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Abstract
Background: Bayesian unsupervised learning methods have many applications in the analysis of
biological data. For example, for the cancer expression array datasets presented in this study, they
can be used to resolve possible disease subtypes and to indicate statistically significant dysregulated
genes within these subtypes.

Results: In this paper we outline a marginalized variational Bayesian inference method for
unsupervised clustering. In this approach latent process variables and model parameters are
allowed to be dependent. This is achieved by marginalizing the mixing Dirichlet variables and then
performing inference in the reduced variable space. An iterative update procedure is proposed.

Conclusion: Theoretically and experimentally we show that the proposed algorithm gives a much
better free-energy lower bound than a standard variational Bayesian approach. The algorithm is
computationally efficient and its performance is demonstrated on two expression array data sets.

Background
Unsupervised clustering methods from machine learning
are very appropriate in extracting structure from biological
data sets. There has been extensive work in this direction
using hierarchical clustering analysis [1], K-Means cluster-
ing [2] and self-organizing maps [3]. Bayesian methods
are an effective alternative since they provide a mecha-
nism for inferring the number of clusters. They can easily
incorporate priors which penalise over-complexed mod-
els which would fit to noise and they allow probabilistic
confidence measures for cluster membership. In this
paper, we focus on Bayesian models which use Dirichlet
priors. Examples of these models include Latent Dirichlet

Allocation [4] (LDA) for use in text modeling and Latent
Process Decomposition (LPD) [5] for analysis of microar-
ray gene expression datasets. One appealing feature of the
latter models is that each data point can be stochastically
associated with multiple clusters. One approach to model
inference is to use methods such as Markov Chain Monte
Carlo and Gibbs sampling. However, for the large datasets
which occur in many biomedical applications these meth-
ods can be too slow for certain tasks such as model selec-
tion. This motivates our interest in computationally
efficient variational inference methods [4-6].

from Machine Learning in Systems Biology: MLSB 2007
Evry, France. 24–25 September 2007

Published: 17 December 2008

BMC Proceedings 2008, 2(Suppl 4):S7

<supplement> <title> <p>Selected Proceedings of Machine Learning in Systems Biology: MLSB 2007</p> </title> <editor>Florence d'Alché-Buc and Louis Wehenkel</editor> <note>Proceedings</note> </supplement>

This article is available from: http://www.biomedcentral.com/1753-6561/2/S4/S7

© 2008 Ying et al; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.biomedcentral.com/1753-6561/2/S4/S7
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Proceedings 2008, 2(Suppl 4):S7 http://www.biomedcentral.com/1753-6561/2/S4/S7

Page 2 of 7
(page number not for citation purposes)

Typically, these inference methods posit that all the latent
variables and model parameters are independent of each
other (i.e. a fully factorized family) which is a strong
assumption. In this paper we propose and study an alter-
native inference method for LPD, which we call marginal-
ized variational Bayesian (MVB). In this approach the
latent process (cluster) variables and model parameters
are allowed to be dependent on each other. As we will show
in the next section, this assumption is made feasible by
marginalizing the mixing Dirichlet variables, and then
performing inference in the reduced variable space. This
new approach to constructing an LPD model theoretically
and experimentally provides much better free-energy
lower bounds than standard a variational Bayes (VB)
approach [6,7]. Moreover, the algorithm is computation-
ally efficient and converges faster, as we demonstrate with
experiments using expression array datasets.

Methods
The LPD probabilistic model

We start by recalling LPD [5]. Let d index samples, g the
genes (attributes) and k the soft clusters (samples are rep-
resented as combinatorial mixtures over clusters). The
numbers of clusters, genes and samples are denoted ,

, and  respectively. For each data Ed, we have a mul-

tiple process (cluster) latent variable Zd = {Zdg: g = 1,...,

} where each Zdg is a -dimensional unit-basis vector,

i.e., choosing cluster k is represented by Zdg, k = 1 and Zdg, j

= 0 for j ≠ k, otherwise. Given the mixing coefficient θd, the

conditional distribution of Zd is given by

. The conditional distributions,

given the latent variables, is given by

, where 

is the Gaussian distribution with mean μ and precision β.

Now we introduce conjugate priors over parameters θ, μ,

β. Specifically, we choose p(θd) = Dir(θd|α), and

, and p(β) distributed as ∏gk

Γ(βgk|a0, b0) where Γ is defined by

. We assume the

data is i.i.d. and let Θ = {μ, β }. The joint distribution is
given by

One can easily see that the marginal likelihood p(E|Θ) is
the same as that in [5]. It is important to note that, in
standard Gaussian mixture models [8], each data point is
only related with a -dimensional latent variable which
restricts the data to being in one cluster. Instead, in LPD
each data point Ed is associated with multiple latent varia-

bles Zd = {Zdg: g = 1,..., }, and thus Ed is stochastically

associated with multiple clusters.

Marginalized variational Bayes
In this section we describe a marginalized variational
Bayesian approach for LPD. The target of model inference
is to compute the posterior distribution p(θ, Z, Θ |E) = p(E,
θ, Z|Θ)p(Θ)/p(E). Unfortunately, this involves computa-
tionally intensive estimation of the integral in the evi-
dence p(E). Hence, we approximate the posterior
distribution in a hypothesis family whose element are
denoted by q(θ, Z, Θ).

The standard variational bayesian method [7,10] uses the
equality:

Our optimization target is to maximize the free-energy:

 which, equivalently, minimizes

the KL-divergence. One standard way is to choose the

hypothesis family in a factorized form q(θ, Z, Θ) =

q(θ)q(Z)q(Θ). In this setting, the free-energy lower bound
(2) for the likelihood can be written as:

In this paper we study an alternative approach motivated

by [9] which only marginalizes the latent variable θ and
do variational inference only with respect to the leftover
latent variable Z. In essence, we assume that the latent var-

iables θ can be dependent on Z, Θ and the hypothesis

family is chosen in the form of q(θ, Z, Θ) = q(θ |Z,

Θ)q(Z)q(Θ). Since the distribution q(θ|Z, Θ) is arbitrary,

let it be equal to . Putting this
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into equation (2) and observing that 

gives

Therefore, it is sufficient to maximize the lower bound

Observe that log . Con-

sequently, we see that

As mentioned above, since θ can be dependent on Z, Θ,
marginalized VB (MVB) yields a tighter lower bound for
the likelihood than the standard VB approach in [6], thus
potentially yielding better clustering results.

Model inference and learning

We now turn our attention to the derivation of updates for
marginalized VB following the inference methodology
[7,10]. For simplicity, let the posterior distribution q(Z),

q(μ), q(β) be indexed by parameters. Specifically, we

assume that ,

, and q(β) = ∏g, k Γ(βgk|agk,

bgk). Correspondingly, the free-energy lower bound

(q(Z), q(Θ)) in equation (6) becomes a variational

functional over these parameters, and hence we use (R,

μ, β) later on. The model inference can be summarized by
the following coordinate ascent updates.

Let Z\dg denote the random variables excluding Zdg. For

any d, g let Θ and Z\dg be fixed, then we take the functional

derivative of the free-energy (q(Z), q(Θ)) w.r.t. q(Zdg)

and obtain the update:

For the updates for q(Θ), we obtain

Marginalizing out θ in (1) yields

Estimating the expectations of the log likelihoods in equa-
tions (8) and (9), we derive the variational EM-updates as
follows. Details are postponed to the Appendix.

E-step: using equation (8) and denoting the digamma
function by ψ, we have

where Ndg, k is given by 0.5(ψ(agk)+log bgk) - 0.5agkbgk((Edg

- mgk)2 + ) and rdg, k should be normalized to one over

k.

M-step: using equation (9):

We pursue the above iterative procedure until conver-

gence of the lower bound (R; Θ) whose evaluation is
given in the Appendix. Since Zdg, k determines the cluster

for the observed data point Ed at attribute g and rdg, k is its

expectation, we intuitively assign data Ed to cluster arg

max{∑grdg;k: k = 1,...., }. We can also do model selec-

tion over the number of clusters based on a free energy
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lower bound of the marginalized VB. Experiments in the
next section show that this approach is reasonable.

Results
We ran marginalized VB on three data sets. The first was
the wine data set from the UCI Repository [11]: this has
178 samples and each sample has 13 features. This data
set was chosen for the purpose of validating the proposed
method since there are 3 distinct clusters present (derived
from 3 cultivars). As more biologically relevant examples
we then selected two cancer expression array datasets. The
first of these was a lung cancer data set [12] consisting of
73 samples and 918 features. The second was a leukemia
data set [13] with 90 samples and 500 features. All the
data sets were normalized to zero mean and unit variance
and the hyper-parameters m0, v0, a0, and b0 were chosen to
have the same values in both standard VB and marginal-
ized VB. Since the datasets are normalized and m0, v0 are
hyper-parameters of the Gaussian prior distribution over
the mean for the data, it is reasonable to choose m0 = 0, v0
= 1. For similar reasons, given a0, b0 are hyper-parameters
of the Gamma prior distribution over the precision
(inverse variance) of the data and the mean of a Gamma
distributed random variable is a0b0, we chose a0 = 20 and
b0 = 0.05 throughout these experiments.

First we compared the free energy lower bound of margin-
alized VB and standard VB based on 30 random initializa-
tion. In Figure 1 (top row) we observe an improvement in
the free energy as a function of iteration step, for margin-
alized VB over standard VB. In analogy to standard VB,
marginalized VB can determine the appropriate number
of soft clusters by estimating the free energy bound given
by equation (6) in contrast to the hold-out cross-valida-
tion procedure for a maximum likelihood approach to
LPD [5]. To investigate the effectiveness of this approach
to model selection, free energies were averaged over 20
runs from different random initializations. As shown in
Figure 1 (middle row), marginalized VB performed well in
determining the correct number of clusters (three) in the
UCI wine data set. For the cancer array datasets, the peak
in the averaged free energy is less marked with an indica-
tion of six soft clusters for the leukemia data set and seven
clusters for the lung cancer data set.

In the bottom row of Figure 1, we see that marginalized
VB shows quite promising clustering results using the nor-
malized ∑grdg, k: these peaks indicate the confidence in the
allocation of the dth sample to the kth cluster and accord
well with known classifications. The lung cancer dataset of
Garber et al [12] (middle column, Figure 1) consisted of
73 gene expression profiles from normal and tumour
samples with the tumours labelled as squamous, large
cell, small cell and adenocarcinoma. The samples are in
the order in which they are presented in the original paper

[12] with the dashed lines showing their original principal
sample groupings. As with Garber et al [12] we identified
seven clusters in the data with the adenocarcinoma sam-
ples falling into three separate clusters with strong corre-
lation with clinical outcomes. For their ordering (which
we follow) samples 1–19 belong to adenocarcinoma clus-
ter 1, samples 20–26 belong to adenocarcinoma cluster 2,
samples 27–32 are normal tissue samples, samples 33–43
are adenocarcinoma cluster 3, samples 44–60 are squa-
mous cell carcinomas, samples 61–67 are small cell carci-
nomas and samples 68–73 are from large cell tumours.

As our last example, we applied the proposed MVB
method to an oligonucleotide microarray dataset from
360 patients with acute lymphoblastic leukemia (ALL)
from Yeoh et al [13]. ALL is known to have a number of
subtypes with variable responses to chemotherapy. In
many cases fusion genes are implicated in the genesis of
the disease. For the Yeoh et al [13] dataset, samples were
drawn from leukemias with rearrangements involving
BCR-ABL, E2A-PBX1, TEL-AML1, rearrangements of MLL
gene, hyperdiploid karyotope (more than 50 chromo-
somes) and T lineage leukemias (T-ALL). The free energy
is plotted in Figure 1 (right column, middle row) with a
peak suggesting 6 subtypes. The dashed lines represent the
original demarcations of groups according to known
genetic rearrangement. Samples 1–15 are BCR-ABL, 16–
42 are E2A-PBX1, 43–106 Hyperdiploid > 50, 107–126
MLL, 206–248 T-ALL, 249–327 TEL-AML1, 328–335
Group23 and 127–205 are labelled as Others. Some group-
ings, such as E2A-PBX1, are very distinct. However, the
overall groupings are not as well defined as with lung can-
cer.

Conclusion
We have proposed an efficient variational Bayesian infer-
ence method for LPD probabilistic models. By allowing
the variables to be dependent on each other, the method
can provide more accurate approximation than standard
VB. Also, the method provides a principled approach to
model selection via the free energy bound. Promising
clustering results were also reported on lung cancer and
leukemia data sets. Extensions of this method to semi-
supervised clustering will be reported elsewhere.
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Appendix
In this appendix we derive the EM-updates and free energy
bound for MVB.

Derivation of updates

Noting that, for any d, g, ∑kZdg, k = 1 and denoting the

number of features by  we obtain from equation (10):

Results for the wine data set (left column), lung cancer data set (middle column) and leukemia data set (right column)Figure 1
Results for the wine data set (left column), lung cancer data set (middle column) and leukemia data set (right column). Top row 
(a-c): free energy bounds comparison (upper curve:MVB, lower curve:VB). Middle row (d-f): free energy (y-axis) versus , the 
number of clusters. Bottom row (g-i): the normalized ∑grdg, k gives a confidence measure that sample d belongs to a cluster k. 
For the two cancer datasets, samples separated by dashed lines belong to an identified class e.g. adenocarcinoma samples or 
small cell lung cancer samples (figure (h), see text).
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Since

, putting this observation into the log p(E, Z|Θ) yields:

where constant terms are independent of Zdg, k. Hence, sub-
stituting this into equation (8) we conclude that

To estimate the expectation of the Normal distribution,
we use the following observations (e.g. [7]) for the
Gamma and Normal distributions:

and

Consequently, simple manipulation yields:

equals, up to a constant term:

We also use approximating methods [9] to estimate log

. For this purpose, we

observe, for any positive random variable x, that

and ,

. Plugging the

above observations into equation (17) yields the desired
E-step updates.

For the updates for q(Θ), the updates are essentially the
same as those in [6,7] since the associated terms with var-

iables with Θ in [log p(E, Z|Θ)] are

exact the same, that is, Θ only appears in the Normal dis-
tribution. Hence, noting that the product of two Gamma
(Normal) distributions is a Gamma (Normal) distribu-
tion, we can obtain, from equations (16) and (9), the M-
step updates.

Free energy bound
The free-energy lower bound of marginalized VB is
defined by equation (6):

From the fact that Γ(x + 1) = xΓ(x) for any x > 0, we know
that

,

where we use the convention . Putting this

equation into the expression (10) of log likelihood, we
obtain:

Since we used the convention ,

. It remains to esti-

mate the term  for g = 1,...,

 - 1. To this end, we use the approximation (18) again

to get:
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where the convention  is used again.

In addition,

For the KL divergences, we have:
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