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CONTINUATION OF BIFURCATIONS IN PERIODIC DELAY DIFFERENTIAL
EQUATIONS USING CHARACTERISTIC MATRICES

RÓBERT SZALAI∗, GÁBOR STÉPÁN†, AND S. JOHN HOGAN‡

Abstract. In this paper we describe a method for continuing periodic solution bifurcations in periodic delay-
differential equations. First, the notion of characteristic matrices of periodic orbits is introduced and equivalence
with the monodromy operator is proved. An alternative formulation of the characteristic matrix is given, which
can efficiently be computed. Defining systems of bifurcations are constructed in a standard way including the
characteristic matrix and its derivatives. For following bifurcation curves in two parameters, the pseudo-arclength
method is used combined with Newton iteration. As a test example, an interrupted machining model is analyzed.
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1. Introduction. The aim of this paper is to give a method for bifurcation analysis of
periodic orbits in periodic delay-differential equations (DDE). There are several models in
engineering and science, which involve delay and parametric forcing, but as far as we are
aware, there is no general method to analyze bifurcations in these systems. For time-invariant
problems, DDE-BIFTOOL [12] is a widely used continuation software, which is capable of
continuing periodic orbits and detecting their bifurcations using Floquet multipliers, but it
cannot continue these bifurcations. However, there are time-periodic systems which possess
an S1 group symmetry, so that a periodic solution can be considered as the fixed point of
a transformed system (see e.g. Haegeman et al. [17]). In such cases, one could use DDE-
BIFTOOL to continue period doubling or Neimark-Sacker bifurcations. Unfortunately, fold
bifurcations cannot be continued this way. The reason is that the trivial zero characteristic
root related to the periodic solution cannot be distinguished from the additional zero root
related to the fold bifurcation when one applies codimension-1 continuation algorithms. The
above S1 group symmetry simplification can also be achieved in systems, where the equation
can be rewritten into polar coordinate system, separating out the angle variable into a separate
equation. In this case the remaining equations, including the amplitude, can be considered as
an autonomous problem (see e.g. Green and Krauskopf [16]).

It is well known [19, 6] that linear autonomous delay equations admit the construction
of a characteristic matrix. Thus, the task of finding the spectra of the infinite dimensional
problem can be reduced to finding the roots of a nonlinear function, which is just the deter-
minant of the characteristic matrix. Also, Jordan chains [6] of the characteristic matrix at a
spectral point can be used to obtain (generalized) eigenvectors of the infinitesimal generator.
In the case of codimension-1 bifurcations of fixed points, the characteristic matrix at the crit-
ical spectral point has a one dimensional kernel subspace, which can be used to define test
functionals by bordered systems and also to construct the defining systems of bifurcations.
DDE-BIFTOOL uses this approach to continue Hopf and fold bifurcation curves of fixed
points.

For periodic delay equations, there is no such general characteristic matrix. In [18],
there is a first order scalar example for integer delays where by using Floquet’s theorem, one
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can obtain the characteristic function to investigate stability. In [23], this method was used
to compute stability of a 2D periodic system and to obtain a simple implicit function for
period doubling stability curves. In [19], another nD example can be found for systems with
integer delays. This one does not imply a generally applicable method as the one in [23] does,
because it excludes equations having non-invertible coefficient matrices. However, it shows
an equivalence between the characteristic matrix and the inverse of the monodromy operator.
In this paper, we show that for all periodic delay equations there is a characteristic matrix
which is equivalent to the monodromy operator in the same sense as it can be found in [19].

Continuation is a very effective technique to follow invariant structures in dynamical sys-
tems under parameter variation. This technique is also useful to follow special solutions such
as those at bifurcation points. The preferred continuation technique is the pseudo-arclength
continuation, which was used in several continuation software packages including AUTO [8],
CONTENT [22], DDE-BIFTOOL [12] . We will use it, too.

The paper is organized as follows. In section 2, we introduce characteristic matrix for
periodic orbits. We derive its equivalence with the monodromy operator and show how its
computational cost can be reduced to that of the solution of one system of linear equations.
In section 3, the method of continuation of periodic orbits is discussed using the pseudo-
arclength technique. Continuation of bifurcations is discussed in section 4. In section 5,
we give implementation details of the algorithm. In section 6, an example of interrupted
machining model is analyzed.

2. Characteristic matrices. In this section, we generalize the results of Kaashoek and
Lunel [21] to periodic delay equations. Let x be a continuous function x : I ⊂ R → Rn and
let h > 0 be a real number. Define xt ∈ C([−h, 0],Rn) by xt(θ) = x(t + θ). Consider the
following delay differential equation

x′(t) = f(t, xt), (2.1)

where f : Rn × C([−h, 0],Rn) → Rn is of class CN , N ≥ 2 in the second variable, and
the prime denotes time-derivative. Further, assume that f is periodic in the first variable, i.e.,
f(t, .) = f(t + ω, .) with ω ≥ h. Consider a ω-periodic solution v(t) of (2.1). Since f is
smooth, we can linearize (2.1) at v in the form

x′(t) =

∫ h

0

dθη
v(t, θ)x(t − θ), (2.2)

where ηv is a matrix valued function that is of bounded variation in θ, and it is associated
with the periodic solution v. We can uniquely represent η if we take the space NBV , which
consists of functions of bounded variations normalized such that η(θ) = 0 for θ ∈ (−∞, 0],
right continuous on (0, h) and constant on [h,∞). According to the basic theory of delay
equations, (2.2) has a unique (forward) solution if we specify an initial function with xs = φ,
s ∈ R fixed. The linearized equation can be written equivalently

x′(t) =

∫ t−s

0

dθη
v(t, θ)x(t − θ) +

∫ ∞

t−s

dθη
v(t, θ)φ(t − s− θ), (2.3)

where the first term includes merely the unknown function, and the second term includes the
initial function. Since the initial function is in the equation now, we can solve it uniquely by
specifying an initial value x(s) = φ(0) only.
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In what follows, we will consider a bigger spaceX = L∞([−ω, 0],Rn), whereC([−ω, 0],Rn)
is a closed subspace in X . Note that X is chosen to maintain the compatibility with the dual-
ity framework for delay equations developed by Clement et al. [2, 3] (see also Diekmann et
al. [6]). Let us define the operator

(A(v, s)ϕ)(θ) = ϕ′(θ) −

∫ ω+θ

0

dϑη
v(s+ θ, ϑ)ϕ(θ − ϑ) (2.4)

with domain of definition D(A(v, s)) = Lip([−ω, 0],Rn) and

(B(v, s)ϕ)(θ) =

∫ ω

ω+θ

dϑη
v(s+ θ, ϑ)ϕ(ω + θ − ϑ). (2.5)

on X . Note that D(A(v, s)) = C([−ω, 0],Rn) and A(v, s) has an n dimensional kernel
since, as we mentioned, we can solve 0 = A(v, s)ϕ by specifying ϕ(−ω) = c, for any
c ∈ Rn. To obtain the monodromy operator, we solve the equation A(v, s)ψ = B(v, s)ϕ
(which is just a reformulation of (2.3)) with the boundary condition ψ(−ω) = ϕ(0). Thus
the monodromy operator becomes

U(s+ ω, s)ϕ = ψ. (2.6)

The boundary condition can be eliminated by introducing the (even) bigger space X̂ = Rn ×
X , which includes the initial function φ and the initial value φ(0), as well. For ease of
notation we use the following boundary value operators

L : X → R
n, Lϕ = ϕ(−ω),

M : X → R
n, Mϕ = ϕ(0).

These definitions, indeed, make sense since we consider only functions in the domain of
A(v, s). Let

Â(v, s) =

(

0 L
0 A(v, s)

)

and

D(Â(v, s)) = {(c, ϕ) ∈ X̂ |ϕ ∈ D(A(v, s)), c = Mϕ}.

With this definition, it is easy to check that Â(v, s) is one-to-one and onto. B̂(v, s) is defined
similarly

B̂(v, s) =

(

I 0
0 B(v, s)

)

.

The extended monodromy operator becomes Û(s+ ω, s) = Â−1(v, s)B̂(v, s). Note that

Â(v, s)

(

ψ(0)
ψ

)

= B̂(v, s)

(

ϕ(0)
ϕ

)

⇔ ψ(−ω) = ϕ(0), Aψ = Bϕ

gives (2.6).
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It can easily be proved that the eigenvalues of Û(s+ ω, s) and U(s+ ω, s) are the same
(see [21, Proposition 1.1.]). Therefore we can equivalently analyze the spectrum

σ(Û (s+ ω, s)) := C\{λ ∈ C | (λI − Û(s+ ω, s))−1 is a bounded linear operator}.

In case of delay equations, Û(s+ ω, s) is compact, thus its spectrum consists of eigenvalues
which have a cluster point at 0. Since we are not interested in 0, we can define µ = 1/λ and
analyze the equivalent problem

λI − Û(s+ ω, s) =
1

µ
Â−1(v, s)(Â(v, s) − µB̂(v, s))

or, for the sake of simplicity, Â(v, s) − µB̂(v, s). In this latter case,

σ(Û(s+ ω, s)) = C\{
1

µ
∈ C | (Â(v, s) − µB̂(v, s))−1 is a bounded linear operator}.

From now on, we suppress the initial time s, the periodic solution v or both in the notation of
A(v, s), Â(v, s), B(v, s) and B̂(v, s).

2.1. Equivalence. Kaashoek and Lunel [21] derived equivalence of the infinitesimal
generator of some evolutionary systems with a characteristic matrix ∆(z), with some spectral
parameter z. Here, we do the same for periodic DDEs. Clearly, our operator A has the
following properties

1. N := ker(A) is finite dimensional, dim(N ) = n and N 6= {0}
2. the operator A has a restriction A0 : X → X such that

(a) D(A) = N ⊕D(A0),
(b) Ω := {µ ∈ C | (µB −A0)

−1 is a bounded operator on X} 6= ∅.
Also, denote the isomorphism from Rn onto N by . In what follows, we will use the graph
norm ‖x‖Â = ‖x‖ + ‖Âx‖ on D(Â). Using this norm, Â becomes bounded and X̂A :=

D(Â) becomes a closed space (see Hille and Phillips [20]).
THEOREM 2.1. If the above conditions hold, we have the equivalence

F (µ)(Â − µB̂)E(µ) =

(

∆(µ) 0
0 IX

)

, µ ∈ Ω (2.7)

where E : Ω → L(X̂, X̂A) and F : Ω → L(X̂A, X̂) are holomorphic bijective operator
valued functions and

∆(µ) = (µM − L)(µB −A0)
−1µB  µ ∈ Ω. (2.8)

Furthermore

E(µ)

(

c
ϕ

)

=

(

M(Q(µ)jc+ (µB −A0)
−1ϕ)

Q(µ)jc+ (µB −A0)
−1ϕ

)

,

E−1(µ)

(

Mψ
ψ

)

=

(

j−1Q(0)ψ
(µB −A)ψ

)

,

F (µ)

(

c
ϕ

)

=

(

c− (µM − L)(µB − A0)
−1ϕ

ϕ

)

,

F−1(µ)

(

c
ϕ

)

=

(

c+ (µM − L)(µB −A0)
−1ϕ

ϕ

)

,
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where

Q(µ)ϕ = ϕ− (µB −A0)
−1(µB −A)ϕ

Proof. Is similar to the one in [21, Theorem 3.1.], therefore is omitted.
Remark. The proof is based on the observation that for all µ ∈ Ω, (µB − A) has an

n dimensional kernel and that the projection onto ker(µB − A) is Q(µ). Since kerQ(µ) is
independent of µ, Q(µ1) = Q(µ1)Q(µ2) and thereforeQ(µ) is an isomorphism from Rn to
ker(µB − A). Applying (MQ(µ), Q(µ))T to µB̂ − Â, we find that the first equation is the
characteristic matrix and the second equation is identically zero.

PROPOSITION 2.2. The operator (µB −A0) has an inverse for all µ ∈ C, i.e., Ω ≡ C.
Proof. Solve (µB −A0)ϕ = ψ. To do so we expand it into

ϕ′(θ) =

∫ ω+θ

0

dϑη(s+ θ, ϑ)ϕ(θ − ϑ) + µ

∫ ω

ω+θ

dϑη(s+ θ, ϑ)ϕ(ω + θ − ϑ) − ψ(θ)

by using (2.4) and (2.5). This is very similar to a renewal equation, but it cannot be solved by
means of resolvent matrices. After integration by parts and changing integration limits, we
get

ϕ′(θ) = η(s+ θ, ω + θ)ϕ(−ω) +

∫ θ

−ω

η(s+ θ, θ − ϑ)ϕ′(ϑ)dϑ+

µ

(

η(s+ θ, ω)ϕ(θ) − η(s+ θ, ω + θ)ϕ(0) +

∫ 0

θ

η(s+ θ, ω + θ − ϑ)ϕ′(ϑ)dϑ − ψ(θ)

)

,

where we used that D(A0) = {ϕ ∈ D(A) |ϕ(−ω) = 0}. Denote φ(θ) = ϕ′(θ), then the
equation becomes

φ(θ) =

∫ θ

−ω

hs,µ(θ, ϑ)φ(ϑ)dϑ +

∫ 0

θ

ks,µ(θ, ϑ)φ(ϑ)dϑ − ψ(t),

where

hs,µ(θ, ϑ) = η(s+ θ, θ − ϑ) + µη(s+ θ, ω) − µη(s+ θ, ω + θ)

ks,µ(θ, ϑ) = µη(s+ θ, ω + θ − ϑ) + µη(s+ θ, ω + θ).

Define h̃s,µ(t, θ) = hs,µ(t, θ)e−γ(ω+θ−ϑ), k̃s,µ(t, θ) = kz,µ(t, θ)e−γ(ω+θ−ϑ) and φ̃(t) =
φe−γ(ω+θ). Then the original problem is equivalent to

φ̃(θ) =

∫ θ

−ω

h̃s,µ(θ, ϑ)φ̃(ϑ)dϑ+

∫ 0

θ

h̃s,µ(θ, ϑ)φ̃(ϑ)dϑ− ψ(θ)e−γ(ω+θ), (2.9)

Choose γ such that

sup
θ∈[−ω,0]

[

∫ θ

−ω

|hs,µ(t, θ)|e−γ(ω+θ−ϑ)dϑ+

∫ 0

θ

|hs,µ(t, θ)|e−γ(ω+θ−ϑ)dϑ

]

< 1,

which is clearly possible, then (2.9) is a contraction mapping, which has a unique fixed point
φ. After integrating φ, we get the solution. Then it follows that (µB −A0) is one-to-one and
onto.
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In numerical applications, computing (2.8) is not efficient. Instead, we use the isomorphism
R(µ) : Rn → ker(µB −A),

R(µ)c =
(

0 I
)

(

0 −L
0 µB −A

)−1(
c
0

)

,

which is well defined if

D

((

0 −L
0 µB −A

))

= D(Â)

in light of proposition 2.2. In this case, the equivalent characteristic matrix becomes

∆̃(µ) = (µM − L)R(µ).

3. Continuation of periodic orbits. Define the following nonlinear operator

G : X × R
p → X, G(ϕ, λ)(θ) = x′(θ) − f(θ, ıθ(ϕ), λ),

where t ∈ [−T, 0], (ıt(ϕ))(θ) = ϕ((t + θ) modω). The domain of G is D(G(., λ)) = {ϕ ∈
Lip([−ω, 0],Rn)|ϕ(−ω) = ϕ(0)}. We can extend this operator in the same way as in the
previous section:

Ĝ((c, ϕ), λ) =

(

Lϕ− c
G(ϕ, λ)

)

, (c, ϕ) ∈ D(Ĝ(., λ)) = D(Â).

Now we have the nonlinear equation for the periodic solutions of (2.1) in the form

Ĝ((c, ϕ), λ) =

(

0
0

)

. (3.1)

Let (c0, ϕ0) = u0 be a solution of (3.1) at λ0. Then the Frechet derivative of (3.1) is Â(ϕ0)−
B̂(ϕ0). By the equivalence (2.7) we infer that Â(ϕ0) − B̂(ϕ0) is one-to-one and onto at a
regular solution, i.e., when there is no fold bifurcation. In this case, the solution u0 can be
continued according to the Implicit Function Theorem.

3.1. Pseudo-arclength continuation. In our computations, we use the pseudo-arclength
method to continue branches beyond limit points [9]. Here, we will use the following bilinear
form

〈 , 〉 : X̂A × X̂A → R, 〈u, v〉 = (Mv)∗Mu+
1

ω

∫ 0

−ω

u∗(θ)v(θ)dθ,

where the ∗ denotes the (conjugate) transpose. Let us denote a branch of solutions by (u, λ) :
I ⊂ R → X̂×R parametrized with the arclength γ w.r.t. the norm ‖(u, λ)‖ =

√

〈u, u〉+ |λ|.
Consider a solution (u0, λ0) = (u(0), λ(0)), which we want to continue in λ. Since u0 is a
regular solution, we can obtain the tangents u̇0, λ̇0 from the equation

(Â(u0) − B̂(u0))u̇0 +DλĜ(u0, λ)λ̇0 = 0.

Further, we normalize the tangents such that ‖(u̇0, λ̇0)‖ = 1. With these tangents we predict
the next solution point on the branch of solutions u(0)

1 = dγ u̇0, λ(0)
1 = dγ λ̇0, where dγ is

6



the requested step-size. Now the Newton iteration of the correction step proceeds by solving

(

Â(u
(ν)
1 ) − B̂(u

(ν)
1 ) DλĜ(u

(ν)
1 , λ

(ν)
1 )

〈u̇0, . 〉 λ̇0

)

(

∆u
∆λ

)

=

(

−Ĝ(u
(ν)
1 , λ

(ν)
1 )

dγ −
〈

u̇0, u
(ν)
1 − u0

〉

− (λ
(ν)
1 − λ0)λ̇0

)

(3.2)

and updating u(ν+1)
1 = u

(ν)
1 + ∆u, λ(ν+1)

1 = λ
(ν)
1 + ∆λ. According to bordering theorems

(see e.g. [9]), the coefficient operator in (3.2) is also one-to-one and onto, since Â(u0)−B̂(u0)
is one-to-one and onto and λ̇0 6= 0 at a regular solution. The same is true in the case of a
quadratic fold when DλĜ(u0, λ0) /∈ R(Â(u0) − B̂(u0)).

4. Continuation of bifurcations. In this section we reformulate classical continuation
theorems of codimension-1 bifurcations for periodic DDEs. Since we have the equivalence
with the finite dimensional characteristic matrix, these classical theorems can be applied al-
most directly. In order to compute the Jacobians, we will need derivatives of the characteristic
matrix with respect to u, λ and the spectral parameter µ. For the sake of simplicity (and com-
putational efficiency) we use ∆̃(µ). In general, the derivative of the inverse of an operator
valued functionA is

(DxA
−1(x))(y) = −A−1(x)(DxA(x))(A−1(x), y). (4.1)

Using this relation

Du∆̃(µ)c = −(µM − L)

(

0 −L
0 µB −A

)−1

×

×Du

(

0 −L
0 µB(u) −A(u)

)

(

(

0 −L
0 µB −A

)−1(
c
0

)

, .

)

,

Dλ∆̃(µ)c = −(µM − L)

(

0 −L
0 µB −A

)−1

×

×Dλ

(

0 −L
0 µB(u) −A(u)

)(

0 −L
0 µB −A

)−1(
c
0

)

and

Dµ∆̃(µ)c = M R(µ)c− (µM − L)

(

0 −L
0 µB −A

)−1

×

×

(

0 0
0 B(u)

)(

0 −L
0 µB −A

)−1(
c
0

)

. (4.2)

Note, that in the above formulae, it is always the same operator that is inverted.

4.1. Fold bifurcation. In case of a fold bifurcation there is a +1 eigenvalue of the
monodromy operator, which condition is equivalent to det ∆(1) = 0. This implies that we
have unit vectors p and q, (p∗p = 1, q∗q = 1) such that 0 = p∗∆(1) and 0 = ∆(1)q. The

7



kernel of Â − B̂ and (Â − B̂)∗ is spanned by ϕ = E(1)(q, 0)T and ψ = F ∗(1)(p, 0)T ,
respectively. The defining system is (see e.g. Beyn et al. [1])

Ĝ(u, λ) = 0,

∆̃(1)q = 0,

q∗0q − 1 = 0.

The Jacobian with respect to (u, q, λ) is




Â(u0) − B̂(u0) 0 DλĜ(u0, λ0)

Du∆̃(1)q0 ∆̃(1) Dλ∆̃(1)q0
0 q∗0 0



 . (4.3)

PROPOSITION 4.1. The Jacobian in (4.3) is one-to-one and onto at a quadratic fold.
Proof. Same as for algebraic systems, therefore omitted. (see Doedel et al. [9, Section

2.3.]).

4.2. Period doubling. Similarly, the defining system is

Ĝ(u, λ) = 0,

∆̃(−1)q = 0,

q∗0q − 1 = 0.

and the Jacobian with respect to (u, q, λ) yields




Â(u0) − B̂(u0) 0 DλĜ(u0, λ0)

Du∆̃(−1)q0 ∆̃(−1) Dλ∆̃(−1)q0
0 q∗0 0



 . (4.4)

4.3. Neimark-Sacker bifurcation. The defining system

Ĝ(u, λ) = 0,

∆̃(eiα)q = 0,

q∗0q − 1 = 0

and the Jacobian with respect to (u, q, α, λ)




Â(u0) − B̂(u0) 0 0 DλĜ(u0, λ0)

Du∆̃(eiα0)q0 ∆̃(eiα0) Dα∆̃(eiα0)q0 Dλ∆̃(eiα0 )q0
0 q∗0 0 0



 . (4.5)

Here we use complex values in the last two rows of the Jacobian, which can be expanded to
reals, and then use the same argument to prove the regularity as in [9, Section 2.3.].

4.4. Remark on the autonomous case. The presented method can easily be extended
for autonomous equations by adding a phase condition to the defining systems and the period
to the list of unknown variables [11]. In the case of a fold bifurcation in autonomous systems,
the characteristic multiplier +1 has algebraic multiplicity 2, therefore, it is not sufficient to
use ∆(1)q, but by the equivalence of Jordan chains [21],

∆̃(1)q1 = 0,

Dµ∆̃(1)q1 + ∆̃(1)q2 = 0, (4.6)
q∗1q2 = 0. (4.7)
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The size of this system of equations can be reduced by computing q1 and Dµ∆(1)q1. The
eigenfunction φ1 of the trivial multiplier 1 is always the derivative of the solution, which
equals the right hand side of the equation φ1(θ) = f(ıθ(u0), λ) . Further, from the analysis
above, we infer that q1 = Mφ1 = f(ı(0)(u0), λ). On the other hand, Dµ∆(1)q1 can be
computed according to (4.2) as

Dµ∆̃(µ)q1 = f(i(0)(u), λ) − (M − L)

(

0 −L
0 B −A

)−1(
0

Bf(i(.)(u), λ)

)

.

By using bordering, (4.6) reduces to

(

∆̃(µ) Dµ∆̃(µ)q1
q∗1 0

)

q̃2 = 0,

where q̃2 is a new variable, which contains q2 in its first n coordinates. We remark that in [7],
test functionals for folds in ODEs are constructed in a similar way.

5. Implementation. In this section, we summarize the numerical methods used in our
continuation software that uses collocation [5] to discretize the operators A and B of equa-
tions with discrete fixed delays. Thus, equation (2.1) can be written as

x′(t̃) = f̃(t̃, x(t̃− τ̃1), . . . , x(t̃− τ̃m)),

where f̃ : T1 × Rn × · · · × Rn → Rn and 0 ≤ τ̃1 < τ̃2 < · · · < τ̃m ≤ ω. By rescaling the
time with t̃ = ωt and defining f(t, x1, . . . , xm) = f̃(ωt, x1, . . . , xm), our equation becomes

x′(t) = ωf(t, x(t− τ1), . . . , x(t− τm)).

Its variational system at v is

x′(t) =
m
∑

i=1

Dxi
f(t, v(t− τ1), . . . , v(t− τm))x(t − τi).

Also, assume that the initial time s = 0. Let Ai, Bi : X × [−1, 0] → Rn×n defined by

Ai(v, θ) = ωH(1 + θ − τi)Dxi
f(θ, v((θ − τ1) mod 1), . . . , v((θ − τm) mod 1)),

Bi(v, θ) = ωH(τi − 1 − θ)Dxi
f(θ, v((θ − τ1) mod 1), . . . , v((θ − τm) mod 1)),

where mod maps to [−1, 0] and H is the Heaviside function. Then (2.4) and (2.5) become

(A(v)ϕ)(θ) = ϕ′(θ) −
m
∑

i=1

Ai(θ)ϕ(θ − τi)

(B(v)ϕ)(θ) =

m
∑

i=1

Bi(θ)ϕ(1 + θ − τi).
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5.1. Collocation. Here, we summarize the main steps of the method, its detailed dis-
cussion can be found in [11]. We approximate the solution ϕ on n intervals by degree m

polynomials. The method requires the space X to be Cm([−1, 0],Rn) and consequently
D(A(v)) = Cm+1([−1, 0],Rn) and f also Cm-smooth in t. The mesh is represented by the
intervals [θi, θi+1], i = 0, . . . , n − 1 with −1 = θ0 < θ1 < · · · < θn = 0. Also denote the
length of an interval by hi := θi+1 − θi. The approximate solution can be written on the i-th
subinterval as

ϕ̃(θ) =

m
∑

j=0

ϕ(θi+ j

m

)Pi,j(θ),

where

Pi,j(θ) =
m
∏

r=0,r 6=j

θ − θi+ r
m

θi+ j

m

− θi+ r
m

and θi+ j

m

:= θi + j hi

m
. Let ci, i = 1, . . .m − 1 be the roots of the degree m Legendre

polynomial scaled from [−1, 1] to [0, 1]. Then define the collocation points by cj,i = θj +
hjci. The discretized version of operator A becomes

(Ad(v)ϕ̃)(cj,i) = ϕ̃′(cj,i) −
m
∑

i=1

Ai(cj,i)ϕ̃(cj,i − τi). (5.1)

Operator B is discretized similarly. Note that (5.1) is an operator from R(m×n−1)×n to
R

m×n×n, so it has (at least) an n dimesional kernel just as its abstract counterpart (2.4)
has. The discretized version of Â acting on (Mϕ,ϕ) can be represented by a square matrix
by placing the −Lϕ vector into the first n rows, which is of full rank at a regular solution
v according to [10, Theorem 3.1] when|h| = maxn−1

i=0 hi is sufficiently small. Moreover, if
we choose the space X = Cm([−1, 0],Rn) as described above then there exists a δ > 0 and
C > 0 such that the solutions of Âψ = B̂ϕ and Âdψ̃ = B̂dϕ̃ satisfy

max
θ∈[−1,0]

|ψ(θ) − ψ̃(θ)| ≤ C|h|m (5.2)

if |h| ∈ (0, δ] (see Engelborghs and Doedel [10, Theorem 3.3]). Although superconvergence
is lost for delay equations, some improvement can be achieved over (5.2) by using modified
collocation schemes (see [10, Section 4] and [11]).

5.2. Solving bordered linear systems. Equations (3.2), (4.3), (4.4) and (4.5) contain
the operator Â − B̂, functionals like 〈u̇0, . 〉 on X̂, vectors like DλĜ(u0, λ0) in X̂, and also
the finite dimensional characteristic matrix. From a computational point of view, it is better
to factorize the discretized counterparts of these components separately, rather than copying
them into one big matrix. Usually, the dicretized infinite dimensional part has a special spar-
sity structure, which can be exploited in computations. Other reasons for bordering methods
might be the reuse of code and avoiding the frequent copying of large data structures. In our
code, we used methods developed by Govaerts [13, 14] and Govaerts and Pryce [15]. These
methods have the advantage over classical bordering methods [9, 1] that they do not require
the calculation of the kernel of singular matrices for the computation and can be used with
arbitrary stable solvers. This feature makes it possible to use the same routine for sparse (e.g.,
Âd − B̂d with discrete delays) and dense (e.g., Âd − B̂d with distributed delays) matrices,
leaving space for future improvements.
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The method of Mixed Block Elimination (BEM) is used in factorizing the discretized
counterpart of the Jacobian in Eqn. (3.2). For solving

(

A b
c∗ d

)(

x
y

)

=

(

α
β

)

type of equations, the method requires a solution with A and with A∗. Note, that for this
solution A is factorized only once. For the bigger problem





A 0 b
C D e
f∗ g∗ h









x
y
z



 =





α
β
δ



 ,

which appears in Eqns. (4.3) and (4.4), we apply the Generalized Mixed Block Elimination
(GMBE) technique, which requires one solution with DT and two BEM steps with A and
D, respectively. In case of systems augmented with wider borders, BEMW is used, which is
a straighten out form of the recursive version of BEM. These wider borders occur in Eqns.
(4.5), (4.3), and also in (4.4) when it is further augmented with derivatives and tangent vectors
in the two- parameter continuation context similarly to Eqn. (3.2). These kinds of equations
can be solved using GMBE but BEM replaced with BEMW.

Factorization of sparse matrices was carried out using UMFPACK1, which implements
the Unsymmetric Multifrontal method of direct LU factorization (see Davies [4]). For (nearly)
optimal performance we construct the matrices Âd − B̂d directly in compressed row form in-
stead of the default compressed column form. After factorization, we interchange the solution
methods for the matrix and its transpose to get the correct results. For dense matrices, we use
the standard LAPACK routine GESVX.

6. Example. In this section we analyse bifurcations of period-2 orbits in an interrupted
machining model. To this end, we consider an extended version of the equation of motion in
[23] in the form

x′′(t) + 2ζx′(t) + x(t) = wg(t)H (1 + x(t− 2T ) − x(t− T ))Fc (1 + x(t− T ) − x(t))

+ wg(t)H (1 + x(t− T ) − x(t− 2T ))Fc (2 + x(t− 2T ) − x(t)) , (6.1)

where H is the Heaviside function,

g(t) =

{

0
1

if ∃ k : kT ≤ t < (k + 1 − ρ)T
if ∃ k : (k − ρ)T ≤ t < kT

, k ∈ Z

and

Fc(x) = H(x)

(

120

59
x−

48

59
x2 +

35

177
x3

)

.

This cutting force function Fc is a polynomial approximation of the common three-quarter
rule Fc(x) ≈ 4/3x3/4 (see [24]). Also, ζ = 0.015 is the relative damping, ρ = 0.1 is the
ratio between the period length T and the time spent with cutting. Equation (6.1) has a unique
T -periodic solution, which is described by the ODE

x′′(t) + 2ζx′(t) + x(t) = wg(t)Fc (1) .

1We remark that this package is incorporated into MATLAB as well.
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FIGURE 6.1. Stability chart showing period doubling boundaries (dashed lines) and Neimark-Sacker bound-
aries (continuous lines). In the gray region the T periodic solution is stable. (ζ = 0.015)

FIGURE 6.2. This bifurcation diagram shows the period-2 orbits emanating from the period-1 solution at the
stability boundary in the vertical cross-section of a lens at T = 14.75 in Fig. 6.1. Continuous lines denote stable
solutions while dashed lines correspond to unstable solutions.

In a quite large neighborhood of this periodic solution, (6.1) simplifies to

x′′(t) + 2ζx′(t) + x(t) = wg(t)Fc (1 + x(t− T ) − x(t)) , (6.2)

while the second line of (6.1) is turned on if the tool did not cut the workpiece in the previous
period. Its variational equation around the T -periodic solution is

x′′(t) + 2ζx′(t) + x(t) = wg(t) (x(t− T ) − x(t)) .

The stability of the above equation was analyzed analytically in [23] in great detail. The
stability chart is shown in Fig. 6.1. We analyze the lowest lens at T ≈ 15. The bifurcation
diagram at T = 14.75 can be seen in Fig. 6.2. The first period doubling bifurcation at
w ≈ 0.6629 is subcritical. The arising unstable period two orbit folds back and then loses its
stability through a torus bifurcation. The other period doubling bifurcation is supercritical.
On the stable branch there is a torus bifurcation window. This branch folds back, too and
becomes unstable.

The bifurcations in Fig. 6.2 were continued in two parameters using our method. First,
the stability boundaries of (6.2) are obtained, which coincide the semi-analytical results
of [23]. The period T orbits are also checked analytically. In order to avoid difficulties
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FIGURE 6.3. Bifurcations of period-2 orbits. Dashed lines correspond to the stability of period-1 solutions
(see Fig. 6.1). Continuous lines are fold bifurcation curves, dash-dotted lines are Neimark-Sacker stability curves of
period-2 solutions.

arising from the non-smoothness of (6.1), we substitute the Heaviside function H(x) by
(1 + tanh(C x))/2 with C = 30. Choosing bigger values for C is not reasonable because
it only gives results within line thickness but makes the computation more difficult due to
derivatives tending to infinity. The period-2 orbits arising at the lens in the space of two
parameters extended with the solution amplitude form a highly distorted tube-like object.
Figure 6.3 shows the computed bifurcation curves. The lower continuous curve corresponds
to the fold bifurcation of orbits arising at the lower part of the lens. The other continuous
curve shows the fold of the upper solution branch in Fig. 6.2. It can be seen that there are
two cusp points on the bifurcation curve, which in addition, connect to the period doubling
boundary of period-1 solutions separating sub- and supercritical period doubling bifurcations.
The dashed-dotted lens near to the upper fold curve is an unstable island on the supercritically
bifurcated family of period-2 solutions, while the other dash-dotted line corresponds to the
stability loss of motion on the other branch of orbits.

7. Conclusions. Periodic delay differential equations frequently arise in applications
describing engineering, biological, etc. phenomena. Usually, the first question about these
parameter dependent models is the bifurcation curves of periodic orbits. In this paper we
constructed a characteristic matrix for general periodic DDEs in order to use it in the con-
tinuation of bifurcations. We also presented the equivalence of the characteristic matrix with
the monodromy operator, which makes regularity proofs of defining systems of equations
similar to the proofs in the case of finite dimensional algebraic systems. We implemented
the algorithm in a software written in C++, which uses collocation to discretize the infinite
dimensional operators. Bordering techniques were also used in the solution of linear systems
extended with the characteristic matrix, some derivatives, and tangent vectors. Further, an
example of an interrupted machining model was analyzed.
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