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Abstract

The newly introduced α-β-models and the classical Rash model are united
in a semiparametric multiclass graph model. We give a classification of the
nodes of an observed network so that the generated subgraphs and bipartite
graphs of it obey these models, where their strongly connected parameters
give multiscale evaluation of the nodes. This is a heterogeneous version of the
stochastic block model, built via mixtures of loglinear models, the parameters
of which are estimated by collaborative filtering. In the context of social
networks, the clusters can be identified with social groups and the parameters
with attitudes of people of one group towards people of the other, which
attitudes depend on the cluster memberships. The algorithm is applied to
real-word networks.
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1. Introduction

Recently, α-β-models [1, 2] were developed as the unique graph models where the
degree sequence is a sufficient statistic. In the context of network data, a lot
of information is contained in the degree sequence, though, perhaps in a more
sophisticated way. The vertices may have clusters and their membership may
affect their affinity to make ties. We will find groups of the vertices such that
the within- and between-cluster edge-probabilities admit certain parametric graph
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models, the parameters of which are highly interlaced. Here the degree sequence is
not a sufficient statistic any more, only if it is restricted to the subgraphs. When
making inference, we are partly inspired by the stochastic block model, partly by
the Rasch model, the rectangular analogue of the α-β models.

We propose a heterogeneous block model by carrying on the Rasch model de-
veloped more than 50 years ago for evaluating psychological tests [5]. Given the
number of clusters and a classification of the vertices, we will use the Rasch model
for the bipartite subgraphs, whereas the α-β models for the subgraphs themselves,
and process an iteration (inner cycle) to find the ML estimate of their parameters.
Then, based on the overall likelihood, we find a new classification of the vertices via
taking conditional expectation and using the Bayes rule. Eventually, the two steps
are alternated, giving the outer cycle of the iteration. Our algorithm fits into the
framework of the EM algorithm, the convergence of which is proved in exponential
families under very general conditions [4]. This special type of the EM algorithm
developed for mixtures is often called collaborative filtering [7].

In the context of social networks, the clusters can be identified with social strata
and the parameters with attitudes of people of one group towards people of the
other, which attitude is the same for people in the second group, but depends on the
individual in the first group. The number of clusters is fixed during the iteration,
but an initial number can be obtained by spectral clustering tools. Together with
the description of the algorithm and a theorem about the rank of the matrix of
logits, the algorithm is applied to real-word networks.

2. The submodels used

Together with the Rasch model, loglinear type models give the foundation of our
unweighted graph and bipartite graph models, the building blocks of our EM iter-
ation.

2.1. α-β models for undirected random graphs

With different parameterization, [1] and [2] introduced the following random graph
model, where the degree sequence is a sufficient statistic. We have an unweighted,
undirected random graph on n vertices without loops, such that edges between
distinct vertices come into existence independently, but not with the same proba-
bility as in the classical Erdős–Rényi model. This random graph can uniquely be
characterized by its n×n symmetric adjacency matrix A = (Aij) which has zero di-
agonal and the entries above the main diagonal are independent Bernoulli random
variables whose parameters pij = P(Aij = 1) obey the following rule. Actually, we
formulate this rule for the pij

1−pij ratios, the so-called odds:

pij
1− pij

= αiαj (1 ≤ i < j ≤ n), (2.1)
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where the parameters α1, . . . , αn are positive reals. This model is called α model
in [2]. With the parameter transformation βi = lnαi (i = 1, . . . n), it is equivalent
to the β model of [1] which applies to the log-odds:

ln
pij

1− pij
= βi + βj (1 ≤ i < j ≤ n) (2.2)

with real parameters β1, . . . , βn.
We are looking for the ML estimate of the parameter vector α = (α1, . . . , αn)

or β = (β1, . . . , βn) based on the observed unweighted, undirected graph as a
statistical sample. (It may seem that we have a one-element sample here, however,
there are

(
n
2

)
independent random variables, the adjacencies, in the background.)

Let D = (D1, . . . , Dn) denote the degree-vector of the above random graph,
where Di =

∑n
j=1Aij (i = 1, . . . n). The random vector D, as a function of the

sample entries Aij ’s, is a sufficient statistic for the parameter α, or equivalently,
for β, see [2]. Let (aij) be the matrix of the sample realizations (the adjacency
entries of the observed graph), di =

∑n
j=1 aij be the actual degree of vertex i

(i = 1, . . . , n) and d = (d1, . . . , dn) be the observed degree-vector. The maximum
likelihood estimate α̂ (or equivalently, β̂) is derived from the fact that, with it, the
observed degree di equals the expected one, that is E(Di) =

∑n
i=1 pij . Therefore,

α̂ is the solution of the following system of maximum likelihood equations:

di =
n∑

j 6=i

αiαj
1 + αiαj

(i = 1, . . . , n). (2.3)

The Erdős–Gallai conditions characterize so-called graphic degree sequences
that can be realized as degree sequences of a graph. For given n, the convex hull
of all possible graphic degree sequences is a polytope, to be denoted by Dn. Its
extreme points are the so-called threshold graphs. The authors of [1, 2] prove
that whenever the observed degree sequence is in the interior of Dn, the maximum
likelihood equation (2.3) has a unique solution. On the contrary, when the observed
degree vector is a boundary point of Dn, there is at least one 0 or 1 probability
pij which can be obtained only by a parameter vector such that at least one of the
βi’s is not finite.

The authors in [2] recommend the following algorithm and prove that, provided
d is an interior point of Dn, the iteration of it converges to the unique solution of
the system (2.3). Starting with initial parameter values α(0)

1 , . . . , α
(0)
n and using the

observed degree sequence d1, . . . , dn, which is an inner point of Dn, the iteration is
as follows:

α
(t)
i =

di∑
j 6=i

1
1

α
(t−1)
j

+α
(t−1)
i

(i = 1, . . . , n) (2.4)

for t = 1, 2, . . . , until convergence.
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2.2. β-γ model for bipartite graphs

This bipartite graph model traces back to Rasch [5], who investigated binary tables.
Given an m×n random binary array A = (Aij), or equivalently, a bipartite graph,
and using the notation pij = P(Aij = 1), our model is

ln
pij

1− pij
= βi + γj (i = 1, . . . ,m, j = 1, . . . , n) (2.5)

with real parameters β1, . . . , βm and γ1, . . . , γn. In terms of the transformed pa-
rameters bi = eβi and gj = eγj , it is equivalent to

pij
1− pij

= bigj (i = 1, . . . ,m, j = 1, . . . , n) (2.6)

where b1, . . . , bm and g1, . . . , gn are positive reals. Observe that these parameters
are arbitrary to within a multiplicative constant.

Here the row-sums Ri =
∑n
j=1Aij and the column-sums Cj =

∑m
i=1Aij are

the sufficient statistics for the parameters collected in b = (b1, . . . , bm) and g =
(g1, . . . , gn). Based on an observed binary table (aij), since we are in exponential
family, and β1, . . . , βm, γ1, . . . , γn are natural parameters, the likelihood equation
is obtained by making the expectation of the sufficient statistic equal to its sample
value. Therefore, with the notation ri =

∑n
j=1 aij (i = 1, . . . ,m) and cj =

∑m
i=1 aij

(j = 1, . . . , n), the following system of likelihood equations is yielded:

ri =

n∑

j=1

bigj
1 + bigj

= bi

n∑

j=1

1
1
gj

+ bi
, i = 1, . . .m;

cj =

m∑

i=1

bigj
1 + bigj

= gj

m∑

i=1

1
1
bi

+ gj
, j = 1, . . . n.

(2.7)

Note that for any sample realization of A,
∑m
i=1 ri =

∑n
j=1 cj holds automatically.

Therefore, there is a dependence between the equations of the system (2.7), indi-
cating that the solution is not unique, in accord with our previous remark about
the arbitrary scaling factor.

Like the graphic sequences, here we define so-called bipartite realizable se-
quences, the convex hull of which is the polytope Pm,n. In [6] it is proved that the
maximum likelihood estimate of the parameters of model (2.6) exists if and only if
the observed row- and column-sum sequences are in the relative interior of Pm,n.
Under these conditions, we define an algorithm that converges to the unique (up
to the scaling factor) solution of the maximum likelihood equation (2.7). Starting
with positive parameter values b(0)i (i = 1, . . . ,m) and g(0)j (j = 1, . . . , n) and using
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the observed row- and column-sums, the iteration is as follows:

b
(t)
i =

ri∑n
j=1

1
1

g
(t−1)
j

+b
(t−1)
i

, i = 1, . . .m

g
(t)
j =

cj∑m
i=1

1
1

b
(t)
i

+g
(t−1)
j

, j = 1, . . . n

for t = 1, 2, . . . , until convergence. Convergence facts are obtained by the weak
contraction property of the transformations yielding the sequence of the iteration.

3. The multipartite graph model

In the several clusters case, the above discussed submodels are the building blocks
of a heterogeneous block model. Here the degree sequences are not any more
sufficient for the whole graph, only for the building blocks of the subgraphs.

Given 1 ≤ k ≤ n, we are looking for k-partition, in other words, clusters
C1, . . . , Ck of the vertices such that different vertices are independently assigned
to the clusters and, given the cluster memberships, vertices i ∈ Cu and j ∈ Cv are
connected independently, with probability pij such that

ln
pij

1− pij
= βiv + βju, (3.1)

for any 1 ≤ u, v ≤ k pair. Equivalently,

pij
1− pij

= bicj bjci ,

where ci is the cluster membership of vertex i and biv = eβiv .
The parameters are collected in the n × k matrix B of biv’s for i ∈ Cu u, v =

1, . . . , k, and are estimated via the EM algorithm for mixtures (collaborative filter-
ing). HereA = (aij) is the incomplete data specification as the cluster memberships
are missing. First we complete our data matrix A with latent membership vectors
m1, . . . ,mn of the vertices that are k-dimensional i.i.d. multinomially distributed
random vectors. More precisely, mi = (mi1, . . . ,mik), where miu = 1 if i ∈ Cu and
zero otherwise.

Starting with initial parameter values B(0) and membership vectors
m

(0)
1 , . . . ,m

(0)
n , the t-th step of the iteration is the following (t = 1, 2, . . . ).

• E-step: we calculate the conditional expectation of each mi conditioned on
the model parameters and on the other cluster assignments obtained in step
t−1, via taking conditional expectation (in the possession of binary variables,
the Bayes rule is applicable).
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• M-step: We estimate the parameters in the actual clustering of the vertices.
In the within-cluster scenario, we use the parameter estimation of model (2.1),
obtaining estimates of biu’s (i ∈ Cu) in each cluster separately (u = 1, . . . , k);
here biu corresponds to αi and the number of vertices is |Cu|. In the between-
cluster scenario, we use the bipartite graph model (2.6) in the following way.
For u 6= v, edges connecting vertices of Cu and Cv form a bipartite graph,
based on which the parameters biv (i ∈ Cu) and bju (j ∈ Cv) are estimated
with the above algorithm; here biv’s correspond to bi’s, bju’s correspond to
gj ’s, and the number of rows and columns of the rectangular array corre-
sponding to this bipartite subgraph of A is |Cu| and |Cv|, respectively. With
the estimated parameters, collected in the n× k matrix B(t), we go back to
the E-step, etc.

By the general theory of the EM algorithm, since we are in exponential family, the
iteration will converge. Note that here the parameter βiv with ci = u embodies
the affinity of vertex i of cluster Cu towards vertices of cluster Cv; and likewise,
βju with cj = v embodies the affinity of vertex j of cluster Cv towards vertices of
cluster Cu. For selecting the initial number of clusters we used spectral clustering
tools.

Theorem 3.1. Let the n × n symmetric matrix L contain the log-odds satisfying
the model equation (3.1) as its entries. Then rankL ≤ 2k.

Proof. Let B̃ denote the n×k matrix of βiv’s for i ∈ Cu, u, v = 1, . . . , k. We define
the n × n matrix U as follows: uij := βicj (i, j = 1, . . . , n). Then L = U + UT .
This is obvious if we understand the structure of the matrix U; actually, it is the
one-sided blow-up of the matrix B̃ as the columns j1 and j2 of U contain the same
entries whenever cj1 = cj2 . Therefore, there are k different types of columns of U,
as many as the number of the clusters, and the columns occur with multiplicities
nv = |Cv| (v = 1, . . . , k). Consequently, rank (U) = rank (UT ) ≤ k, and, by
applying rank theorems, rankL = rank (U+UT ) ≤ 2k that finishes the proof.

Remark 3.2. Let U =
∑k
l=1 slxly

T
l be SVD, where s1 ≥ · · · ≥ sk are the non-

zero singular values of U with unit-norm singular vector pairs xl,yl ∈ Rn (l =
1, . . . , k). For brevity, we drop the subscripts, and consider the unit-norm pair x,y
corresponding to the singular value s. By their definition, they satisfy the equation
Uy = sx, or equivalently,

n∑

j=1

uijyj =

k∑

v=1

∑

j∈Cv
uijyj = sxi, i = 1, . . . , n (3.2)

in entry-wise form. Because of the vertical block-form of U, yj1 = yj2 whenever
cj1 = cj2 . Let ỹ ∈ Rk denote the shrunken vector y such that yj = ỹv whenever
cj = v. Hence, Equation (3.2) has the concise form

k∑

v=1

nv b̃iv ỹv = sxi, i = 1, . . . , n. (3.3)
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Introducing the diagonal matrices D = diag (n1, . . . , nk) and D̃ = 1
nD, Equa-

tion (3.3) has the concise form
B̃Dỹ = sx,

or equivalently,

(B̃D̃1/2)(D1/2ỹ) =
s√
n
x

is the SVD equation of the matrix B̃D̃1/2, where ‖D1/2ỹ‖ = ‖y‖ = 1. Therefore,
the non-zero singular values of this matrix are the numbers s1√

n
, . . . , sk√

n
, and they

can be bounded from below and from above by a constant, independent of n.
Consequently, s1, . . . , sk = Θ(

√
n). Note, that denoting by `1 ≥ · · · ≥ `2k the

positive singular values (absolute values of its eigenvalues) of L, by simple norm
inequalities, for the spectral norm of L, ‖L‖ = `1 ≤ 2s1 holds, and by interlacing
theorems, `k+v ≤ sv (v = 1, . . . , k). Consequently, the eigenvalues of L are O(

√
n).

Note that the ij entry of the symmetric matrix L is βicj + βjci , but it equals
ln

pij
1−pij only when i 6= j. For i = j, pii = 0, and the log-odds are not defined.

However, by filling in the diagonal automatically, the rank of L cannot exceed 2k,
which gives rise to a low-rank approximation of our data in terms of the log-odds.

4. Applications

Figure 1 shows the resulting clusters obtained by applying our algorithm to the
B&K fraternity data with n = 58 vertices. The data, collected by Bernard and
Killworth, are behavioral frequency counts, based on communication frequencies
between students of a college fraternity (see Bernard, H. R., Killworth, P. D. and
Sayler, L., Social Science Research 11, 1982). When the data were collected, the 58
occupants had been living together for at least three months, but senior students
had been living there for up to three years. Based spectral clustering considerations,
we applied the algorithm with k = 4 clusters. The four groups are likely to consist
of persons living together for about the same time period.

While processing the iteration, occasionally we bumped into the situation when
the degree sequence lied on the boundary of the convex polytopes defined in Sub-
sections 2.1 and 2.2. Unfortunately, this can occur when our graph is large but
not dense enough. In these situations the iteration did not converge for some co-
ordinates βiv (i ∈ Cu), but they seemed to tend to +∞ or −∞. Equivalently, the
corresponding biv (i ∈ Cu) tended to +∞ or 0, yielding the situation that member
i ∈ Cu had +∞ or 0 affinity towards members of Cv.

In Figure 1, we also enumerated the within-cluster parameter values for each
cluster separately, and the parameters reflecting attitudes of students of one group
towards the others were written in a concise form above the arrows, where 0, +∞,
or finite parameter values can occur. The many 0 affinities show that some groups
are quite separated, whereas some people in some groups show infinite affinity
towards persons of some specific groups.
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Figure 1: The 4 clusters found by the algorithm and the within-
and between-cluster affinities in the B&K fraternity data.
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