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DYNAMICS OF DELAYED RELAY CONTROL
SYSTEMS WITH LARGE DELAYS

Jan Sieber ∗

∗ Bristol Centre for Applied Nonlinear Mathematics,
Department of Engineering Mathematics, Queen’s Building,

University of Bristol, BS8 1TR, U.K.

Abstract: This paper investigates the dynamics of a piecewise linear delay differential
equation modeling an inverted pendulum subject to delayed relay control. The inverted
pendulum serves as an illustrative prototype example for an arbitrary saddle equilibrium.
Delayed relay cannot give perfect stabilization of the equilibrium but generates small
oscillations. On the other hand, one can construct simple switching manifolds that permit
stable periodic orbits even with arbitrarily large delay in the control loop, provided
the delay is known. Robustness of the stable periodic orbits with respect to parameter
perturbations follows from their dynamical and structural stability in the dynamical
systems sense.
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1. INTRODUCTION

Consider the problem of stabilizing a frictionless pen-
dulum on a cart in its unstable upright position by
force feedback to the cart, governed by the equation

ẍ = sinx+ cosxD (1)

where x is the inclination angle of the pendulum. The
feedback force D is applied to the cart to stabilize the
origin x = 0. Since the uncontrolled inverted pendu-
lum is a saddle without area contraction, stabilization
by simple position feedback is impossible (ruling out
control based on x only, see Atay (1999)). Further-
more, due to inherent delays, D is a function of the
state some time τ ago. Stépán (1989) showed that if D
obeys a PD control law

D = −ax(t − τ)−bẋ(t − τ) (2)

then there exists a critical delay τc =
√

2 beyond which
stabilization is no longer possible regardless of the
choice of control gains. Moreover, the nonlinearities
in (1) cannot be neglected as they cause complex
small-amplitude dynamics for τ close to τc (see Sieber
and Krauskopf (2003, 2004)). Similar results about

a maximal permissible delay apply to other linear
control laws (Atay (1999)).

In order to overcome this restriction on τ, one may
choose a relay control law

D = −εsign [g(x(t − τ), ẋ(t − τ))] (3)

where g is a linear, smooth, or piecewise affine func-
tion that divides R

2 into two simple domains {g ≥ 0}
and {g < 0}. Fridman et al. (2002) have demonstrated,
using the prototype one-dimensional example

ẋ = κx− signx(t − τ), (κ > 0) (4)

that this type of control cannot achieve perfect stabi-
lization but admits oscillations around 0. Moreover,
they have shown that some of the corresponding pe-
riodic orbits are asymptotically orbitally stable if the
delay τ is smaller than log2/κ in (4). In a generaliza-
tion of the usual meaning of successful control, the
control law (3) is called successful in stabilizing 0 if
there exists a stable (symmetric) periodic orbit around
0. Note that, once a stable periodic orbit has been
found, its amplitude can be made arbitrarily small by
subsequently decreasing the ε in (3) step by step (see
Fridman et al. (2003)).



In the consideration of these stable periodic orbits,
the nonlinearities in (1) can be considered as a small
perturbation (if ε � 1) due to the discontinuity in (3).
Since dynamically stable periodic orbits are also struc-
turally stable, this small perturbation can be neglected
in the search for stable periodic orbits. This permits
one to rephrase the general problem of stabilization of
the pendulum with delayed relay control as a piece-
wise linear problem:

Problem 1. Given τ > 0, find a switching function
g that divides R

2 into two simple domains G+ =
{g(x,y) ≥ 0} and G− = {g(x,y) < 0} such that sym-
metric stable periodic orbits exist in

ẋ(t) = y(t)

ẏ(t) = x(t)− sign [g(x(t − τ),y(t − τ))] .
(5)

It is important to note that g is permitted to depend
on the delay τ in (5). Problem 1 can be considered as
a prototype for a general linear system of saddle type
subject to a delayed discontinuous piecewise constant
switch.

Section 2 discusses briefly how Problem 1 fits into the
framework of previous and recent studies about the
dynamics of piecewise smooth delay equations and
how it relates to common solutions of delay problems
in control theory. Section 3 considers linear switching
functions g (and, hence, linear switching manifolds). It
shows that, for linear g, there is a maximal permissible
delay τ where stable periodic orbits in system (5)
exist. However, the permissible τ is larger than the one
proposed by Fridman et al. (2002, 2003). Section 4
constructs a function g that permits stable periodic
orbits in (5) for any given delay τ where depends g
on τ. Section 5 states how the results of Section 4 can
be generalized and discusses open problems for future
consideration.

2. BACKGROUND

Equation (5) fits into the framework of delayed relay
dynamics, which was also studied by Fridman et al.
(2002, 2003). It is a linear system with one unstable
direction that is being controlled by a delayed relay
with a single switching line. The results of Fridman
et al. (2002, 2003) can be applied directly to system
(5) for the special case g(x,y) = x+y. The first part of
Section 3 will discuss this.

Shustin et al. (2003) have studied in detail a second-
order system of the form εẍ =−ẋ+F(x, t)−sign[x(t−
τ)], which is an area contracting saddle subject to de-
layed relay control. In particular, singular perturbation
techniques one allow to carry over the results for one-
dimensional systems like (4) for small ε. See Shustin
et al. (2003) for further references.

Bayer and an der Heyden (1998) have studied a neutral
linear center subject to delayed relay control, that is,

ẍ = −x + sign[x(t − τ) − Θ)]. The authors found a
rich zoo of periodic orbits in the two-parameter space
(τ,Θ).

From a control theoretic point of view there are often
restrictions on the choice of g such as dependence
on some output variables only. However, for system
(5) stabilization using control depending only on x is
impossible. There are also further requirements on a
good control scheme such as robustness for all delays
smaller than the delay τ the control was designed for.
If the delay occurs mainly in the implementation of
the control action (input delay) one can compensate
for the delay completely. See Roh and Oh (1999) for
a relay scheme that compensates the input delay and
achieves perfect stabilization after time 2τ.

The focus of the research presented here is the dynam-
ics of a piecewise linear (or piecewise smooth) delay
differential equations, the existence of stable periodic
orbits and mechanisms for their destruction or loss
of stability some of which were shown for several
simple examples in Holmberg (1991). In order to gain
an understanding of these mechanisms it is beneficial
to consider general piecewise affine switching curves.
This effectively results in a hybrid control scheme
rather than a classical relay scheme from a control
theoretic point of view.

3. LINEAR SWITCHING FUNCTION

System (5) has the infinite-dimensional phase space
C([−τ,0];R2). However, at any given moment t the
head point of a solution of system (5) follows the flow
of a two-dimensional ordinary differential equation
(ODE) corresponding to (5) in either G+ or G−. These
flows can be computed analytically and expressed by
the affine maps

S±(t;v) = A(t)v± v0(t)

where

A(t) =

[

cosh(t) sinh(t)
sinh(t) cosh(t)

]

, v0(t) =

[

1− cosh(t)
−sinh(t)

]

.

S+ has the saddle fixed point (1,0) with the backward
attracting invariant line lu

+ = (1+ s,s) (s = ±et ∈ R)
and the forward attracting invariant line ls

+ = (1 −
s,s). Correspondingly, S− has the saddle fixed point
(0,−1) with the backward attracting invariant line
lu
− = (−1+ s,s) and the forward attracting invariant

line ls
− = (−1−s,s). The lines lu

± and ls
± form a square

(see Fig. 1). All periodic solutions of (5) have to lie
within this square.

Let

g(x,y) = x cosα+ y sinα, (α ∈ (0,π/2)).

In the special case α = π/4, the dynamics in the
physical space R

2 of (5) can be split into equations
for u1 = x+ y and u2 = x− y
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Fig. 1. The flows S+ (dotted) and S− (dashed) and their
invariant lines

u̇1(t) = u1(t)− sign[u1(t − τ)] (6)

u̇2(t) =−u2(t)− sign[u1(t − τ)] (7)

where (6) does not depend on (7). Fridman et al.
(2002) have treated extensively the problem of exis-
tence and stability of periodic solutions for the one-
dimensional case described by (6). Their results con-
cerning (6) can be summarized as follows:

Theorem 1. (Fridman et al. (2002)). Let τ∗ < log2, p =
2(τ∗− log(2− eτ∗)), and k ∈ N. Then there exists a
periodic solution with period p of (6) with τ = τ∗+kp.
If k = 0, this periodic solution is orbitally asymptoti-
cally stable. If k ≥ 1, it is unstable.

Fridman et al. (2002) called these periodic solutions k-
frequency steady modes where k + 1 is the number of
zeroes within the delay interval. Moreover, the authors
observed that the zero-frequency steady modes attract
nearby trajectories (in the C([−τ,0];R) topology) in
finite time.

Theorem 1 carries over exactly to system (6)–(7), and,
hence, to system (5) with g(x,y) = (x+y)/

√
2. In sys-

tem (5), the periodic solution switches in (x−,y−) =
(0,eτ∗ − 1) from S− to S+, and in (x+,y+) = (0,1−
eτ∗) from S+ to S−. The results of Fridman et al.
(2002) also imply that there exist no stable periodic
orbits for delays τ ≥ log2 in (5) if α = π/4.

The fact that case α = π/4 is special can be understood
geometrically since the undelayed switching line x +
y = 0 is only shifted by the flows S+ (downwards)
and S− (upwards) but not rotated (see Fig. 2). The
critical value for τ is determined by the condition that
the intersection point of the line S−(τ,{x + y = 0})
with the axis x = 0 is (0,1). Then, S−(τ;{x + y = 0})
coincides with the line ls

+ resulting in a heteroclinic
connection.

S+(τ;{g = 0})

S−(τ;{g = 0})
{g = 0}

ls
−

(0,−1)

(1,0)
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−
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+
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+

(−1,0)

(0,1)

Fig. 2. The case α = π/4. The switching line {g = x+
y = 0} and its τ-images under both flows are
shown together with a periodic orbit for τ < log2.

In the case α 6= π/4 the expanding and contracting
directions of S± can no longer be decoupled. Geomet-
rically, this can be seen by the fact that the images
of the undelayed switching line {g(x,y) = xcosα +
ysinα = 0} rotate under the action of the flows S±.
There are now two conditions (8) and (9) on α and τ
for the existence of stable periodic orbits.

Theorem 2. Let k ∈ N,

τ∗ < log(1+ tanα), (8)

and define

p = 2

[

τ∗ + log

(

eτ∗ tanα+1− eτ∗

tanα+1− eτ∗

)]

.

Denote the intersection points of S±(τ∗;{g = 0}) with
the axis {x = 0} by P±. Then there exists a periodic
orbit of system (5) with τ = τ∗ + kp that follows S−
from P+ to P− and S+ from P− to P+. This orbit
has period p. If k ≥ 1, it is unstable. If k = 0, and,
moreover,

α ≤ π/4, or

α > π/4 and τ∗ <
1
2

[

log

(

tanα+1
tanα−1

)]

, (9)

the periodic orbit is orbitally asymptotically stable.

The proof of Theorem 2 is presented in the appendix.
Note that condition (8) is equivalent to the condition
that the moduli of the y-coordinates of the points

P± =

(

0,∓coshτ∗ cosα− sinhτ∗ sinα− cosα
sinhτ∗ cosα− coshτ∗ sinα

)

are less than 1 (see Fig. 3 and Fig. 4). The points P±
are mapped onto each other under S±, respectively,
that is, S−(p/2;P+) = P− and S+(p/2;P−) = P+. This
gives rise to the periodic orbits asserted in Theorem 2.
Furthermore, condition (9) is equivalent to the con-
dition that the slope of S±(τ∗;{g = 0}) is negative
(Fig. 3), which implies stability of the periodic orbit
of system (5) with τ = τ∗ (k = 0).

For α close to π/2, condition (8) is satisfied even
for large τ∗. However, the periodic orbit of (5) with
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Fig. 3. The case α > π/4 when (8) and (9) hold. In
addition to the stable periodic orbit another orbit
is drawn to illustrate the dynamics of the return
map between S±(τ;{g = 0}).

P+

P
−

lu
+

ls
+

lu
−

{g = 0}

ls
−

(0,−1)

(1,0)(−1,0)

(0,1)

S−(τ;{g = 0})

S+(τ;{g = 0})

Fig. 4. The case α > π/4 when (8) holds but not (9).
In addition to the unstable periodic orbit another
orbit is drawn to illustrate the dynamics of the
return map between S±(τ;{g = 0}).

τ = τ∗ (k = 0 in Theorem 2) undergoes a symmetry-
breaking pitchfork bifurcation when the inequality for
τ∗ in (9) turns into an equality. The bifurcation is de-
generate. That is, all asymmetric periodic orbits exist
at the same parameter value. After this bifurcation the
symmetric periodic orbit is unstable (see Fig. 4).

If the delay τ is such that the periodic orbit has
more than one period per delay interval (k ≥ 1 in
Theorem 2), then the periodic orbit is unstable. The
conditions (8) and (9) allow for stable periodic orbits
for τ∗ larger than log2. That is, for the optimal α =
arctan

√
2 ≈ 0.304π, the conditions (8) and (9) allow

for any τ∗ < log
(√

2+1
)

.

4. NONLINEAR OR PIECEWISE AFFINE
SWITCHING FUNCTION

Let τ > log2 be given. The goal of this section is
to construct a piecewise affine function g dividing
R

2 into two simple domains such that (5) has a sta-
ble periodic orbit. More precisely, it is sufficient to

construct two domains, G+ for the flow S+ and G−
for the flow S−, and a piecewise affine boundary B
separating them. Then, a piecewise affine function g
can always be chosen such that cl G+ = {g(x,y) ≥ 0}
and cl G− = {g(x,y) ≤ 0}. We choose the boundary B
in the following way:

Let h ∈ (0,1/2) be such that

eτ ∈
(

h−1 −1, h−1) . (10)

Define the points b+ = (0,−1+2h) and b− = (0,1−
2h) and the direction vector w = (−1,1) in R

2, and
choose B consisting of the 3 pieces of straight lines
(see Fig. 5) as

B+ = {b ∈ R
2 : b = b+ + tw, t < 0},

B0 = {b ∈ R
2 : b = b+ + t(b−−b+), t ∈ [0,1]},

B− = {b ∈ R
2 : b = b− + tw, t > 0}.

The regions are chosen such that (1,0) ∈ G+ and
(−1,0) ∈ G−. The image of B− under S+(τ; ·) inter-

b+

b
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P
−

B0

B+

S
−
(τ;B+)

S+(τ;B
−
)

(0,−1)

(1,0)(−1,0)

(0,1)

B
−

Fig. 5. Construction of a piecewise affine switching
line B and the stable periodic orbit.

sects the axis {x = 0} in P+ = (0,1− 2eτh), which is
located between (0,−1) and b+ due to condition (10).
The image of B+ under S−(τ; ·) intersects {x = 0} in
P− = (0,2eτh− 1), which is located between b− and
(0,1). This gives rise to the existence of a symmetric
periodic orbit W of period p = 4τ − 2log(1 − h−1)
following S+ from P− to P+ and following S− from
P+ to P−.

Lemma 3. The periodic orbit W is orbitally asymptot-
ically stable.

Proof: The orbit W intersects the boundary B twice
transversally. Hence, any initial condition of system
(5) that is sufficiently close to W in the C([−τ,0];R2)
topology will have a trajectory that follows S+ from
S−(τ;B+) to S+(τ;B−) and follows S− from S+(τ;B−)
to S−(τ;B+) after time 2τ. Thus, asymptotic orbital
stability of W is equivalent to the asymptotic stability
of the fixed point P+ with respect to the return map R :
S+(τ;B−) → S+(τ;B−) under S+(p/2; ·)◦S−(p/2; ·).
The map R is a linear contraction with rate e−p since



S+(τ;B−) and S−(τ;B+) are stable invariant leaves
of S+ and S−. Consequently, its fixed point P+ is
asymptotically stable. �

Remarks The periodic orbit W is also structurally
stable. That is, it is robust with respect to small non-
linearities such as in (1), or small perturbations of the
parameters, for example τ. However, this tolerance
is exponentially small since (10) gives effectively a
condition on τ once h is chosen.

The convergence rate e−p for the return map R can
be improved to quadratic convergence by choosing B±
such that S+(τ;B−) is tangential to S− in P+. However,
this induces a return map R that is nonlinear.

The basic idea behind the construction of the boundary
B (and, hence, g) is that one can compensate for the
delay τ by negative hysteresis. Since the flows S+ and
S− have equilibria one can compensate for arbitrarily
large delays by a finite amount of negative hysteresis.
Instead of hysteresis one can exploit the additional
stable dimension to construct a unique g. One could
choose a smooth nonlinear pair of B and g instead
of the piecewise affine B (and g) by smoothing the
corners at the points b+ and b−.

If system (5) results from a linearization around an
equilibrium of a nonlinear system (for example, sys-
tem (1), (3)), the construction gives rise to a stable pe-
riodic orbit Wε for every ε in (3). Once the system has
settled to Wε0 for a certain moderately small ε0, one
can subsequently decrease ε step by step, effectively
continuing the stable periodic orbit in the parameter
ε. In this way, one can obtain stable periodic orbits
Wε of arbitrarily small amplitude. This algorithm was
described as ε-stabilization by Fridman et al. (2003).

Section 1 discussed already that in a nonlinear prob-
lem like (1), (3) the nonlinearities can be considered
as small perturbations under which a stable periodic
orbit as displayed in Fig. 5 will persist. However,
if the nonlinearity is known, the construction of the
boundary B can be improved by choosing the nonlin-
ear stable fibers of the saddle for B± instead of the
straight lines in Fig. 5. This would allow one to use
this construction for the fully nonlinear problem even
for only moderately small ε.

5. CONCLUSIONS AND OUTLOOK

System (5) is a prototype for the more general situa-
tion of a saddle with one unstable direction and one
or several stable directions. The construction of the
switching function g for large delays τ works for the
general case in exactly the same manner as proposed
in Section 4.

As has been pointed out in a remark in Section 4
already, the return maps composed by the returns of
the single flows to their delayed switching lines can

become nonlinear even though all involved flows and
switching lines are affine. This gives rise to classical
bifurcation scenarios under parameter variations for
the Poincaré maps near the periodic orbits constructed
in Sections 3 and 4. Apart from these classical bi-
furcations, one can expect grazing events whenever
the head point of a stable periodic orbit touches the
undelayed switching line along its evolution. Phenom-
ena like these have been studied by Holmberg (1991),
and Bayer and an der Heyden (1998). In order to
construct and control bifurcation scenarios without too
much technical overhead it is advantageous to have
the freedom to choose an arbitrary piecewise affine
or nonlinear switching line. This freedom effectively
gives us an extremely flexible method to introduce and
vary parameters.

Furthermore, it is worth exploring how similar con-
structions as the one of Section 4 can be applied in
other practically relevant situations, for example the
stabilization of an unstable focus or a saddle periodic
orbit in the presence of a large but known delay.
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APPENDIX

Proof of Theorem 2: Denote the periodic orbit of
period p of system (5) with delay τ = τ∗ + kp by W .

Instability of W for k ≥ 1: Let us consider only initial
conditions in C([−τ,0];R2) that follow always either
S+ or S−, stay close to W in their entire history
interval, and switch between S+ and S− only close
to the switching events of W . The evolution of these
initial conditions under system (5) is governed by the
recursion

rn = τ+ρ(xn−2k,yn−2k)− rn−1 − . . .− rn−2k (11)
[

xn

yn

]

=−
(

A(rn−1)

[

xn−1

yn−1

]

+ v0(rn−1)

)

(12)

where rn is the time difference between the subsequent
switching moments tn+1 and tn between the flows S±,
and (xn,yn) ∈ [−1,1] × [0,1] is the location of the
switch at the moment tn if the switch is from S− to
S+, and the negative of the location of the switch at tn

if the switch is from S+ to S−. The function ρ(x,y),
defined by

ρ(x,y) = log

[

1+
√

1+(tanα−1)((x−1)2 − y2)

(1− x− y)(1+ tanα)

]

,

measures the time it takes from (x,y) to the next
crossing of the undelayed switching line {g = 0}
under the the flow S+. Relation (11) states that the
switching moment is determined by the crossing of
the {g = 0} line 2k + 1 switches (that is, time τ) ago.
Relation (12) states that the location of the switching
event at tn is the S±(rn−1; ·) image of the previous
one, The reflection symmetry of the problem has been
reduced in (12) by mapping the switching points close
to P+ by −1. Thus, yn > 0 as long as the evolution
stays close to W .

The recursion (11)–(12) defines a map of dimension
6k. This map has the fixed point (x∗,y∗) = P−, r∗ =
p/2 corresponding to W . Hence, for the proof of the
orbital instability of W it is sufficient to prove that
the linearization of the map defined by (11)–(12) in
(x∗,y∗,r∗) has at least one eigenvalue of modulus
greater than 1. The characteristic polynomial χ of the
linearization has order 6k and is of the form

χ(λ) = λ4k−2

(

2k+1

∑
j=0

a jλ j

)

where a2k+1 = 1, a2k = 1+2coshr∗, a j = 2+2coshr∗
for j = 1, . . . ,2k−1, and

a0 = (1+ coshr∗)
−1 [1+3coshr∗ +2cosh2 r∗−

∂2ρ(x∗,y∗)(coshr∗ +1)−∂1ρ(x∗,y∗)sinhr∗] .

The combination of the first two iterations of the
recursive Schur-Cohn instability criterion provides a
sufficient condition for the instability of the linear map
corresponding to χ:

|a0| > 1 or |a1 −a0a2k| >
∣

∣a2
0 −1

∣

∣ . (13)

Fig. 6 shows the (numerically computed) boundaries
for the instability condition (13) in the (α,r∗)-plane
showing that always at least one root of χ is outside of
the unit circle.

|a1−a0a2k|> |a2
0−1|

|a1−a0a2k|> |a2
0−1|

r∗
1−r∗

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

|a0| > 1 |a0| > 1

and

α/π

Fig. 6. Boundaries for the Schur-Cohn instability cri-
terion (13). Note that there is a one-to-one corre-
spondence between τ and r∗: τ = τ∗ +2kr∗.

Stability of W for k = 0: The orbit W intersects the
line B = {g = 0} twice transversally. Hence, any initial
condition of system (5) that is sufficiently close to W
in the C([−τ,0];R2) topology will have a trajectory
that follows S+ from B− = S−(τ;B) to B+ = S+(τ;B)
and follows S− from B+ to B− after time 2τ. Thus,
asymptotic orbital stability of W is equivalent to the
asymptotic stability of the fixed point P− with respect
to the return map R : B− → B− defined by the S+ map
from B− to B+, multiplied by −1 (taking the reflection
symmetry into account). Denote the y-coordinate of
P− by y0 and the slope of B− by a. Then, points (x,y)∈
B− satisfy y = ax + y0. Condition (8) is equivalent to
y0 ∈ (0,1). Condition (9) is equivalent to a < 0. The
return map R is governed by the implicit expression

(ax̃+ y0)
2 − (x̃+1)2 = (ax+ y0)

2 − (x−1)2 (14)

where x̃ is the x-coordinate of the image under R of
the point (x,ax + y0) ∈ B−. Linearization of (14) in
x = x̃ = 0 implies that

∂x̃
∂x

∣

∣

∣

∣

x=0
=

y0 a+1
y0 a−1

which has modulus less than 1 if and only if a < 0. �


