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Abstract 

The complex permittivity of bulk ceramic ferroelectric of nominal composition PbZr0.4Ti0.6O3 was 

measured in the range 0.2-2 THz using transmission time-domain spectroscopy. The results indicate 

strong absorption and dispersion in this frequency range often seen in highly disordered and polar 

materials. The results are compared to equivalent thin film data in the literature, and significant 

differences in the real and imaginary permittivity suggest that substrate clamping and degree of 

polarisation of the ferroelectric thin film materials affect dielectric properties even at these high 

frequencies. 

 

Introduction 

Wireless communication technologies are continuously expanding to ever-higher frequencies. 

Experimental wireless links have already been demonstrated at frequencies up to 300 GHz [1]. These 

technological developments will demand advances in dielectric and other functional materials for 

passive and possibly active devices, whose design will require accurate knowledge of dielectric 

properties at sub-THz and THz frequencies. 

Ferroelectric and piezoelectric materials underpin a wide range of existing technologies, such as 

sensors, actuators and transducers, capacitors, pyroelectric detectors, medical ultrasound, and 

ferroelectric memory. Ultra-fast processes in ferroelectrics are also of direct technological interest for 

non-linear optics, photonics, telecommunications and optical data storage [2]-[4]. 

Despite their industrial relevance, it is surprising that very little literature has been published on the 

dielectric properties of ferroelectric and piezoelectric materials at THz frequencies, with most of the 
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high frequency work focused on mm wavelength (microwave) applications [5]-[7]. The great majority 

of the published data has been derived indirectly from THz reflectivity measurements [8]-[16], where 

the calculations involved are subject to large uncertainties [17]. This is especially relevant in materials 

with high reflectivity, where both real and imaginary dielectric constants have large values, as is the 

case in the industry standard piezoelectric family of ceramics known as PZT (i.e. Pb(Zrx,Ti1-x)O3 - 

perovskite solid solutions). Moreover, most of the cited studies were performed using Fourier 

Transform Spectroscopy (FTS), a technique that offers ultra-broadband measurement over as much as 

30-3000 cm-1 (1-100 THz). However, the method does not provide a direct measurement of the phase, 

which therefore makes derivations of optical constants from reflectivity data even more problematic 

[17], since they must be calculated from the Kramers-Kronig dispersion integrals Chapter 9 in [18]. 

 

THz time-domain spectroscopy (TDS) offers a much narrower range of frequencies than FTS, typically 

0.1-4 THz, but has the important advantage of yielding a direct measurement of both amplitude and 

phase shift, making possible a much more accurate determination of the real and imaginary dielectric 

constants. Chen et al. [7] used reflection THz TDS to measure the refractive index of epitaxial 

PbZr0.52Ti0.48O3 film on SrTiO3 substrate at 1 THz as a function of applied electric field. Li et al. [6] 

used the goniometric form of reflection THz TDS to obtain the dielectric constants of a PbZr0.4Ti0.6O3 

film on Si substrate at discrete frequencies in the 0.6-1.4 THz range. However, because these studies 

used reflectivity measurements, the values of the derived optical constants are subject to quite large 

uncertainties associated with this approach.  

 

In contrast, transmission time-domain spectroscopy provides a direct measurement of the complex 

dielectric constant with comparatively low uncertainties. Kwak et al. [5] used transmission THz TDS 

to measure the real and imaginary dielectric constants of sol-gel grown PbZr0.52Ti0.48O3 and 

PbZr0.3Ti0.7O3 films in the 0.1-2 THz range, demonstrating the advantages of the technique for these 

materials. Similarly, Buixaderas et al. [19], [20]  included transmission THz TDS in the range 0.15-

0.6 THz in their comprehensive study of dielectric properties of PLZT (Pb, La, Zr, Ti) materials at 
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frequencies between 102-1014 Hz and at temperatures of 20-800 K, as well as in their similar study of 

PZT materials [21]. 

 

With so little data published on the dielectric properties of bulk materials, we present in this paper 

transmission THz TDS measurements on bulk ceramic PbZr0.4Ti0.6O3 in the range 0.2-2 THz. The 

dielectric constants are compared with those measured on thin films grown by epitaxial and sol-gel 

processes.   

 

Experimental techniques 

Bulk sintered ceramic plates of Pb(Zr1-xTix)O3 with nominally tetragonal structure were sourced from a 

commercial supplier of PZT ceramics. The material composition was measured using energy-dispersive 

X-ray spectroscopy and confirmed to be Ti-rich, with x~0.6. At THz frequencies, PZT has a high 

refractive index combined with high absorption. In consequence, and in order for transmission 

measurements to be made possible, the PZT samples must be mechanically thinned to less than about 

50 m. In these experiments, three samples were produced by grinding down and polishing the bulk 

ceramic to thicknesses between 20-30 m. Film thickness was measured using the gauge block 

technique, with an uncertainty of 1 m [22]. Since these films were too fragile to handle or mount, 

they were sandwiched between two plates of polymethylpentene (TPX® from Mitsui Chemicals) each 

2 mm thick. TPX® was chosen because of its high THz transparency [23] combined with optical 

transparency and good mechanical stiffness. Two similar plates of TPX® contacted together served for 

reference measurements. 

 

The THz time-domain spectrometer [24] had a commonly employed configuration with four 90° 

parabolic mirrors. The pump laser was a mode-locked Ti:Sapphire laser (Femtosource) with a 20 fs 

pulse length and a centre wavelength of 800 nm,  producing an average power of 450 mW. The THz 

source was a photoconductive emitter fabricated on semi-insulating GaAs biased to 200 V with unipolar 

square-wave modulation at 10 kHz. The THz signal was detected by monitoring the electro-optic 

birefringence of a 0.5 mm thick ZnTe crystal using a pair of balanced photodiodes. The dynamic range 
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of the system was approximately 2000 at 1 THz. For the measurement, the PZT sample was placed 

approximately 5 mm away from the focal plane of THz beam, in order to minimize wavefront distortion 

which would be caused by placing the samples at the exact focus [25].  

 

Experimental Results 

 

The refractive indices (n) and absorption coefficients () of PZT samples were calculated from the 

frequency-domain transmission data obtained by Fast Fourier Transform of the THz transients, using 

the equations [19]: 

�ሺ�ሻ = ͳ +  (�ೝ೐೑ − �ೞ�೘�೗೐) ௖� ௗ      (1) 

�ሺ�ሻ = ͳ − ሺ�−�ೞሻ2+�2ሺ�+�ೞሻ2+�2      (2) 

�ሺ�ሻ = �௖2�       (3) 

�ሺ�ሻ = − 2ௗ  ln (� �ೞ�೘�೗೐�ೝ೐೑ )     (4) 

where  and E are respectively the phase and amplitude of the THz signal,  is its frequency, and c is 

the speed of light in vacuum; k is the extinction coefficient. The sample thickness is d, and the refractive 

index of TPX plates is ns = 1.45 [6]. The transmission factor T accounts for losses arising from Fresnel 

reflections. Note that when k is non-negligible, as it is for PZT, Eqs. 2-4 must be solved iteratively. 

 

Fig. 1 shows the obtained refractive index and absorption coefficient of the PZT samples, and values at 

selected frequencies are listed in Table 1. Three different samples were measured, with thicknesses of 

20, 24 and 29 m. Each sample was measured at 3 different locations, with 4 scans at each location. 

The results from all three samples are similar within the measurement uncertainty, indicating 

consistency of the material properties and the absence of inhomogeneous surface effects arising from 

sample preparation (e.g. scattering, surface contamination). 
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Fig. 1. Refractive index and absorption coefficient of PZT calculated from the transmission data 

according to Eqs. 1-4. The data represent measurements on 3 samples whose thicknesses were 20, 24 

& 29 m (with an uncertainty of 1 m). The dashed lines represent measurement uncertainty arising 

from uncertainty in the sample thickness, which accounts for the main contribution to the error in this 

measurement.  

 

Table 1. Refractive indices, absorption coefficients and real and imaginary permittivity of PbZr0.4Ti0.6O3 

at 0.25, 0.5, 1.0 and 1.5 THz. 

Frequency (THz) 0.25  0.5  1.0  1.5  

Refractive index 14.6 9.9  7.9  6.7  

Absorption coefficient (cm-1) 660  1150  2250  3290  

’ 171  69  34  18  

” 184  108  84  70  
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The refractive index has large dispersion, falling from ~20 at 0.2 THz to ~8 at 2 THz. The absorption 

coefficient is very large, and increases steeply from ~500 cm-1 at 0.2 THz to ~7000 cm-1 at 2 THz. Both 

these features are indicative of relaxations on THz timescales [26]. The complex permittivity was 

calculated from the absorption and refractive index [21] according to: � = �′ + ��" = ሺ� + ��ሻ2 = ሺ�2 + �2ሻ + �ሺʹ��ሻ  (5) 

and is shown in Fig. 2.  
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Fig. 2. The calculated permittivity of PZT - dashed lines represent measurement uncertainty. Note the 

y-axis is the same for real and imaginary permittivity at these frequencies. 

 

Discussion 

From our data and calculated values of the real and imaginary values of permittivity we conclude the 

following: 
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1. Our polished lamella of PZT exhibit an increase in permittivity with decreasing frequency 

similar to that observed in the literature. The absolute values differ by a factor of about 2, with 

our data being approximately half the values reported for similar compositions in the work of 

Buixaderas, for example [21]. 

2. Buixaderas et al used TDS to measure PZT ceramics (polished to a similar thickness as our 

samples in this report) and also noted the increase in permittivity from a high frequency value 

of approximately 150 at 1 THz to approx. 200 at their lowest measured frequency (6 cm-1 or 

about 0.2 THz) at room temperature, and for a similar composition [21]. Lower temperature 

measurements exhibited a flat permittivity, with all measured (calculated) imaginary 

permittivity passing through a peak before declining at low frequencies. The imaginary 

permittivity obtained in this work do not show a maximum or peak in response which is 

observed by Buixaderas and (weakly indicated) by Kwak [5], although an increase in imaginary 

permittivity with decreasing frequency is characteristic of these materials generally. Our data 

extends down to approximately 0.2 THz (~6 cm-1), and the peaks reported in [21] occur around 

this frequency or below, so it is not surprising that this feature was not observed in our study. 

The discussion in Buixaderas explained the huge peak in imaginary permittivity at low 

frequency as an indicator of a THz mode contributing significantly to the high permittivity 

observed in their range of PZT compositions (which is approx. our composition), indicating 

that the main softening towards the morphotropic phase boundary takes place in this lower 

frequency range. The permittivity data presented in the literature shows great sensitivity to the 

chemical composition of the PZT ceramic – especially around the morphotropic phase 

boundary – and because the exact composition of commercially sourced materials is a closely 

guarded secret, a direct comparison of the absolute values of permittivity to other published 

work is not considered scientifically robust. 

3. Kwak et al. [5] measured thin films of Pb(Zr1-xTix)O3 with x=0.3 and x=0.52 grown on MgO 

single crystal substrates, also using time domain spectroscopy in the range 0.2 – 2 THz. For 

both compositions they obtain values of ε′ and ε′′ at 1 THz roughly 3 times larger than our 

results. Apart from the different compositions, the most important difference is the use of a 
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substrate-supported highly textured (oriented) thin PZT film, whilst the material studied in this 

paper was bulk (polycrystalline) PZT. Significant differences in the real and imaginary 

permittivity suggest that substrate clamping and degree of polarisation (induced through 

textured film growth) of the ferroelectric material affect dielectric properties even at these high 

frequencies. The effect of the substrate on the calculation of ε′ and ε′′ has been considered, and 

it is well known that ferroelectric thin films exhibit much lower polarisation at lower 

frequencies due to the clamping effect of the substrate at the interface [27], [28]. The clamped 

dielectric displacement vector due to interfacial strain also results in a modified dielectric 

polarization compared to bulk, though the changes in permittivity would depend critically on 

preferred orientation, strain, thickness, depolarising layers, boundary effects and more [2], [29]. 

The exact effect of the interfacial strain on the electronic and ionic polarisabilities is still under 

debate, however it does emphasize the need for measurements on bulk samples as well as thin 

film samples. 

4. The THz TDS system used in these measurements was calibrated for frequency and linearity 

of response [17]. In preparing the samples, particular attention was given to obtaining uniform 

thickness and near-optical surface finish, and the enclosing TPX plates were likewise tested, 

thus reducing uncertainties arising from sample quality [17]. The optical constants were 

calculated from the data by applying Eqs. 1-4 iteratively (unlike, for example in Kwak [5]) to 

obtain highly accurate parameter values.  The PZT material, as mentioned above, is intrinsically 

highly variable, with its permittivity strongly dependent on the chemical composition and the 

fabrication process. The great variability of published results emphasises the need for accurate 

measurements of THz permittivity on a range of compositions and types of material grown 

under different fabrication conditions. 

 
Conclusions 
 
The dielectric permittivity of an industrially sourced tetragonal (Ti-rich) PZT ceramic has been 

determined at THz frequencies by transmission time-domain spectroscopy. The measurement 

uncertainties are reduced with this method compared to others found in the literature, such as reflection 
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Fourier transform spectroscopy. Both the real and imaginary permittivity differ from reported 

measurements on bulk ceramic and thin films of similar material compositions. The nature of the THz 

mode (soft mode) explored by Buixaderas was not observed in our data, most likely because of our 

composition being far from the MPB and the characteristic peak in their imaginary permittivity data 

being below our measurement frequency band. The strong dependence of THz permittivity on detailed 

characteristics of chemical composition, microstructure, manufacturing methods, and form of material 

(bulk or thin film) demonstrates the need for the accurate measurement of reference and commercial 

bulk materials, as presented here. 
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