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In his recent article entitled Confidence in Probability' Professor
Neil Cohen seeks to overthrow "the currently accepted probabilistic
formulation of the burdens of persuasion." 2 This reigning theory,
the probabilistic formulation, is a direct application of the branch of
statistics, popular in economics and business, known as Bayesian de-
cision theory ("BDT"). As applied to forensic proof, BDT holds

t Professor of Law and Director, Center for Study of Law, Science, and Technol-
ogy, Arizona State University School of Law. S.B. 1968, Massachusetts Institute of
Technology; A.M. 1969, Harvard University; J.D. 1972, Yale Law School. I am grateful
to Dennis Karjala, Dennis Young, Laurence Winer, and especially Mikel Aickin for com-
ments on this paper and for discussions of issues that it addresses.

I Cohen, Confidence in Probability: Burdens of Persuasion in a World of Inpeofect Knowl-
edge, 60 N.Y.U. L. REV. 385 (1985).

2 Id. at 386. According to one commentator, Professor Cohen "advances a new
approach to Bayesianism that not only changes the contours of the debate regarding
statistics in proof, but also may point the way to the creation of a unified uncertainty
function that may assist in evaluating and integrating the various approaches in the years
ahead." Ashford, Take W1hat You Have Gathered From Coincidence: The Importance of Uncer-
taint) Analysis, 66 B.U.L. REV. 943, 944-45 (1986).
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that, in principle, a verdict for plaintiff is justified if an idealized
judge or jury, given the parties' evidence, finds that the probability
that plaintiff's story is true exceeds some threshold figure. Thus,
the theory has two components: (1) the probability that quantifies
the idealized factfinder's partial belief, and (2) the critical number
that specifies the minimum degree of belief required under the ap-
plicable burden of persuasion. The quantification of the factfinder's
partial belief is known as a personal (or subjective) posterior
probability. It is "personal" because, upon hearing the same collec-
tion of evidence, different persons, having different experiences and
background knowledge, will arrive at different values for the
probability of the story;3 it is "posterior" because it is a conditional
probability, formed after evidence is produced in court. In contrast,
the second component of this model, the threshold to which the
posterior probability is compared, is impersonal. It is a number re-
flecting the relative losses associated with the two possible types of
error: a finding for the plaintiff when the defendant's story is true (a
false alarm) and a failure to find for the plaintiff when the plaintiff's
story is true (a miss). According to BDT, the law has adopted a bur-
den of persuasion that minimizes the expected losses.4 In civil liti-
gation, where the loss for a false alarm equals the loss for a miss,
this criterion leads to the "more-probable-than-not" standard.5 In
this way, BDT seems to provide a pleasing and harmonious inter-
pretation of civil litigation's usual requirement of proof by a pre-
ponderance of the evidence.

Cohen finds this analysis unsatisfactory, primarily because of
the tenacious problem of naked statistical evidence. 6 Like others
before him, Cohen perceives a dissonance between the generally ac-
cepted BDT interpretation of the civil preponderance of the evi-
dence standard and a few hypothetical cases in which it is imagined
that courts will direct verdicts against a plaintiff whose only evidence
is overtly statistical.7 His examples are familiar and artificial: Dr. L.

3 Kaye, Paradoxes, Gedanken Experiments and the Burden of Proof: A Response to Dr. Co-
hen's Reply, 1981 ARIZ. ST. L.J. 635, 643-44.

4 E.g., Kaplan, Decision Theory and the Factfinding Process, 20 STAN. L. REV. 1065
(1968).

5 E.g., id. at 1072. For extensions and qualifications of this result, see Kaye, The
Limits of the Preponderance of the Evidence Standard: Justifiably Naked Statistical Evidence and
Multiple Causation, 1982 AM. B. FOUND. REs.J. 487.

6 In addition to the many articles on this topic cited in Cohen, supra note 1, see
Brilmayer, Second Order Evidence and Bayesian Logic, 66 B.U.L. REV. 673 (1986) (principles
of symbolic logic and arithmetic preclude Bayesian treatment of missing evidence);
Lempert, The New Evidence Scholarship: Analyzing the Process of Proof, 66 B.U.L. REV. 439
(1986) (defending Bayesian analysis of evidentiary rules); Thomson, Liability and Individ-
ualized Evidence, 49 LAw & CoNTEMP. PROBS., Summer 1986, at 199.

7 For a careful analysis of the meager caselaw on the topic, see Brook, The Use of
Statistical Evidence of Identification in Civil Litigation: Well-Worn Hypotheticals, Real Cases, and
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Jonathan Cohen's Paradox of the GatecrasherO and Professor Lau-
rence Tribe's Blue Bus Case.9 In the Gatecrasher case, the plaintiff
contends that a person entered a rodeo without paying the admis-
sion price and relies exclusively on proof that 499 of the spectators
paid but 501 did not. In the Blue Bus case, the plaintiff alleges that
the Blue Bus Company operated the bus that ran her down, and her
sole proof of the company's culpability is the fact that it operates
eighty percent of the busses in town. Cohen assumes that the plain-
tiffs could not prevail in these cases.

In my view, the resolution of the perceived dissonance resides
in the often overlooked distinction between justified and unjustified
naked statistical evidence, 10 and in the application of a negative,
spoliation-like inference or doctrine in the latter situation.'1 For ex-
ample, in both the Gatecrasher and the Blue Bus cases, the plain-
tiff's failure to adduce some further evidence appears unjustified,
because such evidence should be available to them at little cost.
With the aid of some subsidiary arguments,1 2 it follows that there
are good reasons for not requiring defendants to counter the plain-
tiffs' limited, statistical showing. In contrast, if the hypotheticals are
embellished to make the plaintiffs' reliance on naked statistical evi-
dence appear justified, then it is not at all clear that plaintiffs would
or should lose. However, because Cohen adds little to the previous
criticism of this theory, not much would be gained by pursuing these
points.' 3 Furthermore, even if I am correct in maintaining that the
naked statistical evidence problem is not a true counterexample to
the conventional theory, it could well be that some "new model"'14

of the burden of persuasion would provide "a more accurate, com-
prehensive concept of forensically determined probabilities."' 5

Controversy, 29 ST. Louis U.LJ. 293, 299-305 (1985). See also Allen, Rationality, Mythology
and the "Acceptability of Verdicts" Thesis, 66 B.U.L. REV. 541 (1986). The notion that the
law clearly and categorically forbids naked statistical evidence, see, e.g., Brilmayer, supra
note 6; Nesson, The Evidence or the Event? On Judicial Proof and the Acceptability of Verdicts, 98
HARV. L. REV. 1357 (1985), is largely a myth. See Kaye, A First Look at "Second-Order
Evidence", 66 B.U.L. REV. 701 (1986).

8 LJ. COHEN, THE PROVABLE AND THE PROBABLE 74-76 (1977).
9 Tribe, Trial by Mathematics: Precision and Ritual in the Legal Process, 84 HARV. L. REV.

1329, 1340-41 (1971).
10 See Kaye, supra note 5.
11 See Lempert, supra note 6, at 450-62 (explaining divergences between Bayesian

model and trial results by fact that trial factfinding is based on subjective probabilities
that may include spoliative inference).

12 See Kaye, supra note 5; Kaye, supra note 7.
13 For a more refined presentation of one of the underlying ideas, see Kaye, Do We

Need a Calculus of Weight to Understand Proof Beyond a Reasonable Doubt?, 66 B.U.L. REV. 657
(1986) (conditional probability analysis can adequately reflect degree of completeness of
evidence that party offers).

14 Cohen, supra note 1, at 386, 418, 422.
15 Id. at 422.
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Accordingly, I shall not dwell on Cohen's reliance on the prob-
lem of naked statistical evidence to motivate his theory. Instead, I
shall spell out the logic and implications of his analysis, and I shall
try to apply a similar analysis to a realistic problem-assessing the
evidentiary value of polygraph tests.

In Cohen's view, the posterior probability that a plaintiff's story
is correct is a "point estimate" or a "sample statistic" founded on
"sample" data.' 6 From this perspective, Cohen argues that a deter-
mination of whether the burden of persuasion is satisfied turns not
merely on the posterior probability, but on "information about the
sample size" as well.1 7 Stripped of statistical jargon, Cohen seeks to
express in a formal way the intuitively plausible idea that the best
estimate of the probability of an event may be the same in two differ-
ent cases, but because of differences in the underlying evidence, the
uncertainty associated with the two estimates may be quite different.
Thus, if I flip a coin of unknown bias ten times and observe six
heads, I might estimate the probability of a head on each independ-
ent toss to be 0.6, but I would not be too certain about this value. If
I toss the same coin another 999,990 times to find another 599,994
heads, I would estimate with great confidence that the probability of
heads on each toss is 0.6. As Cohen explains, statisticians capture
this intuitive notion with the technical apparatus of a "confidence
interval."' 8 Cohen grafts this concept onto BDT by insisting that to
satisfy the burden of persuasion, the entire confidence interval,
rather than just a single number, must exceed the pertinent thresh-
old. Because the resulting theory relies so heavily on confidence in-
tervals, I shall refer to it as confidence interval theory, or "CIT."

Despite its superficial appeal, CIT is incoherent. In technical
terms, it is incoherent because it marries the frequentist's confi-
dence coefficient to a subjectivist's posterior probability. In explain-
ing this assertion, I shall demonstrate that the liaison between a
confidence interval and a posterior probability is an unholy union
(1) that frequentists and subjectivists alike should shun, and (2) that
leads to a conception of the burden of persuasion that yields arbi-
trary and unjustifiable results.

I undertake this task of criticism to expose and correct a persis-
tent misunderstanding-prevalent in law review articles,' 9 trea-

16 Id. at 398. "Point estimate" is defined as "a single estimated figure, or best
guess, based on a sampling of the data." Id. 'at 398 n.76.

17 Id.
18 Id. at 401.
19 See, e.g., Barnes, A Common Sense Approach to Understanding Statistical Evidence, 21

SAN DIEGO L. REV. 809, 832 (1984); Braun, Quantitative Analysis and the Law: Probability
Theory as a Tool of Evidence in Criminal Trials, 1982 UTAH L. REV. 41, 74; Sprowls, The
Admissibility of Sample Data into a Court of Law: A Case History, 4 UCLA L. REV. 222 (1957).
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tises,20 casebooks, 21 and judicial opinions22-of the relationship
between "significance" and "confidence," on the one hand, and the
posterior probability and the burden of persuasion, on the other.
This misunderstanding has important practical implications. As I
have noted elsewhere, in cases involving statistical proof, it can en-
gender a false sense of confidence in the implications of statistical
evidence. 23 So too, in this article, I shall discuss how recent reports
of the "confidence" that judges or jurors can have in the results of
polygraph tests in criminal cases could be misinterpreted. Thus, by
explaining my disagreements with Cohen's effort to define "confi-
dence in probability," I hope to promote a deeper understanding
within the legal profession of the confidence interval's meaning and
relation to the burden of persuasion.

I
THE MEANING OF A CONFIDENCE COEFFICIENT

As Cohen describes his confidence interval theory of the bur-
den of persuasion, it sounds very much like the BDT interpretation:
Cohen speaks both of a threshold probability required for a verdict
for the plaintiff and of a posterior probability that must exceed this
threshold. According to CIT, however, the posterior probability is
not a single number as it is in BDT, but is a band whose width re-
flects the amount of information at the factfinder's disposal. Ac-
cording to Cohen, this interval estimate is a confidence interval of
the sort described in virtually all elementary statistics texts, and if
this confidence interval for the posterior probability does not lie en-
tirely above the threshold probability, then the burden of persua-
sion has not been satisfied. This section discusses the link between

20 See, e.g., R. WEHMHOEFER, STATISTICS IN LITIGATION 56-57 (1985); D. VINSON & P.

ANTHONY, SOCIAL SCIENCE RESEARCH METHODS FOR LITIGATION 129 (1985). The intro-

ductory chapters of D. BARNES & J. CONLEY, STATISTICAL EVIDENCE IN LITIGATION, 34
n.4, 81-82 (1986), correctly warn against equating "confidence" with the probability
that the null hypothesis is true; however, the book in succeeding chapters repeatedly
misconstrues the meaning of "confidence." Id. at 108-09, 267, 306.

21 See, e.g., W. LOH, SOCIAL RESEARCH IN THE JUDICIAL PROCESS: CASES, READINGS

AND TEXT 410 (1984) (survey research estimates).
22 See, e.g., Vuyanich v. Republic Nat'l Bank, 505 F. Supp. 224 (N.D. Tex. 1980),

reconsidered and adhered to, 521 F. Supp. 656 (N.D. Tex. 1981), vacated and remanded, 723
F.2d 1195 (5th Cir.), cert. denied, 469 U.S. 1073 (1984).

23 Kaye, Statistical Significance and the Burden of Persuasion, 46 LAw & CONTEMP.

PROBS., Autumn 1983, at 13. For illustrations of incorrect statements that might over-
state the probability of falsity of the hypothesis favored by the opponent of statistical
evidence, see Vasquez v. Hillery, 106 S. Ct. 617, 621 & n.3 (1986) (probability of exclu-
sion of blacks from randomly selected grand juries); Rivera v. City of Wichita Falls, 665
F.2d 531, 545 n.22 (5th Cir. 1982) (inferences of purposeful racial discrimination or
disparate racial impact); Craik v. Minnesota State Univ. Bd., 731 F.2d 465, 477 (8th Cir.
1984) (gender discrimination).
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a confidence interval and a posterior probability. It shows that this
link is tenuous and subtle, and that Cohen's frequentist confidence
interval does not determine an interval for a posterior probability.

A. Flipping Coins

CIT, as developed by Cohen, may sound like a minor amend-
ment to BDT, but when Cohen tries to explain how the judge or
jury arrives at an interval estimate, he does not use posterior
probabilities at all. Consider his paradigmatic example: estimating
the probability that a coin will turn up heads on each independent
toss. 24 When the data consist of observations showing 26,000 heads
in 50,000 tosses, he computes the 95% confidence interval (CI) to
be .52 ± .004. When the data show 27 heads in 50 tosses, he com-
putes the 95% CI to be .54 ± .14. Finally, when the data show 51
heads in 100 flips, he computes the 95% CI to be .51 ± .098. Be-
cause only the first CI does not cover .5, he concludes that this is the
only instance in which "we can state with confidence" that the coin
is not fair.25

At no point in this example is a posterior probability called into
play. The probability of heads on each independent toss of a coin is
a parameter of a probability model. Let us call this unknown
number ir. The value of ir determines whether the coin is fair, but
does not give the probability that the coin is fair. If un = .5, the coin
is not fair, but the extent to which differs from .5 does not deter-
mine our degree of belief in the claim that ir .5.

If neither i nor the distance between ir and .5 determines sub-
jective confidence in the proposition that the coin is fair, what does?
Like many judges and attorneys who first encounter a confidence
interval,26 Cohen seems to think that the 95% coefficient for the CI
measures the probability that the parameter is within the CI. He
asserts that "a ninety-five percent confidence interval surrounding a
point estimate describes a region in which we believe the true value
will lie ninety-five percent of the time,"'27 and he claims that for the
case of S1 heads out of 100 tosses, the CI of.51 ± .098 "represents
the region in which the true value will fall ninety-five percent of the
time." 28

These claims are wrong, but interesting. They exemplify, in an
exaggerated way, the tendency of even knowledgeable statisticians
to work like frequentists but, when put on the witness stand, to ex-

24 Cohen, supra note 1, at 400-03.
25 Id. at 401.
26 See supra note 23.
27 Cohen, supra note 1, at 401.
28 Id. at 402.
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plain their computations like subjectivists. 29 To clarify my meaning,
I must describe with some care the nature of the intervals that
Cohen computes. The simplicity of his computations, combined
with his omission of a fully specified probability model, disguises the
subtlety of the meaning of the computed intervals. Consequently, I
shall work through Cohen's coin-toss example, emphasizing the
logic behind the procedure.

In Cohen's example, the question to be answered with the help
of the statistical evidence is whether the coin is fair. We describe
the experiment with a probability model. The outcome of any series
of tosses can be characterized by a sample statistic: the proportion
of heads. Let p denote this sample proportion; for the previously
mentioned outcome of 51 out of 100 heads, p is .51. As before, let
ir represent the unknown parameter in the probability model: the
probability of a head on each toss. Suppose, for instance, that the
coin is slightly biased, in that i" =.51. Now imagine that the experi-
ment of tossing the coin 100 times is repeated over and over. For
many of these samples of 100 tosses, the proportion p will be .51.
For others, the sample proportion will be .52. For still others, it will
be .50. Indeed, if we repeat the experiment enough times, the full
range of possible values of p, from zero to one, will be observed.
But if ir is close to .5, values like .50, .51 and .52 will occur much
more frequently than extreme values like zero and one. If we know
the value of 7r, probability theory allows us to state the relative fre-
quency of each possible sample proportion. Figure 1, adapted from
Cohen's article, 30 shows the frequencies that would be expected
over the long run if Tr = .51.

However, Figure 1 is a fantasy. We do not know that ut is .51.
We only know that in one set of 100 trials, we observed a sample
proportion of .51. How can we infer the value of the parameter of
the model from this single sample statistic? The usual procedure is
to construct a confidence interval. The recipe for the 95% confi-
dence interval for ir is simple. Take the sample proportion p = .51
as a point estimate for iT, and indicate its precision by saying that "i
could depart from this number by as much as -L 1.96 standard devi-
ations. The standard deviation is merely a number that measures
how much the relative frequencies are scattered about their central

29 Cf. Aickin, Issues and Methods in Discrimination Statistics, in STATISTICAL METIhODS IN
DISCRIMINATION LITIGATION 159, 161-62 (D. Kaye & M. Aickin eds. 1986) ("Speaking
very roughly, most statisticians can be categorized with regard to their attitudes towards
probability as being eitherfrequentists or subjectivists. Some are committed to one of the
two philosophies, while others use whichever approach seems to be appropriate to the
nature of the problem at hand.").

30 Cohen, supra note 1, at 402. To avoid reproducing certain errors, I have labelled

the axes differently from Cohen's Figure 1.

[Vol. 73:54
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f(pli= .51)

0.36 0.4 0.44 0.48 0.52 0.56 0.6 0.64 1.0

Figure 1.
Theoretical distribution of the random variable

parameter ir = .51.
p given that the

value IT. In this case, the standard deviation is computed according
to the formula Vp(l-p)/100 = V.51(.49)/10 = .05.31 So, the

95% CI is .51 :L 1.96(.05) = .51 ± .098, as Cohen reports. 32

Now for the interesting question: where did the 95% and the
1.96 come from? The short answer is that for the kind of numbers
we are talking about, the relative frequencies for the possible sample
proportions are such that 95% of the sample proportions that
would come from repeated experiments lie within ± 1.96 standard
deviations of r. If you think about it enough, you probably can con-
vince yourself that it follows that if we were to use 1.96 in forming
the CI, not merely for the estimate based on one sample, but for
repeated estimates, then approximately 95% of these CIs would
cover the parameter rr-whatever uT happens to be! Some of these

31 Astute readers will have detected a certain sleight of hand here. The standard
deviation depends on the central value, r, and we do not know r. We have used our
estimate p = .51 to compute an estimate for the standard deviation.

32 This common method of calculating the confidence interval gives an approxi.
mate solution to the problem of inverting binomial probabilities. The more accurate
form of the normal approximation in I. BURR, APPLIED STATISTICAL METHODS 270
(1974), gives a slightly wider interval, .409 < p < .611. For still better approximations,
see Blyth, Approximate Binomial Confidence Limits, 81 J. AM. STATISTICAL A. 843 (1986).
From now on, I shall present only the simplest approximations of the exact confidence
limits.
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CIs would be identical to the one that we computed, .51 ±__ .098, but
in general, they would vary from one sample to the next, both in
width and location. Therefore, the confidence coefficient is not the
probability that ir lies within the lonely interval we observed.
Rather, it is the long run frequency with which various and varied
CIs would cover the unknown value for ir. Confidence pertains not
to any specific interval estimate, but to the process for constructing
Cis. 33

Cohen mistakenly concludes that the confidence coefficient
gives the probability that ir is within the CI because he treats the
parameter ir, which is an unknown but fixed number, as if it were a
random variable. His Figure 1, 3 4 reproduced below as Figure 2,
shows a probability distribution over the "Probability of Heads."
Cohen writes that this curve indicates "the probability of various
possible true values for the probability of heads for [the] coin."' 35

From the frequentist perspective underlying the computation of the
CI, however, this picture and these comments make no sense.
There is only one possible true value for i, and that value does not
vary as we take more samples. What varies is the sample proportion
p. The probability distribution in Cohen's figure pertains to p, not
to "r.3 6 He has not drawn a confidence interval at all; unwittingly, he
has drawn a prediction interval37 for p based on an assumed value
for rr of .51.38

B. High-Tech Supply Company v. Hacker

Tossing coins is fun, but Cohen also concocts a "more realistic
example" 39 to show how CIT applies to forensic proof. High-Tech
Supply Company sends a Z99 computer chip to a mail order cus-
tomer named Hacker. Hacker never receives the chip, but High-
Tech sues for the purchase price because the contract called for de-
livery F.O.B. The dispositive and only disputed issue in the case is
whether the chip was functional. The evidence on this issue consists

33 See, e.g., G. LuTz, UNDERSTANDING SOCIAL STATISTICS 315 (1983); L. O-rT, AN IN-
TRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS 74-75 (1977).

34 Cohen, supra note 1, at 402.
35 Id.
36 As a leading undergraduate statistics text pithily puts it, "The chances are in the

sampling procedure, not in the parameter . D. FREEDMAN, R. PISANI & R. PURVES,
STATISTICS 347 (1978).

37 A prediction interval gives the region in which a random variable, such as a sam-
ple proportion, is expected to fall a given fraction of the time if that variable is measured
repeatedly.

38 For more appropriate diagrams illustrating the meaning of a confidence interval,
see, e.g., D. FREEDMAN, R. PISANI & R. PURVES, supra note 36, at 349; G. LuTz, supra note
33, at 316.

39 Cohen, supra note 1, at 405.

[Vol. 73:54
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0.36 0.4 0.44 0.48 0.52 0.56 0.6 0.64 1.0

Probability of Heads

Confidence Interval

Figure 2.
Cohen's Figure 1, which incorrectly depicts the parameter for the

"Probability of Heads" as a random variable.

of High-Tech's testimony that the chip was picked at random from a
batch of 1000 chips made by a bankrupt manufacturer and
purchased by High-Tech at an auction. High-Tech inspected a ran-
dom sample of 100 of these chips and found fifty-one to be func-
tional and forty-nine to be defective. 40

Cohen asserts that the probability that the lost chip was func-
tional is .51, and that a one-sided 95% CI for this probability places
it in the interval from .428 to just under 1.0.41 Because .428 is less
than the civil threshold of .5, Cohen concludes that the evidence
fails to satisfy the plaintiff's burden of proof.

A more careful statement of the statistical reasoning will clarify

40 Evidently, High-Tech bought the lot after all the chips it tested were replaced.
41 The computation of this CI is slightly troublesome. Cohen assumes that the

sample proportion p is normally distributed with variance p(1-p)/100. Because we are
sampling a substantial chunk of a finite population without replacement, this assumption
is wrong. The distribution of p is hypergeometric with a variance that is smaller by a
factor of 900/999. Because Cohen could adjust the numbers in his hypothetical to get
the CI that he wants, however, I shall stop quibbling and proceed as if the number of
chips in the batch is very large compared to the sample size. With this understanding,
the computed CI would apply.

1987]
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what is really going on here. Let -u be the proportion of functional
chips in the batch of 1000. -Tr is not a probability, but an unknown
parameter. Let f= 1 stand for the event that the chip is functional,
and f=O be the event that it is defective. Cohen wants to compute
Pr(f= 1 Ip), the probability of randomly drawing a functional chip
from a batch of 1000 given the data summarized by the proportion
p=.51 of functional chips in the random sample of 100 chips. This
probability depends on -r. Indeed, it is a particularly simple func-
tion of Tr: the probability of drawing a functional chip at random
when there is a proportion i" of functional chips is i itself. As in the
coin flipping example, the parameter happens to be interpretable as
a probability.

So what is Hr, and hence Pr(f= l Ip)? From the standpoint of
classical statistics, the one observed value of the sample proportion
p = .51 is a point estimate for r. And, if HT =.51, then the
probability on which the case turns is Pr(f= 1 Ip) =.51. However, a
rigorous frequentist cannot say anything about the probability that
,ff is .51, for qr is a fixed parameter, not a random variable. Nor does
using an interval estimate for iT change anything. If the 95% CI is
.428 < 7r < 1, then approximately 95% of the varied CIs in a long
list generated from repeated samples of size 100 would cover the
true value of ff. What this implies about subjective confidence ex-
pressed as a posterior probability that .428 < Pr(f= 1 I p) < 1 re-
mains obscure.

II
REFORMING CIT TO OBTAIN A CONSISTENT

FREQUENTIST THEORY

We have just seen that Cohen's treatment of a frequentist confi-
dence interval is fundamentally misconceived. Nonetheless, a con-
sistent, purely frequentist variation on CIT is possible in some
circumstances. A modification of High-Tech Supply Company v. Hacker
will illustrate the reasoning. Assume this time that High-Tech did
not test a sample before buying a huge batch of chips. To simplify
future arithmetic, 42 let us postulate that this batch consisted of one
million chips. High-Tech ships one and only one chip, which is in-
tended for Hacker, but is never received by him. High-Tech sues
Hacker as before. To prove that it tendered a functional chip, with-
out resorting to prohibitively expensive testing of the remaining
999,999 chips, High-Tech draws a random sample of 100 chips from
the pile of 999,999 and counts the number of functional and defec-

42 See supra note 41.
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tive chips in this sample.43 Now imagine a long series of such cases,
each with its own random sample of 100. If we want to decide the
cases by a procedure that would prevent us from concluding that
Pr(f= 1 Ip) > .5 when fr < .5 in 95% or more of the cases, we could
do it. We would have to find a value p* such that the probability of
observing p > p* given that ir < .5 is no larger than .05. This
number is p* = .58. If we find for High-Tech only when the sample
proportion is at least .58, the rate of false alarms will not exceed 5%
if 'rr < .5. To achieve the same result with confidence intervals, we
merely form 95% CIs about the sample proportion in each case and
find for High-Tech only when these intervals lie entirely above .5.
The two procedures are equivalent. 44 For example, when the sam-
ple proportion is .51, as posited by Cohen, then the lower bound of
the 95% CI for 'rr drops to .428, and we would not find for High-
Tech.

So it is possible to use a purely frequentist CIT to keep the con-
ditional probability of false alarms below a specified level, such as
.05. This expected conditional error rate is known as a significance
level.45 As in the above example, the significance level is numeri-
cally equal to one minus the confidence coefficient. 46

But what does a confidence coefficient, or its kissing cousin, the
significance level, have to do with the burden of persuasion? Cohen
recognizes that the connection is "not simple," 47 and that the 95%
coefficient used in every one of his examples may be more demand-
ing than the preponderance-of-the-evidence standard. After re-
jecting various methods of picking a confidence coefficient, he
settles on Dawson's proposal48 to use a significance level that equal-
izes the conditional risk of a false alarm and a miss. 49 Using a level
that equalizes conditional risks, Cohen believes, will also "equalize
the cost of 'wrong' judgments" for plaintiffs and defendants." 50

This belief, too, is wrong. The cost of each type of error is one

43 Please do not ask why High-Tech is introducing this evidence. I am trying to stay
within the confines of Cohen's example.
44 For a general statement of the relationship between hypothesis testing and in-

specting confidence intervals, see M. DEGROOT, PROBABILrrY AND STATISTICS 408-09
(1975); Aickin, supra note 29, at 168-69.

45 To avoid confusion, I shall always use the word "level" in conjunction with "sig-
nificance," and "coefficient" in connection with "confidence."

46 Conceptually, significance and confidence are quite distinct but easily confused.
Chandler, The Statistical Concepts of Confidence and Significance, 54 PSYCHOLOGICAL BULL.
429 (1957).
47 Cohen, supra note 1, at 417.
48 Dawson, Are Statisticians Being Fair to Employment Discrimination Plaintiffs?, 21

JURIMETRICS J. 1 (1980); Dawson, Probabilities and Prejudice in Establishing Statistical Infer-
ences, 13JURIMETRICSJ. 191 (1973).
49 Cohen, supra note 1, at 417.
50 Id.
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thing, and the conditional probability of these errors is another.
The burden of persuasion flows from the former, not the latter.
Looking at expected conditional error rates to decide whether data
satisfy the preponderance-of-the-evidence standard is like trying to
find the shortest path from Oxford to Cambridge by scrutinizing a
map of London. To demonstrate that CIT, even with confidence
coefficients that equalize expected conditional error rates, is not the
road to proof by a preponderance-of-the-evidence, I shall apply CIT
to a simplified version of Cohen's High-Tech hypothetical. I shall
then show that the preponderance-of-the-evidence standard leads to
a result that cannot be reconciled with CIT.

A. A Simplified Version of High-Tech Supply Company v. Hacker

To facilitate the application of CIT to the hypothetical case of
High-Tech Supply Company v. Hacker, it is convenient to make a prelim-
inary simplification that restricts the possible values for the propor-
tion of functional chips in the batch of one million. Suppose that
the batch came from one of only two machines used in the plant of
the bankrupt manufacturer. 51 One machine, the schlock machine,
always produces batches of chips of which precisely 50% are func-
tional. The other machine does a little better: it always yields
batches in which the proportion of functional chips is precisely
60%. If we knew which batch Hacker's chip came from, the decision
would be easy: High-Tech should prevail if the chip sent to Hacker
came from a higher quality machine batch (ir - .6), and Hacker
should prevail if it came from a schlock batch (ir = .5).

As a first approach to the problem, we may try to reach a con-
clusion about f = .6, the hypothesis that the chip came from a bet-
ter batch. 52 This section considers three methods for reaching such
a conclusion: (1) the .05 test mentioned but dismissed by Cohen,
(2) the equalized test that he favors, and (3) the traditional more-

51 Cohen relies on work that uses similar simplifications to determine the condi-
tional probability of a miss in employment discrimination cases. Cohen, supra note 1, at
411. For a suggestion about how this constraint could be generalized, see supra note 52.
I limit the problem to two deterministic machines to allow the computation of certain
conditional probabilities that reveal the disparity between decisions pursuant to CIT and
decisions pursuant to the more-probable-than-not standard. The differences between
the two approaches remain even in the more complex situations where these probabili-
ties cannot be calculated.

52 This approach is oversimplified in that the posterior probability that ir = .6 is
not the posterior probability to which the burden of proof applies. Instead, what must
be proven is High-Tech's claim that the randomly selected chip was functional. The
probability of this event, computed without knowing the results of the sampling, is some
number Pr(f= I). If the chip came from the schlock machine, then Pr(f= 1 1 rr=.5) =.5.
If the chip came from the better machine, then Pr(f= I I ir=.6) =-.6. Supposing (as we
will again in comparing three possible formulations of the burden of persuasion) that
the schlock machine produces chips at twice the rate of the better machine, the crucial
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probable-than-not test. The analysis demonstrates that the three
tests are distinct, and that, contrary to Cohen's assertion, the equal-
ized test does not implement the preponderance-of-the-evidence
standard's principle of equal error costs.

1. The. 05 Test

Confronted with a particular sample proportion p, the
factfinder might make one of two decisions. Let D, designate the
decision that T = .6, and let Do be the decision that ir = .5. Sup-
pose we were to conclude that ir = .6 whenever a sample propor-
tion was at least p* = .58. As indicated above,53 this is equivalent to
a CIT approach with a confidence coefficient of .95. Let us call this
decision rule 8.05:

8.05: D, if p > .58; Do if p < .58.

probability would be Pr(f= 1) = Pr(irr=.5)Pr(f= 1 1 ir=.5) + Pr(Tr=.6)Pr(f- I Ir=.6)
= (2/3)(.5) + (1/3)(.6) = .53.

However, the analysis so far makes no use of the sample data p=.51. Because this
proportion is more likely to occur when a chip comes from a low quality (ir=.5) batch
than a higher quality (,i=.6) batch, it is more likely that the chip came from a schlock
batch than our calculations thus far have indicated. Bayes' Theorem reveals that

Pr(ir=.5)Pr(p lir=.5)Pr(ir=.5p) = Pr(ir=.5)Pr(pli'r=.5) + Pr(ir=.6)Pr(pJlr=.6)

The probability of randomly drawing 51 out of 100 functional chips from a large bin in
which 50% are functional is Pr(p=.51 I ir=.5) =.391, and Pr(p=.51 I ir=.6) =.183.
Hence, Pr(,rr=.5 Jp=.51) is .81. Thus, given that the schlock machine grinds out twice
as many batches as the better machine, and given that a sample of 100 chips from a
batch produced by one of these machines yielded 51 functional chips, we conclude that
the probability of the batch having come from the schlock machine is .81.

If the issue in the case were which machine produced the batch (and if no spoliation
argument warranted further calculations), then Hacker should prevail. However, as I
have indicated, the real issue in the case is whether the chip sent to Hacker was func-
tional. There is, of course, a 50%o chance that it was functional even if it came from the
schlock machine. Utilizing all of the information, the probability of Hacker having got a
functional chip is

Pr(f= I p) = Pr(f=l ITr=.5) Pr(ir.51p) + Pr(f=I hr=.6)Pr(ir=.61p)
= .5(.81) + .6(.19) =.52.

If no spoliation argument is justified, then the fact that Pr(f= 1 Ip) exceeds the civil
threshold of .5 implies that the verdict should be for High-Tech.

This analysis obviously is contrived. The two-machine simplification could be re-
placed with a description of a prior distribution of ir in the interval between zero and
one. We might visualize this by imagining a vast number of machines of differing quality,
or a single machine that wobbles in a stochastically known way from batch to batch.

This simplified analysis nevertheless illustrates some general points. In Cohen's
formulation, parameters are never distinguished from probabilities, and it is hard to tell
which probability should be compared to the civil threshold of .5. The more complete
analysis here makes it clear that the probability that the factfinder must determine is a
posterior probability. In our example, it is Pr(f= 1 jp=.51). This probability depends on
prior probabilities related to the manufacturing process and on certain conditional
probabilities involving the sample data. In contrast, the confidence interval for ir comes
from the sample data alone.

53 Supra notes 42-44 and accompanying text.
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The .05 label is appropriate because if 'rr = .5, this test errs (in the
long run) in 5% of the cases to which it is applied. The .05 signifi-
cance level is the expected false alarm rate for 8.05 when 'ir = .5, and
it usually is denoted cc. Here, ct(8.05) = Pr(D1 I Tr = .5) = .05.

What is the probability that the test 8.o5 will lead to the conclu-
sion that iT < .5 when, in reality, ff > .5? This quantity is the ex-
pected conditional miss rate for the test. Since the only value in the
range r > .5 that we need to consider is ir = .6, it is just Pr(Do I 'r
= .6), the probability of a sample proportion p < .58 given that ir
-= .6. We may call this expected miss rate for the 8.05 test (.05). Its
value is 3(8.o5) = .34.

Another way of stating the 8.05 test will prove instructive later.
The probability that p = p* = .58 when 7r = .6 is .37. The corre-
sponding probability when ir = .5 is .11. The ratio of these
probabilities is known as a likelihood ratio. It states how many times
more probable the data are to arise whenr -= .6 than when ir = .5.
The likelihood ratio that corresponds to an observation p* = .58 is

LR* = Pr(p=.58 17r=.6) _ .3668 - 3.3
Pr(p=.58 1'rr=.5) .1109

Thus, to demand that p > .58 is to insist on data that are more than
3.3 times more likely to arise if the batch came from the better
machine before concluding that the batch in fact came from the bet-
ter machine. We may restate 8.05 as follows:

8.o5: D, if LR > 3.3; Do otherwise.

2. The Equalized Test

Because under the .05 test the risk of a miss is much higher
than the risk of a false alarm, Cohen's interpretation of the prepon-
derance-of-the-evidence standard would require an adjustment to
p*. Lowering the value of p* will make D1 more probable when ir =
.5, thereby increasing the risk of a false alarm in this situation. But it
also will make Do less probable when ir = .6, decreasing the risk of a
miss should "r = .6. 54 At p* = .55, the conditional probability of an
error that favors High-Tech is just about equal to the conditional
probability of an error that favors Hacker. We may summarize this
'equalized test," 8. , as follows:

8 F: D, if p > .55; Do otherwise.

54 Figure 3 may make this tradeoff easier to visualize. If -r =.5, the sample propor-
tion p has a probability density fo(p) that is approximately normal with mean .5 and
standard deviation .05. If it =.6, the probability density fl (p) is approximately normal
with mean .6 and standard deviation .0499. The probability cc of a false alarm is the area
under f (p) to the right of p*. The probability of a miss is the area under f,(p) to the left
of p*.
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The conditional error probabilities for this test are ct(SE.) = .159
and 3 (8 E.) =-.154. 55 Rephrasing things in terms of confidence inter-
vals, the confidence coefficient is 1 - .159 = .84. Presumably, in
our simplified version of High-Tech Supply Company v. Hacker, Cohen
would conclude that the preponderance-of-the-evidence standard is
not satisfied whenever a one-sided 84% CI about the sample pro-
portion covers rv = .5. Because the observed proportion p = .51 is
less than p*, the 84% CI around it would cover 7r = .5, and a verdict
for Hacker would follow.

Like the .05 test, 8E may be rephrased in terms of the likelihood
ratio exceeding some critical value LR*. Because LR* =
Pr(p=.55 ['r =.6)/Pr(p=.55 -r=.5) = .237/.242 = .98, the equal-
ized test becomes

SE: D, if LR > .98; Do otherwise.
In this particular example, the equalized test works like a maximum-
likelihood test.56 It leads to a finding that i = .6, and to a verdict
for High-Tech, if and only if the data would arise at least almost as
frequently when fv is .6 as when iv is .5.

3. The More-Probable-Than-Not Test

Some may find it tempting to reason that if the data are more
probable under one hypothesis than another, then the former hy-
pothesis is more likely to be true than the latter. But as a general
matter, this reasoning is fallacious. In our hypothetical, the more-

f(p) f(p)

.5 p* .6 p

Figure 3. Conditional Error Probabilities for a Decision Rule 5 in the
Simplified Case of High-Tech v. Hacker

55 To equalize these error probabilities more precisely, we would have to choose a
p* slightly larger than .55. Our two digit accuracy here is enough to illustrate the
concept.

56 This results from the fact that the distributions of p have the same functional
form and almost identical variance under the competing hypotheses 7r=.5 and r=.6. In
general, however, an equalized test is not a maximum-likelihood test. Kaye, Hypothesis
Testing in the Courtroom, in CONTRIBUTIONS TO THE THEORY AND APPLICATIONS OF STATIS-

TICS 331, 344 n.7 (A. Gelfand ed. 1987). Any suggestion to the contrary in Kaye, supra
note 23, at 23 n.46, is wrong.
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probable-than-not standard would usually be phrased in terms of
whether the claim that i" = .6 is more probable than the competing
claim that iT = .5. If no spoliation argument were justified, we
would compute Pr(-r = .6 1p), and, if this figure exceeded .5, we
would find that the better machine had been used. Because this de-
cision rule instructs us to accept the claim that has the maximum a
posteriori probability, I shall refer to it as the MAP standard.57 We
may express the more-probable-than-not decision rule as

8 MAP: DI if Pr(ir=.6 1p) > .5; Do otherwise.
To compute Pr(ir =.6 1p), we use Bayes' Theorem which implies

that:

Pr(rr=.6 Ip) Pr(ir=.6)= LR
Pr(ir=.5 I p) Pr(ir=.5)

The observed p leads us to update the prior odds in favor of the
better machine by multiplying them by a quantity LR, known as the
likelihood ratio, to arrive at the posterior odds. LR is computed as
the ratio of Pr(p [ir=.6), the probability of the sample data given a
draw from a better batch, to Pr(p ir=.5), the probability of the sam-
ple data given a draw from the schlock batch.

To facilitate comparison of the 8
MAP test with the previous tests,

we can express the condition for DI in terms of LR. A little algebra
reveals that the condition Pr(Tr=.6 1p) > .5 is fulfilled if and only if
the likelihood ratio exceeds Pr(iT=.5)/Pr(ir=.6). In other words,
8MAP can be rewritten as follows:

Pr~ir=.5)
8

MAP: DI if LR > , Do otherwise.
Pr(ir= .6)

4. The Tests Compared

Table 1 summarizes the three decision rules. Compare the ex-
pression just given for 8 MAP with the LR formulations given earlier
for 8.05 and 8F . In 8.05 and 8

E' the critical LR was determined by look-
ing to the conditional error probabilities a and 13 for the test. (The
.05 test insists that a be kept to .05, leading to the condition LR >
3.33. The equalized test, less demanding, insists on equating a and
13, which led to the condition LR > .98.) The 8 MA, test, by contrast,
does not look to a and 13 as such. Instead, it requires that the likeli-
hood ratio exceed the prior odds against this event.

Suppose, for example, that the schlock machine churns out

57 SeeJ. MELSA & D. COHN, DECISION AND ESTIMATION THEORY (1978). The MAP
criterion can also be understood as a special case ofa Bayes' decision rule. See supra text
accompanying note 5.
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Decision rule
(of form DI
if LR > LR*
or p > p*) LR* p*

8.05 3.3 .58

8E .98 .55
8MAP Pr(ir=.5) a function of

Pr(ir=.6) Pr(ir=.5)
Pr(ir=.6)

Table 1.
Decision rules for finding u=.6 given a

sample proportion p in the simplified version of
High-Tech Supply Company v. Hacker.

twice as many batches of chips per day as the better one.58 Then we
might say that the probability that "r = .5 is Pr(ir=.5) = 2Pr(ir=.6).
Because the chip must have come from one of the two machines,
Pr('rr=.5) + Pr(ir=.6) = 1. Therefore, Pr(ir=.5) = 2/3 and
Pr(7r=.6) = 1/3, and the more-probable-than-not standard
becomes

8 MAP: D1 if LR > 2; Do otherwise.
The conditional error probabilities for this test are a(SMAP) = .08
and 3(8UAp) = .27.

Comparing the expression for 8 MAP to those for 8.05 and 8 E, illus-
trates that the 8 MAP test differs from the other two tests. Depending
on the values of Pr(ur=.5)/Pr(ir=.6) and p, the equalized test can
indicate that -T = .6 even when it is more probable than not that 7r

.5.

B. The Burden of Persuasion

I have contended that 8 MAP is a formal way of stating the tradi-
tional civil burden of persuasion. I believe that this identification of
8 MAP with the civil burden of persuasion is accurate because both
rules say the same thing about the posterior probability on which
cases such as High-Tech Supply Company v. Hacker seem to turn. Nev-
ertheless, Cohen seems to feel that 8E captures a principle of equal-
ity implicit in the preponderance of the evidence standard.59 I have
stated that Cohen's view stems from a confusion between the cost of

58 Cf supra note 52.

59 See also M. FINKELSTEIN, QUANTITATIVE METHODS IN LAW 65-69 (1978). For criti-
cism of Finkelstein's equalization principle, see Kaye, Naked Statistical Evidence (Book Re-
view), 89 YALE LJ. 601 (1980).
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each type of error and the conditional probability of these errors;60 an
explanation of that criticism follows.

The only nonsuperficial analysis of the civil burden of persua-
sion that I have seen builds on the premise that in civil litigation, a
false alarm and a miss are equally serious mistakes. 6 1 If this premise
is correct, we should strive to keep the total probability of these mis-
takes to a minimum without regard to the direction that they take.62

To support a rule that increases the expected rate of errors, some
other argument besides a vague claim that the civil burden of per-
suasion has something to do with equating certain error probabili-
ties must be forthcoming.63 Without such an argument, there is no
reason to interpret a "preponderance of the evidence" as evidence
at least as powerful as that which equalizes the conditional error
probabilities. The decision rule should minimize the total
probability of error, without regard to the type of error.

The rule that minimizes total error probability is 8
MAP.

64 In our
hypothetical, for example, the total probability of error 65 under 8.05
is Pr(e) = .05Pr(ir=.5) + .34Pr(r=.6) = .05(2/3) + .34(1/3) =
.15. Under 8E, the probability of error is .159Pr(Tr=.5) +
.154Pr(,r=.6) = .16. Under 8 MAP, the total probability of error is
.08Pr(ir=.5) + .27Pr(ir=.6) = .14. In this example, the expected
error rate for the 8.o5 and 8E rules exceeds the optimal level that the
8 MAp rule achieves. Thus, if the underlying principle of the civil bur-
den of persuasion is that false verdicts for plaintiffs and false ver-
dicts for defendants are each to be avoided with equal vigor (so that
we should minimize the expected total error rate), then a decision

60 See supra text following note 50.
61 E.g., Ball, The Moment of Truth: Probability Theory and Standards of Proof 14 VAND. L.

REv. 807, 816-18 (1961). Some commentators reject this premise. For instance, Tyree,
Proof and Probability in the Anglo-American Legal System, 23 JURIMETRICS J. 89, 93 (1982),
asserts that where "community standards" treat one type of error as more costly than
another, evidence may be excluded to raise, sub silentio, the burden of persuasion.

62 See Kaye, supra note 59. We might consider the expected costs and benefits of
obtaining more evidence; in essence, this is what is done by the spoliation analysis men-
tioned supra at text accompanying notes 10-12. Alternatively, these considerations may
be incorporated into a more general Bayesian framework that explicitly allows for the
possibility of deciding for defendant on the ground that more evidence is needed rather
than on the ground that it is more-probable-than-not that, say, 1r=.5. Analyses along
these lines, as I have said before, are beyond the scope of this article.

63 Cf. Kaye, supra note 5 (identifying limited circumstances under which it might be
reasonable to trade off increased probability of error for better balance of errors).

64 See M. DEGROOT, supra note 44, at 374-75.
65 The probability of error is a function of the conditional error probabilities a and

[3 and the prior probabilities. Specifically, the risk of a false alarm for a test 8 is
Pr(D 1 1 ff=.5) = Pr(D1 [Iir=.5)Pr(iT =.5) = aPr(-Tr=.5). Likewise, the risk of a miss is
Pr(Do I i=.6) = Pr(Do Jir=.6)Pr(ir=.6) = [3Pr(irr=.6). Since false alarms and misses are
the only possible errors and are disjoint events, the total error probability is Pr(e) =

Pr(false alarm or miss) = aPr(ir=.5) + [3Pr(ir=.6).
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rule that maximizes a posteriori probability (the MAP standard) is
better than one that uses a confidence coefficient or an equalized
significance level. 66

III

"CONFIDENCE" IN POLYGRAPH TESTING

My effort to demonstrate the inability of CIT to capture the es-
sential elements of the burden of persuasion has been more techni-
cal than I would have liked. Many legally trained readers may be
prone to dismiss as impenetrable a paper peppered with numbers
and strewn with symbols. My intent, of course, is to clarify rather
than obfuscate. When describing and exploring mathematical mod-
els of legal concepts like probative value or the burden of persua-
sion, ambiguous antecedents are an invitation to disaster, and a
consistent and detailed notation is the only practical way to avoid
such ambiguities. 67 Applied probability theory is a notoriously slip-
pery field. It is tempting to make intuitively appealing assertions
without taking the effort to verify them. It is frightfully easy to speak
generally of "probability" or "confidence" when what one means is
a specific conditional probability, a parameter in a statistical model,
or a likelihood. Thus, the first part of my critique of CIT was that it
merely quantifies the sampling error in a statistic. CIT fails to ad-
dress the possible uncertainty in the posterior probability on which
the case should turn, let alone to tell us what do to in the face of
such uncertainty.

To illustrate this potential for mischief in a more realistic con-
text, and to identify some sources of uncertainty in arriving at poste-
rior probabilities, it is instructive to consider a recent suggestion by
David Raskin, a psychologist who is pre-eminent in polygraph re-
search. Raskin maintains that empirical studies establish a 77% to
92% "confidence" in polygraph testing's capacity to reveal decep-
tion by criminal suspects. 68 This "confidence," unlike Cohen's,

66 The numbers in this illustration of the expected error minimizing property of

8.[Ap depend on the prior odds of 2:1 for the schlock machine. If we used a different set
of prior odds, 8 ,%AP still would be of the form D, if, and only if, LR > LR*, but a different
LR" would apply. This new LR* would ensure that a finding that the better machine had
been the source of the chip would not occur unless the posterior odds favored the better
machine. This is what it means to say that 8MAP is a maximum a posteriori test. In con-
trast, the critical values p" or LR" for 8.05 and 8j, do not adjust themselves to the prior
odds. Instead, they flow entirely from characteristics of a or [3. For some prior odds, 8.0.-
or B, may turn out to reach the same results as 8MAp, but these coincidences do not
detract from the claim that only 8

MAP is the conceptually appropriate formalization of the
preponderance-of-the-evidence standard.

67 Cf. Kruskal, Terms of Reference: Singular Confusion About Multiple Causation, 15 J.

LEGAL STUD. 427 (1986).
68 Raskin, The Polygraph in 1986: Scientific, Professional and Legal Issues Surrounding Ap-
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does refer to a posterior probability, and this probability can be ex-
pressed in terms of confidence intervals. Nonetheless, although
these intervals do convey some sense of the imprecision of the esti-
mates of the posterior probability, even these correctly interpreted
intervals are not easily related to the burden of persuasion.

To explain what Raskin means by "confidence," I need to intro-
duce some standard notation.69 A polygraph test, like any medical
or psychological test, detects certain symptoms of a disease or con-
dition. Let the class of people with the condition (deception) be D.
After administering a polygraph test to a suspect, the examiner re-
ports either that the suspect has the symptoms and belongs to the
class (S) or that he or she does not (g).70 Two probabilities describe
the accuracy of such a test. The probability that a person who is
deceptive is classified correctly is known as the sensitivity: q =
Pr(S ID). The probability that a person who is not deceptive is clas-
sified correctly is known as the specificity: 0 = Pr(S ID). When the
polygraph test is incriminating, the posterior probability of interest
is the conditional probability Pr(D IS) that a person classified as de-
ceptive really is deceptive. 71 In certain contexts, this probability is
called the predictive value of a positive test, or "PVP" for short. As
we soon shall see, this is what Raskin means by "confidence."

PVP is related to sensitivity and specificity, and the prevalence
of deception in the population tested also plays a leading role. Let-
ting the prevalence or base rate be 13 = Pr(D), and assuming that a
person tested can be regarded as randomly selected from that popu-
lation, Bayes's Theorem can be written in the following form:72

PVP oil

3'x + (1-13) (1-0)

The PVP figures of .77 and .92 mentioned above come from
this formula with two selected sets of estimates for P, -q and 0. The
estimated values (which we may call b, h, and t) come from the vari-
ous studies of polygraph accuracy and from certain polygraphers'

plications and Acceptance of Polygraph Evidence, 1986 UTAH L. REV. 29, 59-60; Raskin &
Kircher, The Validity of Lykken's Criticisms: Fact or Fancy?, 27 JURIMETRICS J. 271, 275
(1987).

69 This notation as well as most of the mathematical analysis is taken from
Gastwirth, The Statistical Precision of Medical Screening Procedures: Application to Polygraph and
AIDS Antibodies Test Data, 2 STATISTICAL SCIENCE 213 (1987).

70 For convenience, we ignore the possibility of a report that the test is
inconclusive.

71 Likewise, when a test result is exculpatory, the pertinent posterior probability is
Pr(D IS).

72 For a detailed explanation, see Kaye, Reflections on the Validity of Tests: Caveant
Omnes, 27 JURIMETRICS J. 349 (1987).
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experience with field tests of criminal suspects. 73 Because Raskin
does not consider the statistical variability in these estimates, his
figures for the PVP are point estimates, providing no insight into the
sampling error associated with his computations.

Among the many conceivable sources of error in Raskin's
figures for PVP, we can estimate the probable extent of the sampling
error. One statistician, Joseph Gastwirth, has done so. 7 4 Sampling
error, as we saw earlier, arises from the fact that quantities are esti-
mated on the basis of random samples whose means tend to vary
about some central value. In this case, the estimates b, h, and t each
come from (presumably) random samples of limited size. Variability
in the estimate b of the prevalence 3, variability in the estimate h of
the sensitivity n, and variability in the estimate t of the specificity 0
all affect the precision of the estimate ofPVP.7 s For the sample sizes
and proportions in question, Gastwirth finds the standard deviation
of the estimate of PVP to be around .05.76 Consequently, the 95%
confidence interval77 for Raskin's lowest estimate of the "confi-
dence" (that is, of PVP), is something like .77 ±E .10.

One would imagine that Professor Cohen would approve of this
confidence interval treatment of PVP. Indeed, the confidence inter-
val analysis does show that sampling error alone renders somewhat
fuzzy the figures that Raskin quotes. We would be deceiving our-
selves if we accepted at face value his claim that the lower limit for
"confidence" is .77. Broadening the range of our estimate of PVP,
however, does little to help us decide whether a positive test result,
standing alone, would satisfy the pertinent burden of persuasion;
sampling error could raise the estimated PVP as easily as it could
lower it. Our best, unbiased estimate of PVP remains the point esti-
mate. If PVP were the posterior probability78 to be placed alongside
some threshold, as Bayesian decision theory prescribes, then it is

73 See Kaye, supra note 72.
74 See Gastwirth, supra note 69.
75 From the Bayesian perspective (which Gastwirth does not adopt), neither the

prior probability (which b estimates) nor the likelihood ratio (which h/(1 -t) estimates)
is exactly known. Using b for the prior probability raises legal as well as statistical issues.
See Kaye, The Polygraph and the PVP, in 2 STATISMCAL SCIENCE 223 (1987).

76 The .05 figure is derived in Table 2 of Gastwirth, supra note 69, which uses
slightly different estimates of f, "q, and 0 than those implicit in the .77 figure of PVP.

77 This confidence interval is formed by moving just under two standard deviations
on either side of the estimate for PVP.

78 The PVP is a posterior probability, but it is not a personal probability. The prev-
alence that plays the role of the prior probability in Bayes' Theorem is the proportion of
deceptive people in the population from which the tested suspect is randomly drawn. A
more thoroughly subjectivist treatment might take the prior probability as characterizing
the individual suspect in light of the unique circumstances of the case. This subjective
probability would be modified a la Bayes' Theorem with a likelihood ratio of q/(l -0) to
yield a posterior probability of deception.
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still the point estimate of PVP that would seem to be determinative.
The uncertainty in PVP affects neither the cost of errors, the ex-
pected rate of errors, nor the expected balance of errors resulting
from decisions based on PVP.7 9

CONCLUSION

We have come full circle. The appeal of CIT is that it appears
to give some structure to the intuition that a probability derived
from a broad and firm base of evidence better justifies a decision
than a probability derived from a flimsy bit of evidence. Despite the
suggestions of Cohen and his followers, however, the frequentist
confidence interval is neither "a constructive advance for the Baye-
sian system" nor a device that "extends to the full range of subjec-
tivist probabilities. ' 8 0 On the contrary, there is little breathing
space in BDT for the frequentist's idea of "confidence." 81 Even in
the context of the one realistic situation we have considered in
which a frequentist interval for a posterior probability can be con-
structed, the relationship between the interval and the burden of
persuasion remains mysterious. Yet, there remains an aversion to
rushing to judgment on the basis of unnecessarily imprecise esti-
mates of PVP or other posterior probabilities.

I continue to think that this concern can be handled within
BDT, perhaps by explicitly including in the set of possible decisions
under consideration the option of gathering further information,8 2

or perhaps by adjusting the posterior probability to account for the
limited base or quality of the underlying evidence.8 3 At the same
time, nothing that I have said here proves that these approaches are
correct or excludes the possibility of some superior analysis. Others
may disagree with my preferred approaches, but it is hard to see
how CIT can be accepted as a serious model for the burden of
persuasion.

79 It does bear on the advisability of gathering more information on 03, "q and 0. A
large CI for PVP indicates that doing so might be optimal. BDT is rich enough to in-
clude the choice of gathering further information as an option. Analyzing this option
within a Bayesian framework takes us back to the literature on naked statistical evidence
mentioned in the Introduction, see supra notes 6-15 and accompanying text, but no one
has yet provided a fully developed treatment along these lines.

80 Ashford, supra note 2, at 945.
81 There is a Bayesian version of the confidence interval that advocates of CIT

would do well to consider, if only so as to appreciate the dissonance between the fre-
quentist and the Bayesian approaches to statistical inference. For an explanation of
Bayesian confidence regions, see, e.g., V. BARNETTE, COMPARATIVE STATISTICAL INFER-
ENCE 198-200 (2d ed. 1982). For an exploration of the connection between frequentist
and Bayesian confidence sets, see Meeden & Vardeman, Bayes and Admissible Set Estima-
tion, 80J. AM. STATISTICAL A. 465 (1985).

82 See supra note 79.
83 See Kaye, supra note 13.
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APPLES AND ORANGES

Having relentlessly attacked the frequentist conception of "con-
fidence" as a way of thinking about forensic decisionmaking, I
should in closing like to allow it some quarter. The frequentist no-
tion can serve as a metaphor to stimulate further work into "Confi-
dence in Probability." Among the more promising technical devices
for expressing "confidence" in personal probability, or something
like it, are Bayesian sensitivity analysis,8 4 second order probabili-
ties,85 and belief functions.8 6 I hope that my effort to spell out
Cohen's theory and its implications will challenge Cohen and others
who are dissatisfied with BDT to consider these tools and ideas and
ultimately to provide a deeper theory of the burden of persuasion.

84 See Kass, Comment, 77J. Am. STATISTICAL A. 347 (1982).
85 See Skyrms, Higher Order Degrees of Belief, in PROSPECTS FOR PRAGMATISM 109 (D.

Mellor ed. 1980).
86 See Shafer, Lindley's Paradox, 77J. AM. STATISTICAL A. 325 (1982).

19871


	Cornell Law Review
	Apples and Oranges: Confidence Coefficients and the Burden of Persuasion
	D. H. Kaye
	Recommended Citation



