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Abstract

We study the spectral and dynamical behavior of two identical, mutually delay-
coupled semiconductor lasers. We concentrate on the short coupling-time regime
where the number of basic states of the system, the compound laser modes (CLMs),
is small so that their individual behavior can be studied both experimentally and
theoretically. As such it constitutes a prototype example of delay-coupled laser
systems, which play an important role, e.g., in telecommunication.

Specifically, for small spectral detuning we find several stable CLMs of the coupled
system where both lasers lock onto a common frequency and emit continuous wave
output. A bifurcation analysis of the CLMs in the full rate equation model with delay
reveals the structure of stable and unstable CLMs. We find a characteristic bifurca-
tion scenario as a function of the detuning and the coupling phase between the two
lasers that explains experimentally observed multistabilities and mode jumps in the
locking region.
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1 Introduction

Systems of coupled semiconductor lasers (SLs) are receiving increasing in-
terest, because of their practical importance, e.g., for achieving high output
power or for on-chip integrated optical devices. Moreover, they are important
examples of coupled oscillators in general. The spatial separation of the lasers
always results in a time delay in the coupling due to finite signal propaga-
tion times. In many situations the time delay in the coupling has been neg-
lected. However, for semiconductor lasers this is not always justified due to
their large bandwidth and fast time scales of their dynamics. It is well known
that delay effects can destabilize a system; see, e.g., Ref. [1]. In delay-coupled
semiconductor lasers this may even result in chaotic dynamics as was shown
in Ref. [2]. On the other hand, time delay in the coupling can also be used
to stabilize a chaotic system [3]. This ambivalent character of delayed coup-
ling makes this field attractive for fundamental investigations. Furthermore,
delay-coupled SLs are promising candidates for different technological applic-
ations, such as secure chaos communication [4], ultra-fast optical clocks [5],
and optical flip-flops [6].

The objective of our study is the generic case of two identical, mutually delay-
coupled semiconductor lasers that receive each others light. Only the optical
frequencies of the two lasers may differ, which leads to a detuning between
the lasers. The delay 7 in the coupling is then given by 7 = L/c, where L is
the distance between the two lasers and c is the speed of light. We consider
the case of the short coupling time regime as was introduced in Ref. [7] (for
the case a SL subject to conventional optical feedback). This means that the
delay time 7 is of the order of the period v} of the characteristic relaxation
oscillation — a periodic exchange between the number of photons and the
number of electron-hole pairs (inversion).

Recently, a number of experimental and theoretical studies have been per-
formed on this system. The dynamical behavior of delay-coupled SLs was
found to be very different depending on the delay-time 7. Theoretical invest-
igations for the limit of zero delay can be found in Ref. [8]. In Ref. [2] chaos
synchronization in conjunction with symmetry breaking has been reported for
long delay times. The dependence of the onset of chaos synchronization has
been studied experimentally and numerically for different coupling strengths
and injection currents in Ref. [9]. The limit of very large delay is the focus
of theoretical studies in Refs. [10,11]. Numerical simulations are performed in
Ref. [12] and an analytical formula is derived that predicts the oscillation fre-
quency in the mode beating regime for short delays. Numerical investigations
and an approximate thermodynamic potential can be found in Refs. [9,13].
For a short delay time of 7 ~ vy}, regular dynamics, such as frequency locking
with continuous wave emission and regular intensity oscillations, are domin-



ant [14-16]. Depending on the detuning between the two lasers, a characteristic
scenario has recently been demonstrated [16]. Increasing the detuning leads
from optical frequency locking towards successive states of periodic intensity
oscillations. A detailed bifurcation analysis in dependence on the detuning
from the dynamical system can be found in [17]. The interesting question of
the influence of the pump current, which effectively gives the transition from
short to long coupling times, is discussed in [18].

In this paper we report a detailed experimental study of the compound laser
modes (CLMs) of two mutually delay-coupled SLs. We focus on the lock-
ing region in dependence of the detuning and the coupling phase between the
lasers. Furthermore, we employ advanced methods from the bifurcation theory
of delay differential equations (DDEs), in particular, numerical continuation of
the CLMs with the package DDE-BIFTOOL [19]. The combination of exper-
imental and theoretical techniques allows us to explain the observed dynam-
ics, in particular, mode jumps and multistability leading to hysteresis loops.
Hence, this paper proofs the existence of the CLMs experimentally as well as
theoretically which lays the foundation for further studies of the dynamics of
delay coupled SLs. Moreover, the good agreement between experiment and ad-
vanced bifurcation techniques shows the power of these techniques and opens
the possibility to explain even complicated dynamics on a fundamental level.
In turn this allows one to provide insight into the behavior of optical system.
This is of importance because of the increasing interest in, e.g., multi-section
devices.

More generally, our results contribute to the research on delay-coupled os-
cillators, which describe and explain widely differing phenomena, including
chemical oscillations, biological clocks and information processing in neural
networks; see, for example, Refs. [20-22] as entry points to the extensive liter-
ature on the subject. Phenomena that are attributed to time-delayed coupling
include multistabilities, amplitude death and the onset of delay-induced in-
stabilities [23,3,2,16].

The paper is organized as follows. In Sec. 2 we begin with a description of the
system of coupled SLs and its experimental realization. Section 3 presents the
experimental results, focusing on the influence of a detuning between the two
SLs. Section 4 introduces the rate equation model of the system and the CLMs.
Section 5 compares the bifurcation analysis with the experimental results.
From this comparison we draw conclusions in Sec. 6 emphasizing the physical
relevance of short-delay coupling induced locking-phenomena and point to
further work.
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Fig. 1. Setup of the coupled laser system, including lenses L, beamsplitter BS, optical
isolators ISO, electrical spectrum analyzer ESA, optical spectrum analyzers OSA,
and pin-photodiodes PIN.

2 The System

We consider a system of two SLs that are mutually delay-coupled via the
electromagnetic field. The two SLs are assumed to be identical, but they may
have different solitary (i.e. in the absence of the other laser) optical frequencies
leading to a spectral detuning between the two lasers.

In the experiment two SLs are placed in a face-to-face configuration as depicted
in Fig. 1. We selected two 1540 nm single-mode distributed feedback (DFB)
lasers. To achieve almost identical devices, both lasers where grown on the
same wafer. The threshold currents are 9 mA. Both lasers have a linewidth
enhancement factor o that has been determined to be about o« = 2, which is in
the typical range for DFB laser used in telecommunication applications. The
temperature of the lasers can be stabilized with an accuracy of better than
0.01 K. This allows for temperature induced frequency shifts with controllable
steps smaller than 300 MHz. The lasers are pumped with two low-noise current
sources.

The beam of each laser is collimated by a lens (L), propagates along the coup-
ling distance and is refocused into the active region of its opposing counterpart.
A beamsplitter (BS) extracts 50% of the output power of each laser towards the
measurement devices. The detection branches are separated from the SLs by
two optical isolators (ISO) to suppress unwanted feedback. The optical spectra
of the lasers are measured using two optical spectrum analyzers (OSA) with
a relative resolution of better than 0.05 nm. To study the dynamical proper-
ties of the lasers the optical signal is converted into an electrical signal by a



fast avalanche photodiode with a bandwidth of 12 GHz. The electrical signal
is analyzed with an electrical spectrum analyzer (ESA). The time-averaged
output power of each laser is measured with two pin-photodiodes (PIN).

The optical pathlength between the lasers is d = 51 £ 1 mm resulting in a
delay of 7 = 170 & 3 ps. This delay corresponds to the round-trip frequency
fext = 2.940.1 GHz. Although the scheme of the setup is conceptually simple,
it is experimentally demanding: great care has been taken to achieve stable
and well-defined coupling conditions. In particular, the short coupling dis-
tances force high demands on lateral, transverse, longitudinal and angular
alignment. In a first step the parallel alignment of the two lasers has been
adjusted with the help of optical reflections. In a second step, the relative
transverse and lateral positions of the lasers have been aligned by measuring
the photocurrent that is induced in the respective other laser. Only if the de-
pendence of the photocurrent is symmetric under variations of the transverse
and lateral position of each laser, it is assured that the light is coupled sym-
metrically into the active region of the lasers. Specially designed laser mounts
have been used in order to achieve interferometric stability and full control
over the coupling phase.

Special attention has been paid to determine the coupling strength and the
possible influence of residual feedback that originates from reflections from
the front facets of the other laser. By a consideration of the reflectivities,
transmittivities and losses in the experimental setup, we have determined
that approximately 5% of the output power of each laser is injected into the
respective other laser. This was complemented and verified via measurements
of the induced photocurrent. The residual feedback in our setup follows to be
about two orders of magnitude smaller than the coupling. Nevertheless, one
has to be aware that even very weak feedback of less than 0.1% can undamp
relaxation oscillations in SLs [20]. Therefore, we measured the influences of
the residual feedback in our coupling scheme by using one unpumped laser as
a mirror. We do not observe any dynamical behavior in the intensity spectra.
The optical spectra exhibit unchanged lineshape when compared to single
mode emission without residual feedback and we did not find side peaks due to
relaxation oscillations. Thus, we conclude that in our experiment the residual
feedback can be neglected.

To study how the behavior of the coupled laser system depends on a spectral
detuning A we have chosen the following experimental procedure. The free-
running optical frequency 1/ of laser 1 is kept constant during the experiment,
while the free-running optical frequency 19 of laser 2 is changed in small steps.
This results in a variable spectral detuning A = v9 —1?. Since we change A by
detuning laser 2, this laser is called the detuned laser, while laser 1 is called the
unchanged laser. The detuning A can be varied either by changing the temper-
ature or the injection current of the detuned laser. Shifting the temperature



yields a spectral detuning of approximately —12 GHz/K, while shifting the
injection current yields a spectral detuning of approximately —1.1 GHz/mA.
The exact dependence of the detuning on the injection current and the tem-
perature is nonlinear; this nonlinear relationship was measured and used to
determine the detuning. After each step of changing the detuning the optical
spectra, the rf-spectra of the intensity dynamics, and the output intensity are
recorded simultaneously. It is important that the coupling conditions remain
constant within the measurement time. This is achieved by using laser mounts
with thermal properties which allow a fast temperature stabilization and suf-
ficient stability to accurately define the detuning conditions. We note that
the presented results have been verified to be independent of the method of
detuning, as well as to interchanging lasers 1 and 2.

3 Experimental results

In Fig. 2 we show the spectral shift of the detuned laser as white circles (o)
and that of the unchanged laser as black circles (o). The detuning range was
—10 < A < 10 GHz, where the detuning has been achieved by varying the
temperature of laser 2. To detect hysteresis effects, panel (a) is for increasing
detuning and panel (b) for decreasing detuning as indicated with arrows. We
define increasing detuning as the positive detuning direction and decreasing
detuning as the negative detuning direction.

The spectral shift is defined as the difference 115 = 112 — 1%, between the
optical frequency vy 5 of the respective laser in the coupled system and the
free-running frequency v9,, of the unchanged laser. The lasers were pumped
at 6.5 times their threshold; for this pump current their relaxation oscillation

frequency has been extrapolated to be about 15 GHz.

In Fig. 2 one can distinguish two different regimes. For a detuning near A = 0
both lasers are locked to the same optical frequency, i.e., n = n; = n5. In this
locking region we do not measure any intensity dynamics in the rf-spectra
and the lasers emit on a single optical mode. Small deviations between the
measured spectral positions of both lasers in Fig. 2 are due to the limited resol-
utions of the OSAs. Outside this locking region both lasers emit with different
frequencies, i.e., n; # 19 . This region is indicated by a grey background. Here
the intensity of both lasers oscillates with a frequency equal to their spectral
separation |ne — 1;1]. A detailed discussion of the oscillatory behavior outside
the locking region can be found in Ref. [16]. Here, we focus on the locking
region. For the positive detuning direction, shown in Fig. 2(a), the locking
region ranges from A = —6.4 GHz to A = 8.2 GHz. Inside the locking region
we observe three steps of constant frequency situated at about n = —2.5 GHz,
1n = 0.1 GHz and n = 2.5 GHz, while the steps cover a tuning range of 9.1, 2.7
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Fig. 2. Spectral shift 1 of both lasers for positive (a) and negative (b) detuning direc-
tion. White circles (o) indicate the detuned laser and black circles (o) the unchanged
laser. A grey background indicates regions with oscillating intensity dynamics out-
side the locking region.

and 2.8 GHz, respectively. When increasing A, the width of the first step of
the locking region is more than three times larger than that of the other two
steps. For decreasing detuning, shown in Fig. 2(b), the locking region is shifted
towards lower values of the detuning within —6.9 < A < 4.6 GHz. Here, the
locking region consists of two steps. The first is situated at about n = 0.4 GHz
and the second at n = —2.1 GHz. Again, the first step covers a tuning range
of 9.8 GHz and is much larger than the second step that covers 1.7 GHz.
Comparing Fig. 2(a) and (b) one can see that, within the experimental accur-
acy, the small step for the negative detuning direction has the same spectral
position 7 as the large step for the positive detuning direction. In fact, both
overlap around A = —6 GHz. The same holds around A = 4 GHz.

We conclude from these experimental results that the three steps within the
locking region correspond to three stable modes of the delay-coupled laser
system. Therefore, we denote these modes as compound laser modes (CLMs).
As is evidenced in Fig. 2, the CLMs exhibit multistabilities. First, two of the
CLMs overlap over a tuning range of about 8 GHz which results in the ob-
served hysteresis of the two large steps. Second, at the border of the locking
region the CLMs overlap with oscillating states of the coupled laser system.
This results in the discrepancies of the observed locking boundaries depend-
ing on the detuning direction. The frequency separation between the CLMs
of 2.4 GHz and 2.5 GHz, respectively, is related to the round trip frequency
fezt = 2.9 GHz of the system. There are two physical reasons for the de-
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Fig. 3. Spectral shift n of the unchanged laser (a) and measured output power (b)
of both lasers in the locking regime; white circles (o) are for the detuned laser and
black circles (o) for the unchanged laser. The detuning was achieved by changes
in the pump current of laser 2; in panel (a) the free-running frequency shift of the
detuned laser is indicated with a dashed line, and in panel (b) the continuous line
indicates the output power of the uncoupled detuned laser.

viation of the CLM separation from f.,;. First, the mode separation of two
delay-coupled laser resonators has been shown to be smaller than its round
trip frequency [24] which is mainly due to coupling losses. Second, mutual fre-
quency pulling between the two lasers influences the mode separation of the
coupled system. This effect is similar to the well-known frequency pulling for
SLs with external optical injection [25]. For a full description of the structure
of the CLMs, the nonlinearities of the SLs need to be included in the model.
This is the topic of Sec. 4.

We now take a more detailed look at the individual CLMs. Fig. 3(a) depicts
the spectral shift of the lasers inside the locking region for the negative detun-
ing direction. For simplicity, only the spectral shift of the unchanged laser is
shown as both lasers are frequency locked. The dashed line indicates the free
running frequency of the detuned laser. In Fig. 3 the detuning was achieved by
increasing the pump current of the detuned laser between 36 mA and 47 mA,
where A = 0 corresponds to 40 mA. The unchanged laser was pumped at
40 mA. Fig. 3(b) depicts the output power of the unchanged and the detuned
lasers. For comparison, the output power of the uncoupled detuned laser is
indicated by the continuous line.

The output power of the unchanged laser remains almost constant on each



CLM. When the coupled SLs jump towards a CLM at a lower optical frequency
the power of the unchanged laser decreases by about 20% at each mode jump.
The power of the detuned laser does not remain constant on one CLM but
increases in the negative detuning direction. This increase is not due to the
increasing injection current alone: the slope of the power is significantly steeper
for the detuned laser as compared to solitary operation. In fact, the output
power of both lasers depends on the difference between the frequency of the
coupled laser system v = v; = 15 and the frequency of the respective solitary
laser uﬂz. With increasing difference v — Vﬂz, the power of the respective laser
increases. If v — 17, changes into the negative direction, the power of the
respective laser decreases. A change of v — ng originates from two distinct
mechanisms: in the case of the unchanged laser, only mode jumps result in
changes of v. For the detuned laser, in addition to mode jumps, a change of
v — 1}, occurs also due to the variation of v, (i.e. the detuning). Therefore,
in the latter case the steps of the output power exhibit an underlying slope.
Corresponding mode jumps (in different positions due to the hysteresis) are
found for the other detuning direction.

4 Rate equation model

We model the coupled laser system with rate equations for the normalized
complex slowly-varying envelope of the optical fields £ 5 and the normalized
inversions N; . As for the Lang-Kobayashi rate equations for a laser with
conventional optical feedback [26], the main modeling assumption is that the
feedback rate is small enough so that multiple roundtrips can be neglected.
See Ref. [27] for a detailed derivation of these equations, which can be written
in dimensionless form as

aE: _

i = (1 + ia)NlEl —+ :‘ieiinTnEQQ - Tn) ) <1>
dE2 . 7inT y
W:(1 + i) NoEy + ke "By (t — 1)+ 0B, (2)
dN

Td—tl:P_Nl — (14 2N)|Ey?, (3)
dN.

Td—f:P—NQ—(1+2N2)|E2\2. (4)

Equations (1)—(4) are written in the reference frame of the unchanged laser,
i.e., laser 1. Thus the optical fields of the lasers are represented by Fj(t)e’4?,
where €); is the optical angular frequency of laser 1 operated solitary at
threshold. The time ¢ is measured in units of the photon lifetime. Apart from



the difference in their solitary optical frequencies, the two lasers are considered
to be identical.

The mutual coupling is given by the second term of Egs. (1) and (2). It contains
the coupling strength &, the delay time 7,, and the coupling phase C), = (;7,.
The detuning between the two lasers is taken into account by the last term
of (2) where 6 = (Qy — ), and )5 is the optical angular frequency of the
second laser operated solitary at threshold. It is an important observation that
the coupling phase C), depends very sensitively on 7,, and 2;: tiny changes of
7, and €); lead to substantial changes of C,. Therefore, it makes sense to
consider C;, as an independent parameter. This is helpful in the mathematical
analysis and in good agreement with the experiment. Note that C), is the
analogue of the feedback phase in the Lang-Kobayashi equations for a laser
with conventional optical feedback, which is also often considered to be an
independent parameter for the same reasons; see, e.g. [28,29].

The remaining parameters are the linewidth enhancement factor «, the coup-
ling strength , the normalized carrier lifetime T and the pump parameter P.
We consider here the values 7,, = 25.49, a = 2.0, k = 0.047, T' = 150.0, and
P = 13.17, which were derived from the physical values in Table 1.

laser parameter value
a-parameter 2.0
photon decay rate 150 ns~!
electron decay rate 1 ns?
differential gain 790 1
coupling rate 7ns !
coupling time 0.17 ns
pump current 6 x threshold
carrier density at threshold 1018

Table 1
Laser parameters and their values.

As in the case of the Lang-Kobayashi equations [26], the basic solution of (1)—
(4) are continuous wave solutions which we call CLMs. They can be written
in the following form:

Ey(t) = Rie™™" | Ey(t) = R3e™ ™ Ni(t) = Ni, Ny(t) = Nj, (5)

where R;, N7 ,w? and o are time independent and real valued. Furthermore,
the R; are taken to be positive. The lasers must have the same frequency
w® but there may be some time-independent phase shift o between them.
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Furthermore, the lasers may have different steady state amplitudes R; and
different steady state inversions /N/. Physically, a CLM corresponds to a fre-
quency locked state where the two lasers have constant output power; compare
Sec. 3. It is important to note that CLMs are periodic orbits in phase space.
However, they are special in that the periodicity is due to the S!-symmetry
of the system (1)—(4) of rotation of both E; and E, (over any angle). As a
consequence, R? and N7 are constant; see [17] for details. (Mathematically, a
CLM is a group orbit of the S'-symmetry.) In particular, in a rotating frame
with frequency w®, a CLM is a single point. The situation is conceptually the
same as that for the Lang-Kobayashi equations of a laser with conventional
optical feedback, where the external cavity modes are periodic orbits due to
St-symmetry [30,29].

The main difficulty for any analysis is that equations (1)—(4) are a system
of delay differential equations (DDEs). Consequently, their phase space is the
space of continuous functions over the delay interval [—7,, 0]; see Refs. [31,32].
This reflects the fact that one needs as initial condition not only the present
time point but also the entire history of length 7,, — in the case of Eqgs. (1)—(4)
the values of E;, Fy, N7 and Ny over [—7,,0].

We use the approach of considering individual CLMs as starting data for the
numerical continuation of CLMs with the package DDE-BIFTOOL [19]. This
software allows one to find and follow (or continue) branches of equilibria and
periodic solutions. Stability information is computed along such branches so
that basic bifurcations can be detected. We mention here briefly that DDE-
BIFTOOL requires solutions to be isolated. To compute branches of CLMs
one, therefore, must fix the phase of the CLM under consideration. Effectively
one picks one CLM in the group orbit of the S'-symmetry. This is done here
as in Refs. [33,34], where further details can be found.

Bifurcation analysis of delay equations with numerical continuation is a very
powerful tool [35]. In terms of the system at hand, it can be used to give a
detailed description of the bifurcation structure of the CLMs in terms of the
mutual effect of detuning and feedback phase. This structure is organized by
the case of zero detuning, which features the additional phase-space symmetry
of exchanging the two lasers. When the pump current is sufficiently far above
threshold (as is also the case in this paper) there is a typical scenario; see
Ref. [17]. Note that the influence of the pump current on the CLM structure
is discussed in detail in Ref. [18].

11
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Fig. 4. CLMs in the (22, w?®)-plane and their dependence on the feedback phase C),.
From panels (a) to (f) C) takes values from 0 to —%77. Saddle-node bifurcations are
marked by pluses (+) and Hopf bifurcations by stars (x); stable regions are plotted
as thick curves.

5 Dependence of CLMs on the Detuning

In this paper we present a bifurcation study that is limited to the direct vicin-
ity of the locking region of the system, in analogy to the shown experiments.
Specifically, we study how the structure of the CLMs of Egs. (1)—(4) changes
when the detuning ¢ is allowed to vary freely in the positive or negative dir-
ection. As it was done in the experiments described in Sec. 2, we keep the
frequency €); of laser 1 fixed and change the frequency €25 of laser 2. Of par-
ticular interest is how stable regions change with the feedback phase C),.

Fig. 4 shows the CLMs in the (£, w?)-plane for six different values of C;
from panels (a) to (f) the coupling phase C, decreases from 0 to —27. Each
panel shows a closed self-intersecting curve. The exact shape depends on the
value of €}, and the sequence repeats after C), has been changed by 7. CLMs
are born and lost in saddle-node bifurcations as €25 is increased or decreased.
For each value of C), there are multiple stable regions, which may overlap. The
boundaries of a stable region are typically formed by a saddle-node bifurcation

on one side and a saddle-node or Hopf bifurcation on the other side. The

12
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Fig. 5. CLMs in the (Q2,w?®)-plane and (22, I)-plane (b), and the (2, I5)-plane for
Cp = 0.637. Panel (a), (bl), and (b2) show the full branch. Saddle-node bifurcations
are marked by pluses (+) and Hopf bifurcations by stars (x); stable regions are
plotted as thick curves. Panels (c) and (d) show the parts of the branches that
followed for decreasing detuning. In panel (d) black circles (o) are for laser 1 and
white circles (o) for laser 2.

intensities 1§, = (Rj,)* of the CLMs depend on the detuning in a similar
way. Indeed, a plot of the intensities of the lasers corresponds to a different
projection of the curves of CLMs shown in Fig. 4. In particular, the stability
regions agree.

In Fig. 5(a) and (b1)/(b2) we show the CLMs in projection onto the (€25, w®)-
plane and the (Qy, I7)- and (€2, I3)-planes, respectively, for the value of C), =
0.63m. Note that it is not possible to determine the absolute value of C, in the
experiment. The value of C}, = 0.63m was chosen because it represents the best
agreement with the experimental measurements shown in Figs. 2 and 3(b). We
remark that we performed more measurements than shown, which verify the
dependence on the coupling phase C), as illustrated in Fig. 4.

To interpret the theoretical Fig. 5(a) and (b1)/(b2) in terms of the experi-
mental measurements shown in Fig. 3 one needs to consider only the stable
(bold) branches. The mode jumps observed in the experiment, when 25 is de-
creased, correspond to the left endpoints of stable branches. This is illustrated
in Fig. 5 (¢) and (d), which show what is observed in terms of the frequency

13



w and the intensities I; 2 when the rightmost stable CLM is followed for de-
creasing €1y. Specifically, the rightmost stable CLMs is born in a saddle-node
bifurcation at 2y &~ 0.16, and it corresponds to stable locking where both
lasers exhibit stable emission with the common frequency w?®. This frequency
changes slightly as Qy decreases [Fig. 5(a) and (c)]. Notice that the intensity of
the unchanged laser remains almost constant [Fig. 5(b1) and (d)], while that
of the detuned laser increases with decreasing €, [Fig. 5(b2) and (d)]. This
stable CLM disappears in a saddle-node bifurcation at 25 ~ —0.03 and the
system ‘drops down’ onto the middle stable branch of stable CLMs [Fig. 5(c)
and (d)]. The lasers’ frequency w?® and the intensities I of the unchanged and
I35 of the detuned laser are now lower. When 2, is decreased further, w*® and
I7 remain almost constant, while /5 increases. In the saddle-node bifurcation
at 25 ~ —0.13 also this CLM disappears and the system drops to the lower
stable branch of CLMs. The frequency w?® of the coupled laser system is now
at an even lower frequency, again almost constant. Also the intensities /7 and
I35 drop in value. Finally, this CLM disappears in the saddle-node bifurcation
at {2y ~ —0.2 and the system leaves the locking region. The steps and the
jumps in the measured frequency and intensities in Fig. 3 are explained well
by this scenario.

As is clear from Fig. 5(a) and (b1)/(b2), owing to hysteresis loops the jumps
between CLMs will take place at different values when €25 is increased. This
explains the jumps in the intensity at different values of €25 depending on the
direction of scanning in the experimental measurements in Fig. 2. Note that
multistability and hysteresis loops occur irrespective of the value of C), as can
be seen from the panels of Fig. 4.

Finally, we would like to point out already two other sources of multistability
and possible hysteresis loops, which are both beyond the scope of this paper.
First, there may be multistability between CLMs and periodic solutions that
can emerge from Hopf bifurcations within the locking region (when they are su-
percritical). Depending on the value of C), there may be small regions of (small
amplitude) oscillations inside the locking region. Second, there is multistabil-
ity between stable locking and the dynamics outside the locking region. This
has also been observed in experiments, and it is responsible for the different
size of the region of measured stable locked dynamics in Fig. 2(a) and (b).
These two effects may, in fact, be in competition. For example, we found that
the Hopf bifurcation bounding the lowest step to the right in Fig. 5(a) and
(b1)/(b2) is supercritical. However, the locking region is entered even later for
increasing ) because the system is still in another dynamical state that loses
its stability for even larger €25. This hints at an interesting interplay of other
stable dynamics with the underlying CLM structure as discussed here. The
exact nature of this interplay is a topic of ongoing research.
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6 Conclusions

We have provided a detailed characterization of a system of two SLs that
are mutually coupled via the lasing optical field. The delay time in the coup-
ling due to the spatial distance between the lasers gives rise to a character-
istic structure of compound laser modes (CLM). For small detuning we found
multistabilities between different modes where both lasers lock to a common
optical frequency and exhibit stable emission. When changing the detuning
between the lasers we observed that the coupled laser system undergoes mode
jumps to other stable CLMs within the locking region. The multistability of
the CLMs has been experimentally evidenced by the observation of hysteresis
for positive and negative detuning direction. A second kind of multistability
between the locking region and the regime with oscillating intensity dynamics
outside the locking was found in experiment. Additionally we showed how the
output intensity of each laser on an individual mode depends on the detuning.

For a deeper understanding, we used a rate equation model to study the
underlying structure of the CLMs using numerical continuation of the full
DDE system. Focusing on the locking region around zero detuning, multiple
stable CLMs are found. They typically destabilize via a saddle node bifurcation
that give rise to the observed hysteresis loops. However, destabilization is
also possible in Hopf bifurcations, some of which may give rise to amplitude
oscillations. How this dynamics interacts with the stable CLMs is ongoing
research.

Our analysis focused on the locking region around zero detuning and the
local bifurcations found there. We find good qualitative agreement between
experiment and theory. In particular, our results show the importance of the
coupling phase C),. The next step is to understand the dynamics outside the
locking region and different scenarios on the route to locking. Preliminary
investigations suggest that this requires the study of global structures in phase
space, which is an interesting topic in its own right. At the same time, it
will bring to light dynamical effects that are crucial for understanding the
performance of coupled laser systems.

Acknowledgements

The authors thank Nortel Networks for providing the excellent DFB lasers.

15



References

1]

G. Stépan, Retarded Dynamical Systems: Stability and Characteristic
Functions, Longman Scientific and Technical, London, UK, 1989.

T. Heil, I. Fischer, W. Elsdfler, J. Mulet, C. R. Mirasso, Chaos
synchronization and spontaneous symmetry-breaking in symmetrically delay-
coupled semiconductor lasers, Phys. Rev. Lett. 86 (2001) 795-798.

D. V. Ramana Reddy, A. Sen, G. L. Johnston, Time delay induced death in
coupled limit cycle oscillators, Phys. Rev. Lett. 80 (1998) 5109-5112.

I. Fischer, Y. Liu, P. Davis, Synchronization of chaotic semiconductor

laser dynamics on subnanosecond time scales and its potential for chaos
communication, Phys. Rev. A 62 (2000) 011801.

M. Moéhrle, B. Sartorius, C. Bornholdt, S. Bauer, O. Brox, A. Sigmund,
R. Steingriiber, M. Radziunas, H.-J. Wiinsche, Detuned grating multisection-
RW-DFB lasers for high speed optical signal processing, IEEE J. Select. Topics
Quantum Electron. 7 (2001) 217-223.

M. T. Hill, H. de Waardt, H. J. S. Dorren, All-optical flip-flop based on coupled
laser diodes, IEEE J Quantum Electron. QE-37 (2001) 405-413.

T. Heil, I. Fischer, W. Elsafler, A. Gavrielides, Dynamics of semiconductor lasers
subject to delayed optical feedback: The short cavity regime, Phys. Rev. Lett.
87 (2001) 243901.

S. Yanchuk, K. Schneider, L. Recke, Dynamics of two mutually coupled
semiconductor lasers: instantaneous coupling limit, Phys. Rev. E 69 (2004)
056221.

J. Mulet, C. Mirasso, T. Heil, I. Fischer, Synchronization scenario of two distant
mutually coupled semiconductor lasers, J. Opt. B: Quantum Semiclass. Opt. 6
(2004) 97-105.

[10] J. Javaloyes, P. Mandel, D. Pieroux, Dynamical properties of lasers coupled face

to face, Phys. Rev. E 67 (2003) 036201.

[11] E. A. Viktorov, A. M. Yacomotti, P. Mandel, Semiconductor lasers coupled

face-to-face, J. Opt. B: Quantum Semiclass. 6 (2004) L9-L12.

[12] F. Rogister, J. Garca-Ojalvo, Symmetry breaking and high-frequency periodic

oscillations in mutually coupled laser diodes, Opt. Lett. 28 (2003) 1176-1178.

[13] R. Vicente, J. Mulet, M. Sciamanna, C. Mirasso, Simple interpretation of the

dynamics of mutually coupled semiconductor lasers, Proc. SPIE 5349 (2004)
307-318.

[14] A. Hohl, A. Gavrielides, T. Erneux, V. Kovanis, Localized synchronization in

two coupled nonidentical semiconductor lasers, Phys. Rev. Lett. 78 (1997) 4745
4748.

16



[15] A. Hohl, A. Gavrielides, T. Erneux, V. Kovanis, Quasiperiodic synchronization
for two delay-coupled semiconductor lasers, Phys. Rev. A 59 (1999) 3941-3949.

[16] H.-J. Wiinsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger,
E. Wille, H. Erzgraber, M. Peil, W. Elsafler, I. Fischer, Synchronization of delay-
coupled oscillators: A study of semiconductor lasers, Phys. Rev. Lett. 94 (2005)
163901.

[17] H. Erzgraber, B. Krauskopf, D. Lenstra, Compound laser modes of mutually
delay-coupled lasers, Applied Nonlinear Mathematics Research Report 2004.28,
(http://www.enm.bris.ac.uk/anm/preprints/2004r28.html) submitted.

[18] H. Erzgrdber, B. Krauskopf, D. Lenstra, Mode structure of delay-coupled
semiconductor lasers: influence of the pump current, Applied Nonlinear
Mathematics Research Report 2005.9,
(http://www.enm.bris.ac.uk/anm/preprints/2005r09.html) submitted.

[19] K. Engelborghs, T. Luzyanina, G. Samaey, DDE-BIFTOOL v. 2.00 user
manual: a Matlab package for bifurcation analysis of delay differential equations.
Technical report TW-330., Department of Computer Science, K.U. Leuven,
Leuven, Belgium, 2001.

[20] S. H. Strogatz, I. Stewart, Coupled oscillators and biological synchronization,
Sci. Am. 269 (12) (1993) 68-75.

[21] S. H. Strogatz, Nonlinear Dynamics and Chaos, Perseus Books, Reading,
Massachusetts, 1994.

[22] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: a Universal Concept
in Nonlinear Sciences, Cambridge University Press, 2001.

[23] H. Schuster, P. Wagner, Mutual entrainment of two limit cycle oscillators with
time delayed coupling, Progr. Theor. Phys. 81 (1989) 939-945.

[24] G. C. Dente, C. E. Moeller, P. S. Durkin, Coupled oscillators at a distance:
Applications to coupled semiconductor lasers, IEEE J. Quantum Electron. 26
(1990) 1014-1022.

[25] G. H. M. van Tartwijk, A. M. Levine, D. Lenstra, Sisyphus effect in
semiconductor lasers with optical feedback, IEEE J. Select. Topics Quantum
Electron. 1 (1995) 466.

[26] R. Lang, K. Kobayashi, External optical feedback effects on semiconductor
injection laser properties, IEEE J. Quantum Electron. QE-16 (1980) 347-355.

[27] J. Mulet, C. Masoller, C. R. Mirasso, Modeling bidirectionally coupled single-
mode semiconductor lasers, Phys. Rev. A 65 (2002) 063815.

[28] T. Heil, I. Fischer, W. Elséfler, B. Krauskopf, K. Green, A. Gavrielides, Delay
dynamics of semiconductor lasers with short external cavities: Bifurcation
scenarios and mechanisms, Phys. Rev. E 67 (2003) 066214.

17



[29] V. Rottschéfer, B. Krauskopf, A three-parameter study of external cavity modes
in semiconductor lasers with optical feedback, 5th IFAC Workshop on Time-
Delay Systems, 2004.

[30] B. Krauskopf, G. H. M. V. Tartwijk, G. R. Gray, Symmetry properties of lasers
subject to optical feedback, Opt. Commun. 177 (2000) 347-353.

[31] J. K. Hale, S. M. V. Lunel, Introduction to Functional Differential Equations,
Springer Verlag, New York, 1993.

[32] O. Diekmann, S. A. V. Gils, S. M. V. Lunel, Delay Equations: Functional-,
Complex-, and Nonlinear Analysis, Springer Verlag, New York, 1995.

[33] B. Haegeman, K. Engelborghs, D. Rose, D. Pieroux, T. Erneux, Stability
and rupture of bifurcation bridges in semiconductor lasers subject to optical
feedback, Phys. Rev E 66 (2002) 046216.

[34] B. Krauskopf, H. Erzgriber, D. Lenstra, Bifurcation analysis of coupled laser
modes in mutually delay-coupled lasers, 5th IFAC Workshop on Time-Delay
Systems, 2004.

[35] B. Krauskopf, Bifurcation analysis of lasers with delay, in: D. Kane,
K. Shore (Eds.), Unlocking Dynamical Diversity: Optical Feedback Effects on
Semiconductor Lasers, Wiley, New York, 2005, pp. 147-183.

18



