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The shape of two-dimensional 
space 

Alan L. Mackay 
School of Crystallography, Birkbeck College, University of London, Malet Street, 
London WC1 E 7HX, U.K. 

"There are indeed whole branches of mathematzcs dealing wtth the 
assessment of complexzty, whzch no one has the abthty or the tmagtnatton to 
make  use of for graspzng the bzologtcal sztuatton ... The dtfftculty about 
applyzng topologzcal analysts t o  embryontc development, for Instance, u 
that morphologtcal form may  change conszderably, .. . whzle zts topologzcal 
status remazns unchanged." [l] 

Genomics, so fashionable today, is only half of the secret of life. The other half of 
the secret is shape, form, morphogenesis and metamorphosis [l-41. The gene may 
prescribe what is synthesized, but the proteins appear and operate in a pre- 
existing environment that they then change. The first step towards life is the 
appearance of a micelle, with a spherical membrane, a surface that separates the 
world into inside and outside. 

We are here concerned with surfaces, with a particular subset of two- 
dimensional manifolds (a word that originally designated the intestines or bowels of 
an animal; an animal with its gut is toplogically a torus) embedded in three- 
dimensional Euclidean space, namely the non-self-intersecting, periodic minimal 
surfaces [5] of cubic symmetry, which separate the world into two regions as an 
infinite plane would do, but with much more complex topologies. Like the Platonic 
solids [6], these cubic surfaces are geometrical absolutes and have distinctive 
topologies but entail no arbitrary parameters (there are many more surfaces with 
other lower symmetries but these have one or more parameters on which the 
configuration depends; there will thus be critical parameters separating one 
topology from another and perhaps a complicated phase diagram). The objective is 
to enumerate at least some of these surfaces, for probably an infinite number answer 
to this description, to draw attention to their geometry and to point to some of their 
applications and occurrences on various scales between mega-engineering and 
nano-technology. These objects are solutions looking for problems. 

Minimal surfaces have, at every point, except at certain singular 'flat' 
points (which in fact define the surfaces), two principal curvatures, k ,  and kZ, which 
are equal and opposite. This is equivalent to requiring that the divergence of the unit 
normal to the surface should be zero. Their product, k,k,, the Gaussian curvature, is 
thus negative (or zero). From this it follows that the metric on the surface is not that 
of a plane but is non-Euclidean, in that the perimeter of a small circle is more than 
27rr and its area more than ar2  [if we consider a sheet of cells, where each cell 
requires more than six neighbours then, as the cells multiply, more area than is 
appropriate for a plane sheet is produced and the result is a structure like seaweed 



144 A.L. Mackay 

(e.g. Fucus letuca)]. This has the consequence that geodesic trajectories on the 
surface are usually chaotic and neighbouring geodesic trajectories may diverge with 
a certain Lyapunov coefficient. Each non-self-intersecting periodic minimal surface 
divides the world into two sub-spaces which may be either congruent (we refer to 
these as balanced) or different from each other. We may consider either the two sides 
of the surface or the two separated volumes as two parallel universes (cosmologists 
have also taken note of the properties of such surfaces). 

To introduce the ideas we illustrate the P-surface (where P is for primitive; 
Figure l), the simplest to apprehend, which was discovered by H.A. Schwarz in 
about 1865 [7]. A surface of zero mean curvature separates the world into two 
congruent domains. It is made up of elementary curved triangles (Figure 2 ) ,  the 
angles of which are 90°, 45" and 30" (adding up to less than 1 SO0), which are soap-film 
surfaces where the area of the film is minimized. The partial differential equation is 
simply div(n)=O, where n is the unit normal. Exact algebraic description [S-1 l], 
starting from the Weierstrass integrals, leads to elliptical functions, but an 
approximate description is simply cos(x)+cos(y)+cos(z)=0. The space group is 
Pm3m if the two sides of this triangle are different and Im7m if they are the same. The 
surface can also be regarded as being composed of catenoids between square frames. 

Figure 1 

Parallel red and blue universes 

The P-surface (due to H.A. Schwarz [7]) 
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Figure 2 

The asymmetrical unit of the P-surface, which is repeated by the 
kaleidoscopic cell 
The angles ore 90; 45" and 304 and the straight edge is a diad. 

This surface is close to the surface of zero electrical potential in the 
structure of CsCl and we may recall Maxwell's equation div(E)=O. Electrical 
equi-potentials in periodic arrangements of charges involve related surfaces. 

The connectivity of the triangles can be plotted in a stereogram (Figure 
3) in the hyperbolic space H2, showing that the two-dimensional space is non- 
Euclidean, but in this projection the circuits which exist in R3 are not apparent. 

There are several main ways of regarding these periodic minimal surfaces 
(PMS). The first is to identify the geometric components from which they might 
be considered to be assembled by analogy with combinatorial chemistry. A 
catenoid is a tubular tunnel, a soap-film surface, hung between two circular or 
polygonal rings. These components are catenoids, branched catenoids, polyhedral 

Figure 3 

Hyperbolic stereogram of the P-D-G-surfaces (in which angles are 
preserved) 
The stereogrom shows the local connections of the unit triangles, which have angles of 90: 45"and 304 
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joints and Scherk towers (intersecting planes sewn together with alternating 
catenoidal holes; see Figures 4 ,5  and 6). An assembly of intersecting planes can be 
converted into what might be a minimal surface in this way by removing the self- 
intersections. This is geometrical combinatorics and a few of the possible 
combinations can be refined to become exact minimal surfaces. In some cases 
networks can be converted to PMS by the expansion of links into catenoids. The 
simplest example of this is the diamond network, bonds in which expand to give 
the D-surface (also discovered by Schwarz). The D-surface is built up of catenoids 
between equilateral triangles and the sides of these triangles are diad axes, which 
repeat the surface to fill space. 

There are two classes of PMS, balanced and unbalanced, i.e. those where 
the two sub-spaces, and hence their networks of tunnels, are identical, and those 
where they are different. In space groups with diad axes, which frame the patches, 
giving balanced surfaces (probably 24 in number), the two sub-spaces must be 
congruent. In the case of Schoen's gyroid the diad axes are perpendicular to the 
surface and the two sub-spaces are inversion images of each other. The number in 
the balanced class is probably finite and the number in the unbalanced class 
appears indefinitely large. 

Since we are dealing with soap-film surfaces, which have a surface 
tension, then conditions for mechanical equilibrium apply. For example, in a 
tetrahedral asymmetrical region, bounded by four mirror planes, the lines of action 
of the forces that act normally to these planes must run through a common point; 
since the films intersect the mirrors normally, the forces, i.e. the lengths of the 
surface intersecting the mirror, must be of a magnitude proportional to the areas of 
the faces. The tetrahedron itself is the Maxwell polyhedron of forces. Although 
small regions of each surface are of minimal area, the structures as a whole are 
unstable and would collapse instantly unless there were a supporting framework. 

Figure 4 

The square catenoid 
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Figure 5 

A Scherk tower 

Figure 6 

A tetrahedral vertex 
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For the catenoid suspended between two rings (Figure 4) there is a 
critical distance of separation beyond which no minimal surface is possible. For a 
lesser separation there are two solutions, a stable one with a larger waist and an 
unstable one with a smaller waist. Each has H=O everywhere. Willmore surfaces 
are those for which the integral of H2  over the surface is a minimum, and PMS are 
a special case of this. 

In connection with this we may ask how far a tetrahedral joint of soap- 
films intersecting the faces normally may be deformed. The tetrahedral network 
of sodalite is somewhat beyond this limit, so that, although it looks a promising 
structure, it is not an exact minimal surface. 

The second way to regard PMS is to begin with the asymmetric region in 
a particular cubic space group and to hang a patch of surface across this region, 
usually a tetrahedron or a simple polyhedron, in conformity with the symmetry 
elements which repeat the region round to fill all space. In the simplest case the 
asymmetric region is a kaleidoscopic cell and all its faces are mirror planes, which 
an element of surface must intersect normally. Where diad axes occur the film 
must have straight lines and the surface may be called balanced. There may be two 
or  perhaps more ways of choosing the diad axes to bound a soap film. If the P- 
surface is one way, then the second way is called the complement of P, abbreviated 
to C(P). Various catenoids and branched catenoids may then connect the patches 
bounded by straight lines in less obvious ways. 

The third method is to consider the structure factor gaphs  for the 
various space groups [12]. These are contours for which a particular structure 
factor, the sum of symmetry-related sine waves of density, is strong or zero. This 
concept was introduced by W.L. Bragg and H.  Lipson in 1936 [I31 for solving 
crystal structures, but they could then compute only two-dimensional graphs. 
These contours have a direct connection with the placing of the scattering atoms. If 
all the atoms lie in such a surface then the corresponding structure factor will show 
up very strongly in the X-ray diffraction patterns. We have more recently been 
reminded of the structural implications of such surfaces by Brenner et al. [14]. It is 
now easy with the Mathematica program ContourPlot3D to plot f(x,y,z)=O, the 
zero-level contour of a function, but more difficult to plot a maximum. 

Some of these three-dimensional phase contours can be refined to 
become exact PMS but in any case they suggest surfaces of fascinating and 
intricate topologies. The adjustment can be expressed by adding further structure- 
factor terms to make up the nodal surface function f(x,y,z)=o to approach with 
any required degree of accuracy the condition H=O. 

Fourthly, K.A. Brakke has developed a method of adjoint or conjugate 
surfaces [l51 to produce, with A.H. Schoen, several series of new surfaces, which 
may be seen on his website (http://www.susqu.edu/facstaff/b/brakke). Surfaces 
such as the P-, G- and D-surfaces are related to each other by the Bonnet transfor- 
mation and this process can be applied more generally. 

For a few surfaces it is possible to give an exact description in terms of 
the Weierstrass integrals, but in general it is necessary to use approximate 
methods, particularly the remarkable finite-element-analysis program Surface 
Evolver, developed by Brakke and made freely available (see [l61 and 
http://www.susqu.edu/facstaff/b/brakke), which solves almost all problems to do 
with surface tension for both stable and unstable surfaces. 
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We are here engaged in combinatorics with strong limitations. An 
instructive analogy is provided by the Inorganic Crystal Structure Database 
(ICSD). How many different crystal structures can be formed with N different 
chemical elements (each atom in a proper place; solid solutions being excluded)? A 
naive expectation would be a rapid rise, such as factorial N,  but the data (Figure 7) 
show that, after a maximum at three elements, the numbers drop off very rapidly. 
Complexity is thus severely limited. Examination of the unit cell dimensions of 
crystals shows similar limitations, and large unit cells are rare and usually hierar- 
chical in structure (being simple assemblies of complex units). The plotted values 
fit reasonably to the calculated curve, which points in an interesting direction. The 
curve is, in fact, the distribution of energy against frequency for the modes of 
electromagnetic waves inside a black-body cavity. This was found by Max Planck 
{n3/(exp[n/t]- l)} as a solution to the "ultraviolet catastrophe" problem implicit in 
the earlier theory of Rayleigh, and this solution involved the postulation of the 
quantization of the energies of modes of vibration. That is, this curve first led 
Planck to quantum theory, so that it is tempting to suggest that the frequency 
curve of the occurrence of spatial structures is a consequence of a corresponding 
spatial atomicity (a similar phenomenon is perhaps to be seen in the very limited 
number of circuits emerging in the randomly connected dynamic networks of 
Stuart Kauffmann; at certain connectivities they go periodic with surprisingly 
small periods [17]). Undoubtedly the requirement that a structure should exist in 
three-dimensional space is extremely stringent and we have a kind of Democritean 
Exclusion Principle: no two atoms can have the same X, y, z and t co-ordinates (t 

representing the time dimension). A ruler or a crystalline repeat period must be 
either N or N+ 1 atoms long. (E. Fredkin has suggested that space is grainy on the 

Figure 7 

Frequency distribution of inorganic crystal structures having N different 
elements 
The curve of Plonckf law of block-body emission versus frequency is shown.The maximum for N=3 is 

opprox. 19 000. 
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scale of the Planck length and that an infinite number of digits cannot be 
contained in an infinitesimal cube. Quasicrystal structures result when repeat 
periods are incommensurable. Fredkin implies that the square root of 2 must be in 
pfactice rational [li'a].) The analogy is suggestive rather than rigorous. 

As regards the various PMS we believe that the theoretical number is 
unlimited, but that when it comes to those actually realized by natural systems, the 
number is very small. Figure 8 shows a selection of the surfaces and Table 1 is a 
exhaustive list of the balanced surfaces. The P-, D- and G-surfaces are those most 
frequently observed and are the simplest. The rapidity with which the finite- 
element program converges in these shows why they are preferred by natural 
systems. Brakke's program [l61 can show the eigenvalue structure of the 
refinement, which indicates the topography of the parameter space. 

Methods have now been developed for characterizing networks in three 
dimensions by the Delaney-Dress symbol [18], which acts as a kind of inorganic 
gene, a linear symbol from which the network can be reconstructed. This concept 
has been applied by E.A. Lord to the more limited structure of a patch hung 
across the asymmetric unit of a cubic space group, often a tetrahedron, to give a 
unique name to each kind of surface. The nomenclature of the PMS is still fluid, 

Figure 8 

(contd.) 

Stereo pair views of representative surfaces 

4 
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Figure 8 
(contd.) 

(contd.) 
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(a) The D-surface (due to H.A. Schwarz; bolanced). (b) The G-surface (A.H. Schoen's gyroid surface; 

mirror-image regions). (c) C(?), the complement of P (E.R. Neovius'surface; balanced). (d) P3a, a new 

surface due to E.A. Lord (balanced). (e) Yb, a new surface due to €.A. Lord (balanced). ( f )  C(Djc [the 

C(D)IH surface ofW Fischer and E. Koch; balanced]. (g) Dpa, a new surface due to E.A. Lord (balanced). 

(h) C(Y) due to W Fischer and E. Koch (bolanced). (i) OCTO, on unbalanced surface due to A.H. Schoen. 

(1) FRD, an unbalanced surface due t0A.H. Schoen. (k) A more complex surface, unbalanced, based on 

the Costa minimal surface, developed by E.A. Lord. 

but most of the surfaces actually observed have names, mostly those rather 
idiosyncratically given by A.H. Schoen [l91 who systematically organized the 
situation in about 1965, and these have usually stuck. However, with more and 
more surfaces appearing some systematic organization is desirable. 

Table 1 (E.A. Lord and A.L. Mackay, unpublished work) shows a list 
of the balanced surfaces. The data comprise, for each of the balanced surfaces: (i) 
the space-group pair, the space group of the surface if both sides are the same 
and the space group if the two sides are distinguishable; (ii) the arbitrary name 
of the surface; (iii) the genus for a unit cube - the numbers of faces, vertices and 
edges of the network of the polygonized surfaces are connected by F+ V-E=X 
and genus=g=(2-X)/2 and related numbers are provided by the Evolver 
program (the genus can also be defined as the number of cuts which can be made 
through the surface without separating it into disjunct pieces; the genus of a 
polyhedron is zero and that of a torus is one), but these need to be used with - .  

care - the definition of genus for a periodic polyhedron is somewhat 
ambiguous and is genus per unit cell, counting F, V and E per unit cell, thus 
depending on whether the primitive or the unit cube cell is chosen. The area is 
that of the surface within a unit cube, and the flat points designate umbilical 
points, where the principal curvatures are zero. 

In the 1960s A.H. Schoen [l91 revived interest in PMS and produced a 
study for NASA of about 18 such surfaces, most of which he had discovered 
himself, which might be useful for space structures. W. Fisher and E. Koch 
[20-261, starting from their intense study of the 230 space groups, systematically 
organized the topic from a ~r~stallographic point of view, and discovered several 
new surfaces. Other mathematical authors have also greatly developed the subject 
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Table l (contd.) 
Flat points 

Name, space group and reference Genus Area Type l Type II Type Ill Order 

P2b (new) 15 3.61 5 f (1/2,1/2.~) 0.061 2 2 
h (x,'/2,0) 0.3395 0 

Pn3m-P43m 

P3a (new) 

D E71 
C(D) 1191 
D'a (new) 

C(D)a (new) 

DC (new) 

g (xy,-X) 0.21 1 

Triply periodic minimal balanced surfaces with cubic symmetry (generated by finite patches with straight-edged boundaries) (contd.) 



Table l (contd.) 
Flat points 

Name, space group and reference Genus Area Type l Type II Type Ill Order 
C(D)c [20-261 'C(D)/H' 27 j (l/4+~,~/4,x- '14) 0 

k (x,x,z) 

k (~9~9-Y) 
D3a (new) 31 3.877 e (x,O,O) 0.205 2 

g (XJ, -X) 0.1 024 1 
D2a (new) 35 4.698 g (X,XJ) 0.1 56 1 

g (x3,-X) 0.1 10 1 
P4,32-Fq1 32 

b (1/4,1/4,1/4) 1 
d ('/2,'/2,0) 0 
e (1/2,1/4,0) 0 
f (1/4,1/2,0) 0 

D2'c (new) 17 g (xJ,~) 0.02 1 
1 ('14 1/4+x~-1/4) 0.2 0 

P43m-F43m 
c ('/2,'/2,0) 0 
d ('/2,0,0) a 0 

Db (new) 2.594 e (XJJ) 0.1 0 1 
g ('/2,1/23) 0.21 0 

Fd5m-F45m 
c (1/8,1/8,118) 

Triply periodic minimal balanced surfaces with cubic symmetry (generated by finite patches with straight-edged boundaries) (contd.) 
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with the appearance of the computer, and computer graphics have now even 
reached mathematicians. 

Materials on all scales with regular arrays of pores have become 
important. The zeolites, with tunnels in the 10 A range, are silicate cages used for 
the cracking and reforming of oil molecules. Their annual commercial production 
is on the megaton scale. Larger tunnels can be by electron-beam etching 
or mechanical drilling and, for large-scale structures, by the joining of tiles. O n  all 
these scales the passage of particles and of electromagnetic waves and of acoustic 
waves is of interest. 

A number of surfaces have been observed in liquid-crystal phases, in 
polymer interfaces and in biological structures such as aetioplasts and the lipids 
found in the lungs of the newborn infants. There is a large literature on the 
subject; see [27,28]. 

In principle the use of this PMS geometry for electronic circuit boards is 
attractive, although clearly manufacture would be prohibitive. Plastic models of 
PMS with repeats of about 5 cm have been made by stereo-lithography, a 
technique that is still developing rapidly. The necessary ".STL files can be 
generated using Mathematica. 

There are obvious applications of PMS in heat exchangers, or two liquid 
phases could be kept separate until the interface collapsed, leaving them intimately 
mixed. It seems that the flow of a fluid across a surface of negative Gaussian 
curvature cannot be laminar but must become turbulent. It might be noted too 
that with a uniform current of a gas passing through the P-surface an element of 
the gas must expand and contract by a factor of four, Bernouilli's theorem 
requiring corresponding local changes in velocity. It is possible that ram-jet effects 
or 'acoustic engine' properties might be generated with lo~alized inputs of heat, 
like the negative drag radiator of the Spitfire aircraft. 

There are also interesting mechanical properties that have yet to be 
investigated, but methods of manufacture are a great problem. Design and art 
applications are less stringent [29]. 

In  other contexts m y  collaborator Eric Lord, now at the Indian Institute of Science 
in  Bangalore, India, has appeared as co-author and this work would have been 
almost impossible without him. W e  are both indebted to the Indian Institute of 
Science for their warm hospitality. The computer programs Surface Evolver b y  
K.A. Brakke and Mathematica 3.0, due to Stephen Wolfram, are the indispensible 
tools that we  have used here. During this programme we  have receivedfinancial 
help from the RoyalSociety and from the Universite' de Paris-Sud. 
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