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H. Erzgräbera, D. Lenstraa,d, B. Krauskopfb,a, I. Fischerc

aFaculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081 HV, Amsterdam,

The Netherlands
bDepartment of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, UK

cInstitut für Angewandte Physik, Technische Universität Darmstadt, Schloßgartenstraße 7,

D-64289 Darmstadt, Germany
dResearch Institute COBRA, Technical University Eindhoven, The Netherlands

ABSTRACT

We theoretically investigate the dynamical properties of a system of two semiconductor lasers that are mutually
coupled via their optical fields. An intrinsic feature of the coupling is its time delay which generically arises from
the finite propagation time of the light form one laser to the other. In our system the coupling time is in the
sub-ns range, which is of the same order of magnitude as the period of laser’s internal relaxation oscillations.
We model this system with Lang-Kobayashi-type rate equations where we account for the mutual coupling of
the two lasers by a delay term. The resulting set of nonlinear delay differential equations is analyzed by using
recently developed numerical continuation. We consider the case of two nearly identical lasers with symmetrical
coupling conditions but different frequencies, and present an analysis of the coupled laser modes (CLMs) of the
system.

Keywords: mutually coupled lasers, delay differential equations, numerical continuation

1. INTRODUCTION

Semiconductor lasers are known to be very sensitive to external optical perturbation, for example to external
reflection of their own light or the influence of another laser. The case that we are concerned with here is that
of two mutually coupled lasers. This case has received increasing interest recently, both experimentally as well
as theoretically. In [1, 2] synchronization of two chaotic semiconductor lasers is reported. In [3] spontaneous
symmetry breaking and a leader-laggard scenario is found and the effect of detuning is investigated. Theoretical
investigations have been done in [4] for the instantaneous coupling limit, whereas in [5] the focus is on the long
coupling time limit. In [6] a thermodynamic potential for two mutually coupled laser is derived and investigated.
First experiments on mutually coupled lasers in the short coupling time regime are presented in [7], showing the
influence of spectral detuninig. In [8] recent experiments are presented that show the importance of the coupling
phase in good agreement with numerical results based on rate equations.

In this contribution we consider a system of two nearly identical semiconductor lasers. The lasers are coher-
ently mutually coupled via their optical fields, that is, light from one laser is injected into the other laser and
vice versa. We focus on a coupling time regime where the coupling time is of the same order of magnitude as the
laser’s internal relaxation oscillation, thus, it is not negligible and the full delay differential equations (DDEs)
must be studied. To analyze the structure of the solutions, we use DDE-BIFTOOL, a recently developed numer-
ical continuation software package for DDEs; see [9]. Supplied with an approximate starting solution, such as
an equilibrium or a periodic orbit, DDE-BIFTOOL allows one to follow this solution in one free parameter, irre-
spective of its stability. Along such a branch of solutions stability information can be computed and bifurcations
detected.
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We describe the mutually coupled laser system with a set of Lang-Kobayashi-type rate equations for the
normalized complex slowly-varying envelope of the optical fields E1,2 and the normalized inversions N1,2; see [10].
The optical fields of the lasers are represented by Ei(t)e

iΩ0t, where Ω0 = 1

2
(Ω1+Ω2) and Ωi is the optical frequency

of laser i operated solitarily, that is, when it is not coupled to the other laser. Apart form their possibly different
solitary optical frequencies the two lasers are considered to have identical parameters. The equations can be
written as

dE1

dt
= (1 + iα)N1(t)E1(t) + ηe−iCpE2(t − τ) − i∆E1(t) , (1)

dE2

dt
= (1 + iα)N2(t)E2(t) + ηe−iCpE1(t − τ) + i∆E2(t) , (2)

T
dN1

dt
= P − N1(t) − (1 + 2N1(t))|E1(t)|

2 , (3)

T
dN2

dt
= P − N2(t) − (1 + 2N2(t))|E2(t)|

2 . (4)

A detailed derivation of these equations can be found in [2]. In these equations time t is measured in units of
the photon lifetime. The mutual coupling is described by the second term on the right hand side of (1) and (2).
An intrinsic feature of the coupling is the time delay τ , which is due to the finite propagation time of the light
between the spatially separated lasers. A possible spectral detuning is taken into account by the last term of (1)
and (2) where ∆ = 1

2
(Ω2 − Ω1). An important parameter in this contributions is the coupling phase Cp = Ω0τ ,

which we consider as an independent parameter. This is reasonable since tiny changes of τ or Ω0 have only little
effect on the other parameters. The remaining parameters are the linewidth enhancement factor α, the coupling
strength η, the normalized carrier lifetime T and the pump parameter P . For all these parameters we adapt
physically meaningful values namely, τ = 71 α = 5.0, η = 0.025, T = 392.7, and P = 0.231. In physical units
these values correspond to a coupling time of 0.2 ns, a coupling strength of 8.9 × 109 s−1, a carrier life time of
1.1 × 10−9 s, photon lifetime of 2.8 × 10−12 s and a pump current which is 1.5 times above the threshold pump
current.

Equations (1)–(4) exhibit several symmetries which we discuss now. First, there is the S1-symmetry
(E1, E2, N1, N2) → (E1e

ib, E2e
ib, N1, N2), which is a typical feature of Lang-Kobayashi-type optical feedback,

provided that no phase conjugation is involved [11]. Thus, any solution is invariant under any phase shift of
both electric fields E1 and E2, which is a real phase-space symmetry as no parameters are involved. The S1-
symmetry motivates the ansatz (5)–(8) of the coupled laser modes (CLMs) of section 2 with a common frequency
for both lasers. Second, there is the reflection symmetry (E1, E2, N1, N2, ∆) → (E2, E1, N2, N1,−∆), involving
an interchange of the lasers and a sign change of ∆. For zero detuning, that is for ∆ = 0.0, this implies an
additional Z2-symmetry of exchanging laser 1 with laser 2, without changing any parameter. This is already
an indication of the pitchfork bifurcations (also called symmetry breaking bifurcation), which are indeed found
in section 3. Third, there is a 2π-translational symmetry (E1, E2, N1, N2, Cp) → (E1, E2, N1, N2, Cp + 2π), in-
volving the parameter Cp. Following a solution over a Cp interval of 2π contains all information, nevertheless
it is often more practical to follow Cp over several periods of 2π. Finally, there is a π-translational symmetry
(E1, E2, N1, N2, Cp) → (E1,−E2, N1, N2, Cp +π), which involves a change of Cp by π and a sign change in either
E1 or E2. The π-translational symmetry gives a link between what we call in-phase CLMs and anti-phase CLMs;
see section 2.

In the following section we will give a comprehensive overview over the basic solutions of the system and derive
analytical expressions for the in-phase and anti-phase CLMs for zero detuning. In section 3 we perform numerical
continuation for the zero detuning case, revealing the existence of another type of solutions, the variable-phase
CLMs. In section 4 we discuss the CLMs for nonzero but fixed detuning. The CLMs are discussed in section 5
as a function of the detuning. Finally, we also compare the theoretical results with an experiment. We finish
with conclusions and outlook.

2. COUPLED LASER MODES

Guided by physical intuition and taking into account the symmetries discussed in section 1 we try the ansatz:

E1(t) = Rs
1e

iωst , (5)



E2(t) = Rs
2e

iωst+iσ , (6)

N1(t) = Ns
1 , (7)

N2(t) = Ns
2 . (8)

where Rs
i , N

s
i , ωs, and σ are time independent and real valued; additionally, the Rs

i are taken to be positive. We
allow different steady state amplitudes Rs

i and different steady state inversions N s
i . However, the lasers must have

the same frequency ωs in agreement with the S1-symmetry, where ωs describes the deviation between the solitary
laser frequency and the frequency of the coupled laser system. Note that there may be some time-independent
phase shift σ between the lasers. We call solutions (5)–(8) coupled laser modes (CLMs); physically, they are
continuous wave solutions. Inserting this ansatz into (1)–(4) gives a set of six coupled nonlinear transcendental
equations for the six unknowns:

0 = Rs
1N

s
1 + κRs

2 cos(−Cp − ωsτ + σ) , (9)

(ωs + ∆)Rs
1 = αRs

1N
s
1 + κRs

2 sin(−Cp − ωsτ + σ) , (10)

0 = Rs
2N

s
2 + κRs

1 cos(−Cp − ωsτ − σ) , (11)

(ωs − ∆)Rs
2 = αRs

2N
s
2 + κRs

1 sin(−Cp − ωsτ − σ) , (12)

0 = P − Ns
1 − (1 + 2N s

1 )|Rs
1|

2 , (13)

0 = P − Ns
2 − (1 + 2N s

2 )|Rs
2|

2 . (14)

We can use (9)–(12) and eliminate the unknown variables R1, R2, N1, N2. The result is a transcendental equation
containing ωs and σ, namely:

(ωs + ∆)(ωs − ∆) = κ2(sin(Cp + ωsτ + σ) + α cos(Cp + ωsτ + σ))

×(sin(Cp + ωsτ − σ) + α cos(Cp + ωsτ − σ)) . (15)

So far there is no comprehensive geometrical picture available for the general solutions of (9)–(14). However, for
zero detuning we can derive some analytical expressions.

3. ZERO DETUNING

When one sets ∆ = 0.0 one can see immediately that σ = 0 and σ = π gives a transcendental equation for ωs

similar to that for conventional optical feedback [12]:

ωs = ∓[κ(sin(Cp + ωsτ) + α cos(Cp + ωsτ))] . (16)

The minus sign gives the in-phase CLMs with σ = 0 and the plus sign gives the anti-phase CLMs with σ = π.
For these CLMs σ = const., that is, σ is independent of Cp. Thus, we also refer to them as constant-phase
CLMs. For all constant-phase CLMs one finds that N s

1 = Ns
2 and Rs

1 = Rs
2.

In Fig. 1(a) the inversion N is plotted as a function of the frequency ωs. The filled circles in Fig. 1(a) mark
the position of the in-phase CLMs for fixed Cp = 0.0, of which there are five. The filled squares in Fig. 1(a) mark
the positions of the anti-phase CLMs for fixed Cp = 0.0, of which there are also five. We indicate the inversion of
laser 1 by filled symbols and inversion of laser 2 by open symbols. Since N1 = N2, the open symbols can not be
distinguished from the filled symbols. The ellipse on which these CLMs lie can be found by following the CLMs
as Cp is changed over 2π. Note that the π-translational symmetry interchanges the circles with the squares in
Fig. 1(a) and vice versa.

Now we look for more general solutions, where σ is some function of Cp, and Ns
1 6= Ns

2 and Rs
1 6= Rs

2, which
we call variable-phase CLMs. For these type of CLMs, there is no comprehensive geometrical picture available
yet. However, we can use the full set of equations (9)–(14) and apply Newton’s method to find solutions. Five
variable-phase CLMs are found for fixed Cp = 0.0. In Fig. 1(b) these CLMs are plotted in the (ωs, Ns)-plane.
The filled triangles mark the inversion of laser 1 and the open triangles mark the inversion of laser 2. There
is a second set of symmetrically related variable-phase CLMs: applying the reflection symmetry to Fig. 1(b)
interchanges the filled triangles with the open triangles. All variable-phase CLMs also lie on a closed curve that
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Figure 1. Ellipses of CLMs for zero detuning in the (ωs, N)-plane, where Cp is varied. Panel (a) shows the constant-phase
CLM ellipse with in-phase solutions (circles) and anti-phase solutions (squares) for Cp = 0.0. Filled symbols are for laser
1 and open symbols are for laser 1. Note that N1 = N2 for constant-phase CLMs. Panel (b) shows the variable-phase
CLM ellipse with CLMs for Cp = 0.0 indicated by filled triangles for laser 1 and open triangles for laser 2. Panel (c)
shows the constant-phase CLM ellipse; stars (∗) mark saddle-node bifurcations, diamonds (�) pitchfork bifurcations, and
circles (◦) Hopf bifurcations. Panels (d) and (e) show an enlarged view of the low-inversion region and the high-inversion
region, respectively, emphasizing the difference between the constant-phase ellipses and the variable-phase ellipses.



also appears to be an ellipse. This ellipse can be found by varying Cp over 2π. At the scale of Fig. 1(b) the
variable-phase ellipse cannot be distinguished from the constant-phase ellipse of Fig. 1(a). However, the two
ellipses are indeed different as can be seen in Fig. 1(d) and Fig. 1(e).

So far we discussed the situation for a fixed value of Cp. When Cp is decreased continuously the CLMs in
Fig. 1(a) move continuously from the low-inversion region towards the high-inversion region along the ellipse,
indicated in the figure. The constant-phase CLMs are pairwise born in a saddle-node bifurcation in the low-
inversion region, and destroyed pairwise in a saddle-node bifurcation in the high-inversion region. In Fig. 1(c) only
the ellipse of Fig. 1(a) is plotted without CLMs for fixed Cp. The marks indicate points where the constant-phase
CLMs undergo certain bifurcations while they move along the ellipse as Cp is varied. Saddle-node bifurcations are
marked by stars (∗), pitchfork bifurcations by diamonds (�) and Hopf bifurcations by circles (◦). The boldfaced
part of the ellipse in the low-inversion region marks the region where stable CLMs can be found. For the chosen
parameter values only one of the constant-phase CLM can be found in the stable region, that is, either one
in-phase CLM or one anti-phase CLM. The stable part of the ellipse is bounded by a Hopf bifurcation on the
right-hand side and a pitchfork bifurcation on the left-hand side. This pitchfork bifurcation gives rise to the
variable-phase CLMs and marks the point where the constant-phase ellipse intersects the variable-phase ellipse.
When an in-phase CLM crosses the pitchfork bifurcation in the low-inversion region two variable-phase CLMs
are born, related to each other by the reflection symmetry. For decreasing Cp the variable-phase CLMs also move
along their ellipse from the low-inversion region towards the high-inversion region. The ellipse is already indicated
in Fig. 1(b). The variable-phase CLMs are destroyed in the pitchfork bifurcation in the high-inversion region.
However, during this journey the variable-phase CLM accumulates an extra phase of π. Thus, the variable-phase
CLMs provide a connection between the in-phase and the anti-phase CLMs and vice versa. The same happens
to variable-phase CLMs that are born in a pitchfork bifurcation of an anti-phase CLM. Therefore, applying the
π-translational symmetry does not change Fig. 1(b), because we do not distinguish between variable-phase CLMs
that are born in a pitchfork bifurcation of either an in-phase CLM or an anti-phase CLM.

4. NONZERO DETUNING

First we present a global picture of the CLMs for nonzero detuning as a function of Cp. We want to know along
which curve the CLMs move for ∆ 6= 0 in the (ωs, Ns)-plane when Cp is changed. For convenience, in Fig. 2(a)
and Fig. 2(b) we plotted the rescaled inversions N ∗ = N − 0.19ωs of laser 1 and laser 2, respectively. This
shearing transformation plots N relative to the long axis of the zero detuning ellipses in Fig. 1. In the following
we choose laser 2 being positively detuned with respect to laser 1. Thus, we can refer to laser 1 as the red laser
and to laser 2 as the blue laser. In the (N∗

1 , ωs)-plane of Fig. 2(a) a horseshoe can be seen, that opens to the
right-hand side. Whereas, in the (N∗

2 , ωs)-plane of Fig. 2(b) a horseshoe can be seen, that open to the left-hand
side. Both horseshoes are obtained by following one CLM under variation of Cp and keeping all other parameters
fixed. Again the CLMs undergo certain bifurcations when Cp is changed. Four saddle-node bifurcations (∗) can
be found. They are labeled by the letters ‘a,b,c,d’. Two of them, ‘a’ and ‘d’, are remainders of the pitchfork
bifurcation for zero detuning. The other two, ‘b’ and ‘c’, were already present for zero detuning. Several Hopf
bifurcations are found. We only plot the Hopf bifurcation (◦) which bounds the stable region. Again for a fixed
value of Cp a fixed number of CLMs can be found and only one CLM lies in the stable region at the same time.

Furthermore, we present what happens to σ when moving along the CLM branch, and plot in Fig. 2(c) σ as
a function of ωs. A closed curve can be seen, where we define a direction along this curve by arrows; each branch
is marked by a different style of arrow. One can see that there are two branches of almost constant in-phase or
anti-phase CLMs. They are connected by two branches of decreasing and increasing variable-phase CLMs.

Let us first consider the branch between the saddle-node bifurcations ‘a’ and ‘b’ of decreasing σ indicated by
arrow (→). In Fig. 2(a) this is the upper branch of the upper half of the blue laser’s horseshoe. Correspondingly,
it is the upper branch of the lower half of the red laser’s horseshoe in Fig. 2(b). The next branch between
saddle-node bifurcations ‘b’ and ‘c’ (⇐=) is a branch of almost constant σ ' 0. It corresponds to the lower
branch of the upper half of the blue horseshoe and the lower branch of the upper half of the red horseshoe. The
branch between saddle-node bifurcations ‘c’ and ‘d’ (−→) is a branch of increasing σ. It corresponds to the
upper branch of the lower half of the blue horseshoe and the upper branch of the upper half of the red horseshoe.
Finally, the branch between saddle-node bifurcations ‘d’ and ‘a’ (⇐) is a branch of almost constant σ ' π. It
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Figure 2. Horseshoes of the blue laser’s CLMs (a) and of the red laser’s CLMs (b) for ∆ = 2.5 × 10−3 in the (ωs, N∗)-
plane, where N∗ = N − 0.19ωs. Panel (c) shows the phase shift σ in multiples of π as a function of ωs. The arrows define
a direction of movement along the closed curve in the (ωs, σ)-plane. Different arrows indicate different parts of the curve
of CLMs: (→) decreasing variable-phase CLMs, (⇐=) constant in-phase CLMs, (−→) increasing variable-phase CLMs,
and (⇐) constant anti-phase CLMs. The letters ‘a,b,c,d’ label the four saddle-node bifurcations; the circle (◦) marks the
Hopf bifurcation that bounds the stable part of the branch.
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region (b); compare Fig. 1(d) and (f). The letters ‘a,b,c,d’ label the saddle-node bifurcations; the arrows define the
direction of traveling along the branch as in Fig. 2.

corresponds to the lower branch of the lower half of the blue horseshoe and the lower branch of the lower half of
the red horseshoe.

From this behavior we can deduce a general rule: branches which can be found on the same half of both
laser’s horseshoes exhibit almost constant phase. Branches which can be found on different halfs of the horseshoes
exhibit variable phase.

We can understand how the red and the blue horseshoes are formed by focusing on the regions around the
pitchfork bifurcations for zero detuning in Fig. 1(d) and (e). Figure 3(a) and (b) show an enlarged view of the
low-inversion region and the high-inversion region for nonzero detuning. The far edges of the horseshoes can
be recognized. This figure should be compared with Fig. 1(d) and (e) for zero detuning. The (ωs, N)-plane of
all these panels show the same range. For zero detuning (Fig. 1(d) and (e)) the constant-phase ellipse and the
variable-phase ellipse are only intersecting in two points, the pitchfork bifurcation points. For nonzero detuning
the reflection symmetry is destroyed, the pitchfork bifurcations vanish and saddle-node bifurcations and a sepa-
rated branch of solutions appear instead. This unfolding scheme is well known for pitchfork bifurcations under
perturbation of the Z2-symmetry; see for example [13]. There are two possible unfolding schemes: depending
on the sign of the perturbation a separate branch of solutions can be formed above or below the saddle-node
bifurcation.

In our system both unfolding schemes exist; the perturbation ∆ is negative for laser 1, while it is positive
for laser 2. The unfolding processes lead to two types of connections in our system. Consider again Fig. 1(d).
Type one connects the upper branch of the variable-phase CLMs and a branch of in-phase or anti-phase CLMs
directly underneath. Type two connects the upper branch of the variable-phase CLMs and the lowest branch
of in-phase or anti-phase CLMs. These types of connections can be recognized in Fig. 3(a) and (b). Around
saddle-node bifurcation ‘a’ the blue laser performs connection type two and the red laser performs connection
type one. Around saddle-node bifurcation ‘d’ the blue laser performs connection type one and the red laser
performs connection type two. These local connections globally lead to the horseshoes already discussed in the
previous paragraph.

5. VARIABLE DETUNING

So far we investigated the CLMs for nonzero but fixed detuning and variable Cp. Now we fix the value of Cp in
such a way that we are at some point in the stable region of the in-phase CLMs of Fig. 1(c) and take the detuning
parameter ∆ as variable. In Fig. 4 the inversions N1 and N2 are plotted as a function of ∆. A symmetrical figure
can be seen. For zero detuning there is always an intersection point between the branch of the red laser and the
branch of the blue laser. The remaining four different values of inversion for zero detuning can be recognized as
certain points on the upper half and the lower half of constant-phase and variable-phase ellipse of Fig. 1(d). In
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Fig. 4 bold parts of the branch indicate the existence of stable CLMs. This means that there is a locking region
where both lasers have the same frequency. For this particular value of Cp the locking region loses stability via
saddle-node bifurcations (∗). (For other values of Cp the locking region may lose stability via Hopf bifurcations.)
Two further saddle-node bifurcation are found. They take place on an already unstable part of the branch.

For large values of detuning well away from the locking region, one finds mixed-mode oscillations. Moving
towards the locking region these oscillations may become unstable by undergoing further bifurcations before the
locking region is reached. Nevertheless, the frequency of the mixed-mode oscillation may still be dominant. For
our parameter values, we found a chaotic attractor just outside the locking region. The saddle-node bifurcation
at the boundary of the locking region appears to take place on this chaotic attractor, which is also referred to as
an intermittent bifurcation.

In Fig. 5 experimental results from [7] are presented. In this particular setup the coupling time is 0.2 ns, an
estimation of the coupling strength gives an upper limit of 8.0× 109 s−1 and both lasers are operated 2.7 times
above the threshold. Detuning is achieved by small temperature changes in one laser. The frequency of the
dominant peak in the Rf-spectra of the observed intensity oscillations is plotted as a function of the detuning.
In the center around zero detuning there is no dominant peak in the Rf-spectra of both lasers, meaning that
they have constant intensity. This proves experimentally the existence of the locking region. Outside the locking
region the Rf-spectra of both lasers exhibit a distinct peak, due to oscillation in the intensity. At the edges to the
locking region the peaks are broadened and the frequency almost goes to zero. For large values of detuning the
frequency of the intensity oscillations approaches the detuning frequency. The experimentally broadened peaks
in the Rf-spectra at the boundary of the locking region may be an indication of chaotic dynamics. This shows
that experiment and theory are in qualitative agreement; see also [8] for more experimental results.

6. SUMMARY AND OUTLOOK

In this contribution we presented a geometrical picture of the CLM structure of two mutually coupled semi-
conductor lasers. For zero detuning one finds three types of CLMs: in-phase CLMs, anti-phase CLMs, and
variable-phase CLMs. The variable-phase CLMs have their origin in pitchfork bifurcations due to a Z2-symmetry
of the system for zero detuning. For nonzero detuning one observes an unfolding of the pitchfork bifurcations
into saddle-node bifurcations and separate branches of solutions. This local unfolding has a crucial influence on
the global structure of the CLMs, which now form one closed curve in the shape of a horseshoe in (ωs, N)-plane.

For variable detuning we showed qualitative agreement between theory and experiment. A stable locking
region is found around zero detuning, in qualitative agreement with experimental measurements. A detailed and
quantative comparison of theory and experiment is beyond the scope of this contribution and will be the subject
of future work.

The CLM structure provides the backbone for further studies of the dynamics. The next step will be the
study of Hopf bifurcations and their bifurcating periodic orbits. How these orbits undergo further bifurcations
to more complicated dynamics will be discussed elsewhere.
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