing
the manifold as a one-parameter family of topological circles is also used
in Refs. [1,2]. A version of our algorithm to compute two-dimensional
(un)stable manifolds of maps is described in Ref. [4]. We refer to Ref. [7]
for a more complete overview over recent methods for computing global
manifolds.

Let us now consider the stable manifold W#(0) in the Lorenz system (1);
for examples of other two-dimensional (un)stable manifolds see Refs. [5,7].
Let dy(2,y) denote the geodesic distance between points z,y € W*(0), that
is, the arclength of the shortest path in W#*(0) connecting x and y. The
geodesic parametrization of W#(0) is the family

{Sp}n>0 where Sy :={z € W*(0) | dy(x,0) =n}. (2)

An important property is that {S,},>0 does not depend on the dynamics on
W#(0), but only on its geometry. The manifold W?(0) is smooth and tan-
gent to the stable eigenspace E*(0) at 0. Hence, there exists 0 < pax < 00
such that S, is a single smooth topological circle without self-intersections
for all 0 < 7 < Nmax °. It appears that for the manifold W#(0) in the Lorenz
system we have that ny.x = co.

Our algorithm approximates a finite set of growing geodesic level sets
Sy;, represented by a circular list M; of mesh points. Inbetween mesh points
of M; we use linear interpolation to obtain the piece-wise linear, continuous
representation C; of S,,;. The manifold W?*(0) itself is enlarged at step ¢ by
adding a band, which is given as a suitable triangulation generated by the
points in M;_; and M;. The resulting mesh is nice (not distorted and with
a controlled interpolation error), subject to certain accuracy parameters.
In fact, the mesh that we compute is so regular that it can be used as a
crochet pattern; see already Fig. 1.

To start a computation we choose the first geodesic circle Sy, as a small
circle in E#(0) around the origin. Hence, the mesh representation Mj is
a finite set of equidistant points on a circle in E*(zy) at some prescribed
distance ¢ from 0.

Suppose now that we have computed My up to M; and need to find
the points of M;y; forming the next approximated geodesic level set at
geodesic distance 1,11 = n; + A;. Here A, is a prescribed increment that is
adapted according to the local curvature along geodesics. The mesh M;;
is obtained pointwise. Let r € M; and define F, as the plane through r
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Figure 1. Two views of the stable manifold of the Lorenz system, crocheted by H.O.
up to geodesic distance 106.75.

that is ‘most perpendicular’ to C; at r. Then W(0) intersects F,. in a well-
defined one-dimensional curve locally near r. This curve is parametrized
by integration time 7 as the family of orbits starting in F, and ending
in C;. This family of two-point boundary value problems can be followed
by continuation, starting from the trivial solution, namely the solution for
7 = 0 consisting only of the point 7. When the solution of the boundary
value problem is reached for which the initial condition b, in F,. is distance
A; from r then the point b, is accepted as a new point of M;, .

Mesh points are added or removed during a computation in a way that
guarantees a global bound on the interpolation error. The computation
stops when either nm.x or a prescribed total geodesic distance is reached.
Our method is presently implemented for manifolds of dimension two in an
ambient space of any dimension; see Refs. [5,7] for details.

Computing a set of approximate geodesic level results in a very regular
mesh on W#(0) that only depends on the geometry of the manifold, and
not on the dynamics on it. Furthermore, information on geodesic distance
can be used to visualize the manifold; see also Ref. [6]. In fact, the mesh
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that we compute can be directly interpreted as a crochet pattern. The
increment A; determines the type of crochet stitch to be used for the next
round. Where new mesh points were added or removed crochet stitches
are made two-in-one or worked together, respectively. The total number of
points in M; correspond to the total number of crochet stitches in round i.
Each round of crochet stitches of the appropriate length then generates a
new band of the manifold.

Figure 1 shows a crochet model of the manifold W*(0) up to geodesic
distance 106.75. Successive bands were made using alternating colours of
yarn to highlight the different bands, of which there are 45 in total. The
last round consists of 1065 crochet stitches. The crochet manifold is a very
floppy object and quite out of shape, illustrating dramatically that it is in
fact a topological disk. To embed this disk properly into R?, that is, to get
the crochet model of W#(0) into shape, we used a loop of 3 mm garden wire
around the entire outer perimeter, as well as along the invariant z-axis and
the strong stable manifold. With the help of a computer generated image
of W#(0), the crochet manifold was then bent into shape.

To further illustrate the geometric embedding of W#(0) into R® on the
computer it is possible to assign colour according to geodesic distance.
Furthermore, one can only show every other band to obtain a see-through
effect; see also Ref. [6]. However, as the manifolds starts to scroll into the
Lorenz attractor, it becomes increasingly difficult to see how this happens
exactly. As a remedy we consider only the part of W#(0) that lies inside a
sphere of some fixed radius around the point (0,0,27) on the z-axis right
between the two symmetric saddle points.

Figure 2 shows the Lorenz manifold computed up to geodesic distance
151.75 inside the sphere of radius 60. The necessary clipping of the data
was done with the visualization package GeomView®, which was used for
all of our computer images. Fig. 2 (a) shows all bands and Fig. 2 (b) — the
main image on the Equadiff 2003 poster — shows only every second band.
The color scheme indicating geodesic distance from the origin is visible in
the inset images on the Equadiff 2003 poster and on the cover of this book.

In conclusion, computing the geodesic parametrisation of a global man-
ifold results in a representation by a mesh of high quality. Furthermore, the
information of the geodesic distance and the band structure of the mesh can
be used effectively to visualize complicated manifolds, such as the Lorenz
manifold discussed here. This provides an advanced tool for the study of
global dynamics of low-dimensional vector fields — and many interesting
and challenging crochet projects.
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Figure 2. The part of the stable manifold of the Lorenz system (computed up to geodesic
distance 151.75) that lies inside a sphere around (0, 0,27) of radius 60. In panel (a) all
geodesic bands are shown, while in panel (b) only every other band is shown. Reprinted
from Computers and Graphics 26, B. Krauskopf and H.M. Osinga, Visualizing the struc-
ture of chaos in the Lorenz system, pp. 815-823, © (2002), with permission from Elsevier.
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