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Abstract

This study used point count censuses and GIS land cover data to assess the

relationships between chaparral breeding bird abundance and urban encroachment at the

landscape level. A set of chaparral-vegetated points across an urbanizing landscape in

the Santa Monica Mountains of southern California was surveyed for birds in 1996-97

and mapped in a GIS. I first analyzed the effects of surrounding urbanization on eighteen

individual species' abundances using Poisson regression models with four measures of

surrounding urbanization. Then, due to the spatial distribution of point count locations

over a 17,000 ha area, I also examined and modeled spatial dependence in four selected

bird species using geostatistical methods.

Thirteen out of eighteen species examined exhibited significant (p <0.05)

responses to at least one measure of surrounding urbanization, with bootstrap resampling

trials indicating relatively robust models. Eight "chaparral specialist" species and two

woodland-associated species exhibited significant negative relationships with

urbanization, while two urban-associated species and one "chaparral specialist" were

positively associated. Most of these species were associated with surrounding

urbanization proportion at large (> 250m) radius distances. Landscape pattern explained

little additional variation in abundance, although responses to urban edge proximity in

some species appeared to be greater in highly fragmented areas.

Exploratory geostatistical analyses, using semivariograms and Moran's I

correlograms, revealed large- and small-scale spatial dependence in all four species

examined. Large-scale trends were largely attributed to the urbanization gradient over

which points were sampled. Remaining small-scale autocorrelation in urbanization

model residuals was modeled with a spatial covariance structure, and results were

compared with de-trended and non-spatial models. Conclusions about urbanization

effects did not change for three of the four species examined. Semivariogram and

correlogram analyses also provided further insight about the spatial structure and ranges

of spatial autocorrelation in the species examined.
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Chapter 1:

Effects of Urban Encroachment on Chaparral Breeding Bird Species

in the Santa Monica Mountains, CA

1.1. Introduction

In an ecological context, urbanization represents an extensive modification of the

landscape in order to support increased human habitation (McDonnell arid Pickett 1990).

Ecological forcing functions created by the growth of cities and associated human

activities, which can collectively be referred to as "urbanization," have become

increasingly common topics of ecological study, as "natural" systems become more

difficult to find. Hydrology, nutrient cycles, microclimate and species composition are

but a few of the ecological features that may be substantially altered by urbanization

influences.

1.1.1. Urbanization in Southern California

The traditional model of urban expansion consists of an urban core surrounded by

progressively less intrusive land-uses, such that agricultural lands often provide a

transition zone from urban to natural areas (Hall 1966). In contrast, development in

southern California has been uniquely different from this traditional model, with its

decentralized settlement pattern rooted in an anti-urban bias and a "faux-rural" suburban

ideal that was prevalent among early 20th century settlers and developers (Fulton 1997).

Unlike other major U.S. cities, metropolitan Los Angeles was formed out of a series of

centers that grew and merged together to form a "metrosea" of fragmented communities

(Davis 1992). Los Angeles County alone has a current population of 9.6 million people

(County of Los Angeles 1998).

Despite Los Angeles' natural unsuitability as a major city-including the scarcity of

natural water supplies, unstable geology, and the lack of a natural harbor-the "growth

machine" set into motion around the turn of the century resulted in unprecedented land
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development and population growth in the Los Angeles basin (Fulton 1997), replacing

orange groves and asparagus fields with tract homes and freeways. As the flat, coastal

plain approached saturation, developers turned to inland deserts and mountain areas,

building on increasingly marginal lands. Thus much of post-World War II development

has occurred on lands that are too steep, infertile or dry for agriculture (Scott 1995). In

the region's mountains, this development pattern has resulted in an extensive urban-

wildland interface, and landscapes dominated by two major land-use classes: native

vegetation (mostly chaparral scrub and woodland) and residential development. Indeed,

metropolitan Los Angeles has the longest "wild" edge (roughly 1100 kilometers long, by

the crudest measure) of any major city in the U.S. (Davis 1998).

This type of landscape mosaic is well-represented in the Santa Monica Mountains, a

coastal mountain range containing a mosaic of interspersed suburban development and

native chaparral vegetation, generally increasing in urbanization from west to east.

Urbanization has occurred mostly along canyon bottoms, and often on ridgetops,

resulting in "fingers" of development that penetrate the native chaparral habitat. In

response to threats of large-scale developments and road construction, the United States

Congress established the Santa Monica Mountains National Recreation Area in 1978 to

conserve natural and cultural resources, as well as the "airshed" of the Los Angeles Basin

(National Park Service 1999). Notwithstanding several major federal and state land

acquisitions, most land in the Santa Monica Mountains is privately-owned. With some of

the highest real estate values in the nation, these private lands remain subject to heavy

development pressures.

Urban encroachment may have a diverse array of impacts on native wildlife and

vegetation. From mountain lions (Edelman 1992, Smallwood 1994) to native ants

(Human and Gordon 1997, Suarez et al. 1998), organisms of the chaparral and other

Mediterranean-type ecosystems in southern California have been adversely affected by

the direct and indirect effects of urban development, including habitat fragmentation,

exotic species invasion, and other human disturbances.
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Chaparral vegetation, although diverse in plant species, is quite uniform structurally, and

contains relatively few bird species (Miller 1951, Small 1974). The birds that do occur

and breed in chaparral tend to be somewhat specialized in their habits. Many species are

ground-foragers with good running abilities, allowing them to navigate narrow alleyways

under the dense scrub canopy (Small 1974). According to Miller (1951, p. 547),

approximately 46 percent of bird species found in chaparral exhibit "primary or exclusive

adherence to chaparral...a high proportion for a terrestrial formation." Most of these

species are year-round residents, characterized by small home ranges, low vagility (Soul

et al.-1988) and short natal dispersal distances (Baker et al. 1995). As a result, these birds

may be particularly vulnerable to changes in the surrounding landscape, as they are

continuously exposed to urbanization influences. Furthermore, the abundance of

chaparral specialists may be closely tied to the ecological integrity of the chaparral

vegetative community. Easily observed and monitored, some avian species may serve as

chaparral indicators.

1.1.2. Avian Responses to Urbanization and Habitat Fragmentation

Studies along urbanization gradients have shown that total bird numbers generally

increase with urbanization (largely attributable to a few abundant species), while species

diversity decreases (Emlen 1974, Hohtola 1978, Beissinger and Osborne 1982, Jokimaki

and Suhonen 1993). Factors associated with species' declines in urban areas include

changes in vegetation volume (Mills et al. 1989), foliage height diversity (Lancaster and

Rees 1979), pedestrian and vehicular traffic (Emlen 1974), and increased domestic dog

and cat predation (Soule et al. 1988). In arid and semi-arid landscapes, some species may

be drawn to water and cover provided by suburban landscaped gardens (Emlen 1974,

Guthrie 1974, Vale and Vale 1976), but negative relationships have been demonstrated

between species richness and housing density, as well as other measures of urbanization-

related habitat change (Emlen 1974, Germaine et al. 1998).

In addition to direct habitat modification, urban development has resulted in the

fragmentation of remaining natural areas. Referred to as "the single greatest threat to
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biodiversity" (Noss 1991, p. 27), habitat fragmentation may result in the exclusion of

species with large home ranges (Wilcove et al. 1986), as well as reductions in gene flow

between isolated populations (Gilpin and Soul 1986). The equilibrium theory of island

biogeography (MacArthur and Wilson 1967), when extended to habitat fragments,

predicts that smaller, more isolated patches will support fewer species, due in part to a

higher probability of extinction when populations are small (Soule et al. 1988, Kadmon

and Pulliam 1993). Although the application of island biogeography theory to habitat

fragmentation has been criticized as simplistic (Wiens 1994, Simberloff 1994), numerous

forest fragmentation studies have demonstrated the so-called "area effect," or tendency

for larger habitat "islands" to support more species than similar smaller fragments (Blake

and Karr 1984, Forman et al. 1976, Lynch and Whigham 1984, Whitcomb et al. 1981).

Furthermore, habitat fragmentation in urbanized landscapes may be different than

fragmentation in (more widely studied) agricultural or timber production landscapes, in

that transitions are more abrupt, and urban development is likely to constitute a less

hospitable habitat for native species than forest clearings or agricultural fields.

Habitat fragmentation also expands the interface between natural habitats and urban

development, thereby providing increased opportunities for urban elements to affect bird

populations. Several studies of Neotropical migrant birds in Eastern U.S. forest woodlots

have demonstrated significant negative relationships between avian diversity and

surrounding urbanization density (Tilghman 1987, Dickman 1987, Friesen et al. 1995).

Widely-recognized mechanisms include edge-related changes in vegetation composition

(Saunders et al. 1991) and increased avian nest parasitism and predation rates (Robbins

1980, Brittingham and Temple 1983, Wilcove 1985, Langen et al. 1991, Engels and

Sexton 1994). Non-native plant invasions (Mills et al. 1989), human disturbance

(Dawson 1990) and various other features of urbanization (e.g., Johnsen and VanDruff

1986) have also been implicated in songbird declines.

Several recent studies have examined the effects of urbanization and habitat

fragmentation on birds of southern California's chaparral and coastal sage scrub habitats.
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Soule et al. (1988) applied the species-area relationship of island biogeography theory to

chaparral canyon fragments in San Diego County, demonstrating that the number of

"chaparral-requiring" resident bird species increased with fragment size and decreased

with time since fragmentation. Bolger et al. (1997) revisited this area with a landscape

approach to habitat fragmentation, showing that landscape composition and urbanization

pattern were significant predictors of occurrence for many species examined, some of

which were identified as edge/fragmentation-sensitive. In the less-fragmented eastern

Santa Monica Mountains (examined in this study), Sauvajot (1997) found anthropogenic

vegetation disturbances to be more important than urban development proximity in

determining resident bird diversity and abundance.

1.1.3. Scale of Urbanization Influence on Birds

The effects of urbanization on breeding bird communities may be manifest at a variety of

scales, with the importance of different ecological processes varying across scales

(Addicott et al. 1987, Turner 1989) and potentially interacting between scales (Levin

1992). Just as different bird-habitat associations have been found at different spatial

scales (Wiens and Rotenberry 1981, Riitters et al. 1997), the detectable effects of

urbanization on bird populations are likely to be sensitive to the scale of sampling and

analysis.

To date, a majority of studies examining the effects of urbanization on bird communities

have focused on direct local impacts, examining bird population responses within urban

areas, or immediately adjacent to urbanization activities (e.g., Scott 1993, Blair 1996,

Clergeau et al. 1998, Germaine et al. 1998). For landscape-scale analyses, however, the

extent of urbanization influence becomes an important consideration. The identification

of the appropriate scale of influence or "ecological neighborhood" (Addicott et al. 1987)

with respect to a particular process is an important part of predicting and understanding

the relationships between urbanization and bird communities.
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Previous studies have varied with respect to scale of urbanization influence examined,

perhaps due to logistical constraints, and/or regional differences. Pearson (1993), in a

study of Midwestern winter bird populations, did not detect landscape influences beyond

200m from a sampling location (maximum distance examined was 300m). Bolger et al.

(1997), however, found significant associations between bird abundance and landscape

composition at distances of up to 3000m. Given that a consistent pattern has yet to

emerge, the examination of multiple potential scales of influence should help illuminate

the ecological processes involved and how they may vary with scale.

1.1.4. Landscape Composition vs. Pattern

According to Opdam et al. (1995, p. S140), landscape pattern can be defined, for a

particular species, as "the spatial.configuration of patches of habitat and those landscape

elements that influence dispersal." In highly fragmented landscapes, these elements

include patch configuration, size and insularity. Equilibrium models based on island

biogeography and metapopulation theories predict species declines with increasing

habitat loss and isolation (MacArthur and Wilson 1967, Levins 1969, Brown 1978,

Opdam 1991, Hanski 1994).

The effects of landscape pattern are less well-studied in landscapes with interconnected

suitable habitat still remaining. Andren (1994) concluded, through a review of

fragmentation studies, that in landscapes with more than 30 percent of suitable habitat

remaining, the effects of habitat fragmentation are primarily due to habitat loss, rather

than fragmentation pattern (i.e., patch size and isolation). In other words, if the

proportion of remaining "habitat" in a landscape is above this critical proportion, then the

landscape is well-connected and species will be able to disperse; otherwise, dispersal

distances become important in determining species abundance and persistence (Gardner

et al. 1991, Metzger and Dcamps 1997). Other studies have identified different critical

habitat thresholds (e.g. With and Crist 1995, Keitt et al. 1997).
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Thus, depending on the proportion of suitable habitat remaining in a landscape,

fragmentation patternper se may be of varying importance to bird distribution and

abundance.

1.1.5. Urban Edge Proximity and Direct Human Influence

Habitat fragmentation may provide increased opportunities for wildlife to come into

contact with human activity and other urban elements (e.g., domestic animal predators,

invasive species, chemical pollution), via the lengthening of the urban-wildland interface.

Previous studies have indicated that in fragmented landscapes, certain chaparral bird

species exhibit edge-sensitivity-with respect to urban development, as well as other

habitat edges (Bolger et al. 1997, Sisk et al. 1997). In contrast, Sauvajot (1997), in a

similar, yet less fragmented area, found no effects of urban edge proximity on bird

abundance, but did find a significant reduction in both species richness and abundance of

resident species in areas of human disturbance (i.e., cleared and eroded surfaces, such as

roadcuts and landslips).

Habitat edges of all kinds are known to attract certain bird species, while repelling others,

often due to high predation risk. Miller et al. (1998) found evidence that trails may serve

as habitat edges for some species, attracting more habitat generalists, and deterring

specialist species. Increased rates of nest predation were also found near trails. In

addition, recreational trails may serve as "conduits" for urban/human influences into

natural areas.

1.1.6. Research Objectives

Wiens (1994) describes habitat fragmentation as a dynamic process in which habitat

continuity is disrupted, producing a variety of patterns, ranging from "small breaks in an

otherwise homogeneous habitat" to "widely scattered units of remnant habitat in a

transformed matrix." The eastern portion of the Santa Monica Mountains represents just

such a fragmentation continuum (Figure 1.1). The variation in landscape composition-

from primarily chaparral to primarily urban development-allows for an examination of
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landscape-level urbanization effects on chaparral ecosystems. Although the effects of

urban edge proximity on resident birds in the Eastern Santa Monica Mountains have been

examined previously (Sauvajot and Beuchner 1991, Sauvajot 1997), no previous

landscape-level analyses have been undertaken.

In this study, I investigate the effects of urban encroachment and habitat fragmentation on

breeding chaparral birds (year-round and summer residents) in the eastern Santa Monica

Mountains. While most studies of habitat fragmentation have focused on the last phase

of the fragmentation process (isolated habitat patches), my study also considers

urbanization in its beginning and intermediate stages, where much of the remaining

habitat is still interconnected.

My research questions were:

1. Is chaparral bird abundance affected by the proportion of urbanization in the

surrounding landscape? If so, which species decline, and which species increase with

increasing urbanization? What characterizes urbanization-sensitive species?

2. At what spatial scale (between 250m and 4000m) does urbanization proportion affect

bird abundance? What is the maximum spatial extent of urbanization influence?

3. What is the importance of landscape pattern, when urbanization proportion is

constant?

4. What are the effects of urban edge proximity and hiking trail density on bird

abundance?

1.2. Methods

1.2.1. Study Area

This study was conducted in the eastern end of the Santa Monica Mountains, which

belong to the Transverse Ranges of coastal Southern California. Located in middle of
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metropolitan Los Angeles (Figure 1.2), the study area is bounded by Topanga Canyon to

the west, the eastern boundary of Griffith Park to the east, Mulholland Drive to the north,.

and western Los Angeles and Sunset Blvd. to the south. Two interstate freeways, the 405

and 101, intersect the study area.

"True" or "hard" chaparral is the dominant vegetation cover in the study area. This

Mediterranean-climate vegetation community is characterized by tough, waxy evergreen

shrubs that are adapted to drought and frequent fire (Schoenherr 1992). Other vegetation

types in the area include coastal sage scrub, oak woodland, walnut woodland, and

sycamore/oak riparian corridors (Figure 1.3).

The western section of the study area (approximately 10,000 ha) is largely unfragmented,

with urbanization occurring primarily at the edges and as enclaves within the dominant

chaparral and coastal sage scrubland. The middle section (approximately 5,000 ha) is

highly fragmented by residential development, although most remaining chaparral

patches are interconnected. In both areas, most urbanization took place more than 25

years ago, although new developments are still occurring, particularly in the westernmost

section. The eastern section, Griffith Park, is a large (approximately 2,000 ha) habitat

island surrounded on all sides by urbanization (maximum distance from urbanization

1,200m), and located a mere ten kilometers from downtown Los Angeles. Adjacent

land use consists primarily of single-family residential development, but a range of

residential, commercial and industrial land uses also surround the study area (Figure 1.1).

1.2.2. Field Data Collection

All bird abundance data were collected along trails and fire roads in Northern Mixed

Chaparral vegetation (modified Holland 1986 classification) at least 100m from urban

development. Census locations (points) were selected from a geographic information

system (GIS) trail map of the study area created by the National Park Service, based on

Harrison (1994) and supplemented with GPS-recorded trails. A stratified random sample

was used to obtain representation in each section of the study area. All points were
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dominated by a combination of Laurel Sumac (Rhus laurina), Ceanothus spp. (C.

megacarpus and/or C. spinosus), and Chamise (Adenostomafasciculatum). Each point

represents a 100m radius area of chaparral vegetation, not overlapping with any other

area sampled. I sampled 78 points in both 1996 and 1997, and an additional 29 locations

were added in 1997 to increase coverage of areas with high levels of urbanization. The

locations of all census points were recorded with a global positioning system (GPS) and

mapped in an Arc/Info Geographic Information System (GIS) (Figure 1.3).

I used 100m fixed-radius point counts (Ralph et al. 1993) to estimate bird abundance at

each census location. Each point count lasted for ten minutes, and was conducted

between 5:30 and 9:30 a.m. PST. I counted all terrestrial birds seen or heard, except

those that flew over without landing. For simplicity, I omitted swallows, swifts and

raptors, which were difficult to count accurately. In both 1996 and 1997, two counts

were conducted at each point between mid-May and late July-one early and one late in

the season. In 1996, counts were conducted from June 8 through July 28. In 1997, I

conducted counts between May 19 and July 11.

1.2.3. GIS Methods

I used GIS land-use data (1:24000, from 1990 aerial photos, courtesy of Southern

California Association of Governments and National Park Service) to obtain landscape

measures. Using Arc/Info GIS version 7.1.1, I calculated, for each census location, four

different measures of urbanization influence in the surrounding landscape:

Urbanization Extent. For each census location, I first calculated the area within a 250m

radius circle consisting of urban land uses (including golf courses, urban parks and other

human-constructed green spaces). I then calculated the area of additional urbanized land

contributed by consecutively larger circles, each radius twice as large as the previous

(500m-1000m-2000m-4000m). For the 250m circle, and each additional buffer ring, I

divided the urbanized land area by total area to obtain an urbanization proportion (see

Figure 1.4).
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Fragmentation Index. For these same buffer distances, I also calculated a fragmentation

index, using the total length of urban/wildland edge within that radius of the point,

standardized by the total area. This represents the degree to which the surrounding

landscape is penetrated by urbanization, or the "convolutedness" of the urban-wildland

interface.

Distance to Nearest Urban Edge. To examine species' edge-sensitivity and response to

urbanization proximity, I calculated the distance (m) from the center of each census

location to the nearest urban development. Due to sampling constraints, each point was

located at least 100m from the urban/chaparral edge.

Trail Density. To examine the effect of human activity (i.e., hikers, cyclists, horses,

dogs) and/or micro-scale edge effects, I calculated the density of trails within a 250m

radius of each point (meters of trail per square kilometer). Only a 250m radius was used

because the patchy coverage of the existing trail maps did not allow me to examine larger

areas.

1.2.4. Statistical Methods

I analyzed individual species abundance, rather than species richness or other diversity

measures, since, in general, the same set of species was found throughout the study area.

I restricted my analyses to species that were easy to count and for which twenty or more

individuals were counted during at least one field season (1996 or 1997). All abundance

measures represent number of singing males, except when the total number of singing

males counted in either year was less than twenty. In these cases, I analyzed total

individuals (visual and auditory detections), rather than the number of singing males, for

both years. To best represent the capacity of the habitat in each year, I used the

maximum of two counts as a measure of species abundance.

Although counts of animal abundance can often be approximated by a normal or

lognormal distribution, the Negative Binomial (White and Bennetts 1996) or Poisson

distribution is usually more appropriate (Dawson 1981). The Poisson is a discrete
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function, often positively skewed, with variance equal to the mean. To investigate the

scale at which each species was affected by urbanization (if at all), I fit a set of nested

generalized linear models for each bird species. Using the generalized linear models

procedure in SAS version 7,I specified a Poisson distribution with a dispersion parameter

estimated by the deviance, and a log link function (SAS 1997). Generalized Estimating

Equations (GEE) (Liang and Zeger 1986) were used to model the repeated measures

(1996 and 1997) correlation structure in the data.

Using measures of urbanization proportion within each buffer radius (i.e., <250m, 250-

500m, 500-1000m, 1000-2000m, 2000-4000m), I assessed the added contribution of each

urbanization variable to the model, and thus the maximum scale at which surrounding

urbanization explained significant additional variation in bird abundance. Score tests

(Tarone 1988) were used to detect significant improvements in model fit with each

consecutive radius distance. I then added a measure of large-scale habitat fragmentation

(length of the urban/wildland edge, standardized by area) within the maximum response

radius, as determined above, to detect additional responses to landscape pattern (above

and beyond urbanization extent). The overall influence of urbanization and

fragmentation combined was evaluated using score tests (Tarone 1988) for the

significance of these parameters at the maximum response radius for each species.

Finally, using this maximum response radius, I constructed GEE Poisson regression

models for each species' abundance (again using a repeated measures covariance

structure). I initially included the following independent variables and interaction terms:

YEAR Year (1996 or 1997)

URBX Urbanization proportion within maximum response radius X

FRAGX Level of fragmentation (total length of urban edge) within

maximum response radius X

EDGEDIST Natural log of the distance from a point to the nearest urban edge

T RAIL Trail density (m/km2) within a 250m radius
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URBX*URBEDGE Interaction between urbanization proportion (within radius X) and

distance to nearest urban edge

The inclusion of the interaction term was to test the hypothesis that edge sensitivity varies

according to the level of urbanization in the surrounding landscape. The urbanization and

fragmentation variables were included only if they were found significant in the previous

scale analysis.

I examined the significance of each parameter estimate in the model, and eliminated non-

significant variables to construct the "best" possible model for each species. I then

performed a pseudovalidation of each final model, using a "bootstrap" resampling

approach (Efron and Tibshirani 1986) to obtain confidence intervals for model parameters

and detect potential sampling biases (Crowley 1992). For each species, fifty random

samples of points, each equal in size to the original sample (n = 107), were taken with

replacement, and used to fit the final models. Mean parameter estimates and confidence

intervals were calculated according to Little and Schenker (1995), and parameter

estimates were judged robust when confidence intervals did not overlap zero. When

models with several urbanization terms were not robust, scaled-down models including

just the most significant urbanization variable were also fit with a bootstrap sample.

1.3. Results

1.3.1. Species Encountered

Of the 38 species detected in this study (Appendix 1.1), 18 species were easy to count and

relatively common in the study area, according to my criteria (Appendix 1.2). By far, the

most commonly encountered species was the Wrentit, followed by the Spotted Towhee,

California Towhee, Western Scrub-Jay and Bewick's Wren. These species were virtually

omnipresent throughout the study area, with over ninety percent site occupancy in each

year of the study (Appendix 1.2).
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Of species encountered, only the Wrentit is a true chaparral specialist. In coastal areas,

however, several other species have a primary affinity for chaparral, including the Ash-

Throated Flycatcher, Bewick's Wren, California Quail, California Thrasher, California

Towhee, Orange-crowned Warbler, Phainopepla, Rufous-crowned Sparrow, and Spotted

Towhee (Miller 1951, Garrett and Dunn 1981). The remaining species may be

considered habitat generalists with respect to chaparral, in that their primary habitat

affinities are for other vegetation communities. The Mourning Dove, Northern

Mockingbird and Western Scrub-Jay can be classified as suburban-associated species

(Marzluff et al. 1994, Blair 1996); the Black-headed Grosbeak and Northern Flicker are

primarily riparian woodland-associated; and the Blue-gray Gnatcatcher, Nuttall's

Woodpecker, and Oak Titmouse may be considered oak woodland species (Miller 1951).

1.3.2. Responses to Surrounding Urbanization Proportion at Various Scales

The abundances of eleven (out of eighteen) species were significantly associated with

surrounding urbanization proportion (p <0.05) at one or more scales (Table 1.1).

Negatively associated with urbanization were the Ash-throated Flycatcher, Bewick's

Wren, Blue-gray Gnatcatcher, Black-headed Grosbeak, California Towhee, Phainopepla,

Rufous-crowned Sparrow, Spotted Towhee and Wrentit. The Northern Mockingbird and

Western Scrub-Jay exhibited significant positive associations (p <0.05) with

urbanization. The Bewick's Wren and Western Scrub-Jay were only weakly associated

with urbanization proportion (p > 0.01).

Different species exhibited different scales of urbanization influence (Table 1.1). All of

the above-listed species, except the Phainopepla, Spotted Towhee and Western Scrub-Jay

were significantly associated (p < 0.05) with urbanization proportion at the smallest scale

tested, a 250m buffer radius. The Rufous-Crowned Sparrow was affected only at this

scale. The remaining species exhibited significant responses to urbanization at larger

scales, with maximum urbanization response radii of 500m for the Wrentit; 1000m for

the Ash-throated Flycatcher, Bewick's Wren, Black-headed Grosbeak, California Towhee

and Phainopepla; 2000m for the Northern Mockingbird and Spotted Towhee; and 4000m
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for the Blue-gray Gnatcatcher and Western Scrub-Jay. Species exhibiting no significant

relationship (p > 0.10) with urbanization proportion at any scale included the California

Quail, California Thrasher, Mourning Dove, Northern Flicker, Nuttall's Woodpecker,

Orange-Crowned Warbler and Oak Titmouse.

1.3.3. Responses to Large-Scale Landscape Pattern

Only the Spotted Towhee exhibited an additional significant response (p <0.01) to

fragmentation of the surrounding landscape, as measured by length of the urban-wildland

edge within 2000m (Table 1.1). After accounting for the negative effect of urbanization

proportion, fragmentation had a positive effect on Spotted Towhee abundance.

1.3.4. Responses to Urban Edge Proximity and Trail Density

Several species exhibited significant responses to urban edge proximity. The Northern

Mockingbird and Orange-Crowned Warbler were negatively associated with distance to

nearest urban edge (Table 1.2), while the California Thrasher was positively associated.

In addition, for several species (Bewick's Wren, Blue-gray Gnatcatcher, Phainopepla,

Northern Mockingbird and Wrentit), there was a significant interaction (p <0.05)

between urban edge distance and surrounding urbanization proportion, indicating a

landscape-dependent response to urban edges. This effect was negative for the

Phainopepla, and positive for all other species. For the mockingbird and Phainopepla,

urban edge distance overwhelmed the effect of urbanization proportion.

Trail density was only marginally negatively significant for three species (the California

Thrasher, Rufous-crowned Sparrow and Wrentit) in the presence of the other urbanization

measures (Table 1.2).

1.3.5. Annual Variations in Abundance

Most of the species examined had higher recorded abundances in 1997 than in 1996,

although the Phainopepla was more abundant in 1996 (Table 1.2). Species whose
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abundance did not change significantly from one year to the next include the Blue-gray

Gnatcatcher, California Towhee, Northern Flicker and Oak Titmouse.

1.3.6. Model Robustness

Bootstrap resampling trials for the full final models generally supported results obtained

with the original empirical models (Table 1.3). The more complicated models were less

robust, however, and interaction terms, in particular, tended to have large variances.

Urbanization proportion, at least in the scaled-down models, was a fairly consistent

predictor of abundance, with 95% confidence intervals large, but not overlapping zero,

for 7 out of 9 species. The interaction terms between urbanization proportion and edge

distance were less robust under resampling trials, with parameter estimates significantly

different from zero for only 3 out of 5 species. The resampling estimates for urban edge

distance and trail density were each significant for 1 out of 2 species. Although the effect

of census year on per site abundance was highly significant (p <0.01) for most species,

the bootstrap parameter estimates varied widely and were not significantly different from

zero for any species.

Overall, urbanization models for the Ash-throated Flycatcher, Bewick's Wren, Blue-gray

Gnatcatcher, Black-headed Grosbeak, California Towhee, Northern Mockingbird,

Phainopepla, Spotted Towhee and Wrentit were validated with the bootstrap resampling

trials (Table 1.3). Species whose models didn't withstand the resampling

pseudovalidation included the California Thrasher, Rufous-crowned Sparrow and

Western Scrub-Jay.

1.4. Discussion

1.4.1. Urbanization-Sensitive Species

The primary objectives of this study were to determine which, if any, chaparral bird

species were associated with levels of urbanization in the surrounding landscape and to

identify common characteristics of these species. Thirteen of 18 species exhibited
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significant responses (p <0.05) to at least one measure of urbanization. Most chaparral

specialists examined (8 of 10) were negatively affected by surrounding urbanization,

while most of the remaining species either increased or exhibited no significant response

(6 of 8), suggesting chaparral habitat degradation as a mechanism for decline with

increasing urbanization. However, differential responses among species with similar

habitat requirements, as well as significant responses by non-chaparral specialists,

indicated that reduced habitat quality was not the only mechanism for decline.

Chaparral Specialists

Eight out of ten "chaparral specialists" exhibited significant negative responses to at least

one measure of urbanization in the surrounding landscape. Exceptions to this trend were

not difficult to explain. The California Quail, which exhibited no significant response to

urbanization measures, tends to utilize grassy, open areas, and may be found in residential

neighborhoods and golf courses (Ehrlich et al. 1988, Blair 1996). The Orange-crowned

Warbler, which exhibited increased abundance near urban development, is known to

prefer mixed chaparral/woodland habitats (Sogge et al. 1994), and may actually prefer

oak and walnut woodlands to chaparral in the Santa Monica Mountains (personal

observation), where breeding density is low (Yeaton 1974). Thus, neither of these

species are true chaparral specialists, despite their primary affinities for chaparral.

For the remaining chaparral-associated species, urbanization-associated declines in

abundance may be attributable to factors like habitat degradation, predation and

stochastic demographic effects (Soul et al. 1988, Bolger et al. 1991). The biggest

anomaly was the California Thrasher, which despite its high predation rate and strong

shrub dependence (Cody 1998), was only weakly negatively associated with urban edge

proximity and trail density.

In a San Diego County study similar to mine, but with more habitat fragmentation and a

greater diversity of habitat types, Bolger et al. (1997) found the Rufous-crowned Sparrow

to be edge/fragmentation-sensitive, but not the Wrentit, Spotted Towhee, Bewick's Wren,
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California Thrasher or California Towhee-all of which were found to be negatively

affected by urbanization in my study. Bolger et al. (1997), found that most of these

"insensitive" species are significantly associated with various landscape characteristics

(e.g., level of fragmentation), but not when habitat characteristics (e.g., shrub coverage)

were entered in the models first.

While associations with surrounding urbanization levels detected in my study may also

be due to local habitat differences, these habitat variations are likely to be confounded

with landscape configuration. Disturbed areas such as roadcuts and clearings, which

Sauvajot (1997) found to support fewer resident bird species, are more likely to occur in

highly fragmented, urbanized landscapes. Increases in surrounding urbanization and

resulting human disturbances may also reduce shrub density, a measure of habitat quality

and determinant of population density for several chaparral species (Miller 1951, Small

1974).

Three species in particular-the Wrentit (Erickson 1938), California Thrasher (Cody

1998) and Spotted Towhee (Jones and Diamond 1976)-are known to depend on dense,

shrubby vegetation, which provides cover from predators. For the Wrentit, Erickson

(1938) found an inverse relationship between territory size and brush density, with

interior territories smaller than territories bordering on roads, clearings, or non-scrub

vegetation. Although Erickson attributes the larger territories near edges to the

corresponding reduction in territory boundary to be defended, it may also be an indication

of poorer habitat quality near roads and clearings. I found the Wrentit and towhee to be

negatively associated with surrounding urbanization proportion, as expected, although the

Spotted Towhee was also positively associated with urban edge length, or degree of

fragmentation (Table 1.2). Surprisingly, however, the thrasher was not significantly

associated with surrounding urbanization proportion, although it did exhibit weak

negative associations with urban edge proximity and trail density (Table 1.2). Of these

three species, the Wrentit is the only one not found in residential areas (Blair 1996),

which may explain its comparatively strong urbanization response.
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Other species are less shrub-dependent, utilizing a wider range of vegetation densities.

The Rufous-crowned Sparrow, which has been officially designated a conservation

priority (Federal "Special Concern Species" and State of California "Species of Special

Concern" [California Department of Fish and Game 1998]), seems to prefer areas with

sparser vegetation coverage-usually "dry, rocky slopes with scattered scrub and patches

of grass and forbs" (Ehrlich et al. 1988, p.584). The Bewick's Wren may be found in

sparse sagebrush and desert scrub, as well as suburban gardens (Blair 1996, Kennedy and

White 1997), while the California Towhee, despite its primary affinity for chaparral, is

often considered an edge-exploiting species (Ehrlich et al. 1988, Sisk et al. 1997) and has

been demonstrated to increase with fragmentation (Bolger et al. 1997). The Ash-throated

Flycatcher and Phainopepla are primarily desert scrub species that also breed in the

chaparral (Miller 1951). Thus, factors other than shrub coverage may be more important

in regulating abundances of these species.

Ash-throated Flycatchers are long-distance migrants, wintering in Central America, while

the Phainopepla is a local migrant, breeding first in the inland desert and later that year

along the coast, in chaparral scrub. While their habitat requirements are less strict than

those of other "chaparral specialists," these wide-ranging, relatively mobile species may

cue in on larger landscape patterns, preferring less urbanized areas. Indeed, the Ash-

throated Flycatcher has been characterized as an "urban avoider," and is generally absent

in urban/suburban areas (Blair 1996).

All of the chaparral specialists examined, except the Ash-throated Flycatcher and

Bewick's Wren, are open cup nesters and therefore more vulnerable to nest predation

(Martin and Li 1992), which may increase near urban areas if scrub-jays and other corvid

nest predators are more abundant (Wilcove 1985, Cody 1998). Ground-nesting species,

such as the Rufous-crowned Sparrow and Spotted Towhee are also highly susceptible to

mammalian predation (Martin and Li 1992), which may increase near urban

development, due to the presence of human-introduced domestic cats (Felis catus) and

dogs (Canis domesticus) (Soule et al. 1988). In addition, these mammalian predators
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may be responsible for higher adult mortality rates among ground-foraging species,

including the Rufous-crowned Sparrow, California Thrasher and both towhees (Cody

1998).

Oak Woodland Species

Two of the oak woodland species examined-the Oak Titmouse and Nuttall's

Woodpecker-exhibited no significant urbanization response. This may be due to the

spatial habitat arrangement in this study area, and the tendency for oak woodlands to

occur near development, especially in the eastern portion of the study area (see Figure

1.3), or to the cavity-nesting habits of these species, and their consequent lower rates of

nest predation (Martin and Li 1992). Furthermore, these species are considered edge-

exploiting (woodpecker) or edge-neutral (titmouse) (Sisk et al. 1997) and may be found

in suburban areas (Blair 1996).

The Blue-Gray Gnatcatcher, the only urbanization-sensitive oak woodland species

identified, may actually be better characterized as chaparral-associated in the Santa

Monica Mountains (personal observation), and may also be detrimentally affected by

changes in shrub cover. Although this species does not appear especially sensitive to

human activity near the nest, it is highly susceptible to nest predation, which accounts for

the large majority of nest failures (Root 1969, Ellison 1992). The gnatcatcher may also

have specific microhabitat requirements, such as riparian corridors and canopy openings

(Ellison 1992), which may be limited in urbanized landscapes. It isgenerally not present

in urban or suburban areas (Blair 1996).

Riparian Woodland Species

Of the two riparian woodland species, only the Black-headed Grosbeak was negatively

affected by urbanization. Grosbeak reproductive opportunities are thought to be limited

by availability of suitable habitat, which is primarily a factor of jay abundance and

predation threat (Hill 1995). The negative association with urbanization in this species

may also be related to riparian habitat requirements, as riparian corridors in more
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urbanized areas have often been channelized, highly modified and/or replaced entirely by

housing developments. Finally, this grosbeak is migratory, wintering in Central America,

and may respond to large-scale landscape structure more readily than some of the resident

species, as has previously been noted (Hansen and Urban 1992).

The Northern Flicker, which exhibits no significant relationship with urbanization

measures, is a widespread generalist in many respects, with three subspecies occurring

across North America. It prefers open woodlands, savannas and forest edges, but is well-

adapted to human habitats and commonly breeds in urban and suburban environments

(Moore 1995).

Suburban-Associated Species

The species that exhibited the strongest positive association with urbanization was the

Northern Mockingbird, a common suburban bird whose preferred breeding habitat is

mowed lawns interspersed with trees and ornamental bushes (Arnold 1980, David et al.

1990, Derrickson and Breitwisch 1992). This result was expected, given the virtual

absence of mockingbirds in chaparral and woodland interiors (Derrickson and Breitwisch

1992, Blair 1996, Cody 1998). The Mourning Dove, however, showed no detectable

association with surrounding urbanization, which is consistent with other studies that

found this species to be insensitive to land cover type (Germaine et al. 1998) and

landscape characteristics (Bolger et al. 1997).

The Western Scrub-Jay, which is more abundant in urban and suburban settings than in

native oak woodlands (Blair 1996), exhibited a weakly significant (p > 0.01) association

with large-scale surrounding urbanization (Table 1.2). Nests of several species examined

in this study, including the Wrentit (Geupel and DeSante 1990), California Thrasher

(Cody 1998), Black-headed Grosbeak (Hill 1995) and Blue-gray Gnatcatcher (Ellison

1992), are known to suffer significant losses from scrub-jay predation. Thus enhanced

scrub-jay abundance near urban edges could detrimentally affect songbird reproductive

success, as has been demonstrated with the related Blue Jay and Golden-cheeked
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Warblers in Juniper woodlands near urban developments (Engels and Sexton 1994).

Although Langen et al. (1991) actually found higher overall rates of predation on

artificial nests in the chaparral interior than at highly disturbed sites, they suggest that

avian predators, which are visually cued, may have been underestimated, particularly at

disturbed sites.

Summary

These results suggest that, although chaparral specialists seem most susceptible to

landscape changes, individual species respond differently to urbanization for multifaceted

reasons. The abundance of certain common, yet "shy," cover-dependent chaparral

specialists like the Wrentit and Spotted Towhee may directly track habitat quality,

perhaps measured by shrub density. Less common species with specialized habitat

requirements, such as the Rufous-crowned Sparrow, may suffer from a lack of suitable

nest sites.

Other species with broader habitat associations, such as the Blue-gray Gnatcatcher and

Black-headed Grosbeak, may be sensitive to urbanization and landscape changes due to

possible related increases in nest predation, or a reduction in preferred breeding habitat,

such as riparian corridors. Highly mobile migratory species, such as the Black-headed

Grosbeak and Ash-throated Flycatcher, may respond to large-scale landscape patterns,

selecting areas with less overall urbanization in which to breed.

1.4.2. Scale of Urbanization Influence

My secondary interest was in the spatial extent of urbanization influence for each of the

species exhibiting a significant urbanization response. This varied according to species,

and cannot be precisely determined, due to the coarseness of the intervals examined. For

all species examined, however, responses to urbanization were consistent across scales-

i.e., there was no sign reversal (positive/negative) as scale increased. This may be due in

part to the relatively narrow range of scales examined, such that this study is best suited
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for identifying ranges of urbanization influence, or ecological neighborhoods, rather than

specific scale thresholds.

Landscape-scale responses (i.e., greater than 250m) were recorded for all urbanization-

sensitive species except the Rufous-crowned Sparrow and California Thrasher,

suggesting that responses to surrounding urbanization are occurring at the level of the

population, rather than the individual, and on an intermediate, rather than short-term time

scale (see Wiens 1981). Temporal lags in population responses to environmental change

may also result in spatial lags in the relationship between bird abundance and

characteristics of the surrounding landscape. Alternatively, these large-scale responses

may indicate the-presence of a habitat gradient coinciding with the urbanization gradient,

or other large-scale variations in bird abundance. This seems particularly likely for

species such as the Blue-gray Gnatcatcher, which was virtually absent from counts

conducted in the eastern portion of the study area, and is negatively associated with

surrounding urbanization proportion at distances up to 4000m.

Conversely, the Wrentit, which was highly urbanization-sensitive, in terms of both model

fit and magnitude of urbanization effects, was affected only at distances up to 500m.

This species is "extremely sedentary" (Ehrlich et al. 1988, p. 420) and may not be

affected by habitat configuration at such large scales. Furthermore, its small territory size

(Erickson 1938) and adherence to chaparral, the primary vegetation type within the study

area, may ensure continued dispersal and habitat occupation, even in narrow habitat

corridors.

Highly mobile migratory species, such as the Black-headed Grosbeak, Ash-throated

Flycatcher and Phainopepla, may have a greater range of potential urbanization influence,

as well as a greater awareness of large-scale landscape change. But these species were

urbanization-sensitive only up to 1000m, suggesting that the larger-scale responses

observed in the Northern Mockingbird and Blue-gray Gnatcatcher may have been

artifacts of large-scale distribution patterns.
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Finally, for some species, such as the Black-headed Grosbeak, local chaparral habitat may

have been less important than the availability of suitable riparian or other woodland

habitat in the surrounding area. The parallel north-south running canyons in this study

area are separated by distances of approximately 1000m, such that, where canyon

bottoms are not urbanized, most sampling sites are within 1000m of seasonal streams and

associated riparian vegetation (Figure 1.3).

1.43. Landscape Pattern vs. Composition

Until recently, most studies of habitat fragmentation in urbanized landscapes have

focused on distinct habitat islands (e.g., Soul et al. 1988, Tilghman 1987, Dickman

1987, Friesen et al. 1995), rather than largely contiguous habitat interspersed with urban

development (but see Sauvajot and Beuchner 1991, Bolger et al. 1997). The results of

this study suggest that the effects of habitat fragmentation may be manifest before the

traditional fragmentation scenario-habitat islands in a sea of inhospitable

environment-is reached. In other words, urban encroachment may cause population

declines in areas that aren't yet completely isolated by urbanization or other

"inhospitable" land uses.

With respect to landscape pattern, however, my results indicate that fragmentation per se,

as measured by total urban edge length within the maximum response radius, does not

contribute to additional declines in the abundance of urbanization-sensitive species. For

all species except the Spotted Towhee, the amount of urban edge present within the

maximum urbanization response radius did not significantly improve the abundance

model. The towhee's positive association with fragmentation, controlling for the

negative effect of urbanization proportion, may indicate an attraction to suburban food

and water resources, as this species is often found in suburban gardens with sufficient

cover (Blair 1996, Greenlaw 1996).

These results should be interpreted with caution, however, given the narrow range of

urbanization conditions available (high correlation between fragmentation and
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urbanization proportion). In this study area, most highly urbanized areas were also highly

fragmented; thus little of the variation in abundance not explained by urbanization

proportion could be explained by the fragmentation index. The variation in bird

abundance across presumably-equivalent suitable habitat within the same landscape

indicates that landscape configuration is influential, but cannot be distinguished from the

effects of landscape composition at the local level.

Furthermore, most remaining chaparral habitat in this study area is still interconnected,

and very few of the true habitat islands were sampled due to logistical constraints. The

primary exception, Griffith Park (approximately 2000ha), is much larger than the home

ranges of the species under study (e.g.~-9ha for the gnatcatcher [Ellison 1992]). As long

as habitat patches are larger than the minimum area requirements of a species, landscape

configuration is less likely to affect species abundance (Andren 1992). Birds, in

particular, may be less sensitive to spatial landscape configuration due to their relative

mobility (Wiens 1981).

1.4.4. Urban Edge Proximity and Human Use

With respect to the effects of proximity to urban development, this study suggests that

certain species are urban edge-averse or edge-affiliated, but that the relationship may

depend upon the level of surrounding urbanization. Only the California Thrasher, a

chaparral specialist, exhibited a weakly (p <0.05) positive association with distance to

urban development (natural log-transformed), independent of urbanization proportion

(Table 1.2). This species was not significantly associated with surrounding urbanization

proportion, but was expectedly edge-sensitive, given its specialized habitat requirements

and susceptibility to nest predation. Its eggs and nestlings are susceptible to scrub-jay

and raven predation, and juveniles are often taken by domestic cats (Felis catus) near

urban fringes (Murphy and Fleischer 1986). Furthermore, thrashers are thought to

compete with mockingbirds, which are similar in diet and foraging behavior, near urban

areas (Cody 1998).
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As also expected, the Northern Mockingbird, an abundant urban-associated species that is

virtually absent in chaparral and forest interiors (Derrickson and Breitwisch 1992, Cody

1998), exhibited a negative relationship with distance to urban development. The

Orange-crowned Warbler was also found to be negatively associated with distance to

urban development, perhaps due to its preference for mixed chaparral/woodland habitat

(Sogge et al. 1994), and the tendency for walnut woodlands, in particular, to occur near

development in this study area (see Figure 1.3).

Species that exhibited a significant positive response to the interaction between urban

edge distance and urbanization proportion included the Wrentit, Bewick's Wren, Blue-

gray Gnatcatcher and Northern Mockingbird. For the Wrentit, Blue-gray Gnatcatcher and

Bewick's Wren, which exhibited negative responses to surrounding urbanization, this

suggests a dampened positive influence of urban edge distance, which becomes less

important as urbanization proportion decreases. This may be due to the habitat saturation

that must occur at higher abundances, and the "carrying capacity" of this environment. In

more urbanized parts of the landscape, there may also be more opportunities for predation

and other urban-associated influences from several directions, rather than from just one

edge in the large chaparral tracts. Furthermore, since individuals counted were not

necessarily on breeding territories, or may have had territories extending farther than

l00m from the point count locations, maximum density may be lower near the

chaparral/urban interface, and even less so where urbanization is encroaching from many

sides.

For the Northern Mockingbird, which was positively associated with surrounding

urbanization proportion, the positive interaction effect is reinforcing, in that

mockingbirds are even less abundant (nonexistent) in chaparral interior when surrounding

urbanization proportion is low. Mockingbirds apparently penetrate farther into the

chaparral in highly urbanized and fragmented landscapes, whereas they are rarely found

more than 100m from urban development that borders on large, contiguous chaparral

areas (personal observation).
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The limited influence of urban edge proximity in this study is generally consistent with

Sauvajot (1997), who, in a less urbanized portion of this same study area, found no

significant relationships between proximity to urban development and resident bird

species richness or abundance. Edge-insensitivity in largely unfragmented areas may be

due to the hardiness of chaparral vegetation, and its resistance to invasion by non-native

plant species (Knops et al. 1995), as well its relative impenetrability to humans (Sauvajot

1997). Indeed, much of the chaparral-development interface appears to be characterized

by a distinct "edge," rather than transitional vegetation, although chaparral vegetation in

more fragmented areas may become degraded and invaded by exotic plant species over

time (Alberts et al. 1993). Furthermore, recent studies (e.g. Hansen and Urban 1992,

Tewksbury et al. 1998) suggest that western bird species may be less sensitive than

eastern species to landscape fragmentation and edge effects, based on differences in life-

history traits and predation pressures. These studies examined forested, rather than urban

landscapes, however, and may therefore be influenced by quite different edge-associated

pressures.

Another possible explanation is that reproductive success is indeed lower near urban

development, but source-sink dynamics keep abundances high. Previous studies have

suggested that habitat fragmentation reduces reproductive success of migratory songbirds,

resulting in source-sink dynamics that may not be detected in simple surveys of species

abundance (Donovan et al. 1995, Brawn and Robinson 1996).

Hiking Trail Density

In terms of surrounding trail density, only three species exhibit significant responses (all

negative) after accounting for other urbanization factors: the California Thrasher,

Rufous-crowned Sparrow and Wrentit. Other studies have also recorded a reduced

probability of nesting near trails in some species, as well as increased rates of nest

predation and occurrence of "edge" species (Zande et al. 1984, Hickman 1990, Miller et

al. 1998).
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Of all species examined, the Wrentit and thrasher are probably the most sedentary and

cover-dependent, the Wrentit so much so that it often refuses to cross firebreaks and trails

(Small 1974). It follows, therefore, that these species respond negatively to trail density,

even after factoring in urban edge proximity and surrounding urbanization proportion,

which are correlated with this variable. The Rufous-crowned Sparrow, however, nests

primarily on dry, rocky open slopes (Ehrlich et al. 1988), which actually tend to be

located near hiking trails, firebreaks and roadcuts in this study area. Thus the relationship

found in this species is initially surprising, although given its relatively low density and

patchy distribution (Ehrlich et al. 1988), this species may be particularly sensitive to

human disturbance.

1.4.5. Caveats

The increase in urbanization from west to east within the study area (Figure 1.1)

complicates the interpretation of my results. Although I kept vegetation cover constant to

the extent possible, the effects of urbanization and fragmentation are difficult to

disentangle from the effects of geographic location, given the potential variations in

climate generated by proximity to the Pacific Ocean. The vegetation in the eastern end of

the study area tended to be patchier and drier in general. The extent to which this is a

function of increased urbanization, as opposed to natural microclimate conditions, is

uncertain. Furthermore, small-scale variations in vegetation, and interactions among sites

that are close in spatial proximity may result in spatial dependence among sampling

locations.

For this study, I ignored potential clinal and local variations in vegetation, assuming that

vegetation is constant across the sampling locations. Given the lack of variation in

avifauna among scrub vegetation types in southern California (Small 1974), this

assumption may indeed be reasonable. If there is considerable spatial dependence among

sampling locations, however, and model residuals are autocorrelated, conclusions about

urbanization may be biased (see Chapter 2).
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1.4.6. Research Recommendations

This observational study examines relationships between a set of independent

urbanization-related variables and abundance of several common chaparral birds.

Without experimental manipulation, causal relationships can only be inferred, and the

mechanisms responsible for these patterns remain speculative. Given the difficulties of

conducting experimental studies at such a large scale, the development and testing of

predictive models can produce results valuable to land-use planners and researchers alike.

In order to better formulate specific policy recommendations, however, more research on

underlying mechanisms should be conducted.

Most important for future research is the study of breeding biology and factors

influencing mortality and reproductive success in urbanization-sensitive species. While

many species examined here are known to be susceptible to nest predation, studies

monitoring individual pairs and territories, their breeding behavior, and reproductive

success, could illuminate population dynamics with respect to various landscape and

habitat features. In particular, data on predation pressures should be collected at various

sites throughout the landscape to confirm or refute the findings of Langen et al. (1991),

who did not find nest predation to increase near urban areas. Furthermore, long-term

studies would help determine if populations are stable and to what extent source-sink

dynamics are occurring.

Another approach to determining mechanisms for decline is to quantify more specifically

the factors associated with increased urbanization and fragmentation. For example,

measuring shrub density, vegetation structure and diversity, leaf litter characteristics, and

invertebrate abundance might indicate whether there is indeed a decrease in habitat

quality with increased urbanization. Quantifying urban-associated predators, such as

dogs and cats, as well as human activities, such as mountain biking and hiking, may also

be informative.
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Finally, the examination of a broader range of habitats, including urban areas, may help

complete a spatial picture of species distributions. It would be useful to quantify how far,

if at all, birds of the chaparral penetrate into urbanized areas, what habitat characteristics

are necessary, and whether these results are constant across space, or differ according to

overall landscape matrix characteristics.

1.5. Conclusion

The eastern Santa Monica Mountains are unique in representing an intermediate stage of

habitat fragmentation. The associated declines in abundance of common chaparral and

woodland species may not be immediately apparent in the field, as the species are all still

relatively common. But Poisson regression models helped detect these not-so-obvious

patterns. The results of this study suggest that several chaparral bird species may decline

in abundance as surrounding urbanization increases, even when apparently suitable

habitat is present.

Some species, including the Wrentit, Spotted Towhee, Black-headed Grosbeak and Blue-

Gray Gnatcatcher, appear particularly vulnerable to urbanization, and may serve as

indicators for chaparral quality and/or landscape integrity. Furthermore, certain urban-

associated species, such as the Northern Mockingbird and Western Scrub-Jay, appear

increase in abundance as surrounding urbanization increases, and may contribute to

declines of other songbirds, through competition and nest predation, respectively.

Scale of urbanization influence can be quite large for some species, indicating the

importance of population responses to landscape-level urbanization processes. In the

case of the Blue-gray Gnatcatcher, additional declines in abundance were detected with

changes in urbanization up to 4000m from census locations.

Although urbanization extent was shown to be a significant predictor of abundance for

several species, urbanization pattern did not explain significant additional declines or

increases. This does not mean that the birds studied are not affected by habitat

fragmentation, only that the total proportion of available habitat is an adequate measure
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of fragmentation, and that, in this largely interconnected landscape, birds do not appear to

distinguish between different habitat configurations when urbanization extent is constant.

Urban edge aversion and/or affinity varied, depending on levels of urbanization in the

surrounding landscape. Within less urbanized parts of the chaparral, few species were

sensitive to urban development proximity, and weakly so. Distance from the

urban/chaparral edge does appeared to be important in highly urbanized landscapes,

however.

Urban expansion is largely inevitable in the Greater Los Angeles area, where rapid

population growth and high property values have placed tremendous pressure on

remaining undeveloped lands. While much of the remaining natural habitat in this area is

protected in Federal and State public parkland, development has continued at a rapid pace

on privately owned lands. The influence of surrounding landscape urbanization on

chaparral bird abundance suggests that conservation and land use planning efforts would

benefit by incorporating regional and landscape, as well as local perspectives, to help

ensure that sufficiently large, intact areas of chaparral are maintained. Such planning is

possible because chaparral habitat still remains largely unfragmented throughout large

sections of the Santa Monica Mountains, and elsewhere in southern California. The

relationships observed in this study highlight that planning and forethought will help

preserve chaparral habitat before crisis proportions are reached.
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Figure 1.4. 250m-500m-1000m-2000m-4000m buffer rings used to calculate
urbanization proportion and fragmentation index.
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Appendix 1.1. Avian species recorded during study (swifts, swallows and raptors not
included), in alphabetical order, according to AOU code.

AOU Common Name Migratory Years Years Groups
Code (Scientific Name) Status Observed Counted Counted*

ALHU Allen's Hummingbird
(Selasphorus sasin)

AMCR American Crow
(Corvus
brachyrhynchos)

ANHU Anna's Hummingbird
(Calypte anna)

ATFL Ash-Throated
Flycatcher (Myiarchus
cinerascens)

BCHU Black-Chinned
Hummingbird
(Archilochus alexandri)

BEWR Bewick's Wren
(Thryomanes bewickii)

BGGN Blue-Gray Gnatcatcher
(Polioptila caerulea)

BHGR Black-Headed
Grosbeak (Pheucticus
melanocephalus)

BLPH Black Phoebe (Sayornis
nigricans)

BUSH Bushtit (Psaltriparus
minimus)

CAQU California Quail
(Callipepla californica)

CATH California Thrasher
(Toxostoma redivivum)

CALT California Towhee
(Pipilo crissalis)

Long-
distance
migrant

1996,
1997

1997 T

Resident 1996,
1997

Resident 1996,
1997

Long-
distance
migrant

Long-
distance
migrant

1996,
1997

1996,
1997

1996,
1997

1997

1996,
1997

1997

1996,
1997

1996,
1997

1996,
1997

1996,
1997

Resident 1996,
1997

Resident

Long-
distance
migrant

Resident

1996,
1997'

1996,
1997

1996,
1997

T

T

T, S

T

T, S

T

T, S

T

N/A

S

T, S

T

Resident 1996,
1997

Resident 1996,
1997

Resident 1996,
1997

Resident 1996,
1997

1996,
1997

1996,
1997

1996,
1997

* T = total individuals, S = singing males.
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Appendix 1.1. (continued)

AOU Common Name Migratory Years Years Groups
Code (Scientfic Name) Status Observed Counted Counted

CANW Canyon Wren
(Catherpes mexicanus)

CORA Common Raven
(Corvus corax)

COYE Common Yellowthroat
(Geothlypis trichas)

HOFI House Finch
(Carpodacus
mexicanus)

HOOR Hooded Oriole (Icterus
cucullatus)

HOWR House Wren
(Troglodytes aedon)

HUVI Hutton's Vireo (Vireo

huttoni)

LEGO Lesser Goldfinch
(Carduelis psaltria)

LOSH Loggerhead Shrike
(Lanius ludovicianus)

MODO Mourning Dove
(Zenaida macroura)

NOFL Northern Flicker
(Colaptes auratus)

NOMO Northern Mockingbird
(Mimus polyglottos)

NUWO Nuttall's Woodpecker
(Picoides nuttalii)

OATI Oak Titmouse
(Baeolophus inornatus)

Resident 1996,
1997

Resident 1996,
1997

Long-
distance
migrant

1997

Resident 1996,
1997

1996,
1997

1996,
1997

1997

1996,
1997

1996,
1997

1996,
1997

1996,
1997

T, S

T

T, S

S

Long-
distance
Migrant

1996,
1997

T, S

Resident 1996,
1997

T, S

T, SLong-
distance

1996,
1997

migrant

Resident 1996,
1997

N/A

Long-
distance
migrant

1996 1996 T

Resident 1996,
1997

Resident 1996,
1997

Resident 1996,
1997

1996,
1997

1996,
1997

1996,
1997

1996,
1997

1996,
1997

T

T

T, S

TResident 1996,
1997

Resident 1996,
1997

T

* T = total individuals, S = singing males.
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Appendix 1.1. (continued)

AOU Common Name Migratory Years Years Groups
Code (Scientifc Name) Status Observed Counted Counted

OCWA Orange-Crowned
Warbler (Vermivora
celata)

PHAI Phainopepla
(Phainopepla nitens)

PSFL Pacific Slope
Flycatcher (Empidonax
difficilis)

RCSP Rufous-Crowned
Sparrow (Aimophila
ruficeps)

SOSP Song Sparrow
(Melospiza melodia)

SPTO Spotted Towhee (Pipilo
maculatus)

WEKI Western Kingbird
(Tyrannus verticalis)

WESJ Western Scrub-Jay
(Aphelocoma
californica)

WETA Western Tanager
(Piranga ludoviciana)

WREN Wrentit (Chamaea

fasciata)

YEWA Yellow Warbler
(Dendroicapetechia)

Resident 1996,
1997

Resident /
Local
migrant

Long-
distance
migrant

1996,
1997

1996,
1997

Resident 1996,
1997

Resident 1996,
1997

1996,
1997

1996,
1997

1996,
1997

1996,
1997

1996,
1997

1996,
1997

1997

1996,
1997

1996

T, S

T, S

T, S

T, S

Resident

Long-
distance
migrant

1996,
1997

1997

T, S

T, S

T

TResident 1996,
1997

Long-
distance
migrant

1996 T

Resident 1996,
1997

1996,
1997

1997

T, S

TLong-
distance
migrant

1997

* T = total individuals, S = singing males.
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Chapter 2:

Examination and Modeling of Spatial Structure

in Selected Chaparral Bird Species

2.1. Introduction

Increasingly, many large-scale ecological studies involve an explicit spatial component.

With the growing availability and sophistication of Geographic Information Systems

(GIS), as well as portable, inexpensive Geographic Positioning Systems (GPS), ecologists

can now georeference their sampling locations relatively easily and accurately.

Oftentimes, however, this extra information is not used to its full potential. In ecology,

GIS has been used primarily as a map presentation tool, facilitating the visualization of

spatial variables and relationships among them. Commonly, spatial data are analyzed

using simple statistical methods that ignore the underlying spatial structure and often

improperly assume independence among sampling locations. This tendency is likely due

to the statistical complexity and computation-intensiveness of many spatial statistical

techniques, as well as their lack of widespread acceptance. But the omission of spatial

dependence in statistical.analyses can be problematic for the interpretation of results, and

may result in biased model parameter estimates (Robertson 1987, Anselin 1989) and false

detection of significant relationships (Legendre 1993).

This is not to say that spatial patterns in nature have not been widely studied. Indeed,

there is a long history of quantitative spatial analysis in ecology, with the description and

explanation of regional and continent-wide vegetation distributions dating at least back to

Von Humboldt (1807). Large-scale biogeographic vegetation trends have been explained

largely by variation in soils, topography, and especially climate (e.g., DeCandolle 1874,

Warming 1895, Merriam 1898, Gleason 1917, Whittaker 1956, Peet and Loucks 1977,

Delcourt and Delcourt 1988, Davis and Zabinski 1992, Holling 1992). Factors controlling

the distributions of animal species (Andrewartha and Birch 1954, Simpson 1964,

MacArthur 1972, Bock 1984, Root 1988), and the relationships between distributions and

-61-
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abundance (Cook 1969, Brown 1984, Bock 1987, Maurer 1990, Brown et al. 1995), have

also been studied and modeled. Avian range distributions, in particular, have received

considerable attention (Terborgh 1971, Bock 1984, Root 1988, Maurer and Heywood

1993, Lawton et al. 1994).

At the local scale, spatial dependence in the distribution of plants and other sessile

organisms is well recognized by theoretical ecologists. A variety of heterogeneity- and

aggregation-promoting mechanisms have been proposed, modeled and field-tested,

including disturbance-recovery dynamics (Paine and Levin 1981), dispersal limitation

(Levin et al. 1984), spatially subdivided resource competition (Roughgarden 1974, Tilman

1994), and predator-prey dynamics (Levin 1976, 1978). Mobile organisms are, almost by

definition, more difficult to describe spatially. With the increasing speed and power of

raster GIS technology, however, spatially-explicit population models (SEPMs),

incorporating (cell-based) movement as well as spatial location of individuals, are

becoming more sophisticated and useful (e.g., Pulliam et al., 1992, Turner et al. 1993,

Dunning et al. 1995, Holt et al. 1995).

Until recently, however, there has been little focus on intermediate scales-those much

smaller than a species range, yet large enough that individual dynamics become obscured

by aggregate patterns (but see Watt 1947). For many species, this intermediate scale

occurs at the landscape level-an admittedly broad term, with different definitions in

different contexts. The landscape scale has significance, however, because it is inherently

human-defined, and often coincides with the scale of anthropogenic land-use change.

Within the last decade, often with the help of GIS technology, greater efforts have been

made to describe the spatial patterning of organisms across landscapes (e.g., Swanson et

al. 1988, O'Neill et al. 1991, Ward and Saltz 1994, Cherrill et al. 1995, Fortin et al. 1996)

and the processes driving those patterns (e.g., Kareiva and Wennergren 1995, Turner et al.

1997). When spatial pattern is not the primary focus, however, it is often ignored

altogether. This is especially true of studies examining the effects of human disturbance.
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This study addresses some of the above-named shortcomings in the analysis of spatial

ecological data. My primary goal is to determine how selected passerine bird species

respond to increasing levels of urbanization (residential development) in a mountain

landscape facing encroachment on three sides by metropolitan Los Angeles. Previously, I

used standard statistical analyses to answer this question (Chapter 1). Here I also examine

large-scale spatial trends and small-scale heterogeneity in a landscape-level spatial

statistical analysis of avian responses to urbanization. Most of the bird species under

study are particularly well-suited to this type of analysis, as they are year-round residents

with low vagility and high territoriality (Soule et al. 1988), and can therefore be modeled

as fixed points in space.

2.1.1. Types and Sources of Spatial Dependence in Animal Populations

Spatial dependence can occur at different scales, which may be indicative of the

process(es) driving the observed spatial patterns. Generally speaking, however, spatial

autocorrelation in a data set indicates the presence of small-scale spatial dependence due

to the interdependence of neighboring sites (Cressie 1991, MathSoft 1996). Small-scale

spatial dependence is generally stochastic in origin and therefore difficult to predict.

Conversely, large-scale spatial dependence refers to a predictable pattern or spatial trend

(Cressie 1991), also known as "structural" spatial dependence (Rossi et al. 1992), which is

often related to underlying physiographic features.

Large-scale spatial dependence in a species' distribution and abundance may reflect

"continuous biogeographical dispersion routes" (Carroll and Pearson 1998), as well as

underlying trends in the abiotic environment (e.g., topography, substrate, climate) that are

generated slowly over geologic time (Brown 1984). Small-scale dependence tends instead

to reflect patchiness in the biotic environment, stemming from stochastic disturbance

events or complex species interactions that occur on an ecological time scale (O'Neill et

al. 1991, Wiens 1981). Adding to the complexity of spatial dependence are intraspecific

factors like non-selective dispersal, time lags in population dynamics, and density-

dependent behaviors (e.g., territoriality, flocking) (Brown et al. 1995). These small-scale
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biological interactions may introduce temporal and/or spatial lags, decoupling a system

from underlying geophysical factors (Wiens 1989) and making spatial variability difficult

to predict. At large scales, however, physical processes often overshadow the biological

(Wiens 1989).

As a result of these and other sources of spatial dependence, animal populations are likely

to be non-uniformly distributed across a landscape, and may contain variations in

abundance that are not easily explained by environmental factors. The existence of spatial

heterogeneity suggests that sampling locations across a landscape may not be equally

independent of one another. Rather, sites that are closer in spatial proximity are likely to

be more similar in species abundance (Brown 1984, Rossi et al. 1992). Thus, a

fundamental statistical assumption is violated when populations exhibit significant spatial

dependence. This leads to an over-specification of degrees of freedom, and an increased

probability of rejecting a valid null hypothesis (type I or a error), meaning that results

may too often be declared significant (Legendre 1993).

One must therefore control for spatial location when analyzing relationships between

spatially distributed ecological variables. The detection of spatial autocorrelation in

model residuals indicates the presence of an additional explanatory variable, which may or

may not be measurable. When this variable is not measurable, the spatial autocorrelation

may instead be explicitly modeled. Spatial regression models eliminate correlation in the

residuals, so that assumptions are met and significance tests are valid. Large-scale trends,

which are easily misinterpreted as autocorrelation, should be investigated before spatial

autocorrelation is modeled (Legendre and Fortin 1989). Semivariograms, correlograms,

and other "structure functions" (Yaglom 1957) can help identify these trends.

The purpose of this study is to investigate the importance of both small- and large-scale

spatial dependence in a landscape-level spatial data set, thereby providing an example of

how simple spatial statistics may be used to construct improved models of species

abundance.
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2.1.2. Tools for Investigating Spatial Structure and Autocorrelation

Several methods have been used to examine spatial structure and detect scales of influence

in ecological data. Scale detection has received particular attention among landscape

ecologists (e.g., Carlile et al. 1989, Turner 1989, Wiens 1989, Moloney et al. 1991,

O'Neill et al. 1991, Cullinan and Thomas 1992, Levin 1992), with respect to both

simulated and actual landscapes. Methods used to examine scales of spatial pattern

include spectral analysis (Ripley 1978), variance ratio analysis (Carlile et al. 1989), Hill

analysis (Hill 1973), and fractal dimension (Sugihara and May 1990), each of which has

its strengths and weaknesses. No one method seems to provide consistently good

estimates of scale, and consequently the use of more than one method is recommended

(O'Neill et al. 1991, Cullinan and Thomas 1992).

Another class of tools for analyzing spatial structure comes from the field of geostatistics

and the generalized regional variable model (Matheron 1963). Geostatistics theory is

most commonly used in "kriging," a method for interpolating the values of a variable over

the geographic area from which the sample was taken by incorporating a semivariogram

model for spatial correlation. Related to the semivariogram are the covariogram and the

correlogram. Each of these "structure functions" may be used to describe the spatial

dependence between sampling points at various "lag distances" or distance classes, and to

detect spatial trends in the data.

The Semivariogram

The semivariance function y(h) (Matheron 1963) is estimated by one-half the average

squared difference between points separated by a distance h, calculated as:

\N(h)I IN(h)I

( z, - z;) 2

y1N( = h , (2.1)
2j N(h)I
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where N(h) is the set of all pairwise Euclidean distances i -j = h, IN(h)I is the number of

distinct pairs in N(h), and zi and zj are data values at spatial locations i andj, respectively

(Cressie 1991, MathSoft 1996).

A semivariogram is a plot of the semivariance function for increasing lag distances.

Standard semivariograms are omnidirectional, but directional semivariograms, where ris

a function of the direction as well as magnitude of h, may also be examined if the spatial

autocorrelation of a variable changes with direction-a property referred to as

"anisotropy" (lack of "isotropy"). In this case, the set of data pairs, N(h) is defined by

direction as well as distance.

The semivariance represents the portion of the population variance that is not explained by

spatial autocorrelation. Thus in a system with no spatial dependence, the semivariance is

constant and equal to the population variance (a2). For most spatial data, however, the

semivariogram increases with distance until it converges at a "sill," which corresponds to

the population variance. The distance at which the sill is reached and data are no longer

autocorrelated is called the "range" (Cressie 1991; see Figure 2.1). The range may be

interpreted as a maximum autocorrelation distance, while autocorrelation is generally

strongest at-the distance for which the semivariogram slope is steepest (Robertson 1987).

A semivariogram that fails to converge to a sill indicates that the variable of interest is

non-stationary (non-constant mean and variance) and exhibits a large-scale trend over the

area of interest (Legendre and Fortin 1989). The "nugget" of a semivariogram represents

all unaccounted-for spatial variability at distances smaller than the smallest sampling

distance, which may be due to micro-scale variation and/or measurement error (Rossi et

al. 1992; see Figure 2.1). Several functions are typically used to model theoretical

semivariograms, depending on the spatial structure of the variable. Some of the more

commonly used functions are the spherical, exponential, linear and Gaussian models (see

Figure 2.2).
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An empirical semivariogram provides a graphical description of the autocorrelation

structure in a sample of a particular variable, and can be used to estimate the theoretical

semivariogram for the entire population, which is required for kriging. It does not lend

itself to statistical hypothesis testing, however; nor is it standardized, so comparison of

different models may be difficult. In addition, the semivariogram is sensitive to local

mean and variance differences and is strongly affected by outliers, so it may provide an

incomplete picture of spatial pattern (Rossi et al. 1992). Meisel and Turner (1998) found

that the semivariogram acts best as a "high pass filter," detecting coarse but not

necessarily fine scale patterns, and that it is not particularly well-suited to the study of

multiple scales of pattern. They also found it to be highly sensitive to data gaps.

Despite a relatively long kriging tradition in the mining and geology fields (e.g., David

1977, Journel and Huijbregts 1978), semivariograms have only recently been applied to

ecological studies, where they have been useful for describing spatial structure and

interpolating the values of ecological variables over space (e.g., Grieg-Smith 1983, Taylor

1984, Villard and Maurer 1996, Robertson et al. 1997, Meisel and Turner 1998).

The Covariogram and Correlogram

The empirical covariance function, C(h), represents the portion of the population variance

that is explained by spatial autocorrelation at lag distance h. It is defined by:

IN(h)I IN(h)I

_(z, - z)(z; - Z)

C(h) = cov(z,, z1) = i'-' N(h) (2.2)

When the population mean and variance are constant over the sampling space (i.e., the

second-order stationarity assumption is met), then for any lag distance h, the

semivariance, y(h), and the covariance, C(h), add up to the population variance, o2 (Rossi

et al. 1992). Thus the semivariogram and the covariogram (a plot of the covariance

function against increasing lag distances) are inversely related. Under these same
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conditions, the correlogram, p(h), or standardized covariogram (C(h)/o 2), is also directly

related to the semivariogram (Rossi et al. 1992).

The term "correlogram" may also be used to refer to any plot of autocorrelation versus

spatial lag distance (or temporal lags, in the case of time-series analysis). Thus

correlograms for spatial data may also be constructed using other standardized measures

of autocorrelation. A commonly used autocorrelation index, related to p(h), is Moran's I

statistic (Moran 1950). Moran's I, which generally ranges from -1 to 1, is similar in

interpretation to a Pearson's Product Moment correlation statistic, with the numerator

consisting of a sum of cross-products (Legendre and Fortin 1989). For a given distance

class h, Moran's statistic, I(h), is defined as:

nL Lw (z, - Z)(zj - z)

I(h) = ,- J -,](2.3)

11:w1: (Zi-Z)2
i=1 ,=1 i=1

where wij takes on the value 1 when the pair (i,j) pertains to distance class h, and 0

otherwise; n is the number of sampling locations (Fortin 1989). Because they are

standardized, correlograms may easily be compared. A Moran's I correlogram can also be

tested for statistical significance, making it less subjective than the semivariogram for

describing spatial structure and detecting autocorrelation.

In terms of large-scale patterns, positive autocorrelation at small distances coupled with

negative autocorrelation at large distances indicates the presence of a gradient, or large-

scale trend. Negative values at large distances result from distant points being less similar

than average, so that the semivariance is greater than the population variance (covariance

= population variance - semivariance). Aggregated data may exhibit positive

autocorrelation at distances corresponding to the gaps between patches or data clusters

(Legendre and Fortin 1989), and zero or negative autocorrelation in between.

Correlograms for variables containing only small-scale spatial autocorrelation will quickly

decrease and converge to or oscillate around zero.
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With respect to small-scale patterns, the evaluation of autocorrelation statistics at various

lag distances in a correlogram may be useful in determining the maximum scale of

significant spatial autocorrelation. This may indicate the size of the "ecological

neighborhood" for the species or phenomenon being investigated (Addicott et al. 1987), or

the range of interaction between sites (Cressie 1991). This information can also be

ascertained from a semivariogram, but not with any statistical certainty.

Recently, several ecological studies have made use of correlograms and spatial

autocorrelation statistics for examining large- and small-scale spatial patterns (e.g.,

Legendre and Fortin 1989, Carroll and Pearson 1998, Koenig 1998, Koenig and Knops

1998).

2.13. Spatial Covariance Models

Ordinary least-squares regression analysis requires that model residuals are independent

(Neter et al. 1989). When this assumption is violated, model parameter estimates may be

biased (Robertson 1987, Anselin 1989), and confidence intervals too small (Legendre

1993). Upon detection of spatial dependence in regression model residuals using tests for

spatial autocorrelation (e.g., Moran's I), the spatial covariance structure of the residuals

can be specified and modeled explicitly. Provided the residuals are stationary (i.e., no

trend), then semivariograms and/or covariograms may be used to define the nature of

spatial dependence in the residuals and estimate the appropriate spatial parameters.

One approach to spatial covariance modeling is based on geostatistical principles

integrated with a mixed model framework (Zimmerman and Harville 1991, Littell et al.

1996). The regression model is of the formyi = i + ei, where yi is the i observation and

ei is the corresponding error. If yi occurs at location si, then the covariance structure is

defined by assuming that the covariance of two locations, sj and sj, is a function of the

distance between them (dij). The covariance model then takes on the general form:

Cov(e,,e1 ) = r2 [f(d,1)], with Var(e,) = 2 = o12 +0622 (2.4)
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Since the covariance and semivariance are directly related (under the assumption of

stationarity), these parameters can be expressed in terms of semivariogram parameters: d

is the range, 62 is the sill, 612 is the nugget, and 622 is the remaining variance, or partial

sill (see Figure 2.1). The functionf(di) depends on the shape of the semivariogram, and

is generally specified according to one of the models in Figure 2.2.

2.1.4. Objectives

In 1996,I initiated a study to assess the effects of landscape-level urbanization patterns on

breeding-bird abundance in the Santa Monica Mountains of southern California. In recent

decades, chaparral and other native communities within the Santa Monica Mountains have

been experiencing urban encroachment from the surrounding Los Angeles metropolitan

area. Currently, the area contains a mosaic of interspersed suburban development and

native chaparral vegetation (see Figure 1.1). It presents a unique opportunity to study the

effects of urban encroachment at its intermediate stage, before the native habitat is

severely fragmented.

In my study area, the abundances of several chaparral- and woodland-associated bird

species were negatively associated with levels of surrounding urbanization, while the

abundances of two urban-associated species exhibited positive associations with

surrounding urbanization (Chapter 1). Significant responses to large-scale landscape

characteristics (i.e., surrounding urbanization proportion within radii up to 4000m) were

observed in most of these species.

Because the bird census locations used in this study were distributed over a large (~17,000

ha) geographic area, they are unlikely to be completely independent. Small-scale spatial

heterogeneity may result in spatially autocorrelated abundance. In addition, urbanization

within the study area follows an east-west gradient. To better understand the relationship

between urbanization and bird abundance, I posed the following research questions:



-71-

1. What is the nature of the spatial structure that characterizes the abundances of

these chaparral birds?

2. Controlling for spatial structure, does surrounding urbanization affect breeding

bird abundance?

2.2. Field Methods and Previous Results

Bird abundance data were collected during the summers of 1996 and 1997. A stratified

random sample totaling 79 chaparral-vegetated sites was censused for birds in 1996 using

100-meter fixed radius point counts, and georeferenced with GPS readings (detailed field

methods are given in Chapter 1). Twenty-eight sites were added in 1997 (totaling 107)

and the same bird census procedures were repeated (Figure 1.1). Using this sample of 107

sites, I modeled the effect of surrounding urbanization on maximum-per-site abundance of

each species, using Poisson regression with a repeated measures covariance structure

(1997 data + 1996 data where available). Several measures of surrounding urbanization

were examined, including the proportion of the surrounding area (within a circle of a

specified radius) contained in urban land uses (including golf courses, urban parks and

other human-constructed green spaces). GIS land use data were obtained from a 1:24000

Arc/Info polygon coverage, constructed from 1990 aerial photos by the Southern

California Association of Governments. Scales of urbanization ranged from 250m to

4000m radius buffer distances (Chapter 1). Sequential score tests (Tarone 1988) were

used to determine the largest measure of surrounding urbanization proportion contributing

significantly to each species abundance model.

2.3. Spatial Statistics Methods and Results

Of the thirteen species exhibiting significant responses to some measure of surrounding

urbanization in 1997 (Table 1.3), four were selected for further analysis in this study, due

to the relative robustness of their models, and the small departures from normality in their

model residuals: the Wrentit (Chamaeafasciata), Northern Mockingbird (Mimus

polyglottos), Black-headed Grosbeak (Pheucticus melanocephalus) and Blue-gray
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Gnatcatcher (Polioptila caerulea). To confirm the validity of these non-spatial

urbanization models, I looked for spatial structure in the abundance of each of the species

and modeled it explicitly as needed.

This analysis included four major steps:

1. Investigation of large- and small-scale spatial dependence in bird abundance,

urbanization proportion and vegetation cover, using semivariograms and

correlograms.

2. Regression of bird abundance on surrounding urbanization levels using (non-spatial)

ordinary least squares (OLS) regression, and investigation of spatial dependence in

model residuals.

3. Removal of large-scale spatial trends in bird abundance (regression of bird abundance

on spatial coordinates), regression of trend model residuals on surrounding

urbanization levels, and investigation of spatial structure in detrended model residuals.

4. Construction of spatial covariance models for bird abundance, using spatial covariance

structures suggested by semivariogram and correlogram analyses, in order to

statistically incorporate small-scale spatial dependence.

Semivariogram and correlogram generation were performed using S-Plus 4.5 (MathSoft

1997), S+SpatialStats (MathSoft 1996), and S-Plus for ArcView GIS (MathSoft 1998).

SAS Systems' version 6.12 mixed models procedure (SAS 1997, Littell et al. 1996) was

used for spatial covariance modeling.

2.3.1. Investigating Spatial Structure in Bird Abundance

Upon visual inspection of distribution maps for each species examined, they all appear to

vary along the east-west urbanization gradient, to some degree (Figure 2.3). The Northern

Mockingbird (2.3b) seems to increase in abundance from west to east, while the other

three species decrease. The Wrentit (2.3a) and Blue-gray Gnatcatcher (2.3d) may also
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exhibit north-south variation, with the Wrentit more abundant in the south, and the

gnatcatcher more abundant in the north. The latter trends are less clear, however, due

perhaps to the general lack of north-south variation among sampling locations, especially

in the eastern section of the study area.

Using two related structure functions, the semivariogram and the correlogram, I examined

the spatial covariance structure of the sampling locations with respect to bird abundance,

as well as urbanization proportion. For each variable, I examined large-scale trends, and

determined the effective range of spatial autocorrelation (if any).

For maximum 1997 abundance of each of the four species and urbanization proportion

within a 2000m radius, I constructed an omnidirectional semivariogram, as well as

directional semivariograms in the east-west (900 azimuth) and north-south (0* azimuth)

directions (using a 450 tolerance), based on the 107 sampled locations. Fourteen lag

distances, at 1000m intervals, were used for the omnidirectional and east/west

semivariograms; nine 1000m lag distances were examined in the north/south direction.

Semivariograms were generated using the variogram function in S+SpatialStats (MathSoft

1996).

I also constructed an omnidirectional correlogram for each of the above variables using

Moran's I statistic. Correlograms were constructed from Moran's I autocorrelation values

individually calculated for each 1000m lag distance (e.g., 0-1000m, 1000-2000m), also

using S+SpatialStats (MathSoft 1996). In calculating Moran's I values, point pairs within

the given interval were considered to be spatial neighbors, and assigned a spatial weight

(wsj) of 1; all other point pairs were assigned a spatial weight of 0. I tested for overall

significance of each correlogram using a Bonferroni-adjusted significance level (a = 0.01)

to account for multiple comparisons, as well as for significance of individual correlation

values (a =0.05), as suggested by Legendre and Fortin (1989).



-74-

Semivariogram Results - Original Variables

The overall trend apparent in the omnidirectional semivariogram for urbanization (Figure

2.4a) was driven primarily by east-west variation, as supported by the 900 directional

semivariogram (2.4b), in which the variation among points increases almost

monotonically with distance, particularly at lag distances of 7000m or larger. The north-

south (0*) semivariogram (2.4c) exhibited a similar trend between 0-8000m, but stops

there, constrained by the dimensions of the study area.

Three of the bird species examined-the Wrentit, Northern Mockingbird and Blue-gray

Gnatcatcher-exhibited distinct large-scale spatial trends (Figure 2.5a,d,j) that appear to

follow the urbanization trend (2.4a-c). These trends occurred primarily in the east-west

direction (2.5b,e,k), as suggested by their distribution maps (2.3a,b,d), and slightly in the

north-south direction (2.5c,f,1). The semivariograms did not increase monotonically,

however, suggesting the presence of additional spatial structure not related to the east-

west or north-south gradients. The semivariograms for the Black-headed Grosbeak were

fairly constant, but with a small increase in the very largest distance classes, suggesting a

slight spatial trend (2.5g-i).

In general, the omnidirectional semivariograms for each of the species resembled the east-

west semivariograms, indicating that large-scale spatial trends were driven primarily by

the east-west gradient (perhaps resulting from urbanization). The north-south

semivariograms were most likely constrained by the configuration of the study area (long

and narrow); thus they were based on fewer point pairs within each lag interval, and may

be less reliable than the other semivariograms. The east-west semivariograms are most

suspect at the shorter lag distances (<1000m) due to fewer point pairs, while both

directional and omnidirectional semivariograms should be interpreted with caution at the

larger lag distances (>8000m) (see sample sizes for each lag distance in Figure 2.5).
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Correlogram Results - Original Variables

The omnidirectional Moran's I correlogram for urbanization proportion displayed a nearly

linear decrease in autocorrelation (covariance) with increasing lag distance (Figure 2.6). It

demonstrated overall significance (p<0.01), as well as significant autocorrelation values

for almost all distance classes. This indicates a clear, large-scale gradient, supporting the

conclusions of the semivariogram analysis (Figure 2.4a-c).

Correlograms also confirmed that all four species were distributed along a spatial gradient,

based on the steady (if not monotonic) decrease from positive to negative autocorrelation

and overall significance (p < 0.01) of each correlogram (Figure 2.7). All species exhibited

significant positive autocorrelation (p < 0.05) in more than one of the closer distance

classes, while only the mockingbird and grosbeak also showed significant negative

autocorrelation (p < 0.05) at greater distance classes. Autocorrelation ranges suggested by

the correlograms are approximately 7000m for the Wrentit (2.7a), 5000m for the Northern

Mockingbird (2.7b), 6000m for the Black-headed Grosbeak (2.7c), and 4000m for the

Blue-gray Gnatcatcher (2.7d).

2.3.2. Non-Spatial Modeling of Bird Responses to Urbanization

Results from the previous section indicate large-scale trends in the abundances of all four

bird species examined, which could invalidate tests for spatial autocorrelation (Legendre

1993). That is, the similarity between sites that are close in spatial proximity may be due

to their position on a gradient, rather than some intrinsic heterogeneity-producing spatial

process. To obtain a reliable picture of small-scale autocorrelation, large-scale trends

must first be removed.

Because similar trends were also observed in landscape urbanization proportion (within a

2000m radius of each point), I suspected that these large-scale trends were actually

products of the urbanization gradient. Thus I modeled the effects of surrounding

urbanization levels on bird abundance and examined the resulting model residuals for

remaining spatial autocorrelation, using the same tools as in the previous section.
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Previous analyses indicated that the Wrentit is sensitive to urbanization up to 500m away,

the Black-headed Grosbeak up to 1000m, Northern Mockingbird up to 2000m, and the

Blue-gray Gnatcatcher up to 4000m away (Chapter 1). Based on these results, and

ignoring other significant urbanization-related predictors of bird abundance, I regressed

maximum-per-point abundance on surrounding urbanization proportion at the appropriate

scale, using ordinary least squares (OLS) regression.

OLS regression models (rather than Poisson maximum likelihood) were used to facilitate

comparison with the Gaussian mixed models used in spatial covariance modeling (Littell

et al. 1996). Model residuals did not exhibit major departures from normality, and non-

spatial OLS model results were not found to differ markedly from those of the Poisson-

based models.

Effects of Urbanization on Bird Abundance

As demonstrated previously, the level of surrounding urbanization was a significant

predictor of abundance for all four species examined (Table 2.1). Due to the high

variation in the system, R2 values are low, although regression coefficients ([) are

generally highly significant. The mockingbird exhibited a positive response to

surrounding urbanization proportion, while the other three species were negatively

influenced.

Semivariogram Results - Urbanization Model Residuals

One species, the Black-headed Grosbeak, did not appear to exhibit any spatial dependence

in its residuals, in that its omnidirectional and directional semivariograms were fairly flat,

fluctuating around a population variance of approximately 0.5 (Figure 2.8g-i). For the

three other species, omnidirectional semivariograms increased initially, but eventually

reached a maximum, indicating the possible presence of spatial autocorrelation in model

residuals up to the distance at which the sill is reached (range) (2.8a,dj). Although the

sill and range differed, these species all exhibited several small peaks and troughs, with

maxima between 4000 and 10,000 meters. This type of semivariogram function may
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indicate that several processes govern bird abundance, operating at different spatial scales.

A sharp discontinuity in the semivariogram may represent a critical scale threshold

(Turner et al. 1989), or change in the process driving variation. More likely, however, is

that the peaks and dips reflect patchiness or aggregation in the sampling locations

(Legendre and Fortin 1989, Meisel and Turner 1998). Particularly in the eastern portion

of the study area, there were large data gaps resulting from the inaccessibility of certain

chaparral areas, as well as urbanization-related habitat fragmentation (see Figure 2.3).

The omnidirectional semivariogram for Wrentit residuals reached a sill (-3) at 7000m

(Figure 2.8a), indicating that this rather large distance was the maximum range of

autocorrelation. This pattern appeared to be driven by north-south variation, as seen in the

corresponding directional semivariogram, where the peak at 7000m was quite

pronounced, suggesting possible outlier data (2.8c). The east-west semivariogram had a

much smaller sill and range, peaking at a distance of 2000m (2.8b). These discrepancies

suggest that autocorrelation in this species may be anisotropic (direction-dependent).

For Northern Mockingbird residuals, the omnidirectional semivariogram had an even

larger range, reaching a sill (-0.8) at 10,000m (Figure 2.8d). Thus this species still

appeared to exhibit a slight large-scale trend in its abundance, even after the effect of

urbanization was removed. As with the Wrentit, this large-scale trend appeared to be

driven by north-south variation (8f), while the east-west semivariogram (8e) was almost

flat, suggesting anisotropic conditions. This remaining north-south dependence may be a

product of topography, in that study area consists of many north-south running canyons.

Within these canyons, bird abundance may be more similar than between sites in different

canyons that are closer in a Euclidean sense. Both species may also vary with elevation,

which generally increases from south to north in the study area.

The omnidirectional semivariogram for the Blue-gray Gnatcatcher reached a sill (~0.4)

near 4000m, then decreased fairly rapidly, reaching a minimum near 10,000m (Figure

2.8j). This suggests a large-scale pattern, or similarity between the extreme ends of the



-78-

local population. Directional semivariograms (2.8k-1) were fairly similar, indicating

isotropic (non direction-dependent) autocorrelation.

The presence of a sill in each semivariogram indicates that the residuals were stationary

over the study area, which in turn suggests that large-scale trends in bird abundance were

primarily explained by variations in urbanization (although causality cannot be

determined). However, the large autocorrelation ranges revealed by the semivariograms

(4000-10,000m) indicated that model residuals still contained large-scale spatial

dependence. This may have been due to the influence of other large-scale patterns

(smaller than the size of the study area), such as patterns of variation in vegetation or

elevation, in determining bird abundance.

Correlogram Results - Urbanization Model Residuals

Examination of omnidirectional Moran's I correlograms (Figure 2.9) provided a more

complete picture of spatial structure in urbanization model residuals. Correlograms were

overall significant (p < 0.01) for all species but the Grosbeak, with spatial autocorrelation

generally declining with distance and oscillating around zero (Figure 2.9). What the

correlograms suggested, beyond the semivariograms, was a maximum range of "small-

scale" autocorrelation (when the correlogram first reaches zero). Three of the four species

exhibited significant small-scale spatial autocorrelation (p <0.05), with maximum

autocorrelation ranges apparently near 2000m for the Wrentit (2.9a) and mockingbird

(2.9b), and 4000m for the gnatcatcher (2.9d). Additional autocorrelation beyond these

ranges may represent remaining large-scale trends and/or patchiness in the sampling sites.

Again, all species exhibited somewhat periodic dips and crests in the correlograms for

their model residuals. For the Wrentit, significant positive spatial autocorrelation

occurred at 1000m and 5000m; negative autocorrelation was present at the 7000m and

9000m lag distances (Figure 2.9a). The mockingbird was positively autocorrelated at

1000m and 12,000m, and negatively autocorrelated at 6000m and 10,000m (2.9b). The

grosbeak was positively autocorrelated at 11,000m (2.9c). The gnatcatcher exhibited
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significant positive autocorrelation at 1000m and 2000m, and negative autocorrelation at

7000m (2.9d). Negative autocorrelation in the middle distances (i.e. 6000m-10,000m)

most likely indicates the influence of spatial patchiness in the sample. The positive

autocorrelation at large distances exhibited in grosbeak and mockingbird residuals may

represent similarities at extreme ends of the study area, caused by large-scale processes,

but more plausible is the influence of outliers, given the high variability and large gaps in

the data.

2.3.3. Modeling large-scale spatial trends

Because the east-west trend in urbanization was so prominent, teasing apart the effects of

urbanization and spatial location on bird abundance was difficult. Results from the

previous section suggested that large-scale trends in bird abundance are largely a

reflection of variations in urbanization, but that additional large-scale spatial dependencies

may have been present, primarily in the north-south direction. The question remained as

to whether these trends indicated non-stationarity over the study area (a "true gradient"),

or intrinsic autocorrelation among sampling locations separated by large distances (a

"false gradient") (Legendre 1993). If the former is true, then bird abundance should vary

as a function of spatial location, and residuals should be uncorrelated once the trend is

removed (Legendre 1993).

To statistically remove the large-scale trend, I separately regressed the abundance of each

species on the x-y coordinates of the sampling locations and the interaction between them

(z ~x + y + x*y). I then regressed the trend model residuals on urbanization proportion,

and compared the significance of the parameter estimates and overall predictive ability

with the original urbanization models for each species. Finally, I looked for remaining

spatial dependence in the residuals of the de-trended urbanization models for each species,

using semivariograms and correlograms.
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Results of trend models

For the Blue-gray Gnatcatcher and Wrentit, spatial location explained a greater portion of

the variation in abundance than urbanization proportion-25% vs. 12% for the

gnatcatcher and 35% vs. 23% for the Wrentit (Table 2.1). For the Northern Mockingbird

and Black-headed Grosbeak, however, surrounding urbanization levels explained more of

the variance than spatial location (41% vs. 24% and 14% vs. 12%, respectively). Over

50% of the variation in urbanization (at the 2000m radius) was explained by spatial

location, which means that the two effects are difficult to separate.

After removing the large-scale spatial trend, urbanization proportion was still a significant

predictor of mockingbird, Wrentit and grosbeak abundance, although the explanatory

power of these models was generally low, compared with the initial OLS models (i.e.,

lower R2 and p-values) (Table 2.1). These results indicate that urbanization, in and of

itself, did explain a significant portion of the variation in abundance of these species, even

under the most conservative assumptions.

For the Blue-gray Gnatcatcher, urbanization proportion was no longer a significant

predictor of abundance when the spatial trend was removed. Thus the effects of spatial

location and urbanization were difficult to separate in this case, suggesting that

gnatcatcher abundance may have been distributed along a large-scale gradient determined

by something other than urbanization.

Semivariogram and Correlogram Results - Detrended Model Residuals

Semivariogram (Figure 2.10) and correlogram (Figure 2.11) analyses suggest that all

species but the Northern Mockingbird may have followed a "true" gradient, in that

detrended model residuals appeared to be uncorrelated. The extent to which these large-

scale trends in abundance were a product of urbanization remains unclear, however,

especially since surrounding.urbanization proportion at a particular scale may not describe

all of the variation in urbanization. Because urbanization may have been driving the

observed trends, it is not necessarily helpful to conservatively attribute bird responses to



-81-

spatial location. It may be more appropriate to assume that all spatial variation not

attributable to urbanization is autocorrelation resulting from interactions between sites,

and incorporate this dependence into the urbanization model.

2.3.4. Modeling small-scale spatial autocorrelation

Spatial dependence detected in the residuals from non-spatial regression models means

that the models were improperly specified (Anselin 1989). If this autocorrelation

represents positive, small-scale autocorrelation, rather than large-scale trends, then a

spatial covariance model can be used to adjust for the spatial dependence. By

constructing a spatial covariance model for the residuals, the autocorrelation structure can

be explicitly defined, so that independence assumptions are met and significance tests are

valid.

For spatial covariance models to be appropriate, the residuals should exhibit second order

stationarity (constant mean and variance over sampling area) and isotropy (covariance

independent of direction) (Littell et al. 1996). Based on the apparent convergence of the

semivariograms to a sill, I assumed that the stationarity assumption was met in all cases,

despite irregularities and large autocorrelation ranges in the semivariograms and

correlograms. I also assumed isotropic behavior, despite differences in east/west and

north/south semivariograms.

For each of the three species with autocorrelated residuals according to semivariograms

and Moran's I correlograms (mockingbird, Wrentit and gnatcatcher), I fit a spatial

covariance model (Littell et al. 1996) corresponding to the non-spatial model. The model

was fit using mixed model regression in SAS version 6.12 with REML (restricted

maximum likelihood) estimation of model parameters (SAS 1997). Based on the shapes

of the semivariogram for non-spatial model residuals, I used an exponential model for the

covariance function:

f(d,)= e(2.5)
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The range parameter (p) was fixed at a value consistent with the empirical semivariogram

for non-spatial model residuals, and the partial sill (022) and nugget (012 ) values were

estimated simultaneous with estimation of regression coefficients (fi). Using the

maximum values of the empirical semivariograms, the approximate ranges determined for

the Northern Mockingbird, Wrentit and Blue-Gray Gnatcatcher were 9000m, 7000m, and

4000m, respectively. These range estimates are rather large, however, and the spatial

covariance model is only intended for positive, small-scale dependence (Littell et al.

1996). Thus I also used correlograms to determine more appropriate ranges for

comparison. I used as a second range estimate the approximate distance at which the

correlogram for non-spatial model residuals first reached zero: 2000m for the Wrentit and

mockingbird and 4000m for the gnatcatcher (same as semivariogram estimate). For the

Wrentit, this smaller range also corresponded with the range suggested by the east-west

directional semivariogram. The use of two different ranges (small vs. large) also provided

a sensitivity analysis for the regression parameters.

Likelihood ratio x2 tests were used to determine the significance of the spatial (vs. non-

spatial) models. The "best" covariance model could not be determined statistically, but

was evaluated by comparing log likelihood values and significance of individual spatial

parameter estimates. Regression coefficients and standard errors were also compared

between spatial and non-spatial models to determine whether modeling of spatial structure

in the residuals changed the substantive interpretations of the regression analysis.

Results of spatial covariance models

For all species, the spatial models exhibited significantly better fit than the corresponding

non-spatial models (x2 likelihood ratio test, p < 0.05) (Table 2.2), indicating significance

of the spatial covariance parameters. Overall, the inclusion of spatial parameters caused

regression parameter estimates (f) to decrease, although not always substantially.

The Wrentit exhibited the largest variation in regression parameter estimates between the

three models, with somewhat higher magnitude values estimated by the non-spatial model
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than in either spatial covariance model, although confidence intervals for all parameter

estimates were overlapping (Table 2.2). Spatial parameter estimates (o-12 and 022) were

larger in the large range (7000m) model, but the nugget effect was only significantly

different from zero (p <0.05) in the small range (2000m) model. The log likelihood value

for the large-scale model was slightly higher, indicating that the.incorporation of large-

scale spatial structure (up to 7000m) improved model fit for this species, but with a

consequent reduction in the urbanization parameter estimate. This suggests that part of

the urbanization association may indeed be attributable to spatial autocorrelation. The

most appropriate model depends on the range of autocorrelation assumed.

The Northern Mockingbird exhibited a slightly smaller relative reduction in regression

parameter estimates with the inclusion of spatial parameters (Table 2.2). Spatial

covariance parameter estimates were also significantly different from zero (p <0.05) in

both spatial models, but the nugget estimate was quite a bit larger in the large range model

(9000m) than in the small range (2000m) model. For this species, the 2000m range

distance appeared to generate the best-fitting model, based on the higher log likelihood

value. Thus the incorporation of large-scale autocorrelation (above 2000m) was

unnecessary and inappropriate for this species.

In the Blue-gray Gnatcatcher models, the effect of urbanization proportion was reduced

enough that it is no longer significant in the spatial model (Table 2.2). The partial sill

estimate in the spatial model (4000m range) was significantly different from zero (p <

0.05), but not the nugget. This indicates, as does the trend model from the previous

section, that all of the urbanization-related variation in gnatcatcher abundance may also be

described by spatial location.

2.4. Discussion

The four species examined in this study have demonstrated significant population

responses to urbanization at large spatial scales. Abundance of the Wrentit, Black-headed

Grosbeak and Blue-gray Gnatcatcher were negatively associated with high levels of
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surrounding urbanization, while the Northern Mockingbird was positively associated with

urbanization. These results suggested that chaparral bird populations may be affected by

changes in landscape composition and pattern, even when apparently suitable habitat is

present.

Using a variety of spatial statistics tools, I was able to consider the influence of spatial

dependence in my analysis of landscape-level urbanization effects on chaparral birds, in

order to verify and/or qualify these results. Equally important, these techniques also

allowed a better understanding of the spatial structures of the bird populations under

study, and the landscape mosaic that they inhabit. Different insights were gained for each

of the species examined, while common spatial patterns were also illuminated.

All four species exhibited large-scale spatial trends in their abundance, primarily

coinciding with the east-west urbanization gradient along which they were sampled

(Figures 2.4-2.7). After accounting for urbanization effects, however, these trends were

largely absent from model residuals (Figures 2.8-2.9), suggesting that urbanization

explained most of the large-scale spatial structure in these species. Conversely, when the

spatial trends were removed, three of these species (Black-Headed Grosbeak, Wrentit and

Northern Mockingbird) still demonstrated significant responses to changes in urbanization

(Table 2.1).

Abundance patterns for all four species exhibited additional spatial autocorrelation

unrelated to urbanization (Figures 2.8-2.9). The use of spatial covariance models to

incorporate this small-scale spatial dependence (where possible) allowed conclusions

about urbanization effects to be more robust. In general, the observed relationships

between urbanization and bird abundance hold, despite small-scale spatial structure

(autocorrelation) in the data. Furthermore, the spatial covariance models had better

predictive capabilities, indicated by the significant improvement in log likelihood

statistics. If desired, the spatial and regression parameter estimates obtained in these

analyses could be used to interpolate bird abundance at points between those sampled.
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statistics. If desired, the spatial and regression parameter estimates obtained in these

analyses could be used to interpolate bird abundance at points between those sampled.

2.4.1. Ranges of Spatial Autocorrelation

Ranges of small-scale spatial autocorrelation, as suggested by the correlogram analysis,

can be interpreted as indications of the ecological neighborhoods for each species-that is,

the "regions of activity or influence during periods of time appropriate to particular

ecological processes" (Addicott et al. 1987, p.340). Depending on the process and time-

scale, a mobile animal's ecological neighborhood can be defined by factors like (in order

of increasing spatial scale) breeding territory size, home range size, natal/adult dispersal

distance, and spatial extent of a local population.

Territory sizes, home range sizes and dispersal distances vary widely among passerine

species in general, as among the four species examined in this study. For the Wrentit, an

"extremely sedentary" resident chaparral species (Ehrlich et al. 1988, p. 420), breeding

territories average ~0.3ha in size (Erickson 1938), which is equivalent to a 30m x 30m

area. Natal dispersal distance for this species averages 375m, with a maximum near 700m

(Baker et al. 1995). The Blue-gray Gnatcatcher, also a year-round resident in the Santa

Monica Mountains, has somewhat larger territories, averaging ~I.8ha, and may have

winter home ranges up to 9ha in size (Ellison 1992). Natal dispersal distances are

unknown for the gnatcatcher, but movements up to 75km between breeding sites have

been recorded (Ellison 1992). The Black-headed Grosbeak, a long-distance migrant

species, has similar territory sizes, averaging 0.7-2.7ha, and low natal philopatry, with no

individuals returning to breed in one New Mexico study area (Hill 1995). For the urban-

associated Northern Mockingbird, large movements (>300km) have also been recorded,

although natal dispersal distances are typically much shorter (Derrickson and Breitwisch

1992). Thus, while chaparral bird species, in general, tend to be sedentary (Soul et al.

1988), three of the four species examined in this study are known to move over large

distances, possibly on the order of the autocorrelation ranges detected (2000-4000m).
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The large autocorrelation distances found in this study-on the order of dispersal ranges

and population sizes, rather than territory and home range sizes-may indicate the

influence of population (vs. individual) dynamics, which is reasonable given the

intermediate temporal and spatial scales of the urbanization processes being studied.

Time lags may also result in a decoupling of ecological variables and responses in bird

abundance (Wiens 1989). Given the coarse resolution of this analysis, however,

autocorrelation at smaller scales, resulting from interactions among individuals, could not

easily be detected.

Of the four species examined, the Northern Mockingbird demonstrated the strongest

small-scale autocorrelation, even after large-scale trends were removed (Figures 2.9 and

2.11). This indicated a strong interdependence among sampling sites, independent of the

location in the landscape, but may also have been due in part to the clustering of this

species near urban developments. Based on correlograms for non-spatial model residuals,

the range of small-scale autocorrelation appeared to be 2000m (Figure 2.9), although

autocorrelation dropped off quickly, indicating that maximum autocorrelation occurred at

a somewhat smaller distance.

Similar results were obtained for the Wrentit, a species that was negatively associated

with surrounding urbanization, although for this species, residuals were longer correlated

after large-scale trends were removed (Figure 2.11). The Wrentit also seemed to exhibit

anisotropic variation in the shorter distance ranges (Figure 2.8), which likely explained the

weaker overall autocorrelation values. Autocorrelation in the north-south, but not east-

west, direction, after factoring out urbanization influences, may be due to the north-south

orientation of the canyons and trails along which sampling sites were located. Given the

sedentary nature of this species, a juvenile Wrentit may be more likely to disperse within a

canyon than across a ridgetop to the next canyon, especially since many of the ridges have

firebreaks, which this species may be reluctant to cross (Small 1974).

The comparatively large range of potential spatial autocorrelation (4000m) in the Blue-

gray Gnatcatcher (Figure 2.9) seemed to indicate the presence of a large-scale trend in
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abundance, rather than interaction among distant sites. This was also supported by the

non-significant urbanization parameter in both the spatial covariance model and trend

model for this species. Although the large-scale trend may have been urbanization-

related, this could not be determined with certainty. In order to obtain more conclusive

results for this species, a larger area should be studied, given that 4000m is nearly 20% of

the length of the study area. Given the large movements documented in this species

(Ellison 1992), the 4000m range of autocorrelation may indeed reflect dispersal distance

and interaction among sites.

For the Northern Mockingbird and Blue-gray Gnatcatcher, the range of autocorrelation in

model residuals, as determined by correlogram analyses (Figure 2.9), coincided with the

maximum range of urbanization influence: 2000m and 4000m, respectively (Chapter 1).

These "scale agreements" suggest that either (1) urbanization patterns (e.g., clustering of

developments or recreational trails) were responsible for the observed spatial

dependencies; or (2) autocorrelation in bird abundance due to other factors (e.g., dispersal

limitations or social interactions) facilitated urbanization influences over larger distances.

Indeed, this chaparral system is so integrated with the surrounding urbanized area that

such interactions might be expected.

2.4.2. Large-scale Trends vs. Small-scale Autocorrelation

Spatial covariance modeling is most appropriate for small-scale spatial dependence

resulting from the interactions among sites that are close in spatial proximity. Spatial

autocorrelation can also occur at larger scales, when the influence of one site carries a

long way through geographic space (Legendre 1993). But large-scale spatial dependence

commonly reflects a spatial gradient, and if so, it should be removed before spatial

autocorrelation is modeled, as it violates the stationarity assumption (Legendre 1993).

The distinction between the two is subtle, and also depends upon the temporal scale and

window of analysis (Wiens 1981). For example, a gradient at the landscape level may

represent a mere blip of heterogeneity at the regional level. For the purpose of

geostatistical analyses, a true gradient should encompass and extend beyond the study
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area. Large-scale patterns that are smaller than this can be incorporated in a spatial

covariance model.

In this study, large-scale spatial dependence in bird abundance was certainly present, but

most of it was explained by the urbanization gradient. Remaining large-scale structure

appeared to be operating on a smaller scale than that of the study area (as demonstrated by

semivariograms in Figure 2.8) and may have followed patterns of variation in vegetation,

topography, or other geophysical factors. It may also have been a product of aggregated

sampling locations (Legendre and Fortin 1989), resulting from a combination of habitat

fragmentation by urbanization, clustering of census sites along trails and fire roads, and

gaps in census sites due to restricted or privately-owned areas. Regardless of the source,

this large-scale spatial dependence appeared to be adequately described in the spatial

covariance models. The similarity between large- and small-scale covariance models,

however, in terms of regression parameter estimates and overall fit, indicated that small-

scale autocorrelation is most important. The large-scale variations may have been too

unpredictable to model accurately with the type of model used, which is only intended for

positive, small-scale autocorrelation (Littell et al. 1996).

For all species but the Northern Mockingbird, residuals from the detrended models

exhibited no spatial autocorrelation (Figure 2.11), suggesting that spatial covariance

models may not be necessary to describe their abundance patterns if large-scale trends are

removed. Here emerges a possible trade-off between describing the distribution of bird

abundance and detecting urbanization-related changes. If the primary goal is to model the

abundance of these species in this particular landscape, then factoring in spatial location,

in addition to the effect of urbanization influence, may be adequate. The remaining

residuals were uncorrelated, so the models should be appropriately specified. Given the

distinct urbanization gradient, however, such a model diminishes the potential for

detection of urbanization influences. If autocorrelation is thought to occur over large

distances, than this spatial dependence can instead be explicitly incorporated in a spatial

covariance model.
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The decision to de-trend a variable, in cases such as this when the trend is not obvious,

depends on the assumptions made about the system. Here, because the birds under study

are fairly widespread and common throughout the Santa Monica Mountains, and the

vegetation types in which I sampled were similar for all sites, I would expect urbanization

and landscape pattern to cause more variation in abundance than spatial location per se.

Directional semivariograms indicated that trends in bird abundance were primarily driven

by east-west variation (Figure 2.6), but after factoring out urbanization, north-south

autocorrelation was responsible for remaining large-scale dependence in Wrentit,

mockingbird and gnatcatcher abundance (Figure 2.8). These results suggest that east-west

trends were primarily urbanization-related, while north-south trends were likely due to

natural features. Anisotropic covariance models, explicitly incorporating direction, as

well as distance, may therefore be more appropriate for these species. Furthermore, the

use of local spatial statistics (Getis and Ord 1992, Anselin 1995, Bao and Henry 1996)

may help identify specific regions of autocorrelation.

2.5. Conclusion

Fundamentally, spatial autocorrelation in nature is caused by unknown factors that could

potentially be measured and modeled explicitly, as many have done, particularly in small-

scale studies. Measuring these unknown variables is often infeasible or impractical,

however, especially when they involve things like animal behavior, indirect effects of

biotic interactions, and time lags. Furthermore, such "bottom-up" approaches may

sacrifice generalizability for detail (Wiens 1989, Root and Schneider 1995).

In this study, landscape-level urbanization influences on bird abundance were the primary

focus of interest, while habitat type (i.e., vegetation) were kept constant. Although other

potential explanatory variables could certainly be measured (and some were, with no

significant associations found), small-scale autocorrelation, which has a large stochastic

component, is difficult to predict. Thus, in the absence of the elusive "right" variables,
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This study provides an example of how spatial statistical methods can be used to control

for spatial structure in analyzing relationships between spatially distributed variables. The

methods used helped confirm my conclusions regarding the influence of urbanization on

bird abundance, while also providing further insight into the spatial structure of the bird

populations examined.
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Table 2.1. Non-spatial and detrended models for bird abundance. P is the regression
coefficient for the effect of urbanization proportion within a surrounding radius (500m for
Wrentit; 1000m for Black-headed Grosbeak; 2000m for Northern Mockingbird; 4000m
for Blue-gray Gnatcatcher).

OLS model:
bird abundance

urbanization
measures

Trend model
residuals ~

urbanization
measures

Trend model: bird abundance /
urbanization measures-~

x,y coordinates
(x = east/west, y =north/south)

Wrentit

p ±S.E.
(p-value)

F-statistic
(p-value)

R2w

-7.83 ± 1.41
(<0.0001)

30.61
(<0.0001)

0.23

-3.82 ± 1.24
(0.003)

9.43
(0.003)

0.08

Northern
Mockingbird

3 ±S.E.
(p-value)

F-statistic
(p-value)

R2w

Black-headed
Grosbeak

p ±S.E.
(p-value)

F-statistic
(p-value)

R2w

Blue-gray
Gnatcatcher

S±S.E.

(p-value)

F-statistic
(p-value)

R2w

Significant effects
(p<0.05)

F-statistic
(p-value)

R2w

Significant effects
(p<0.05)

F-statistic
(p-value)

R2

x, y, x*y

18.36
(<0.0001)

0.35

x, y, x*y

10.67
(<0.0001)

0.24

3.42 ± 0.40
(<0.0001)

72.05
(<0.0001)

0.41

1.65 ± 0.43
(<0.0001)

14.89
(<0.0001)

0.12

-1.98 ± 0.48
(<0.0001)

17.33
(<0.0001)

0.14

-0.89 ± 0.24
(<0.0001)

14.31
(<0.0001)

,0.12

-0.97 ± 0.47
(0.042)

4.23
(0.042)

0.04

-0.04 ± 0.22
(0.86)

0.03
(0.86)

0.00

Significant effects
(p<0.05)

F-statistic
(p-value)

R2

Significant effects
(p<0. 05)

F-statistic
(p-value)

R2

4.57
(0.005)

0.12

x, y, x*y

11.49
(<0.0001)

0.25
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Table 2.2. Non-spatial vs. spatial covariance models for Bird Abundance. P is the
regression coefficient for the effect of urbanization proportion within a surrounding radius
(500m for Wrentit; 2000m for Northern Mockingbird; 4000m for Blue-gray Gnatcatcher).

Non-Spatial Model Spatial Covariance Models

Wrentit

S±S.E.

(p-value)

-2 Log Likelihood

Range (p) ± S.E.
Nugget (a1

2) ± S.E.
Partial Sill (@2) ±S.E.

Model Likelihood Ratio
Chi-Square (p-value)

Northern Mockingbird

S±S.E.
(p-value)

-2 Log Likelihood

Range (p) ± S.E.
Nugget (a,2) ± S.E.
Partial Sill (a2

2) ± S.E.

Model Likelihood Ratio
Chi-Square (p-value)

Blue-gray Gnatcatcher

p ±S.E.

(p-value)

-2 Log Likelihood

Range (p) ± S.E.
Nugget (a) ± S.E.
Partial Sill (a2

2) ± S.E.

Model Likelihood Ratio
Chi-Square (p-value)

-7.83 ± 1.41
(<0.0001)

400.93

3.43 ± 0.41
(<0.0001)

241.85

-6.16 ± 1.78
(0.0008)

384.34

2000m
1.28 ± 0.51
1.45 ±0.29

16.59
(0.0009)

3.23 ± 0.74
(<0.0001)

.204.84

2000m
0.69 ± 0.22
0.10 ± 0.06

37.01
(<0.0001)

-0.59 ±0.44
(0.19)

161.68

4000m
0.09± 0.06
0.22 ± 0.04

8.27
(0.016)

-4.93 ± 1.82
(0.0078)

382.59

7000m
1.77 ± 0.81
1.65 ± 0.27

18.34
(0.0004)

2.96 ± 0.90
(0.0014)

210.39

9000m
2.30 ± 0.87
0.14 ± 0.06

31.45
(<0.0001)

-0.89 ± 0.23
(0.0003)

169.94
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Figure 2.1. Idealized Semivariogram Function (from Littell et al. 1996).
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Figure 2.2. Theoretical Semivariogram Models (from MathSoft 1996).
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(a) Uibanaon - Omnidirectional
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Figure 2.4. Empirical Semivariograms, 'y(h), for Urbanization Proportion (2000m radius).
East/West = 9O° azimuth, 450 tolerance; NorthlSouth = 00 azimuth, 450 tolerance. Lag
distance values represent averages distances between pairs of points within each 1000m
distance class.'*
* Sample sizes for each distance class in omnidirectional semivariograms:

Avg.dist. 361 1044 2038 3010 4024 5011 5980 7013 7950 8987 9989 10939 11972 13041

# Pairs 72 282 357 567 580 582 504 388 287 158 158 151 110 137

East/West:
Avg.dist. 379 1060 2033 3002 4024 5010 5994 7020 7973 9021 9989 10939 11972 13041

# Pairs 31 164 166 297 322 332 292 256 199 130 158 151 110 137

North/South:
Avg.dist. 348 1021 2043 3018 4025 5012 5960 6999 7898 8832
# Pairs 41 118 191 270 258 250 212 132 88 28
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(a) Wrentit - Omnidirectional
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Figure 2.5. Empirical Semivariograms, 'y(h), for Maximum 1997 Bird Abundance.
East/West = 900 azimuth, 450° tolerance; North/South = 00 azimuth, 450 tolerance. Lag
distance values represent averages distances between pairs of points within each lOO00m
distance class.*
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(g) Black-headed Grosbeak -Omnrictial
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Figure 2.5. (continued)
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* Sample sizes for each distance class in omnidirectional semivariograms:

Avg.dist. 361 1044 2038 3010 4024 5011 5980 7013 7950 8987 9989 10939 11972 13041

# Pairs 72 282 357 567 580 582 504 388 287 158 158 151 110 137

East/West:

Avg.dist. 379 1060 2033 3002 4024 5010 5994 7020 7973 9021 9989 10939 11972 13041

# Pairs 31 164 166 297 322 332 292 256 199 130 158 151 110 137

North/South:

Avg.dist. 348 1021 2043 3018 4025 5012 5960 6999 7898 8832

# Paurs 41 118 191 270 258 250 212 132 88 28
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Figure 2.6. Moran's I correlogram for Urbanization Proportion (2000m radius). Shaded
squares represent significant (p<0.05) autocorrelation. Lag distance values represent
maximum distances between pairs of points within each l000m distance class.*

** Sample sizes for each distance class:

Maximum
distance 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000

Number of 198 317 480 556 583 577 403 384 211 148 162 120 120
Pairs
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Figure 2.7. Moran's I correlograms for 1997 Maximum Bird Abundance. Shaded squares
represent significant (p<0.05) autocorrelation. Lag distance values represent maximum
distances between pairs of points within each lOG0m distance class.*

* * Sample sizes for each distance class:

Maximum
distance 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000

Number of
Pairs

198 317 480 556 583 577 403 384 211 148 162 120 120
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Figure 2.8. Empirical Semivariograms, 'y(h), for Non-Spatial Urbanization Model
Residuals. East/West = 900 azimuth, 450 tolerance; North/South = 00 azimuth, 450

tolerance. Lag distance values represent averages distances between pairs of points within
each 1 OO0m distance class. *
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Figure 2.8. (continued)
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* Sample sizes for each distance class in omnidirectional semivariograms:

Avg.dist. 361 1044 2038 3010 4024 5011 5980 7013 7950 8987 9989 10939 11972 13041

# Pairs 72 282 357 567 580 582 504 388 287 158 158 151 110 137

East/West:
Avg.dist. 379 1060 2033 3002 4024 5010 5994 7020 7973 9021 9989 10939 11972 13041

# Pairs 31 164 16.6 297 322 332 292 256 199 130 158 151 110 137

North/South:
Avg.dist. 348 1021 2043 3018 4025 5012 5960 6999 7898 8832

# Pairs 41 118 191 270 258 250 212 132 88 28
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Figure 2.9. Moran's I correlograms for Non-Spatial Urbanization Model Residuals.
Shaded squares represent significant (p<O.05) autocorrelation. Lag distance values
represent maximum distances between pairs of points within each lOO0m distance class."

** Sample sizes for each distance class:

Maximum
distance 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000

Number of
Pairs

198 317 480 556 583 577 403 384 211 148 162 120 120
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Figure 2.10. Empirical Semivariograms, y(h), for Detrended Urbanization Model
Residuals. East/West = 900 azimuth, 450° tolerance; North/South = 00 azimuth, 450°

tolerance. Lag distance values represent averages distances between pairs of points within
each 100O0m distance class. *
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Figure 2.10. (continued)
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* Sample sizes for each distance class in omnidirectional semivariograms:
Avg.dist. 361 1044 2038 3010 4024 5011 5980 7013 7950 8987 9989 10939 11972 13041

# Pairs 72 282 357 567 580 582 504 388 287 158 158 151 110 137

East/West:
Avgdist. 379 1060 2033 3002 4024 5010 5994 7020 7973 9021 9989 10939 11972 13041

# Pairs 31 164 166 297 322 332 292 256 199 130 158 151 110 137

North/South:

Avg.dist. 348 1021 2043 3018 4025 5012 5960 6999 7898 8832

# Pairs 41 118 191 270 258 250 212 132 88 28
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Figure 2.11. Moran's I correlograms for Detrended Urbanization Model Residuals.
Shaded squares represent significant (p<0.05) autocorrelation. Lag distance values
represent maximum distances between pairs -of points within each lOO0m distance class."

** Sample sizes for each distance class:

Maximum
distance 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000

Number of 198 317 480 556 583 577 403 384 211 148 162 120 120
Pairs
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