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ABSTRACT

The rate equations describing a laser with phase conjugate feedback are analyzed in the case of
non-zero detuning. For low feedback rates and detuning, the stability diagram of the steady state is
similar to the laser subject to injection. A stable steady state may loose its stability through a Hopf
bifurcation exhibiting a frequency close to the relaxation oscillation frequency of the solitary laser.
We also construct time-periodic pulsating intensity solutions exhibiting frequencies close to an integer
multiple of the external cavity frequency. These solutions have been found numerically for the zero
detuning case and play an important role in the bifurcation diagram.

1 INTRODUCTION

Semiconductor lasers that exhibit narrow linewidth of the order of a few kilohertz are important
in applications such as communication and spectroscopy. One of the most efficient methods to reduce
the linewidth of diode lasers is to use optical feedback to stabilize the frequency of the laser and to
additionally reduce the linewidth from several tens of megahertz to tens of kilohertz1—3 . The most
common method to implement optical feedback is to redirect a portion of the outcoupled light back into
the cavity by an external mirror or a grating2 . This technique takes advantage of the extreme sensitivity
of the laser diode to even minute optical feedback and to the length of the external delay. However, this
scheme requires to control precisely the feedback phase in order to maintain the minimum linewidth,
and to reduce the low frequency noise. Both these deleterious effects can be completely removed by
the use of phase conjugate feedback from a phase conjugate mirror4,5 . Several such experiments have
shown that using phase conjugate feedback indeed leads to a stabilization of the laser frequency and
dramatic narrowing of the linewidth. However, as the strength of the feedback is increased undesired
instabilities are also induced6—8 .



The effects of phase conjugate feedback (PCF) versus conventional optical feedback (COF) were
explored by Kürz and Mukai8 for a specific experimental configuration. The phase conjugator used in
this experiment was a broad area laser and was based on spatially nondegenerate four wave mixing.
The advantages of the setup were that the response time of the conjugator was limited only by the
carrier lifetime (a few nanoseconds) and the spatial four wave mixing configuration allowed for the
separation of the pump, probe, and signal beam in the far field. Regardless of the feedback intensity,
stable operation could not be achieved in the conventional case, where an active stabilization of the
external cavity length to suppress mode hopping would be needed. For the phase conjugate case, a
sharp resonance peak at 32.7 MHz and harmonics of this frequency were observed. The linewidth of
the central mode was 25 kHz and was observed for hours with no stabilization of the external cavity
length.

As already mentioned, the PCF laser is no more stable for larger values of the feedback strength.
Several studies of the laser rate equations have been undertaken. Earlier results were obtained by
numerical simulations9,17—19 or simplified linear stability analyses12,13 . By taking advantage of recent
numerical continuation methods, stable and unstable steady and periodic solutions were computed as
a function of the feedback strength. These techniques allowed more systematic bifurcation studies22—24

in terms of one or two parameters. In particular, Green and Krauskopf24 found that stable branches
of time-periodic intensities sequentially appear between domains of chaotic dynamics. Because the
intensity oscillates at a frequency close to an integer multiple of the external cavity frequency, these
regimes have been called external-cavity modes (ECMs) by analogy to the ECMs of the COF laser.
More recently, analytical techniques have been developed in order to construct these ECMs and their
validity have been tested by comparing bifurcation diagrams26 . For the simplest case of zero detuning,
the laser field is a combination of two modes of the form

Y ' A1 exp(iωt) +A2 exp(−iωt) (1)

where A1, A2 are two complex amplitudes. Numerical bifurcation studies are so far limited to the case
of zero detuning. The purpose of this paper is to show that an extension of the analytical approach is
possible and that some effects of the detuning can be highlighted.

The paper is organized as follows. In Section 2, we formulate the PCF laser equations and determine
the basic steady states. In Section 3, we investigate the Hopf bifurcation for low feedback rate and obtain
a stability diagram that is similar to the laser subject to an injected signal. In Section 4, we construct
an approximation of the ECM pulsating intensity solutions which appear as isolated branches in the
bifurcation diagram.

2 DIMENSIONLESS EQUATIONS

e start with the PCF rate equations in dimensionless form. This formulation is briefly described
in Appendix A. For analytical simplicity, we neglect nonlinear gain saturation. The phase-conjugate
mirror is located at distance L = cτ/2 from the laser. We assume that it operates through four-wave
mixing in a Kerr-type nonlinear medium with femtosecond response. In the case of nearly degenerate
FWM, a small mismatch is present between the frequencies of signal and pump waves i.e., ωs = ωp+∆.
Since the phase-conjugate frequency is ωc = ωp −∆, the reflected and incident waves differ by 2∆ in
frequencies. The PCF equations for the complex laser field Y and the carrier density Z are then given
by

dY

dt
= Z(1 + iα)Y + γY ∗(t− θ) exp (2i∆(t− θ/2) + iφ0) , (2)



T
dZ

dt
= P − Z − (1 + 2Z) |Y |2 . (3)

In these equations, α is the linewidth enhancement factor, γ is the dimensionless feedback rate, θ ≡ τ/τp
is the external cavity round trip time normalized by the photon lifetime, T ≡ τe/τp is the ratio of the
carrier and photon lifetimes, P is the pump parameter above threshold, ∆ is the frequency detuning,
and φ0 is a phase shift acquired in the phase-conjugate mirror.

Eqs. (2)-(3) admits a simple steady state solution of the form

Y = A exp(i∆t+ i
φ0
2
) and Z = C. (4)

We called this solution a steady state because the intensity |Y |2 is steady. Inserting (4) into Eqs.
(2)-(3) leads to the following conditions for A and C

i∆A = C(1 + iα)A+ γA∗, (5)

0 = P −C − (1 + 2C)AA∗. (6)

Eq. (5) is a homogeneous equation for A and A∗. It admits a nontrivial solution only if C satisfies the
following quadratic equation

γ2 = C2 + (αC −∆)2. (7)

Knowing C, we then determine |A|2 from Eq. (6) as

|A|2 = P −C
1 + 2C

≥ 0. (8)

Eq. (7) describes two branches of solutions emerging from a limit point (saddle-node bifurcation or
SN). Steady state locking occurs if

γ ≥ |∆|√
1 + α2

. (9)

3 HOPF BIFURCATION AT LOW FEEDBACK RATE

The conditions for a Hopf bifurcation are given by Eqs. (53) and (54) in Appendix B. C and σ
represent the steady state amplitude of Z and the frequency of the oscillations at the Hopf bifurcation
point, respectively. These equations are transcendental equations which are difficult to solve. Our
analysis differs from previous attempts to determine approximations of the Hopf bifurcation points9,14,10

by the application of asymptotic techniques15 . Specifically, we take advantage of the large value of T
and look for an approximation for C and σ valid in the limit T large. To this end, we introduce a small
parameter ε defined by

ε ≡ T−1 (10)

and scale C and σ with respect to ε.We also need to specify the scalings of the other laser parameters
since distinguish limits of the Hopf conditions are possible.

The simplest approximation is based on the idea that for low feedback rates, the frequency at the
Hopf bifurcation must be close to the laser relaxation frequency defined by16

σR ≡ (2εP )1/2. (11)
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Figure 1: SN and Hopf bifurcations. The two SN lines mark the transition to steady state locking as
we progressively increase γ from zero. The full SH and broken UH lines correspond to Hopf bifurcation
points from a stable and an unstable steady state, respectively. The codimension two bifurcation
point FH (Fold-Hopf) is the intersection of the SN and Hopf curves. It is characterized by one zero
eigenvalue and a pair of purely imaginary eigenvalues. The values of the parameters are α = 4, P = 1,
T = θ = 1000.

Assuming the scalings

C = O(ε), σ = O(ε1/2), P = 0(1), ∆ = O(ε) and θ = O(ε−1), (12)

we collect the leading terms in Eqs. (53) and (54). We obtain

σ3 − 2εPσ = 0, (13)

−2σ2C + ε(1 + 2P )σ2 + 2εP (C + (Cα−∆)α)(cos(σθ) + 1) = 0. (14)

From (13), we find that σ = σR where σR is defined by (11). From (14), we determine C as

C =
ε(1 + 2P )−∆α(cos(σθ) + 1)
[2− (1 + α2)(cos(σθ) + 1)]

. (15)

The expression (15) is valid provided the denominator is not too small, i.e., if cos2(σθ/2) 6= (1+α2)−1.
Finally, we compute γ using (7). Fig. 1 shows the SN bifurcation and Hopf bifurcation points
in parameter space (∆, γ). The stability boundaries are similar to the curves previously shown12,13

and recall the stability diagram of a laser subject to injection (see Discussion). The SN point is
characterized by a single zero eigenvalue. At this point emerge a branch of stable steady states and a
branch of unstable steady states (saddle points). From an analysis of the characteristic equation in the
limit of small real eigenvalues, we find that the stable (unstable) steady states satisfy the condition

C <
∆

1 + α2
(C >

∆

1 + α2
). (16)

Other Hopf bifurcation points can be determined analytically assuming different scalings for C and σ26

.



4 EXTERNAL CAVITY MODES

We next concentrate on the pulsating intensity solutions called ECMs. These solutions differ from
the Hopf bifurcation solutions by the fact that they exhibit oscillating frequencies that are comparable
to the external cavity frequency. They do not emerge from the steady state but sequentially appear
as isolated branches of solutions24,26 . As in the previous section, we may take advantage of the large
value of T and seek an asymptotic solution. This time we assume that the basic time is not σRt but t.

4.1 Asymptotic solution

The technique was first developed for the COF laser20 and then applied for the PCF problem with
zero detuning26 . Specifically, we seek a solution of Eqs. (2) and (3) of the form

Y = Y0(t) + εY1(t) + ... (17)

Z = Z0(t) + εZ1(t) + ... (18)

where ε is defined by (10). Introducing (17) and (18) into Eqs. (2) and (3) and equating to zero the
coefficients of each power of ε leads to a sequence of linear problems to solve. The equations for Y0 and
Z0 are given by

Y 00 = (1 + iα)Z0Y0 + γY ∗0 (t− θ) exp (i2∆(t− θ/2) + iφ0) , (19)

Z00 = 0. (20)

Eq. (20) implies that
Z0 = C (21)

is a unknown constant. C now represents the leading approximation for Z(t). Eq. (19) with (21) is
then linear and admits a solution of the form

Y0 = exp(i
φ0
2
) [A1 exp(iω1t) +A2 exp(iω2t)] (22)

provided that ω1 and ω2 verify the resonance condition

ω2 + ω1 = 2∆ (23)

and that A1 and A2 satisfy the following homogeneous system of equations

iω1A1 = C(1 + iα)A1 + γA∗2 exp [i(−∆θ+ ω2θ)] , (24)

iω2A2 = C(1 + iα)A2 + γA∗1 exp [i(−∆θ+ ω1θ)] . (25)

The condition (23) implies that (22) can be rewritten as

Y0 = exp(i∆t+ i
φ0
2
) [A1 exp(i(ω1 −∆)t) +A2 exp(−i(ω1 −∆)t)] . (26)

Knowing A1 and A2, the intensity of the laser field then is

|Y |2 ' |A1|2 + |A2|2 + 2 |A1| |A2| cos (2(ω1 −∆)t+ ψ) (27)

which displays the frequency
ω = 2 |ω1 −∆| . (28)
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Figure 2: Bifurcation diagram of the ECMs. The full and broken lines correspond to the ECMs and
steady states, respectively. Squares denote points where ω1 equals ∆ implying a zero frequency for the
ECMs. Dots mark points where steady and ECMs admit the same Z in first approximation but not
the same intensities. The values of the parameters are the same as in Figure 2 and ∆θ = 1.

4.2 Solution of the bifurcation equations

Eqs. (24) and (25) are the bifurcation equations for A1 and A2. From (25), we determine A2 as

A2 =
γA∗1 exp [i(−∆θ + ω1θ)]

iω2 −C(1 + iα) . (29)

Substituting (29) into Eq. (24), we find

iω1A1 −C(1 + iα)A1 = γ2
A1 exp [i(−ω1 + ω2)θ]

−iω2 −C(1− iα) . (30)

Assuming |A1| 6= 0, Eq. (30) implies

[iω1 −C(1 + iα)] [−iω2 −C(1− iα)] = γ2 exp [i(−ω1 + ω2)θ] , (31)

or equivalently, from the real and imaginary parts:

ω1ω2 −Cα(ω2 + ω1) +C
2(1 + α2) = γ2 cos [(−ω1 + ω2)θ] , (32)

C(ω2 − ω1) = γ2 sin [(−ω1 + ω2)θ] . (33)

Using (23), we may eliminate ω2 and obtain

ω1(2∆− ω1)− 2Cα∆+C2(1 + α2) = γ2 cos [2(∆− ω1)θ] , (34)

2C(∆− ω1) = γ2 sin [2(∆− ω1)θ] . (35)

From (35), we get

C =
γ2 sin [2(∆− ω1)θ]

2(∆− ω1)
(36)
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Figure 3: Succesive ECMs. The first ECM emerges from γ = 0 at Tθ−1 = π/∆θ = π since ∆θ = 1.
The next ECMs admit a limit as γθ →∞ given by Tθ−1 = 1/(n− 1) (n = 2, 3, ...).

and

ω1(2∆− ω1)− γ2 sin [2(∆− ω1)θ]

(∆− ω1)
α∆

+
γ4 sin2 [2(∆− ω1)θ]

4(∆− ω1)2
(1 + α2) = γ2 cos [2(∆− ω1)θ] . (37)

We may solve these equations in the following way. For a fixed ∆, we continuously change ω1 and
determine γ2 from the quadratic equation (37). We then obtain C from (36). See Figure 2. In order
to determine the intensity, we need a second relation between A2 and A1. This relation is obtained by
applying a solvability condition for the Z1 equation

26 (not shown).

In Fig. 3, we represent the period of the intensity oscillations defined as

T ≡ 2π/ω = π/ |∆− ω1| . (38)

The first ECM solution emerges from γ = 0 (C = 0, ω1 = 2∆) with a period T = π/∆ i.e.e, controlled
by the detuning. The period then quickly increases to infinity as the ECM branch approaches the
steady state. The next ECM branches all exhibit a limit as γθ→∞ which is given by

T→ θ/(n− 1) as γθ→∞ (39)

for n = 2, 3, ...

5 DISCUSSION

We have examined the laser PCF equations with non zero detuning and determined two type of
solutions. First, we obtain an approximation of the first Hopf bifurcation point for low feedback rate
and detuning and found a stability diagram similar to the diagram of the laser subject to an injected



signal27 . In the latter case, the steady state locking condition for low γ is the same as (9) but not the
Hopf bifurcation condition. For the injection laser, the Hopf bifurcation appears as Z = C where

C =
1

α2 − 1 [−ε(1 + 2P ) +∆α] . (40)

This expression matches (15) for the PCF laser only if cos(σRθ) = 0. There is thus an effect of the
delay even for low feedback rate. Second, we investigate a particular class of solutions where the laser
field is a linear combination of two time-periodic modes, in first approximation. As investigated in
detail for the zero detuning case26 , these solutions called external cavity modes (ECMs) of the PCF
laser seem to organize the bifurcation diagram by sequentially appearing with distinct periods as we
increase the feedback rate. In the nonzero detuning case, we note that the first ECM emerges from
γ = 0 and connects the steady state branch.
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7 APPENDIX A. DIMENSIONLESS PCF EQUATIONS

The laser rate equations are

dE

dt0
=

1

2

£
(GN(N −N0)− τ−1p )(1 + iα)

¤
E + κE∗(t0 − τ) exp(2iδ(t0 − τ/2) + iφ0), (41)

dN

dt0
=

I

q
− N

τe
−GN(N −N0) |E|2 . (42)

Introducing the new variables t, Y and Z defined by

t ≡ t0/τp, Y ≡
r

τeGN
2

E and Z ≡ GNτp
2

(N −Nsol), (43)

into Eqs. (41) and (42) and find

dY

dt
= (1 + iα)Y Z + γY ∗(t− θ) exp(2i∆(t− θ/2) + iφ0),

T
dZ

dt
= P − Z − (1 + 2Z) |Y |2 . (44)

where

γ = κτp, θ = τ/τp, T = τeτ
−1
p , ∆ = δτp, (45)

Ith =
Nsolq

τe
, P =

GNτpτe
2

(
I − Ith
q

). (46)



8 STEADY STATE AND HOPF BIFURCATION
CONDITIONS

Introducing the decomposition
Y = R exp(i∆t+ iφ) (47)

into Eqs. (2) and (3), we obtain the following three equations for R, φ, and Z

R0 = ZR+ γR(t− θ) cos(φ+ φ(t− θ)− φ0), (48)

φ0 = −∆+ αZ − γ
R(t− θ)

R
sin(φ+ φ(t− θ)− φ0), (49)

Z0 = ε
£
P − Z − (1 + 2Z)R2¤ . (50)

The steady state solution satisfies the conditions R0 = φ0 = Z0 = 0. From the steady state equations,
we firs determine an equation for φ given by

∆ = −γ [α cos(2φ− φ0) + sin(2φ− φ0)] (51)

and Z and R2 are related to φ as

Z = C = −γ cos(2φ− φ0), R
2 =

P −C
1 + 2C

> 0. (52)

Note the simple relation between γ and C given by (7). Since there are two branches of steady states,
it will be mathematically more convenient to use C as our bifurcation parameter. From the linearized
equations, we determine the characteristic equation for the growth rate λ of a small perturbation. A
Hopf bifurcation is possible if λ is purely imaginary. Introducing λ = iσ into the characteristic equation,
we obtain from the real and imaginary parts two equations for C and σ given by:

0 = σ
£
(C2 + (αC −∆)2)(cos(2σθ)− 1) + σ2

¤
+ε
1 + 2P

1 + 2C

£−(C2 + (αC −∆)2) sin(2σθ) + 2σC¤
+2ε(P −C) [−(C + (αC −∆)α) sin(σθ)− σ] , (53)

0 = σ
£
(C2 + (αC −∆)2) sin(2σθ)− 2σC¤

+ε
1 + 2P

1 + 2C

£
(C2 + (αC −∆)2)(cos(2σθ)− 1) + σ2

¤
+2ε(P −C)(C + (αC −∆)α)(cos(σθ) + 1) (54)

where ε is defined by (10).
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