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ANALYTICAL CONSTRUCTION TECHNIQUES FOR
SOME SOLUTIONS OF FORCED PIECEWISE

CONSTANT DELAY EQUATIONS
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Abstract: This paper studies a model of delayed bang-bang control under periodic saw-
tooth forcing. Solutions with the same period as the forcingare constructed analytically.
A simple two-parameter diagram showing the domain of existence of such solutions is
derived.
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1. INTRODUCTION

This paper is concerned with analytical construction
techniques for the negative feedback delay differential
equation (DDE),

ẋ(t) = sign( f (t)− x(t −1)), (1)

which can be viewed as a simple model of delayed
bang-bang control. This is the limiting case of a de-
layed linear feedback controller with saturation as the
width of the linear response region is shrunk to zero.
Some analytical results for this more general delayed
linear feedback controller are given in (Norbury and
Wilson, 2000) and by considering (1) as a special case
of this work it is possible to extend the results previ-
ously obtained. The nonlinearity in (1) is also seen in
more complex relay control laws such as those studied
in (Fridmanet al., 2002; Sieber, 2004).

Throughout this paper the forcingf is assumed to
be periodic. Sharp conditions are established for the
existence of solutions whose period is the same as that
of the forcing.

Provided| ḟ (t)| < 1 for all t, there is a transformation
between (1) and the equation

ẋ(t) = −sign(x(t −1))+ g(t), |g(t)| < 1, (2)

analysed by Fridmanet al. (2002, 2000), which has a
binary observed quantity rather than a binary output.

The methods developed here do not rely on the deriva-
tive of f being bounded, and in fact the techniques are
illustrated using a discontinuous saw-tooth profile for
f .

Observe that the solutions of (1) are piecewise linear
in t. Consequently, to construct solutions one needs
only to find an initial value and the times of the sub-
sequent minima/maxima where the gradient changes
from/to±1.

1.1 Review of results on the unforced model

Eq. (1) with f ≡ 0 has an infinite family of periodic
solutions of the form

x(t) =

{

t −T/4 0≤ t < T/2
−t +3T/4 T/2≤ t < T,

(3)

up to phase translation. Here the period is given by
T = 4/(1+4n) wheren = 0,1,2, . . .. The solution for
n = 0 (T = 4) is stable; the ‘fast’ solutions forn > 0
(T < 1) are unstable (Fridmanet al., 2002).

1.2 Overview of forced analysis

Periodic forcing in the form

f (t) := AF(t/T ), (4)
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Fig. 1. A period-T solution of Eq. (1) under period-
T saw-tooth forcing. There is one minimum (at
t = t∗ = T/2) and one maximum (att = T ) per
period.

is considered, whereA, T > 0 and F is a (fixed)
period-one function. The goal is to construct period-
T solutionsx(t) of Eq. (1), and examine the domain
of existence of such solutions in the(T,A) parameter
plane.

To make the details of construction as simple as pos-
sible for illustration purposes, attention is restricted to
the saw-tooth profile

F(t) = t, 0≤ t < 1, (5)

with period-one extension. (The method for more gen-
eralF is outlined in (Barton, 2003).)

Further, the only solutions considered here have ex-
actly one minimum and one maximum per period and
consequently consist of two linear (int) segments per
period, each of durationT/2; see Fig. 1. It follows that
there exists at∗ such that:

• at t = t∗ (+nT ), f (t)− x(t − 1) changes from
negative to positive, so that ˙x(t) changes from−1
to +1 (local minimum);

• at t = t∗ + T/2 (+nT ), f (t)− x(t − 1) changes
from positive to negative, so that ˙x(t) changes
from +1 to−1 (local maximum);

• and there are no other points in the period where
f (t)− x(t −1) changes sign.

To construct solutions it is thus sufficient to find such
t∗ andx(t∗), and having done so, to perform a back-
check to ensure that the third condition is satisfied.

Given a solutionx(t) of (1) and a value of timet,
one defines the solution historyxt : [−1,0] → R by
xt(φ) = x(t + φ) (see Hale and Lunel (1993)). This
may be used to split the analysis of period-T solutions
into two cases:

• Long period solutions with T ≥ 2 (the easier
case). The timeT/2 between consecutive turning
points equals or exceeds the delay time of 1. This
introduces a ‘loss of memory’ effect where the
solution history at turning points is wholly linear
in t. For example, at the minimum att = t∗, the
history takes the form

xt∗(φ) = x(t∗)−φ . (6)

It follows that x(t∗ − 1) = x(t∗) + 1 and the
condition for the minimum is thatf (t)− x(t)−1
goes from negative to positive att = t∗.

• Short period solutions with T < 2 (the more dif-
ficult case). The timeT/2 between turning points
is less than the delay time of 1, and the solution
history consists of multiple linear segments. In
this case, the solution history cannot be deter-
mined by the current value ofx(t) alone. Instead,
knowledge of the locations of previous turning
points is required to compute the next turning
point.

Long period solutions are considered in Section 3 and
short period solutions are considered in Section 4.

2. COARSE BOUNDS ON THE EXISTENCE OF
PERIOD-T SOLUTIONS

Here it is shown that when the forcing amplitudeA is
sufficiently large, there exists a period-T solution of
the required form, i.e., with exactly one minimum and
one maximum per period.

Take A > T , so that ḟ > 1 and ḟ (t)− ẋ(t − 1) > 0
where f is differentiable (since ˙x = ±1). It follows
that f (t)− x(t −1) is increasing fort ∈ (0,T ). Hence
it can only pass through zero in a negative-to-positive
direction, i.e., the local maximum cannot occur in
(0,T ) and must be located at the discontinuity off
at t = nT . Consequently, the local minimum is given
by t∗ = T/2 (+nT ). It remains to findx(t∗) such that
f (t)−x(t −1) increases through zero att = t∗ = T/2,
that is

x(T/2−1) = f (T/2) = A/2. (7)

Finally one needs to back-check that the jump inf is
sufficient for f (t)− x(t −1) to decrease through zero
at t = T :

0≤ x(T −1)≤ A. (8)

Sincex(t) has gradient±1, Eq. (7) yieldsx(T −1) ∈
[A/2−T/2,A/2+ T/2], which is satisfied simultane-
ously with (8) if A > T . This is thus the coarse bound
for the existence of such a solution.

The challenge in the next two sections is to derive
sharp conditions for the existence of such solutions in
the(T,A) plane asA is reduced.

3. LONG PERIOD SOLUTIONS

In this section the long period caseT ≥ 2 is con-
sidered and, as in the previous section, solutions are
constructed with a local maximum at the discontinuity
t = nT of f . However, the requirementA > T is now
relaxed.

As before, it is required thatf (t)− x(t −1) increases
through zero att = T/2 and that the jump inf is suf-
ficiently strong to forcef (t)−x(t −1) to change from
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Fig. 2. A solution of equation (1) under long period
(T ≥ 2) forcing. The arrows indicate the point
x(t −1) against whichf (t) is compared. For the
minima/maxima ofx(t) to exist as shown, it is
required thatx(T/2− 1) = A/2 and 0≤ x(T −
1) ≤ A.

positive to negative att = T . Hence again Eqs. (7) and
(8) must hold; see Fig. 2.

The ‘loss of memory’ effect in the long period solu-
tions allows one to writex(t −1) explicitly in terms of
x(t) at the turning points, and this gives

x(T/2−1) = x(T/2)+1, (9)

x(T −1) = x(T )−1. (10)

Since the solution is linear int between turning points,
this producesx(T ) = x(T/2) + T/2, and combining
with (7), (9) and (10) thus gives

x(T −1) = A/2+ T/2−2. (11)

Combining with (8), the sharp bound for the existence
of a period-T solution of the required form is found to
be

A ≥ |T −4| . (12)

When A = |T − 4| one may also find other period-
T solutions with one minimum and one maximum
per period, where the maximum does not lie on the
discontinuity of f .

4. SHORT PERIOD SOLUTIONS

In this section the short period caseT < 2 is consid-
ered. As before, solutions are constructed consisting
of two linear segments per period, with the local max-
imum at the discontinuityt = nT of f , and the local
minimum att = T/2 (+nT ). As before, Eqs. (7) and
(8) must hold, and one needs to perform a back-check
to ensure that the constructedf (t) − x(t − 1) only
changes sign att = T/2 (+nT ) andt = T (+nT ). As
was remarked earlier, the solution historyxt(φ) is no
longer linear inφ in the short period case, and hence
the details of the back-check are more complicated
than before.

Without loss of generality, a linear segment of the
solution x(t) = x(T/2) + (t − T/2), t ∈ [T/2,T ] is

considered here, running from the local minimum to
the local maximum; see Fig. 3. (The analysis of the
segment running from the local maximum to the lo-
cal minimum progresses similarly.) Further, consider
the piecewise linear solution segmentx(t − 1), t ∈
[T/2,T ]. Depending on the precise value ofT , the
back-check analysis splits into two sub-cases:

(i) x(t − 1) has alocal maximum for t ∈ [T/2,T ]
as shown in Fig. 3(a). Thenf (t) and x(t − 1)
can only gain extra intersections as the gradient
of f decreases through+1, which is equivalent
to reducingA throughT . Hence the back-check
produces the sharp (necessary) constraintA > T .

(ii) x(t − 1) has alocal minimum for t ∈ [T/2,T ]
as shown in Fig. 3(b). As the amplitude, and
consequently the gradient off is reduced, it is
not possible to generate further intersections of
f (t) andx(t −1). Consequently, the back-check
is automatically satisfied.

In case (i), the necessary conditionA > T is identical
to the sufficient condition derived in Section 2. Hence,
A > T is a necessaryand sufficient condition for the
existence of solutions.

Observe from geometrical considerations that ifr is
defined by

1 = kT + r where k ∈ Z, 0≤ r < T, (13)

(i.e., r is the remainder when the delay is divided by
the period) then

• if r > T/2, case (i) holds; and
• if 0 ≤ r ≤ T/2, case (ii) holds.

For case (ii) one needs to consider what other nec-
essary constraints are introduced by Eqs. (7) and (8).
Recall from Eq. (7) thatx(T/2−1) = A/2, and con-
sequently

x(T −1) = x(T/2−1)− r +(T/2− r),

= A/2+ T/2−2r, (14)

since the solution has gradient−1 for time r, and
gradient+1 for time T/2− r, betweent = T/2− 1
andt = T −1.

For a maximum ofx(t) to occur at the discontinuity
t = T of f , Eq. (8) must hold, which yields

A ≥ T −4r and A ≥ 4r−T, (15)

when combined with (14).

5. THE(T,A)-PLANE

The results of Sections 3 and 4 may be combined
to give a two-parameter diagram in the(T,A)-plane
describing the existence of period-T solutions of
Eqs. (1), (4), and (5), with one minimum and one
maximum per period; see Fig. 4. The key features are
as follows:
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Fig. 3. Solutions of (1) under short period forcing (T < 2). The bold segments indicatex(t) and x(t − 1) for
t ∈ [T/2,T ]. Panels (a) and (b) show the cases where thex(t −1) segment contains a local maximum and a
local minimum respectively.
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Fig. 4. The shaded region of the figure indicates the parameter values for which there exists a period-T solution of
Eqs. (1), (4), and (5) with one minimum and one maximum per period. The tongue-like grooves are centred
on those periodsT for which there is a solution (3) to the unforced equation.

For T ≥ 2,

• the existence boundary is given byA = |T −4|.

For T < 2, either

• r > T/2 (see (13)) in which case the boundary of
existence is a ‘cap’A = T , or

• r ≤ T/2 in which case the boundary of existence
is a ‘groove’ given by (15).

There are infinitely many ‘grooves’, each centred on
T = 4/(1+ 4n), n = 1,2, . . ., and at these values of
T , the forced solutions deform continuously on to the
unforced ‘fast’ solutions (see (3)) asA → 0. Away
from these grooves, numerical simulations indicate
that there is typically a jump to quasi-periodicity as
the boundary of existence is crossed.

6. CONCLUSION

In this paper, solutions to Eq. (1) under saw-tooth
forcing have been constructed. These solutions have
the same period as the forcing, and can be divided
into two types: long-period solutions and short-period
solutions. Construction of long-period solutions (T ≥

2) is less problematic than the short-period solutions
(T < 2) due to the ‘loss of memory’ effect present.
The construction of short-period solutions shows the
existence of infinitely many solutions which, as the
forcing amplitude is decreased, deform continuously
on to the unforced ‘fast’ solutions.

Simulations indicate that the solutions that were con-
structed in this paper are at least locally stable, and
work on proofs is currently under way. WhenT 6=
4/(1+4n), there is the possibility of very complicated
dynamics asA is reduced and the existence boundary
is crossed. Currently this behaviour is being investi-
gated using a combination of further analytical con-
struction techniques and numerical continuation with
nearby smoothed-off models, using the package DDE-
BIFTOOL (Engelborghset al., 2001). These results
will be reported elsewhere.
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