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1 Introduction

In several settings, heterogeneous agents make dynamic choices with rewards determined by mar-

ket prices or aggregate externalities. Those prices and externalities are in turn determined as the

aggregates of the decisions of all agents in the market, and because there are sufficiently many

agents, each ignores their impact on these aggregate variables. The equilibrium in general takes

the form of a stationary distribution of decisions (or state variables such as assets), which remains

invariant while each agent experiences changes in their decisions over time as a result of their type

and stochastic shocks. Examples include: (1) Bewley-Aiyagari style models (e.g., Bewley (1986),

Aiyagari (1994)) of capital accumulation in which each household is subject to idiosyncratic la-

bor income shocks and make saving and consumption decisions taking future prices as given (or

the related Huggett (1993) model where savings are in a zero net-supply risk-free asset). Prices

are then determined as a function of the aggregate capital stock of the economy, resulting from

all households’ saving decisions. (2) Models of industry equilibrium in the spirit of Hopenhayn

(1992), where each firm has access to a stochastically-evolving production technology, and decides

how much to produce and whether to exit given market prices, which are again determined as a

function of total production in the economy. (3) Models with aggregate learning-by-doing exter-

nalities in the spirit of Arrow (1962) and Romer (1986), where potentially heterogeneous firms

make production decisions, taking their future productivity as given, and aggregate productivity

is determined as a function of total current or past production. (4) Search models in the spirit of

Diamond (1982) and Mortensen and Pissarides (1994) where current production and search effort

decisions depend on future thickness of the market.1

Despite the common structure across these and several other models, little is known in terms

of how the stationary equilibria responds to a range of shocks including changes in preference and

production parameters, and changes in the distribution of (idiosyncratic) shocks influencing each

agent’s decisions. For example, even though the Bewley-Aiyagari model has become a workhorse

in modern dynamic macroeconomics, most works rely on numerical analysis to characterize its

implications.

In this paper, we provide a general framework for the study of large dynamic economies, nesting

the above-mentioned models (or their generalizations) and show how “robust” comparative statics

of stationary equilibria of these economies can be derived in a simple and tractable manner. Here

“robust” comparative statics refers to results, in the spirit of those in supermodular games, that

1Both models under (3) and (4) are typically set up without individual-level heterogeneity and with only limited
stochastic shocks, thus stationary equilibria are often symmetric allocations. Our analysis covers significant gener-
alizations of these papers where agents can be of different types and are subject to idiosyncratic shocks represented
by arbitrary Markov processes.

1



hold with minimal functional form restrictions and without necessitating knowledge of specific

functional forms and parameter values. Such results are particularly useful in pinpointing the

economic forces at work and can naturally complement results in the existing literature on this

class of economies which generally focus on simulations and numerical analysis.

Our first substantive theorem establishes monotonicity properties of fixed points of a class of

mappings defined over general (non-lattice) spaces. In particular, it establishes that the set of fixed

points of an upper hemi-continuous correspondence inherits the various monotonicity properties of

the correspondence in question. This result is crucial for deriving comparative statics of stationary

equilibria in this class of models, since strategies correspond to random variables and are thus not

defined over spaces that are lattices in any natural order.

Our second set of results use this theorem to show how the stationary equilibrium of large

dynamic economies respond to a range of exogenous shocks affecting a subset or all economic

agents. Examples include changes in the discount factor, the borrowing limits, the parameters

of the utility function (e.g., the level of risk aversion), and the parameters of the production

function in the Bewley-Aiyagari model, as well as changes in the fixed costs of operation and

the parameters of the production function in the Hopenhayn model. In each case, we show that,

under minimal and natural assumptions, changes that increase the action of individual agents

for a given sequence of market aggregates translate into an increase in the greatest and least

stationary equilibrium aggregates (even though as we discuss below it is generally not true that

these changes will increase individual actions in equilibrium).

Our third set of results turn to an analysis of the implications of changes in the Markov

processes governing the behavior of stochastic shocks. Examples here include first-order stochastic

dominance changes or mean-preserving spreads of the stochastic processes affecting the labor

incomes of households in Bewley-Aiyagari style models or productivity shocks in the Hopenhayn

model. To the best of our knowledge, Huggett (2004) is the only other work studying comparative

statics with respect to distributions or risk in this class of models, but he does so focusing on

a purely partial equilibrium setup. Our results provide powerful tools for understanding how

the stationary equilibrium distributions respond to changes in the law of motion of idiosyncratic

shocks in general. Economically, this allows us to address important questions such as how more

uncertain earnings prospects affect output-per-worker when agents are borrowing constrained.

In each case, our results are intuitive, easy to apply and robust — even though to the best

of our knowledge no similar results have been derived for any of the specific models or for the

general class of models under study here. A partial exception is the work by Miao (2002), which

we discuss in the next section.
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A noteworthy feature of our results is that in most cases, though how aggregates behave can

be known robustly, very little or nothing can be said about individual behavior. Thus regularity

of (market) aggregates is accompanied with irregularity of individual behavior. This highlights

that our results are not a consequence of some implicit strong assumptions — in particular, large

dynamic economies are not implicitly assumed to be monotone economies (Mirman et al (2008))

— but in the spirit of the famous correspondence principle follow because of the discipline that

the market imposes on prices and aggregates.

Our paper is related to two literatures. First, we are building on and extending a variety

of well-known models of large dynamic economies, including Bewley (1986), Huggett (1993),

Aiyagari (1994), Jovanovic (1982), Hopenhayn (1992), Ericson and Pakes (1995). Though some

of these papers contain certain specific results on how equilibria change with parameters (e.g.,

the effect of relaxing borrowing limits in Aiyagari (1994) and that of productivity on entry in

Hopenhayn (1992)), they do not present the general approach or the robust comparative static

results provided here. In particular, to the best of our knowledge, none of these papers contain

comparative statics either with respect to general changes in preferences and technology or with

respect to changes in distributions of shocks, in particular mean-preserving spreads.

Second, our work is related to the robust comparative statics literature including Milgrom and

Roberts (1994) and Milgrom and Shannon (1994). Selten (1970) and Corchón (1994) introduced

and provided comparative statics for aggregative games where payoffs to individual agents depends

on their strategies and an aggregate of others’ strategies. In Acemoglu and Jensen (2009), we

provided more general comparative static results for static aggregative games, thus extending

the approach of Milgrom and Roberts (1994) to aggregative games (the earlier literature on

aggregative games, including Corchón (1994), exclusively relied on the implicit function theorem).

In Acemoglu and Jensen (2010), we considered large static environments in which payoffs depend

on aggregates (and individuals ignored their impact on aggregates). To the best of our knowledge,

the current paper is the first to provide general comparative statics results for dynamic economies.

We believe that the results provided here are significant for several reasons. First, as dis-

cussed at length by Milgrom and Roberts (1994), standard comparative statics methods such

as those based on the implicit function theorem often run into difficulty unless there are strong

parametric restrictions, and in the presence of such restrictions, the economic role of different

ingredients of the model may be blurred. The existence of multiple equilibria is also a challenge

to these standard approaches. Second, most existing analyses of this class of dynamic general

equilibrium models rely not on comparative statics results but on numerical analysis, i.e., the

model is solved numerically for two or several different sets of parameter values in order to obtain
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insights about how changes in parameters or policies will impact equilibrium in general (see, for

example, Sargent and Ljungqvist (2004)’s textbook analysis of Bewley-Aiyagari and the related

Huggett models). The results that follow from numerical analysis may be sensitive to parameter

values and the existence of multiple equilibria, and they are also silent about the role of different

assumptions of the model on the results. Our approach overcomes these difficulties by providing

robust comparative static results for the entire set of equilibria, in the process clarifying the role

of different assumptions underpinning such results. We believe that these problems increase the

utility of our results and techniques, at the very least as a complement to existing methods of

analysis in these dynamic models, since they also clarify the economic role of different ingredients

of the model and typically indicate how these results can be extended to other environments.

The structure of the paper is as follows: Section 2 studies some applications. Section 3

describes the basic setup and defines (stationary) equilibria in this framework, and then establishes

their existence under general conditions. In Sections 4-5 we present our main comparative statics

results. In Section 6 we return to the main examples from Section 2 and use our result to derive

a variety of comparative statics results. Proofs are placed in Appendix I (Section 8.1). Appendix

II (Section 8.2) contains a short summary of some results from stochastic dynamic programming

used throughout the paper, and Appendix III (Section 8.3) discusses aggregation of risk through

laws of large numbers.

2 Some Examples

This section describes two applications in detail, namely the Bewley-Aiyagari model of saving

and capital accumulation, and Hopenhayn’s model of industry equilibrium. We also discuss how

our large dynamic economies framework can be applied to models from growth theory and search

equilibrium.

2.1 The Bewley-Aiyagari Model

Let Qt denote the aggregate capital-labor ratio at date t. Given a standard neoclassical production

sector, Qt uniquely determines the wage wt = w(Qt) and interest rate rt = r(Qt) at date t via

the usual marginal product conditions of the firm. Household i chooses their assets xi,t and

consumption ci,t at each date in order to maximize:

E0[
∞∑
t=0

βtvi(ci,t)]
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subject to the constraint:2

Γ̃i(xi,t, ci,t, zi,t, Qt) = {(xi,t+1, ci,t+1) ∈ [−bi, bi]× [0, c̄i] : xi,t+1 ≤ r(Qt)xi,t + w(Qt)zi,t − ci,t},

where zi,t ∈ Zi ⊆ R denotes the labor endowment of household i, which is assumed to follow a

Markov process, which may vary across households. In addition, bi is an individual-specific lower

bound on assets capturing both natural debt limits and other borrowing constraints. This paper’s

framework allows for both the case where bi is a fixed parameter, and situations with endogenous

borrowing limits where typically bi would be a function of the interest rate r(Q), the wage rate

w(Q), or both. For notational simplicity, we shall write bi for the borrowing limit even when it

is (indirectly) a function of the capital-labor ratio. bi is an upper bound on assets introduced for

expositional simplicity (it will not bind in equilibrium); and c̄i is an upper bound on consumption

also introduced for expositional simplicity. The latter two ensure compactness and avoid un-

necessary technical details, though it is worth noting that boundary/interiority/differentiability

type assumptions play no role in our comparative statics results. Also worth noting is that the

borrowing constraint bi need not bind for a consumer even if the minimal labor endowment shock

inf Zi occurs. Thus the setting nests the complete markets case as well as “mixed” cases where

borrowing constraints bind on or off the equilibrium path for some but not all consumers.

More importantly, we assume throughout that there is no aggregate uncertainty, in the sense

that total labor endowments in the economy is fixed, i.e.,∫
[0,1]

zi,tdi = 1,

where the mathematical meaning of this integral is discussed in Appendix III. Loosely, it can be

interpreted as the “average” of the labor endowment of households in the economy.

Note that households in this economy are not assumed to be identical—they could differ with

respect to their preferences, labor endowment processes, and borrowing limits. Assuming that vi

is increasing, we can substitute for ci,t to get:

E0[

∞∑
t=0

βtvi(r(Qt)xi,t + w(Qt)zi,t − xi,t+1)]

It is convenient to define:

ui(xi, yi, zi, Q, ai) ≡ vi(r(Q)xi + w(Q)zi − yi) ,

and

Γi(xi, zi, Q) = {yi ∈ [−bi, bi] : yi ≤ r(Q)xi + w(Q)zi}.
2 For example, the natural debt limit in the stationary equilibrium with rate of return r on the assets would be

bi = − zi,min

r−1
< 0.
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Finally, recalling that total labor endowment and the economy is equal to 1, the aggregate

capital-labor ratio at date t is defined as

Qt =

∫
[0,1]

xi,tdi. (1)

A stationary equilibrium will involve Qt = Q∗ for all t, and thus will feature constant prices.

Focusing on stationary equilibria, our general results establish results of the following form (in

case there are more than one stationary equilibrium, the statements refer to the greatest and least

aggregates). Note that in this setting any increase in Q∗ is also associated with an increase in

output per capita:

• If agents become more patient, Q∗ will increase. In particular, an increase in the discount

rate β will lead to an increase in the steady-state capital-labor ratio Q∗ (Theorem 6).

• Any “positive shock” (to any subset of the agents not of measure zero) will lead to an

increase in Q∗ (Theorem 5). Positive shocks are defined formally in Section 4.2, but the

economic idea is simple: positive shocks are those that increase individual actions given the

sequence of market aggregates, so that this result implies that any shock that encourages

a subset of individuals to take greater actions given all else translates into an increase in

market aggregates. Interesting economic examples of positive shocks include:

– A “tightening” of the borrowing constraints, i.e., an increase in bi.
3

– A decrease in marginal utilities, i.e., any increase in ai when vi = vi(ci, ai) and

D2
ciaiui ≤ 0. For example, if ai is the rate of absolute or relative risk aversion and

D2
ciaiui ≤ 0, an increase in risk aversion will be a positive shock.

– Any technological change that increases w(Q) and r(Q) for any fixed capital-labor ratio

Q. For example, if production is given by af(Q) where a is a scale parameter and f is

the intensive production function, an increase in a will be a positive shock.

• Increases in “earnings risk” leads to an increase in Q∗ provided that vi is strictly concave and

exhibits HARA (Carroll and Kimball (1996)). This class of utility functions includes, among

others, Constant Relative Risk Aversion (CRRA) and Constant Absolute Risk Aversion

(CARA) preferences. In particular, under these conditions, any mean-preserving spread to

(any subset of) the households’ stochastic processes will lead to an increase in Q∗ (Theorem

9).

3 When borrowing limits are endogenous (i.e., when bi is not a fixed parameter), a “tightening” means that bi
increases for all values of Q. For our results it is important that bi is a continuous function of Q (since w(Q) and
r(Q) will be continuous this is normally not an issue), but no other conditions (e.g., monotonicity or concavity) are
needed.
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In all of these cases, though the results are intuitive, we will also show that they cannot be

derived from studying individual behavior, and in fact, while market aggregates respond robustly

to these changes in the environment, very little or nothing can be said about the behavior of

specific types of individuals.

The Bewley-Aiyagari model has become a workhorse framework for macroeconomic analysis,

and there are many studies using it in a range of applied problems. Though much of this literature

computes equilibria of this model numerically using simulations and other numerical methods

(often for quantitative work or estimation), some papers, including Aiyagari’s original work,

study general properties of stationary equilibria. As already mentioned in the Introduction,

most notable are Huggett (2004) and Miao (2002). Huggett studies the role of increased earning

risk for an individual’s savings decisions, so his is a partial equilibrium analysis. Our results on

increased earning risk mentioned above naturally extend Huggett (2004) to a general equilibrium

environment.

In addition, Aiyagari (1994) studies the impact of changing borrowing limits on the station-

ary equilibria, and the same arguments are used more generally in Miao (2002). The strategy

of Aiyagari (1994) and Miao (2002) is as follows: First, using firms’ profit maximization condi-

tions, the wage rate is expressed in terms of the interest rate w = w(r). Second, an individual

consumers’ savings (capital supply) can be derived as a function of the sequence of interest rates

after substituting wt = w(rt) for the wage at each date in the budget constraint. Third, focusing

on an individual and keeping the interest rate stationary (rt = r all t), the effect of parameter

changes on the capital supply can now be determined. This part involves comparing fixed points

on non-lattice spaces,4 and to achieve this both Aiyagari (1994) and Miao (2002) place strong

assumptions on the problem in order to ensure that the strategy, x∗(r) say, is unique and sta-

ble.5 In particular, this requires cross-restrictions on preferences, technology, and the Markov

4Pinning down how an individual’s stationary strategy changes with a parameter always involves a fixed point
comparative statics problem since stationary strategies are fixed points of the adjoint Markov operator in stochastic
dynamic programming problems (see Stokey and Lucas (1989), p.317, or Appendix 8.2 for the more general case
of Markov correspondences). The adjoint Markov operator maps a probability distribution into a probability
distribution, and so its domain and range is not a lattice in any natural order (Hopenhayn and Prescott (1992)).
The comparative statics strategy used by Aiyagari (1994) or Miao (2002) — discussed in the next footnote — avoids
fixed point comparisons but only by assuming (restrictively) uniqueness and “stability”.

5Uniqueness and stability are obtained by invoking a “monotone mixing” property and Theorem 12.12 in Stokey
and Lucas (1989) or a variant thereof. With uniqueness and stability, the effect on stationary equilibrium of a
parameter change is straight-forward to compute since for fixed r, the sequence of random variables x∗t (r) after a
parameter change will be monotone and converge to the new stationary strategy. As mentioned in the previous
footnote, this observation makes a general fixed point comparative statics result such as our theorem 3 unneces-
sary — but at a high cost even in the Bewley-Aiyagari framework (proving uniqueness and stability of invariant
distributions is an incredibly difficult problem in general, so the approach obviously does not generalize to other
frameworks). Proving uniqueness and stability requires the Markov process of idiosyncratic shocks to be monotone
(this is not so in our case), borrowing limits must be exogenous and must bind for all levels of the interest rate
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process governing the labor productivity shocks. An important economic consequence of this is

that consumer heterogeneity (different types of consumers) cannot be addressed which excludes

framework such as that of e.g. Guvenen (2009) from study.6

Finally, given unique and stable stationary capital supplies, this approach then derives equi-

librium comparative statics results. The best way to understand both how this argument works

and its difficulties is to consider the supply and demand for capital in the economy as a function of

the interest rate. In particular, let S(r) denote (mean) aggregate capital supply and D(r) denote

the aggregate capital demand of the firms. Under natural assumptions (e.g., constant returns

to scale), D(r) is downward sloping everywhere. Aiyagari (1994) and Miao (2002) draw S(r) as

everywhere upward sloping (Figure IIb in Aiyagari (1994) and Figure 1 in Miao (2002)).

Figure 1: Demand and Supply as depicted by Aiyagari (1994) and Miao (2002).

Any changes in parameters, such as tighter borrowing constraints, that increase x∗(r) for

every level of interest r will shift the S (r)-curve to the right, and it is then straightforward to see

graphically that the aggregate capital-labor ratio will increase. It is on the basis of this argument

that Aiyagari (1994) and Miao (2002) conduct their comparative statics analysis. However, an

added complication—not formally tackled by these authors—arises: even with unique stationary

strategies for any given r, x∗(r), and therefore S(r), need not be monotone, and we may have the

situation in Figure 2 (note that this figure still assumes that individuals’ stationary capital supply

is uniquely determined given the interest rate). This is simply a consequence of countervailing

income and substitution effects, and without additional, fairly strong, assumptions, which of these

(neither is needed in our case), extensive differentiability assumptions are required to use the envelope theorem re-
peatedly (which is again not necessary in our approach), and various other fairly stringent assumptions are imposed
as discussed in the next footnote. Note also that stability in this context means that with r held fixed, individual
strategies converge to x∗(r). The need to impose this condition is an artifact of specific assumptions these papers
use, and is in fact not necessary as our analysis below demonstrates.

6Specifically, cross-restrictions are necessary because it is crucial for the Aiyagari-Miao type argument that when
the minimum labor endowment shock occurs, the borrowing constraint binds for all levels of the interest rate. See
for example Aiyagari (1993), p. 39, and also Miao (2002) whose Assumption 1.b. serves a similar purpose and is an
explicit cross-restriction. As mentioned, a consequence of this is that heterogeneity of agents cannot be addressed
generally. In particular, no (subset of the) agents can be borrowing unconstrained at any level of the interest
rate. Note in this connection that Miao (2002) allows for heterogenous consumers in his general description, but
Assumption 1.b. demands that consumers are identical for his general equilibrium analysis, cf. Remark 2.4.(ii).
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dominates cannot be known in general (put differently, the problem is that once the wage rate

has been eliminated through the relationship w(r), the supply of capital is no longer increasing

in the interest rate).

Figure 2: Possible Demand and Supply Diagram without restrictions on income and substitution
effects.

This creates additional challenges for the approach that has been utilized in the literature so

far. 7

We will see that, in addition to avoiding these problems, our approach both dispenses with

the strong assumptions needed for ensuring uniqueness and stability, and enables us to work

with a considerably more general setup. This generality has economic content: for example, our

comparative statics results still apply when borrowing constraints are endogenous or do not always

bind, or when agents are heterogenous as in Guvenen (2009). This is so even though, as already

noted above, there is little that can be said about individual behavior.8 This highlights that, as

we explain below, the robust comparative static results leverage the discipline that the market

imposes on aggregates and prices, and the regularity of the behavior of market aggregates coexist

with irregularity of individual behavior. These ideas can only be brought out by considering a

more general setup as we do in this paper.

2.2 Hopenhayn’s Model of Entry, Exit, and Firm Dynamics

Here we will study the model of Hopenhayn (1992). Hopenhayn’s model of entry, exit, and firm

dynamics considers a continuum of firms I subject to idiosyncratic productivity shocks with

7In light of the proof of our Theorem 5 it is clear that what is needed to fill this gap is the results of Milgrom
and Roberts (1994). If one lets f(r) = D(r)−S(r) where now S is parameterized by, say, the borrowing constraint,
one will get the results on the greatest and least equilibria (here in terms of the interest rate). Using the interest
rate as the independent variable creates some problems, however. In particular, it is now critical that for some
large enough value of r (with β(1 + r) < 1), S(r) > D(r) must hold. In the monotone case of Figure 1 this property
is guaranteed by the existence of a stationary equilibrium, but in the non-monotonic case of Figure 2 it is not clear
from Aiyagari (1994) or Miao (2002) how this can be established.

8In contrast, when a monotone relationship between the interest and savings rate is assumed as in Figure 1,
individual behavior is pinned down in equilibrium from aggregate variables. In Section 4.3 we present similar
“individual comparative statics” results, but for our results on aggregate variables no such individual regularity is
needed.
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zi,t ∈ Z = [0, 1] denoting firm i’s shock at date t.

Upon entry, a firm’s productivity is drawn from a fixed probability distribution ν, and from

then on (as long as the firm remains active), its productivity follows a monotone Markov process

with transition function Γ(z,A).9 Let us respect attention to stationary equilibria where the

sequence of (output) market prices is constant and equal to p > 0. Then at any point in time,

the value of an active firm with productivity z ∈ Z is determined by the value function V which

is the solution to the following functional equation:

V (p, z) = max
d∈{0,1},x∈R+

{
(px− C(x, z)− c) + dβ

∫
V (p, z′)Γ(z, dz′)

}
(2)

Here C is the cost function for producing x given productivity shock z, and c > 0 a fixed cost paid

each period by incumbent firms. β is the discount rate, and d a variable that captures active firms’

option to exit (d = 1 means that the firm remains active, d = 0 that it exits). C is continuous,

strictly decreasing in z, and strictly convex and increasing in x with limx→∞C
′ (x, z) = ∞ for

all z. This ensures that there exists a unique function V that satisfies this equation. Let d∗(z, p)

and x∗(z, p) denote the optimal exit and output strategies for a firm with productivity z facing

the (stationary) price p. It is obvious that the firm will exit if and only if
∫
V (p, z′)Γ(z, dz′) ≥ 0.

Since V will be strictly decreasing in z, this determines a unique (price-dependent) exit cutoff

z̄p ∈ Z such that d∗(z, p) = 0 if and only if z < z̄p.

Any firm that is inactive at date t may enter after paying an entry cost γ(M) > 0 where M

is the measure of firms entering at that date, and γ is a strictly increasing function.10 Given p

and the value function V determined from p as described above, new firms will consequently keep

entering until their expected profits equals the entry cost:∫
V (p, z′)ν(dz′)− γ (M) = 0, (3)

where ν is the distribution of productivity for new entrants. Given p (and from there V ), this

determines a unique measure of entrants Mp. Given Mp and the above determined exit threshold

z̄p, the stationary distribution of the productivities of active firms must satisfy:

µp(A) =

∫
zi≥z̄p

Γ(zi, A)µp(dzi) +Mν(A) all A ∈ B(Z) (4)

where B(Z) denotes the set of Borel subsets of Z.11

9So given the shock zi,t at date t, the probability of the shock laying in the set A ⊆ Z at date t + 1 is
Γ(zi,t, A). Monotonicity means that higher productivity at date t makes higher productivity at date t + 1 more
likely (mathematically Γ(z′, ·) first-order stochastically dominates Γ(z, ·) whenever z′ ≥ z).

10This increasing cost of entry would result, for example, because there is a scarce factor necessary for entry (e.g.,
land or managerial talent). Hopenhayn (1992) assumes that γ(M) is independent of M . Our assumption simplifies
the exposition, but it is not critical for our results.

11 Hopenhayn (1992) refers to the measure µp as the state of the industry.
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The stationary equilibrium price level p∗ can now be determined as

p∗ = D[

∫
x∗(p∗, zi)µp∗(dzi)], (5)

where D is the inverse demand function for the product of this industry, which is assumed to be

continuous and strictly decreasing. This equation makes it clear that the key aggregate (market)

variable in this economy, the price level p, is determined as an aggregate of the stochastic outputs

of a large set of firms. In consequence, from an economic point of view it is intuitive that the

Hopenhayn model is a special case of our framework.

From a mathematical point of view, however, there is a slight difference between (5) and

equation (1) which determined the market variables in the Aiyagari-Bewley model. Specifically,

the right-hand side of (5) is not an integral of stochastic variables over a set of economic agents

represented by the set I (or some subset of [0, 1]). Nevertheless, this differences is of no conse-

quence. To see this, we can proceed as follows: Instead of x(p, zi), which can be seen as a random

variable defined across a set of heterogeneous firms, consider the random variable x̃i(p) drawn

independently for a set of N of firms from the distribution µp (on (Z,B(Z), µ)), where N ⊆ I is

the set of active firms. Now let the distribution of productivities across the active firms at some

date t be denoted by ηp : N → Z (where this mapping potentially depends on p). Then the

frequency distribution (image measure) is given by µp(A) = ηp{i ∈ N : ηp(i) ∈ A} where A is any

Borel subset of Z. Then ∫
N
x̃(ηp(i))di =

∫
Z
x∗(z, p)µp(dz).

In words, the expected output of the “average” active firm equals the integral of x∗(·, p) under

the measure µp. Therefore, (5) can be equivalently written as

p = H((x̃i(p))i∈I) ≡ D[

∫
i∈N

x̃i(p) di]

= D[

∫
xi(p

∗, zi)µp∗(dzi)],

which now has exactly the same mathematical form as (1), making it transparent how the Hopen-

hayn model is a special case of our framework.12

In this setting, our general results will lead to the following comparative static results for

market aggregates in stationary equilibria:

• A reduction in the fixed cost of operation c or an increase in the transition function Γ will

increase aggregate output and lower equilibrium price.

12Hopenhayn (1992) briefly discusses the difficulties associated with integrals across random variables and the
law of large numbers (Hopenhayn (1992), footnote 5 on p.1131). We discuss this issue in some detail in Appendix
III, in particular we explain there why Hopenhayn’s favored solution — which involves dependency across firms —
will not pose any difficulties for our analysis.
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• A first-order stochastically dominant shift in the entrants’ productivity distribution ν will

increase aggregate output and lower the equilibrium price.

• Positive shocks to profit functions, i.e., changes in parameters that increase the desired level

of production at a given price, will increase aggregate output and lower the equivalent price.

2.3 Additional examples

Several other models can also be cast as special cases of the framework presented here, enabling

ready applications of the comparative static results developed below. We describe these models

briefly in this subsection since, to economize on space and avoid repetition, we will not explicitly

show how our results can be applied for these models.

1. A variety of models where a large number of firms or economic actors create an aggregate

externality on others would also be a special case of our framework. A well-known example

of this class is Romer’s paper on endogenous growth where the aggregate capital stock of the

economy determines the productivity of each firm (Romer (1986)). Though Romer’s model

was deterministic and did not feature any heterogeneity across firms, one could consider

generalizations where such stochastic elements are important. For example, we can consider

a continuum I of firms each with production function for a homogeneous final good given

by

yi,t = f (ki,t, Ai,tQt)

where f exhibits diminishing returns to scale, is increasing in both of its arguments, and

Ai,t is independent across producers and follows a Markov process (which can again vary

across firms).13 Each firm faces an exogenous cost of capital R. Romer (1986) considered

an externality operating from current capital stocks, so that

Qt =

∫
ki,tdi.

One could also consider “learning by doing” type externalities that are a function of past

cumulative output, i.e.,

Qt =
t−1∑

τ=t−T−1

∫
yi,τdi,

for some T <∞. Under these assumptions, all of the results derived below can be applied

to this model.

13In Romer’s model f exhibits constant returns to scale, which can also be allowed here, but in that case the
relevant comparative statics are on the growth rate of Qt.
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2. Search models in the spirit of Diamond (1982), Mortensen (1982), and Mortensen and Pis-

sarides (1994), where members of a single population match pairwise to form productive

relationships, also constitute special case of this framework. In Diamond’s (1982) model,

for example, individuals first makes costly investments in order to produce (“collect a co-

conut”) and then search for others who have also done so to form trading relationships. The

aggregate variable, taken as given by each agent, is the fraction of agents that are searching

for partners. This determines matching probabilities and thus the optimal strategies of each

agent. Thus various generalizations of Diamond’s model, or for that matter other search

models, can also be studied using the framework presented below.

One relevant example in this context is Acemoglu and Shimer (2000), which combines el-

ements from directed search models of Moen (1997) and Acemoglu and Shimer (1999) to-

gether with Bewley-Aiyagari style models. In this environment, each individual decides

whether to apply to high wage or low wage jobs, recognizing that high wage jobs will have

more applicants and thus lower offer rates (these offer rates and exact wages are determined

in equilibrium is a function of applications decisions of agents). Individuals have concave

preferences and do not have access to outside insurance opportunities, so use their own

savings to smooth consumption. Unemployed workers with limited assets then prefer to

apply to low wage jobs. Acemoglu and Shimer (2000) assumed a fixed interest rate and

used numerical methods to give a glimpse of the structure of equilibrium and to argue that

high unemployment benefits can increase output by encouraging more workers apply to high

wage jobs. This model—and in fact a version with an endogenous interest-rate—can also

be cast as a special case of our framework and thus, in addition to basic existence results,

a range of comparative static results can be obtained readily.

3 Large Dynamic Economies

In the previous section we presented a number of special cases of the general class of large dynamic

economies. In this section we describe this class of models in detail, and prove existence of equi-

librium and stationary equilibrium. As in the model of Aiyagari (1994) and Bewley (1986), a key

feature is the absence of “aggregate risk” as captured by the fact that all interaction between the

agents takes place through a one-dimensional deterministic market aggregate (typically, aggregate

capital or a price variable). This raises the issue of how the idiosyncratic risk is eliminated at

the aggregate level, a question related to various versions of the Law of Large numbers. In this

section we give a brief summary of this issue, leaving a detailed discussion until Section 8.3 in the

Appendix.
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3.1 Preferences and Technology

The setting of our analysis is infinite horizon, discrete time economies populated by a continuum

of agents I = [0, 1].14 Each agent i ∈ [0, 1] is subject to (uninsurable) idiosyncratic shocks in

the form of a Markov process (zi,t)
∞
t=0 where zi,t ∈ Zi ⊆ RM . The only assumption we place on

(zi,t)
∞
t=0 is that it must have a unique invariant distribution µzi . A special case of this is when

the zi,t’s are i.i.d. in which case zi,t has the distribution µzi for all t.

For given initial conditions (xi,0, zi,0) ∈ Xi×Zi, agent i’s action set is Xi ⊆ Rn, and she solves:

supE0[
∑∞

t=0 β
tui (xi,t, xi,t+1, zi,t, Qt, ai)]

s.t. xi,t+1 ∈ Γi(xi,t, zi,t, Qt, ai) , t = 0, 1, 2, . . .
(6)

Here (6) is a standard dynamic programming problem as treated at length in Stokey and Lucas

(1989). ui : Xi×Xi×Zi×Q×Ai → R is the instantaneous payoff function, Γi : Xi×Zi×Q×Ai →
2Xi is the constraint correspondence, β is the agents’ common discount factor, ai ∈ Ai ⊆ RP is

a vector of parameters with respect to which we wish to do comparative statics, and Qt is the

market aggregate at time t discussed below. In this setting, a strategy xi = (xi,1, xi,2, . . .) is a

sequence of random variables defined on the histories of shocks, i.e., a sequence of (measurable)

maps xi,t : Zt−1
i → Xi where Zt−1

i ≡
∏t−1
τ=0 Zi.

15 A feasible strategy is one that satisfies the

constraints in (6), and an optimal strategy is a solution to (6). When a strategy is optimal, it

is denoted by x∗i . The following standard assumptions will ensure the existence of an optimal

strategy given any choice of Q, ai, and (xi,0, zi,0):

Assumption 1 β ∈ (0, 1) and for all i ∈ I: Xi is compact, ui is bounded and continuous, and

Γi is non-empty, compact-valued, and continuous.

Note that optimal strategies are not necessarily unique under Assumption 1 (in particular, no

convexity/quasi-concavity assumptions are imposed).

Let us next turn to the sequence of market aggregates Q = (Q0, Q1, Q2, . . .), Qt ∈ Q ⊆ R.

Each Qt is a deterministic real variable, and all market interaction takes place through these

14 Throughout, all sets are equipped with the Lebesgue measure and Borel algebra (and products of sets with the
product measure and product algebra). For a set Z, the Borel algebra is denoted by B(Z) and the set of probability
measures on (Z,B(Z)) is denoted by P(Z).

Although we consider for simplicity only I = [0, 1], our results hold for any non-atomic measure space of agents.
This includes a setting such as that of Al-Najjar (2004), where the set of agents is countable and the measure
is finitely additive (see Section 8.3 in the Appendix for further details). In fact, our comparative statics results
remain valid for economies with a finite set of agents, provided that appropriate assumptions are made to ensure
the absence of aggregate risk and existence of equilibrium (here we have not imposed concavity/convexity type
assumptions since the continuum plays a “convexifying” role).

15Economically, the map xi,t is a state-dependent contingency plan: Given a realized history of shocks zt−1
i ∈ Zt−1

i

the agent will choose xi,t = xi,t(z
t−1) at date t.
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aggregates. So in our setting there is no aggregate uncertainty (for a detailed discussion of this

feature see e.g. Lucas (1980), Bewley (1986), and Aiyagari (1994)). To get some understanding

of the definition to follow, imagine we are in the income-fluctuation setting of Aiyagari (1994)

and that Qt is the capital-labor ratio at date t. Profit maximization of a standard neo-classical

production technology entails rt = r(Qt) = f ′(Qt) and wt = w(Qt) = f(Qt) − f ′(Qt)Qt where f

is the intensive production technology, rt is the interest rate, and wt the real wage at date t. So

at any date t, the constraint of agent i depends only on Qt by way of the interest and wage rates:

Γi(xi,t, zi,t, Qt, ai) = {yi ∈ [−bi, bi] : yi,t ≤ r(Qt)xi,t + w(Qt)zi,t}. Note also that we might take

ai = bi and the comparative statics question would then be how a change in the borrowing limits

affect equilibria (already mentioned in Section 2.1). Alternatively, the exogenous parameters

could enter through the production technology (having f = f(Qt, ã) where then ai = ã for all i).

3.2 Markets and Aggregates

Having now explained the economic intuition behind the market aggregates, we can turn to how

they are determined. Recall that in the income-fluctuation setting just described, Qt is the capital-

labor ratio at date t. Since xi,t is savings of individual i at date t, clearing of the capital markets

therefore implies that Qt = H((xi,t)i∈I) where H((xi,t)i∈I) is the mean of the strategies:16

H((xi,t)i∈I) =

∫
[0,1]

xi,tdi. (7)

For applications, (7) is by far the most important example of a so-called aggregator as defined

next (see also Acemoglu and Jensen (2009, 2010)). For this paper’s results, we allow H to be a

general function as long as it is continuous and increasing as explained in a moment. There is

little loss of economic content in taking equation (7) as given and skip directly to the definition

of an equilibrium (Definition 2).

Now to the technical details: A function H that maps a vector of random variables (x̃i)i∈I

into a real number is said to be increasing if it is increasing in the first-order stochastic dominance

order �st, i.e., if H((x̃i)i∈I) ≥ H((xi)i∈I) whenever x̃i �st xi for all i ∈ I.17 This property is

trivially satisfied for the baseline aggregator (7). Finally, any topological statement relating to

sets of random variables (probability distributions), refer to the weak ∗-topology (see e.g. Stokey

and Lucas (1989), Hopenhayn and Prescott (1992)). The baseline aggregator above is continuous

with this topology on its domain.

16When Xi is multi-dimensional, we would usually generalize this by taking H((xi,t)i∈I) =
M(

∫
[0,1]

x1
i,tdi, . . . ,

∫
[0,1]

xNi,tdi) where M : RN → R is a continuous and coordinatewise increasing function.
17Let x̃i and xi be a random variables on a set Xi with distributions µ̃xi and µxi . Then x̃i first-order stochastically

dominates xi, written x̃i �st xi if
∫
Xi
f(xi)µ̃xi(dxi) ≥

∫
Xi
f(xi)µxi(dxi) for any increasing function f : Xi → R.
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Definition 1 (Aggregator) An aggregator is a continuous and increasing function H that maps

the agents’ strategies at date t into a real number Qt ∈ Q (with Q ⊆ R denoting the range of H).

The value,

Qt = H((xi,t)i∈I) , (8)

is referred to as the (market) aggregate at date t.

Remark 1 Note that if H is an aggregator, then so is any continuous and increasing transforma-

tion of H. Thus (7) represents, up to a monotone transformation, the class of separable functions

which is consequently a special case of this paper’s aggregation concept (see for example Acemoglu

and Jensen (2009) for a detailed discussion of separable aggregators).

The conditions in Definition 1 will naturally be satisfied for any reasonable aggregation pro-

cedure.18 This does not mean that there is no ambiguity, however. In fact, even with a functional

form such as (7), there is no universal agreement on how this expression should be defined. To

avoid unnecessary technical discussion at this point, we have relegated a detailed discussion of this

issue to Appendix III. Because we have simply defined an aggregator as a real-valued function,

we are in effect side-stepping this issue here which has the benefit of not committing us to any

specific way of integrating across random variables. In particular, our results’ validity are not

affected by the controversy surrounding aggregation of risk and the law of large numbers.19

3.3 Equilibrium

We are now ready to define an equilibrium in large dynamic economies:

Definition 2 (Equilibrium) Let the initial conditions (zi,0, xi,0)i∈I as well as the exogenous

variables (ai)i∈I be given. An equilibrium {Q∗, (x∗i )i∈I} is a sequence of market aggregates and a

sequence of strategies for each of the agents such that:

1. For each agent i ∈ I, x∗i = (x∗i,1, x
∗
i,2, x

∗
i,3, . . .) solves (6) given Q∗ = (Q∗0, Q

∗
1, Q

∗
2, . . .) and

the initial conditions (zi,0, xi,0).

2. The market aggregate clears at each date, i.e., Q∗t = H((x∗i,t)i∈I) for all t = 0, 1, 2, . . ..

18One technical detail that may be worth noting is that Qt as determined through an aggregator as above may
in some cases not be a real (deterministic) variable but rather a degenerate random variable placing probability 1
on some number Qt. Since agents maximize their expected payoffs, this distinction is of no importance.

19Our results are robust to all the standard specifications within this literature, including non-standard set-ups
such as that of Al-Najjar (2004) (see also footnote 14).
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With the baseline aggregator (7), which is simply an integral of the random variables cor-

responding to individual strategies, Assumption 1 is sufficient to guarantee the existence of an

equilibrium due to the convexifying effect of set-valued integration (Aumann (1965)). In partic-

ular, payoff functions need not be concave, and constraint correspondences need not have convex

graphs. With our general class of aggregators (not necessarily taking the simplified form of (7)),

we either have to assume this convexifying feature directly, or alternatively, we must impose con-

cavity and convex graph conditions on the agents. This is the content of the next assumption. To

simplify notation we shall from now on write ui(xi, yi, zi, Q, ai) in place of ui(xi,t, xi,t+1, zi,t, Qt),

and similarly we write Γi(xi, zi, Q, ai) for the constraint correspondence.

Assumption 2 At least one of the following two conditions hold:

• For each agent, Xi is convex, and given any choice of zi, Q, and ai: ui(xi, yi, zi, Q, ai) is

concave in (xi, yi) and Γi(·, zi, Q, ai) has a convex graph.

• The aggregator H is convexifying, i.e., for any subset B of the set of joint strategies such

that H(b) is well-defined for all b ∈ B, the image H(B) = {H(b) ∈ R : b ∈ B} ⊆ R is

convex.

Remark 2 In the previous assumption, a convexifying aggregator is defined quite generally. In

most situations, the statement that H(b) must be well-defined has a more specific meaning, namely

that b is a sequence of joint strategies that is measurable in the agents’ indices or across player

types (see Appendix III for further details).

We now have:

Theorem 1 (Existence of Equilibrium) Under Assumptions 1-2, there exists an equilibrium

for any choice of initial conditions (zi,0, xi,0)i∈I and any choice of exogenous variables (ai)i∈I .

As with all other results, the proof of Theorem 1 is presented in Appendix I.

3.4 Stationary Equilibria

Most of our results will be about stationary equilibria. The simplest way to define a stationary

equilibrium in stochastic dynamic settings involves assuming that the initial conditions (xi,0, zi,0)

are random variables. To simplify notation we use the symbol ∼ to express that two random

variables have the same distribution.
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Definition 3 (Stationary Equilibrium) Let the exogenous variables (ai)i∈I be given. A sta-

tionary equilibrium {Q∗, (x∗i )i∈I} is a market aggregate and a strategy for each of the agents such

that:

1. For each agent i ∈ I, x∗i = (x∗i , x
∗
i , x
∗
i , . . .) solves (6) given Q∗ = (Q∗, Q∗, Q∗, . . .), the

stationary process zi,t ∼ zi all t, and the randomly drawn initial conditions (xi,0, zi,0) ∼
x∗i × zi.20

2. The market aggregates clear (at all dates), i.e.,

Q∗ = H((x∗i )i∈I)

A market aggregate Q∗ of a stationary equilibrium will be referred to as an equilibrium aggre-

gate and the set of equilibrium aggregates given a = (ai)i∈I is denoted by E(a). The greatest and

least element in E(a) are referred to as the greatest and least equilibrium aggregates, respectively.

While Assumptions 1-2 imply existence of an equilibrium, they do not imply existence of

a stationary equilibrium. In fact, they do not even ensure that the individual agents’ decision

problems will admit a stationary strategy given a stationary sequence of market aggregates. Note

that in a stationary equilibrium, agent i faces a stationary sequence of aggregates (Q,Q, . . .)

and the stationary risk process zi,t ∼ zi (with distribution µzi). She then faces a stationary

dynamic programming problem whose value function vi is determined by the following functional

equation:21

vi(xi, zi, Q, ai) = sup
yi∈Γi(xi,zi,Q,ai)

[ui (xi, yi, zi, Q, ai) + β

∫
vi(xi, z

′
i, Q, ai)µzi(dz

′
i)] (9)

Given vi, we can then compute the (stationary) policy correspondence:

Gi(xi, zi, Q, ai) = arg sup
yi∈Γi(xi,zi,Q,ai)

[ui (xi, yi, zi, Q, ai) + β

∫
vi(xi, z

′
i, Q, ai)µzi(dz

′
i)] (10)

The stationary strategy x∗i = (x∗i , x
∗
i , . . .) of Definition 3 is a sequence of random variables such

that the distribution of x∗i is an invariant distribution for this stationary decision problem. The

next assumption will ensure that such a stationary optimal strategy exists given any stationary

sequence of market aggregates. As we then proceed to show, this together with assumptions 1-2,

is sufficient to guarantee that a stationary equilibrium exists.

Assumption 3 Xi is a lattice, and given any choice of zi, Q, and ai: ui(xi, yi, zi, Q, ai) is

supermodular in (xi, yi) and the graph of Γi(·, zi, Q, ai) is a sublattice of Xi ×Xi.

20Obviously, the probability distribution of zi is µzi (the invariant distribution of the Markov process governing
zi,t).

21A solution vi exists and is unique under Assumption 1, see Stokey and Lucas (1989).
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Remark 3 Fixing and suppressing (zi, Q, ai), Γi’s graph is a sublattice of Xi × Xi, if for all

x1
i , x

2
i ∈ X, y1

i ∈ Γi(x
1
i ) and y2

i ∈ Γi(x
2
i ) imply that y1

i ∧y2
i ∈ Γi(x

1
i ∧x2

i ) and y1
i ∨y2

i ∈ Γi(x
1
i ∨x2

i ).

When Xi ⊆ R (one-dimensional choice sets), this will hold if and only if the correspondence is

ascending in xi (Topkis (1978)), meaning that for all x2
i ≥ x1

i in Xi, y
1
i ∈ Γi(x

1
i ) and y2

i ∈ Γi(x
2
i )

imply that y1
i ∧ y2

i ∈ Γi(x
1
i ) and y1

i ∨ y2
i ∈ Γi(x

2
i ).

Assumption 3 implies that the policy correspondence of agent i, Gi(xi, zi, Q, ai), is ascending in

xi,t (defined formally in the previous remark).22 Precisely, for x2
i ≥ x1

i and yji ∈ Gi(x
j
i , zi, Q, ai),

j = 1, 2, we have y1
i ∧ y2

i ∈ Gi(x
1
i , zi, Q, ai) and y1

i ∨ y2
i ∈ Gi(x

2
i , zi, Q, ai).

23 Economically,

this means that the current decision is increasing in the last period’s decision. For example

in the Aiyagari model, higher past savings will increase current income and therefore lead to

higher current savings. In dynamic economies, this is typically a rather weak requirement (as

opposed to assuming that Gi is ascending in Qt which is highly restrictive). For example, in the

Bewley-Aiyagari model, the condition on Γi is trivially satisfied and we have ui(xi, yi, zi, Q, ai) =

ũi(r(Q)xi + w(Q)zi − yi) where ũi(ci) is agent i’s utility from the consumption ci; this implies

that ui will be supermodular in (xi, yi) if and only if the utility function ũi is concave.24

Theorem 2 (Existence of Stationary Equilibrium) Suppose Assumptions 1-3 hold. Then

there exists a stationary equilibrium and the set of equilibrium aggregates is compact. In particular,

there always exist a greatest and least equilibrium aggregate.

4 Main Results I: Changes in Exogenous Variables

In this section, we start with a new technical result that establishes monotonicity properties of

fixed points under sufficiently general conditions to be used in the context of the analysis of

comparative statics in large dynamic economies. We then use this result to derive three general

comparative statics results that determine how the set of stationary equilibrium aggregates (Def-

inition 3) changes in response to a change in various exogenous parameters. The first of these

derives the effects of changes in the exogenous parameters a = (ai)i∈I on the greatest and least

equilibrium aggregates. The second result shows how a change in the discount factor (“the level of

patience”) affects these equilibrium aggregates. Our third result tracks the effect of such changes

22An ascending mapping is the same as a mapping that is increasing in the strong set order, see for example
Milgrom and Shannon (1994).

23See Hopenhayn and Prescott (1992), Proposition 2 for a proof of this claim (Hopenhayn and Prescott consider
a slightly more general situation and also ensure that Gi will be ascending in zi which of course requires additional
assumptions. Nonetheless, one easily sees that their proof implies that Gi will be ascending in xi under assumption
3).

24This is true in general, but is easiest to see in the twice differentiable case: Since D2
xiyiui = −r(Q)ũ′′i , D2

xiyiui ≥
0 (supermodularity) holds if and only if ũ′′i ≤ 0 (concavity).
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on individual strategies but in order to prove such a result much more restrictive assumptions are

needed.

For our results on the aggregates, what is most striking is that we do not need to assume

anything about how the sequence of market variables (Q0, Q1, Q2, . . .) enters into the payoff func-

tions and constraint correspondences (aside from continuity, cf. Assumptions 1-2).25 So our

assumptions do not restrict us to “monotone economies” (see e.g. Mirman et al (2008)). Because

of this, we can not in general say anything about how the individual strategies will respond to

changes in exogenous parameters. Indeed, individual strategies’ response will in general be highly

irregular—unless we add additional monotonicity assumptions as indeed we are forced to do for

our individual comparative statics result. But at the market level, the irregularity of individual

behavior is nonetheless restricted so as to lead to considerable regularity in the aggregate.26

4.1 Monotonicity of Fixed Points

At the heart of our substantive results is a theorem that enables us to establish monotonicity of

fixed points defined over general (non-lattice) spaces. We start with this theorem. The technical

problem one faces when working with large economies is that when agents’ strategies are random

variables (probability measures), their strategy sets will generally not be lattices in any natural

order (Hopenhayn and Prescott (1992), p.1389).

Furthermore, for general equilibrium analysis, one cannot work with increasing selections

from optimal strategies, making it necessary to study the set-valued case in general.27 Theo-

rem 3 enables us to derive monotonicity results on non-lattice spaces. In the special case of the

Bewley-Aiyagari model this is sufficient to obtain powerful comparative static results (and also

bypass the difficulties faced by other approaches as discussed in Section 2.1).28 In general, individ-

25It is useful to note that our results are valid for a finite number of agents as long as these all take the market
aggregates as given. This reiterates that our results are not “aggregation” results that depend on the continuum
assumption.

26Note here that when doing comparative statics in general equilibrium one would be inclined to first try to pin
down the individual responses and then aggregate. What the previous discussion shows is that this is not a good
idea, in fact it will not work simply because individual responses are not in general well-behaved. The regular
comparative statics results we identify below are a feature of the market level and equilibrium forces impacting
aggregate variables.

27In general, increasing selections may not exist in the setting of the present paper, but more importantly, even
when they exist, general equilibrium analysis requires all invariant distributions to be taken into account (the reason
is that when market variables change, a property of a specific selection, such as this being the greatest selection,
may be lost). This makes it impossible to use such a result as Corollary 3 in Hopenhayn and Prescott (1992) which
concerns (single-valued) increasing functions.

28Note that even the simplest approach in the Bewley-Aiyagari model as discussed in Section 2.1 requires knowl-
edge of how stationary strategies (which are random variables!) change with parameters to pin down parameters’
effect on the aggregate/mean capital supply. In this respect, the approach illustrated in Figure 1 is not simpler than
ours - in fact, it is much more complex than our argument because it becomes necessary to establish uniqueness and
stability of stationary strategies — and this is a very difficult problem to tackle, even in the basic Bewley-Aiyagari
framework (cf. the Appendices in Aiyagari (1993) and Miao (2002)).
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ual’s stationary strategies will not be unique under our assumptions, making set-valued methods

necessary. Theorem 4 replaces standard selection procedures used in the monotone comparative

statics literature (where, for example, the least and greatest selections are often considered) with

an argument that instead selects directly on the set of equilibrium aggregates. Mathematically,

the idea of Theorem 3 is to use the fixed point results of Smithson (1971) instead of the stan-

dard Tarski fixed point theorem. The proof of Theorem 4 simply uses upper hemi-continuity and

standard results on existence of a maximum. As always, proofs are placed in Appendix I.

Comparative statics of equilibria (whether they are represented by vectors or distributions)

boil down to studying the behavior of the fixed points of some mapping F : X × T → 2X where

x ∈ X is the variable of interest. In most of our applications, x is a probability distribution, and

t ∈ T denotes exogenous variables with respect to which comparative statics will be conducted.

Mathematically, the question is how the set of fixed points

Λ(t) ≡ {x ∈ X : x ∈ F (x, t)}

varies with t.

When sets are not lattices, we cannot require that the mapping F is ascending (increasing in

the strong set order). In the setting of large dynamic economies we are in this situation because F

will be the adjoint Markov correspondence defined in Appendix III which maps probability mea-

sures into sets of probability measures. In Theorem 12 in Appendix III we prove that the adjoint

Markov correspondence will satisfy a weaker type of monotonicity properties due to Smithson

(1971):

Definition 4 (Type I and Type II Monotonicity (Smithson (1971))) Let X and Y be

ordered sets with order �. A correspondence F : X → 2Y is:

1. Type I monotone if for all x1 � x2 and y1 ∈ F (x1), there exists y2 ∈ F (x2) such that

y1 � y2.

2. Type II monotone if for all x1 � x2 and y2 ∈ F (x2), there exists y1 ∈ F (x1) such that

y1 � y2.

When a correspondence F is defined on a product set, F : X × T → 2Y , where T is also a

partially ordered set, we say that F is type I (type II ) monotone in t, if F : {x}×T → 2Y is type

I (type II) monotone for each x ∈ X. Type I/II monotonicity in x is defined similarly by keeping

t fixed. If F : X × T → 2Y is type I (type II) monotone in x as well as in t, we simply say that

F is type I (type II) monotone.
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Note that for a correspondence F to be type I or type II monotone, no specific order structure

for the values or domain of F is required.29 As mentioned, this is critical for the study of large

dynamic economies where F is an adjoint Markov correspondence.

The main result, upon which all of the rest of our results built, is

Theorem 3 (Comparing Equilibria) Let X be a compact topological space equipped with a

closed order �, T a partially ordered set, and let F : X ×{t} → 2X be upper hemi-continuous for

each t ∈ T . Define the (possibly empty-valued) fixed point correspondence Λ(t) = {x ∈ X : x ∈
F (x, t)}, Λ : T → 2X ∪ ∅. Then if F is type I monotone, so is Λ; and if F is type II monotone,

so is Λ.

The next result, discussed above, is also crucial for our results:

Theorem 4 Let Λ(t) ⊆ X be the fixed point set of Theorem 3 (for given t ∈ T ), assumed

here to be non-empty Λ(t) 6= ∅ for t ∈ T , and consider a continuous and increasing function

H : X → R. Define the greatest and least selections from H ◦ Λ(t): h(t) = supx∈Λ(t)H(x) and

h(t) = infx∈Λ(t)H(x). Then if Λ(t) is type I monotone, h(t) will be increasing; and if Λ(t) is type

II monotone, h(t) will be increasing.

4.2 Comparative Statics of Equilibrium Aggregates

Consider the instantaneous utility function ui = ui(xi, yi, zi, Q, ai) of an agent i ∈ I. ui will exhibit

increasing differences in yi and ai if ui(xi, y
2
i , zi, Q, ai) − ui(xi, y1

i , zi, Q, ai) is non-decreasing in

ai whenever y2
i ≥ y1

i . If Xi, Ai ⊆ R and ui is differentiable, increasing differences in yi and ai is

equivalent to having D2
yiaiui ≥ 0. Increasing differences is of course a very well-known condition

in comparative statics analysis (see for example Topkis (1998)).

Next consider the constraint correspondence Γi(xi, zi, Q, ai) of agent i. Following Hopenhayn

and Prescott (1992), Γi is said to have strict complementarities in (xi, ai) if for any fixed choice of

(zi, Q) it holds for all x2
i ≥ x1

i and a2
i ≥ a1

i , that y ∈ Γ(x1
i , zi, Q, a

2
i ) and ỹ ∈ Γ(x2

i , zi, Q, a
1
i ) implies

y ∧ ỹ ∈ Γ(x1
i , zi, Q, a

1
i ) and y ∨ ỹ ∈ Γ(x2

i , zi, Q, a
2
i ).

30 As an illustration consider the constraint

correspondence of the Bewley-Aiyagari model of Section 2.1,

Γi(xi, zi, Q, ai) = {yi ∈ [ai, bi] : yi ≤ r(Q)xi + w(Q)zi}.
29This is in sharp contrast to such concepts as monotonicity with respect to the weak or strong set orders (see

e.g. Shannon (1995)).
30Having strict complementarities is a weaker condition than assuming that the graph of Γi is a sublattice (of

Xi ×Xi ×Ai for given (zi, Q)). See Hopenhayn and Prescott (1992) for further details and discussion.
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where we have treated the borrowing limit −bi as the parameter (so ai = −bi where bi is the agents’

borrowing limit).31 Since it is clear that when x2
i ≥ x1

i and a2
i ≥ a1

i , y ∈ [a2
i , r(Q)x1

i + w(Q)zi]

and ỹ ∈ [a1
i , r(Q)x2

i + w(Q)zi] imply that y ∧ ỹ = min{y, ỹ} ∈ [a1
i , r(Q)x1

i + w(Q)zi] and y ∨ ỹ =

max{y, ỹ} ∈ [a2
i , r(Q)x2

i + w(Q)zi], this correspondence has strict complementarities in (xi, ai).

Hence a “tightening” of the borrowing limits in a Bewley-Aiyagari economy will be a positive

shock according to the following definition (note that since ai does not affect the utility function

in this case, the increasing differences part is trivially satisfied):

Definition 5 (Positive Shocks) Consider an agent i ∈ I. A (coordinatewise) increase in the

exogenous parameters ai is a positive shock if ui(xi, yi, zi, Q, ai) exhibits increasing differences in

yi and ai, and Γi(xi, zi, Q, ai) has strict complementarities in (xi, ai).

Definition 5 gives the “correct” notion of a positive shock: If an increase in ai is a positive

shock, then the policy correspondence Gi(xi, zi, Q, ai) defined in (10) will be ascending in ai

whenever Assumption 3 holds. In other words, it ensures that individual actions (yi) increase,

holding market aggregates constant, in response to a change in ai. Having a determinate impact of

the change in the environment, here captured by ai, on individual decision problem, i.e., for given

aggregates and prices, is clearly a prerequisite for meaningful equilibrium comparative statics.

Hence we follow Acemoglu and Jensen (2009) in presenting a positive shock as a definition rather

than stating the conditions involved as an assumption.

Importantly, however, this individual behavior conclusion is very different from the (general)

equilibrium results which are our focus. Positive shocks to the ai’s of a subset of players will lead

to increases in those players’ strategies for fixed market aggregates. But in (general) equilibrium,

the market variables will also change—in particular, the initial change in strategies will impact the

equilibrium aggregate which will lead to further changes in everyone’s strategies, further changes

in equilibrium aggregates, and so on until a new equilibrium is reached. Since we have assumed

essentially nothing—just continuity—about how the market aggregates enter into the agents’

decision problems, it may at first appear that very little can be said about how aggregates will

change. But as this section’s main result shows, on the contrary, we can determine how market

aggregates behave quite precisely:

Theorem 5 (Comparative Statics of the Aggregate) Under Assumptions 1-3, a positive

shock to ai (for all players or any subset) will lead to an increase in the greatest and least stationary

equilibrium aggregates.

31Note that when borrowing limits are endogenous so that bi is a function of Q (possibly by way of the interest
rate r = r(Q) or wage rate w = w(Q)), the following argument goes through without modifications as long as by a
tightening we mean that bi decreases for all Q.
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Section 6.1 contains a number of applications of this result to the models introduced in Section

2. For example, a tightening of the borrowing limits in the Aiyagari model constitutes a positive

shock and will thus increase the greatest and least equilibrium aggregates. As the proof in Section

8.1.3 shows, the fact that such a strong result can be established without any restrictions on the

market variables’ influence on individual decisions is due to the combined strength of Theorem

3, Theorem 4, and the equilibrium comparative statics results of Milgrom and Roberts (1994).

Loosely speaking, monotonicity assumptions are not needed at the market level as long as optimal

strategies are upper hemi-continuous in these variables and the aggregator is continuous. he

intuition is closely related to that of famous correspondence principle: with sufficient regularity

of the equilibrium mapping in place, a lot can be said about an economy’s comparative statics

properties. But whereas the correspondence principle requires one to select stable equilibria, our

formulation selects the extremal equilibria (the greatest and least equilibrium aggregates).

The next comparative statics result predicts the effect of a change in agents’ level of patience.

This result is not a corollary of the previous result because an increase in the discount factor is

not covered by our notion of a positive shock.

Theorem 6 (Discounting and Stationary Equilibrium) Suppose Assumptions 1-3 hold for

every agent i and in addition assume that each ui(xi, yi, zi, Q) is increasing in xi and that each

Γi is expansive in xi (xi ≤ x̃i ⇒ Γi(xi, zi, Q) ⊆ Γi(x̃i, zi, Q)). Then an increase in the discount

factor β leads to an increase in the greatest and least stationary equilibrium aggregates.

Remark 4 If ui is decreasing in xi and Γi is contractive in xi (xi ≤ x̃i ⇒ Γi(xi, zi, Q) ⊇
Γi(x̃i, zi, Q)), the conclusion of the previous theorem changes to: Then an increase in the dis-

count factor β leads to a decrease in the greatest and least stationary equilibrium aggregates. To

see this, simply substitute ỹi = −yi and x̃i = −xi and follow the proof using the increasing value

function vn(x̃i, β) in order to conclude that yi = −Gi(−xi, β) will be descending in β.

4.3 Individual Comparative Statics

The results provided so far hold for any “positive shocks” and do not require any knowledge of how

individual behavior responds to aggregates and thus to the changes in parameters Nevertheless,

under stronger assumptions we can also specify what happens to individual behavior as we do

in the next theorem. Crucially, note that the strategy of proof is to go from the aggregate level

to the individual level rather than the other way around as in standard approaches: Once we

know that the market aggregate will increase, we can simply treat this as an exogenous variable

to the individuals alongside the truly exogenous parameters. The individual comparative statics
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question then becomes a standard comparative statics problem where existing, very powerful

results can be made to bear (Topkis (1978), Milgrom and Shannon (1994), and Quah (2007)).

Theorem 7 (Individual Comparative Statics) Suppose that an increase in Q is a positive

shock to player i (i.e., ui and Γi satisfy Definition 5 with t = Q). Then in Theorems 5-6, we also

have that xi increases in the stationary equilibrium (the increase here is in the first-order stochastic

dominance sense). If instead Q constitutes a “negative shock” (if Definition 5 is satisfied with

t = −Q) and player i is not affected by any change in exogenous parameters, then in Theorem 5

xi decreases in the stationary equilibrium.

In the special case where Q is a positive shock to all agents in the sense of Theorem 7,

our economy would be monotone/supermodular. If instead Q is a negative shock for everyone,

our economy would be “submodular” (a little is known in terms of comparative statics in such

economies). Notably, our main contribution in Theorem 5, requires neither (for all or even a

single player).

5 Main Results II: Distributional Changes

In this section, we present our comparative statics results in response to changes in the distri-

bution of the idiosyncratic shock processes. Our first result (Theorem 8) deals with first-order

stochastic changes in the shock processes. Loosely speaking, first-order stochastic changes will

lead to higher equilibrium aggregates if at the individual level: (i) a higher shock in a period

increases the strategy in that period (Assumption 4); and (ii) given constant aggregates, a first-

order stochastic increase makes the individuals increase their strategies (Assumption 5). As we

explain immediately after Theorem 8, (ii) is quite stringent — for example it does not hold in the

setting of the Bewley-Aiyagari model. Fortunately, (ii) plays no role for our next theorem which

is this section’s main result. Theorem 9 shows that, under (i) and certain concavity/convexity

assumptions on the instantaneous utility function, any mean-preserving spread to the noise pro-

cesses will increase the equilibrium aggregate.32 While the result may at first look somewhat

complex because the main conditions are placed on partial derivatives, it is important to keep

in mind that such conditions are straight-forward to verify in concrete applications as we will

illustrate in Section 6.1.

For the results in this section, the exogenous parameters (ai)i∈I play no role, and we sup-

press them to simplify notation. The following assumption, already mentioned, will be needed

throughout:

32In addition, this result requires relatively standard convexity and monotonicity conditions on constraint corre-
spondences and payoff functions.
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Assumption 4 ui(xi, yi, zi, Q) exhibits increasing differences in yi and zi, and Γi(xi, zi, Q) is

ascending in zi.

When coupled with Assumption 3, Assumption 4 implies that the policy correspondence

Gi(xi, zi, Q, ai) is ascending in zi (Hopenhayn and Prescott (1992)). Economically, this means

that a larger value of zi will lead to an increase in actions. For example, when zi is labor pro-

ductivity as in the Aiyagari model, higher labor productivity will increase income and therefore

savings.

5.1 First-Order Stochastic Dominance Changes

We begin by looking at first-order stochastic dominance increases in the distribution of zi,t for all

or a subset of the players. We now need an additional assumption involving once again Hopenhayn

and Prescott (1992)’s notion of strict complementarities introduced at the beginning of Section 4.2.

Γi has strict complementarities in (xi, zi) if (for any fixed value of Q), for all x2
i ≥ x1

i and z2
i ≥ z1

i ,

y ∈ Γi(x
1
i , z

2
i , Q) and ỹ ∈ Γi(x

2
i , z

1
i , Q) implies that y ∧ ỹ ∈ Γi(x

1
i , z

1
i , Q) and y ∨ ỹ ∈ Γi(x

2
i , z

2
i , Q).

Assumption 5 Γi(xi, zi, Q, ai) has strict complementarities in (xi, zi).

Let stationary distributions of zi, µzi be ordered by first-order stochastic dominance. Then

Assumptions 3-5 together ensure that the policy correspondence of player i, when parameterized

by µzi , Gi(xi,t, zi,t, µzi) is ascending in µzi (Hopenhayn and Prescott (1992)). It is intuitively clear

that when this is so, a first-order stochastic dominance increase in µi will lead to an increase in the

affected player’s optimal strategy, and just as with our previous results, the main contribution of

the next theorem is to show that this will translate into an increase in the aggregate in equilibrium

(see the discussion prior to Theorem 5 on this).

Theorem 8 (Comparative Statics of a First-Order Stochastic Dominance Change)

Under Assumptions 1-5, a first-order stochastic dominance increase in the stationary distribution

of zi,t for all i (or any subset hereof), will lead to an increase in the greatest and least stationary

equilibrium aggregates.

Remark 5 It is straightforward to see that Theorem 7 carries over to this case to obtain indi-

vidual comparative statics results once the change in the aggregate is determined.

It should be noted that Assumption 5 may be quite restrictive because a first-order stochastic

dominance increase in the stationary distribution of an agent’s idiosyncratic shocks may not lead
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to a first-order stochastic dominance increase in her strategy. This can be seen in the context of

the Bewley-Aiyagari model introduced in Section 2.1 where:

Γi(xi, zi, Q) = {yi ∈ [−bi, bi] : yi ≤ r(Q)xi + w(Q)zi}.

To illustrate this, take r(Q) = w(Q) = 1 and x1
i = 1, x2

i = 2, z1
i = 1, and z2

i = 3. Then let

y = 4 ∈ Γi(x
1
i , z

2
i , Q) = [−bi, 4] and ỹ = 3 ∈ Γ(x2

i , z
1
i , Q) = [−bi, 3]. But it is clear then that

y∧ ỹ = 3 6∈ Γi(x
1
i , z

1
i , Q) = [−b, 2], and so Γi does not have strict complementarities in (xi, zi). So

in the Bewley-Aiyagari model any general results from first-order stochastic dominance changes

in the noise environment are not possible. Nevertheless, interestingly, we will see that mean-

preserving spreads lead to unambiguous changes in market aggregates without any need for strict

complementarities in (xi, zi).

5.2 Mean Preserving Spreads

We now investigate how mean-preserving spreads of the stationary distributions of the individual-

level noise processes affect equilibrium outcomes.33 For example, in the Bewley-Aiyagari model

where zi is the labor endowment/earnings, a mean-preserving spread intuitively means that con-

sumers face increased uncertainty about their earnings with the mean staying the same. The

question we address is then whether more uncertain earning prospects will lead to higher capital-

and output-per-capita in equilibrium. Note that this kind of question can be thought of as a

natural extension to a general equilibrium setting of the works on precautionary saving in partial

equilibrium settings (e.g. Huggett (2004) returned to below).

For the result to follow we need additional structure on the individuals’ decision problems.

Recall that a correspondence Γ : X → 2X has a convex graph if for all x, x̃ ∈ X and y ∈ Γ(x) and

ỹ ∈ Γ(x̃): λy + (1− λ)ỹ ∈ Γ(λx+ (1− λ)x̃) for all λ ∈ [0, 1].

Assumption 6

1. Xi ⊆ R for all i.34

2. Γi(·, zi, Q) : Xi → 2Xi and Γi(xi, ·, Q) : Zi → 2Xi have convex graphs and ui(xi, yi, zi, Q) is

concave in (xi, yi), strictly concave in yi, and is increasing in xi.

Assumption 6 is of course entirely standard (see for example Stokey and Lucas (1989)), and

it is easily satisfied in all of this paper’s applications. The following definition is less familiar.

33µzi is a mean-preserving spread of µzi if and only if µzi �cx µ
′
zi where �cx is the convex order (µzi �cx µ

′
zi if

and only if
∫
f(τ)µ(τ) ≥

∫
f(τ)µ′(τ) for all convex functions f).

34This part of the assumption is imposed for notational convenience and can be relaxed.
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Definition 6 Let k ≥ 0. A function f : X → R+ is k-convex [k-concave] if:

• When k 6= 1, the function 1
1−k [f(x)]1−k is convex [concave].

• When k = 1, the function log f(x) is convex [concave] (i.e. f is log-convex [log-concave]).

A detailed treatment of the concepts of k-convexity and k-concavity can be found in Jensen

(2012b). The essence of the concepts is that k-convexity is a strengthening of (conventional)

convexity, while k-concavity is a weakening of concavity. So in terms of the conditions on the

derivatives in this section’s main result which follows next, the requirement is loosely that some

derivatives must be “a little more than convex” while others must be “a little less than concave”.

In light of the literature on precautionary savings (again see e.g. Huggett (2004) and references

therein), there is of course nothing at all surprising in the fact that our results place conditions

on the curvature of the partial derivatives (third derivatives). The economic intuition should

be straight-forward to grasp in light of our previous results: Under the theorem’s conditions,

mean-preserving spreads will amount to “positive shocks” in the sense that, given equilibrium ag-

gregates, they will make the affected individuals increase their strategies (in the income-allocation

setting this is precisely the precautionary savings motive). Then we again use the results on the

monotonicity of fixed points from Section 4.1 to ensure that equilibrium aggregates change in

the same direction. As usual, this happens despite the fact that at the individual level there is

no regularity (for example, it may easily happen that some of the agents that are subjected to

increased risk end up lowering their strategies in equilibrium).

Theorem 9 (Comparative Statics Effect of Mean-Preserving Spreads) Suppose that

Assumptions 1-4, and 6 hold for all agents, and in addition assume that each ui is differen-

tiable and satisfies the following upper boundary condition limyni ↑sup Γi(xi,zi,Q)Dyiui(xi, y
n
i , zi, Q) =

−∞ (which ensures that sup Γi(xi, zi, Q) will never be optimal given (xi, zi, Q)). Then a mean-

preserving spread to the invariant distribution µzi of any subset of agents I ′ ⊆ I will lead to

an increase in the greatest and least stationary equilibrium aggregates if for each i ∈ I, there

exists a ki ≥ 0 such that −Dyiui(xi, yi, zi, Q) is ki-concave in (xi, yi) as well as in (yi, zi); and

Dxiui(xi, yi, zi, Q) is ki-convex in (xi, yi) as well as in (yi, zi).

Theorem 9 provides a fairly easy-to-apply result showing how changes in the individual-level

noise affect market aggregates (for an example that explicitly verifies the various conditions see

Section 6.1). Mathematically, mean-preserving spreads increase individual level actions whenever

the policy correspondence defined in (10) is convex in xi (note that the policy correspondence
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will be single-valued/a function under Assumption 6, so this statement is unambiguous). The

assumptions imposed in Theorem 9 ensure such convexity of policy functions.35

6 Applications

In this section we apply the comparative statics results already announced in Section 2. In both

cases, we emphasize how the assumptions of the approach developed so far can be easily verified

and in consequence, the theorems above lead to general comparative static results.

6.1 Comparative Statics in the Bewley-Aiyagari Model

To exploit this paper’s comparative statics results, we must verify Assumptions 1-3. Assumption

1 this is trivially satisfied under the general conditions (continuity, compactness) described in

Section 2.1. Assumption 2 holds because the aggregator in the Aiyagari-model - which is our

baseline aggregator - is convexifying.

Assumption 3 requires that ui is supermodular in (xi, yi) and that the graph of Γi(·, zi, Q) is

a sublattice of Xi×Xi.
36 Beginning with supermodularity, this will hold if and only if the period

utility function vi is concave. This equivalence is true in general, but it is particularly easy to

see when vi is twice continuously differentiable since then D2vi ≤ 0 (concavity) ⇔ D2
xiyiui ≥ 0

(supermodularity). Next turning to the sublattice property, as noted in Remark 3, Γi(·, zi, Q)

will be a sublattice of Xi×Xi if and only if Γi(xi, zi, Q) is ascending in xi (this is true in general

when Xi is one-dimensional). Recall from Section 2.1 that

Γi(xi, zi, Q) = {yi ∈ [−bi, bi] : yi ≤ r(Q)xi + w(Q)zi}.

This correspondence is ascending in xi if (for any fixed choice of (zi, Q)) whenever x2
i ≥ x1

i ,

y1
i ∈ Γi(x

1
i , zi, Q), and y2

i ∈ Γi(x
2
i , zi, Q), we have max{y1

i , y
2
i } ∈ Γi(x

1
i , zi, Q) and min{y1

i , y
2
i } ∈

Γi(x
2
i , zi, Q). It is straight-forward to see that this will indeed be the case, intuitively because Γi

is “increasing in xi”.

We also note that ui is increasing in xi and that Γi is expansive in xi (these additional

properties are used in Theorem 6, where an expansive correspondence is also defined). Finally we

recall from the discussion immediately prior to Definition 5, that a tightening of the borrowing

limits (a decrease in the bi’s) will be positive shocks.

Using our first set of comparative statics theorems in Section 4 (Theorems 5-6), we can then

straightforwardly conclude:

35See Jensen (2012) for a detailed treatment of this issue. See also Carroll and Kimball (1996) and Huggett
(2004) for the special case of income-allocation problems.

36In addition, the choice set Xi ⊆ R, must be a lattice. But this is is trivially satisfied whenever the choice set is
one-dimensional.
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Proposition 1 Consider the generalized Bewley-Aiyagari model described in Section 2.1. The

following then follow:

• An increase in the discount rate β will lead to an increase in the greatest and least capital-

labor ratios in equilibrium, as well as an increase in the associated greatest and least equi-

librium output per capita.

• Any tightening of the borrowing limits (a decrease in bi for all or a subset of households) is

a positive shock and consequently leads to an increase in the greatest and least capital-labor

ratios in equilibrium, as well as an increase in the associated greatest and least equilibrium

output per capita. This statement remains valid when borrowing limits are endogenous (bi

is a function of Q) where a tightening means that bi decreases for any fixed value of Q.

• Let ai parameterize the instantaneous utility function vi = vi(ci, ai) where ci denotes con-

sumption at a point in time, and consider the effect of a decrease in marginal utility, i.e.,

assume that D2
ciaivi ≤ 0. Then an increase in ai (for any subset of the agents not of measure

zero) will lead to an increase in the greatest and least capital-labor ratios in equilibrium, as

well as an increase in the associated greatest and least equilibrium output per capita.

An immediate consequence of Proposition 1 is that the conclusion of Aiyagari (1994) and

Miao (2002) that tightened borrowing limits increases output per capita is valid under much

more general conditions than in these works.37 For example, the conclusion remains valid under

endogenous borrowing constraints as well as with heterogenous consumers. For a slightly deeper

consequence, consider two economies where one is more “credit rationed” than the other in the

sense that the borrowing constraints bind for a larger fraction of the agents (the relevant case is

when the borrowing constraints bind at the smallest labor endowments zi,min). Then by Propo-

sition 1 the more credit rationed economy will have the higher capital-labor and out-per-labor

ratios in equilibrium. In particular, a complete market economy (where borrowing limits never

bind) will have a lower output per capita than an economy with “partial” credit rationing (where

some borrowing limits bind) which in turn will have a lower output per capita than a completely

credit rationed economy of the type studied by Aiyagari (1994). Economically, all of the previous

conclusions follow from the fact that increased credit rationing forces agents to increase their

precautionary savings levels when they face the prospect of being borrowing constrained at the

“disaster-outcome” zi,min.

We can also use the results in Proposition 1 to briefly discuss why in general very little can

be said about individual behavior even though we can obtain quite strong results on aggregates.

37For a detailed discussion of these works see section 2.1.

30



Consider, for example, an increase in β. At given Q, this will increase the savings (asset holdings)

of all individuals and thus correspond to a positive shock in terms of our terminology. This will

naturally tend to increase the aggregate capital-labor ratio. As the aggregate capital-labor ratio

increases, the wage rate increases and the interest rate declines. But this might discourage savings

by at least some of individuals. In fact, even a small increase in Q may have a significant impact

on the savings of some individuals depending on income and substitution effects. Thus at the

end a subset of individuals may end up reducing their savings and a subset may end up raising

savings (where for any specific agent, the outcome depends on the current level of assets and her

underlying preferences). In fact, it is in general very difficult to say which individuals will reduce

and which will increase their savings, because this will depend on the exact changes in the wage

and interest rates. However, even though some individuals might reduce their savings and the

extent of this is quite irregular, we know that in the aggregate savings and thus Q must go up.

A second case that illustrates the previous point even more sharply is that of a population

of consumers all of whose payoff functions exhibit decreasing differences in Q and yi. When this

holds, any consumer will lower his savings when Q increases. Now imagine that a subset (not of

measure zero) of the consumers have their borrowing constraints tightened. Proposition 1 applies

and tells us that the equilibrium aggregate will increase. But clearly by what was just said, any

consumer whose borrowing constraint remains the same must then lower his savings (and some

of the consumers who do experience tightened borrowing constraints may lower their equilibrium

savings as well). On aggregate all such falls in savings must be counter-acted by agents who save

more however, since otherwise the capital-labor ratio could not increase.

For our second set of comparative statics results in Section 5, we first need to verify Assumption

4. This requires that ui(xi, yi, zi, Q) must exhibit increasing differences/be supermodular in yi

and zi, and that Γi(xi, zi, Q) is ascending in zi. But this follows from the exact same argument as

that used above to verify that ui is supermodular in xi and yi and that Γi ascending in xi (this

is simply because xi and zi enter in an entirely “symmetric” way in ui and Γi).

As discussed at the end of Section 5.1, Γi in the current model does not satisfy strict com-

plementarities in (xi, zi). Hence we cannot say anything about first-order stochastic dominance

changes in the invariant distributions of the households’ stochastic processes.

Nevertheless, the effects of mean preserving spreads (in particular, a mean-preserving spread

to µzi for any subset of the agents) can be determined using the result of Section 5.2. Beginning

with Assumption 6, it is straightforward to verify that Γi has a convex graph as required. The

concavity parts of Assumption 6 will all hold if we take vi to be strictly concave (note that this

corresponds to assuming that households are risk averse). Next let us turn to the required k-
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concavity and k-convexity conditions of Theorem 9. Specifically, there must for each household

i exist an ki ≥ 0 such that −Dyiui(xi, yi, zi, Q) is ki-concave in (xi, yi) as well as (yi, zi) and

Dxiui(xi, yi, zi, Q) is ki-convex in (xi, yi) as well as in (zi, yi). Now, because the argument of

vi is linear in yi, xi, and zi, it is straightforward to verify that all of these conditions will be

satisfied simultaneously if and only if Dvi(ci) is ki-concave as well as ki-convex. In other words,

1
1−ki [Dvi(ci)]

1−ki must be linear in ci. Clearly, strict concavity in addition requires that ki > 0.

Differentiating twice, setting it equal to zero, and rearranging this yields the condition:

D3vi(ci)Dvi(ci)

(D2vi(ci))2
= ki > 0 (11)

This condition on a utility function is well known, and a function that satisfies it is said to

belong to the HARA class (Carroll and Kimball (1996)). Most commonly used utility functions

are in fact in the HARA class, including those that exhibit either constant absolute risk aversion

(CARA) or constant relative risk aversion (CRRA). Note that, conveniently, such functions will

also satisfy the boundary condition of Theorem 9. So picking vi in the HARA class is sufficient

for all of the conditions of Theorem 9 to hold, and so we get:

Proposition 2 Consider the generalized Bewley-Aiyagari model of Section 2.1, and assume that

vi belongs to the HARA class for all i. Then a mean-preserving spread to (any subset of) the

households’ noise environments will lead to an increase in the greatest and least equilibrium capital-

labor ratios and an increase in the associated greatest and least equilibrium per capita outputs.

Proposition 2 shows that an observation made by Aiyagari (1994) (p. 671) with reference to an

example is in fact true under very general conditions: an economy with idiosyncratic shocks will

lead to higher savings and output per capita than a parallel economy without any uncertainty.38

Proposition 2 is also closely related to Huggett (2004), who shows that an individual agent’s

accumulation of wealth will increase if she is subjected to higher earnings risk (in particular, this

result is valid for preferences that are a subset of the HARA class, cf. Huggett (2004), p.776).

Proposition 2 can be seen as generalizing Huggett’s individual-level result to the market/general

equilibrium level. Note in this context that a crucial common component is that when utility

belongs to the HARA class, the savings function will be convex, a result proved by Carroll and

Kimball (1996) in the setting without borrowing constraints, and extended to the setting with

borrowing constraint in Huggett (2004) and Jensen (2012).

38To see this, simply note that the movement from a deterministic model to one with uncertainty amounts to
subjecting all agents’ labor endowments to mean preserving spreads.
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6.2 Comparative Statics in the Hopenhayn Model

As explained in Section 2.2, Hopenhayn’s model of entry, exit, and firm dynamics can be cast as

a large dynamic economy with the following aggregator H:

H((x̃i(p))i∈I) = D(

∫
i∈N

x̃i(p) di),

Here x̃i(p) is the strategy of a firm given the stationary price level p. The only difference from

the Bewley-Aiyagari model is that x̃i(p) is now a random variable x∗(·, p) defined on the probability

space (Z,B(Z), µp), where µp (the frequency distribution of the active firms’ productivities) in

general will depend not only on p but on any exogenous parameters of the model. Therefore

shocks will affect x̃i(p) through two channels: directly through x∗, and indirectly through the

change in the distribution µp.

It is straightforward to verify that Assumptions 1-2 hold. Assumption 3 is also satisfied since

for a given productivity level z, a firm will choose output to maximize px−C(x, z, a)−c (here a is

an exogenous parameter affecting costs), and thus the payoff function only depends on x and thus

trivially satisfies the supermodularity assumption. Since there is no constraint other than x ≥ 0

on this problem, the assumption that the graph of the constraint correspondence is a sublattice

of Xi ×Xi is also immediately satisfied.39 From this observation, it also follows that an increase

in a will be a positive shock if and only if D2
xaC(x, z, a) ≤ 0. In other words, a positive shock is

one that lowers the marginal cost (given p and z). Let us also impose the natural restriction that

DaC(x, z, a) ≤ 0 which implies that V (z, p, a) is increasing in a.

Next, note that, as outlined in Section 2.2, µp is determined from the exit cutoff z̄p and the

measure of entrants M as a solution to equation (4). The right-hand side of (4) is type I and type

II monotone in µp as well as in −z̄p and M .40 Therefore Theorem 3 implies that an increase M or

a decrease in z̄p will lead to a (first-order stochastic dominance) increase in the distribution µp.
41

It follows that the aggregate in this case,
∫
Z x
∗(z, p)µp(dz), will increase not only with positive

shocks as defined above but also with other changes in parameters that lowers z̄p or raises M .42

39These observations also show that an interesting generalization of Hopenhayn’s model with learning by doing
at the firm level—where current productivity depends on past production—is also a special case of our framework
and will yield essentially the same comparative static results provided that the interaction between current output
and past output satisfies supermodularity.

40In this statement µp is ordered by first-order stochastic dominance. The right-hand side of (4), F (µ(·), z̄p,M) =∫
zi≥z̄p

Γ(zi, ·)µ(dzi) +Mν(·), is single-valued, so type I and type II monotonicity coincide with monotonicity in the

usual sense. Note that
∫
zi≥z̄p

Γ(zi, ·)µ(dzi) is simply the adjoint of Γ imputed at z̄p. From this follows immediately

that F will be monotone in µp since Γ is monotone (and it also easily follows that a decrease in z̄p will lead to a
first-order stochastic increase in F ). That F is monotone in M (as well as in ν ordered by first-order stochastic
dominance) is straightforward to verify.

41When V (z, p, a) is increasing in a—which our assumption that DaC(x, z, a) ≤ 0 guarantees— an increase in a
will lead to an increase in M (which can be directly seen from equation (3)), and thus to an increase in µp.

42The fact that this aggregate,
∫
Z
x∗(z, p)µp(dz), increases when µp(z) undergoes a type I and/or type II increase
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Combining the previous observation and applying Theorem 5, we obtain:

Proposition 3 1. A decrease in the fixed cost of operation c or a (first-order) increase in the

transition function Γ increases aggregate output and lowers the equilibrium price.

2. A first-order stochastic increase in the entrants’ productivity distribution ν increases aggre-

gate output and lowers the equilibrium price.

3. A positive shock to the firms’ profit functions, i.e., an increase in a with DaC ≤ 0 and

D2
xaC ≤ 0, increases aggregate output and lowers the equilibrium price.

It is also useful to note that the effects on individual firms are uncertain, and may easily go

in the opposite direction. Take a decline in the fixed costs of operation c to illustrate this for the

first part of the proposition. Such a decline leaves the profit-maximizing choice of output for in-

cumbents, x(p, z), unchanged for any given price and level of productivity. The conclusion in part

1 of Proposition 3 instead follows the effect of this cost reduction on the equilibrium distribution

µp—“state of the industry”. This is because as c declines, the value of a firm with any given

productivity V (p, z) increases and the exit cutoff z̄p also decreases, making it less likely that any

active firm will exit in any period. The increase in V (p, z) (for all z) also leads to greater entry,

which together with the decline in z̄p leads to an increase in µp, raising aggregate output. But as

aggregate output increases, the equilibrium price will fall which leads to counteracting effects on

V (p, z) as well as z̄p (a decrease and an increase, respectively). The combined consequence for any

firm with a given productivity level z is uncertain—for many types of firms the indirect effects

may dominate, reducing their output, and some types of firms might choose to exit. Nevertheless,

aggregate output necessarily increases and the equilibrium price necessarily declines. Similarly in

part 2, the result is again driven by the impact of the shift in ν on µp; the resulting decline in

p is a counteracting effect, reducing firm-level output at given productivity level z. In part 3, a

positive shock directly raises x(p, z, a) for all p, z and also raises the value function V , increasing

µp, and thus also increasing aggregate output and lowering the equilibrium price. Because the

resulting decrease in p counteracts this effect, the overall impact on a firm of a given productivity

level z is again uncertain. This discussion therefore illustrates that the types of results contained

in Proposition 3 would not have been possible by studying comparative statics at the individual

firm level—indeed, similar with some of the results discussed in Proposition 1, there will generally

be no regularity at the individual level.

is a consequence of Theorem 4.
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7 Conclusion

There are relatively few known comparative static results on the structure of equilibria in dy-

namic economies. Many existing analytic results, such as those in endogenous growth models

(overviewed in Acemoglu (2009)), are obtained using closed-form characterizations and rely heav-

ily on functional forms. Many other works study the structure of such models using numerical

analysis. In this paper, we developed a general and fairly easy-to-apply framework for robust

comparative statics about the structure of stationary equilibria in such dynamic economies. Our

results are “robust” in the sense defined by Milgrom and Roberts (1994) in that they do not

rely on parametric assumptions but on qualitative economic properties, such as utility functions

exhibiting increasing differences in choice variables and certain parameters. Nevertheless, and

importantly from the viewpoint of placing the contribution within the broader literature, none of

our main results exploit standard supermodularity or monotonicity results—and in fact, our key

technical result, which underlies all of our results, is introduced to enable us to work with spaces

that are not lattices.

Some of the well-known models that are special cases of our framework are models of saving and

capital accumulation with incomplete markets along the lines of work by Bewley, Aiyagari, and

Huggett, and models of industry equilibrium along the lines of work by Hopenhayn. In all cases,

our results enable us to establish—to the best of our knowledge—much stronger and more general

results than those available in the literature. They also lead to a new set of comparative static

results in response to first-order and second-order stochastic dominance shifts in distributions

representing uncertainty in these models. All of the major comparative static results provided

in the paper are truly about the structure of equilibrium—not about individual behavior. This is

highlighted by the fact that in most cases, while robust and general results can be obtained about

how market outcomes behave, little can be said about individual behavior, which is in fact often

quite irregular.

We believe that our framework and methods are useful both because they clarify the underlying

economic forces, for example in demonstrating that robust comparative statics applies to aggregate

market variables, and because they can be applied readily in a range of problems.
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8 Appendices

8.1 Appendix I: Proofs of Results from the Text

In this Appendix, we present the proofs of the main results from the text. Some of these proofs

rely on technical results presented in Appendixes II and III.

8.1.1 Proofs from Section 3

Proof of Theorem 1. Only a brief sketch will be provided. For agent i, let Xi denote

the set of strategies (these are infinite sequences of random variables as described in the main

text), and let γi(Q) ⊆ Xi denote that set of optimal strategies for agent i given the sequence of

aggregates Q ∈
∏∞
t=0Q.

∏∞
t=0Q with the supremum norm ‖Q‖ = supt |Qt|, is a compact and

convex topological space. Xi is equipped with the topology of pointwise convergence where each

coordinate converges if and only if the random variable converges in the weak ∗-topology. Under

Assumption 1, γi :
∏∞
t=0Q → 2Xi will be non-empty valued and upper hemi-continuous. Let

H(Q) = {H((xi)i∈I) : xi ∈ γi(Q) for i ∈ I}. Since H is continuous and convexifying, H will be

upper hemi-continuous and convex valued. A fixed point Q∗ ∈ H(Q∗) exists by the

Kakutani-Glicksberg-Fan Theorem. It is easy to see that such a Q∗ corresponds to an equi-

librium with x∗i ∈ γi(Q∗) for each agent i.

Proof of Theorem 2. Rather than proving this theorem directly, we refer to the proof of

Theorem 5 from which existence of a stationary equilibrium follows quite easily. Indeed, in that

proof it is shown that Q is an equilibrium aggregate given a if and only if Q ∈ Ĥ(Q, a) where Ĥ

is an upper hemi-continuous and convex valued correspondence that maps a compact and convex

subset of the reals into itself. Existence therefore follows from Kakutani’s fixed point theorem.

The set of equilibrium aggregates will be compact as a direct consequence of the boundedness of

the set of feasible equilibrium aggregates (a consequence of continuity of H and assumption 1)

and the upper hemi-continuity of Ĥ. Consequently, a least and a greatest equilibrium aggregate

will always exist.

8.1.2 Proofs from Subsection 4.1

The proof of Theorem 3 relies on a generalization of the following result from Smithson (1971).

Theorem 10 (Smithson (1971)) Let X be a chain-complete partially ordered set, and F :

X → 2X a type I monotone correspondence. Assume as follows: For any chain C in X, and

any monotone selection from the restriction of F to C, f : C → X (if one exists!); there exists
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y0 ∈ F (supC) such that f(x) ≤ y0 for all x ∈ C. Then, if there exists a point e ∈ X and a point

y ∈ F (e)

such that e � y, F has a fixed point.

The generalization, which to the best of our knowledge is new, is presented and proved next.

Theorem 11 In Theorem 10, the conclusion may be strengthened to: F has a fixed point x∗ with

x∗ � e.

Proof. Let F : X → 2X and e ∈ X be as described, and set X̂ ≡ {x ∈ X : x � e}. Note that

since X is chain-complete, so is X̂. Then define a correspondence on X̂ by F̂ (x) ≡ F (x) ∩ {z ∈
X : z � e}. We begin by showing that F̂ has non-empty values. So pick any x ∈ X̂. By type I

monotonicity, there exists y′ ∈ F (x) with y′ � y � e where y is the element in F (e) with e � y

guaranteed to exist by assumption. But then y′ ∈ F̂ (x). Next, F̂ : X̂ → 2X̂ is type I monotone,

for if x1 � x2 and y1 ∈ F̂ (x1) (⊆ F (x1)), there will exist y2 ∈ F (x2) such that y1 � y2; and

since e � y1 � y2, y2 ∈ F̂ (x2) also. That F̂ satisfies the condition on the supremum of chains in

Theorem 10 is trivial to show and we omit the proof. Now all we have to do is apply Smithson

(1971)’s Theorem in order to conclude that F̂ has a fixed point x∗ ∈ X̂. But it is clear that any

fixed point for F̂ is also a fixed point for F , and since by construction x∗ � e, this completes the

proof.

Both of the previous results have parallel statements for type II monotone correspondences.

In particular (see Smithson (1971), Remark p. 306), the conclusion of Theorem 10 (existence of

a fixed point) remains valid for type II monotone correspondences if the hypothesis are altered

as follows: (i) X is assumed to be lower chain-complete rather than chain-complete (a partially

ordered set is lower chain complete if each non-empty chain has an infimum). (ii) The condition

on monotone selections on chains is altered to: For any chain C in X, and any monotone selection

from the restriction of F to C, f : C → X (if any); there exists y0 ∈ F (inf C) such that f(x) ≥ y0

for all x ∈ C. (iii) Instead of elements e ∈ X and y ∈ F (e) with e � y; there must exist e ∈ X
and y ∈ F (e) with e � y. Theorem 11 also holds as before with the only modification that the

conclusion is now the existence of a fixed point x∗ with x∗ � e.

Proof of Theorem 3. We prove only the type I monotone case (the type II monotone case

is similar). Compactness of X together with the fact that the order � is assumed to be closed,

ensures the chain-completeness as well as lower chain-completeness of (X,�).43 The condition in

43A partially ordered set where all chains have an infimum as well as a supremum is usually simply said to be
complete (e.g., Ward (1954), p.148). In the present setting where X is topological and the order � is closed, the
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Theorem 10 on the supremum (and infimum in the type II case) of chains is satisfied because F is

upper hemi-continuous. Indeed, let C be a chain with supremum supC ∈ X, and let f : C → X

be a monotone selection from F : C → 2X . There will exist an increasing sequence (cn)∞n=1,

cn+1 � cn, from C with limn→∞ cn = supC. It follows then from upper hemi-continuity of F that

f(supC) = limn→∞ f(cn) ∈ F (supC). In addition, since (f(cn))n is increasing with supremum

f(supC) = limn→∞ f(cn); f(supC) � f(x) for all x ∈ C. This proves the claim.

Pick t1 ≤ t2 and a fixed point x1 ∈ Λ(t1). We must show that there will exist an x2 ∈ Λ(t2)

with x1 � x2. To this end we apply Theorem 11 to the correspondence F (·, t2). The only thing

we need to verify is that there exists e ∈ X and y ∈ F (e, t2) with y � e. But taking e = x1, it

is clear that e ∈ F (e, t1), and since F is type I monotone in t, there will for our t2 ≥ t1 exist

y ∈ F (e, t2) with y � e. This is exactly what we needed. We conclude that F (·, t2) has a fixed

point “above” e = x1, i.e., there exists x2 ∈ Λ(t2) with x2 � x1.

Proof of Theorem 4. We prove only that h(t) is increasing (the other case is similar). h(t) is

well-defined because H is continuous and Λ(t) is compact (the fixed point set of an upper hemi-

continuous correspondence on a compact set is always compact). Pick t1 ≤ t2, and let x1 ∈ Λ(t1)

be an element such that h(t) = H(x1). Since Λ(t) is type I monotone, there will exist x2 ∈ Λ(t2)

such that x2 � x1. Since H is monotone, h(t2) = supx∈Λ(t2)H(x) ≥ H(x2) ≥ H(x1) = h(t1).

8.1.3 Proofs from Subsection 4.2

We first provide a brief roadmap for the proof of Theorem 5. The proof has three steps: In

the first step Theorem 3 is used to show that for any fixed equilibrium aggregate Q, the set of

stationary distributions for each individual will be type I and type II increasing in the exogenous

variables a. In step two, a map Ĥ that for each Q and a gives a set of aggregates is constructed.

The fixed points of this map are precisely the set of equilibrium aggregates given a. Crucially, the

least and greatest selections from Ĥ will be increasing in a by Theorem 4. Using this, the third

and final step uses an argument from Acemoglu and Jensen (2009) and Milgrom and Roberts

(1994) to show that the equilibrium aggregates must also be increasing in a.

Proof of Theorem 5. As explained above, the proof has three steps.

Step 1: Fix Q ∈ Q. Under Assumption 3, the policy correspondence of each player Gi :

Xi × Zi × {Q} × Ai → 2Xi will have a least and a greatest selection and both of these will be

increasing in xi. For given Q and ai, let T ∗Q,ai : P(Xi) → 2P(Xi) denote the adjoint Markov

claim that compactness implies completeness follows from Theorem 3 in Ward (1954) because any closed chain will
be compact (any closed subset of a compact set is compact).
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correspondence induced by Gi. By Theorem 12, T ∗Q,ai will be type I and type II monotone when

P(Xi) is equipped with the first-order stochastic dominance order �st. Since (P(Xi),�st) has an

infimum (namely the degenerate distribution placing probability 1 on inf Xi), this implies that

the invariant distribution correspondence Fi : Q×Ai → 2P(Xi), given by Fi(Q, ai) = {µ ∈ P(Xi) :

µ ∈ T ∗Q,aiµ} is non-empty valued and upper hemi-continuous (Theorem 13). Now the results from

Section 4.1 come into play. Since, again by Theorem 12, T ∗Q,ai is also type I and type II monotone

in ai, we can use Theorem 3 to conclude that the invariant distribution correspondence Fi will be

type I and type II monotone in ai. This is true for every i ∈ I hence the joint correspondence:

F = (Fi)i∈I : Q× (
∏
i∈I Ai)→ 2

∏
i∈I P(Xi) is type I and type II monotone in a = (ai)i∈I .

Step 2: Next consider:

Ĥ(Q, a) = {H(x) ∈ R : x ∈ F (Q, a) for all i}

It is clear from the definition of a stationary equilibrium, that Q∗ is a stationary equilibrium

aggregate given a ∈ A if and only if Q∗ ∈ Ĥ(Q∗, a). Under assumption 2, either (i) Gi will

be convex valued for all i and therefore F will be convex valued, or (ii) H will be convexifying.

In either case, Ĥ will have convex values. Since H is continuous and each Fi(Q, ai) is upper

hemi-continuous, Ĥ will in addition be upper hemi-continuous (in particular, it has a least and a

greatest selection). Since F is type I and type II monotone, and H is increasing, we can next use

Theorem 4 to conclude that Ĥ’s least and greatest selections will be increasing.

Step 3: Let Qmin ≡ H((δinf Xi
)i∈I) and Qmin ≡ H((δsupXi)i∈I) where δxi denotes the degen-

erate measure on Xi with its mass at xi. It is then clear that Q ≥ Qmin for all Q ∈ Ĥ(Qmin)

and Q ≤ Qmax for all Q ∈ Ĥ(Qmax). It follows that for every a ∈ A, Ĥ(·, a) : [Qmin, Qmax] →
2[Qmin,Qmax].

That the least and greatest solutions to the fixed-point problem Q∗ ∈ Ĥ(Q∗, a) are increasing

in a now follows from the argument used in the proof of Lemma 2 in Acemoglu and Jensen (2009).

There is was shown that any correspondence Ĥ(·, a) : [Qmin, Qmax] → 2[Qmin,Qmax] that is upper

hemi-continuous, convex valued, and has least and greatest selections that are increasing in a,

will satisfy the conditions of Corollary 2 in Milgrom and Roberts (1994). Milgrom and Roberts’

result in turn says that the least and greatest fixed points Q ∈ Ĥ(Q, a) will be increasing in a.

This completes the proof of the theorem since the least and greatest fixed points of Ĥ are the

greatest and least equilibrium aggregates.

Proof of Theorem 6. The value function of agent i will, given a stationary sequence for the

aggregate Qt = Q all t, and the stationary distribution for zi,t, zi,t ∼ µzi ∈ P(Zi) all t, equal the
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pointwise limit of the sequence (vni )∞n=0 determined by:

vn+1
i (xi, zi, β) = sup

yi∈Γi(xi,zi)
[ui (xi, yi, zi) + β

∫
vni (yi, z

′
i, β)µzi(dz

′
i)] (12)

Here v0 may be picked arbitrarily and we have suppressed Q’s entry to simplify notation. Pick

v0(xi, zi, β) that is increasing and supermodular in xi and exhibits increasing differences in xi and

β. Since integration preserves supermodularity and increasing differences,
∫
v0
i (yi, z

′
i, β)µzi(dz

′
i)

will be supermodular in yi and exhibit increasing differences in yi and β. It immediately follows

from Topkis’ Theorem on preservation of supermodularity under maximization (Topkis (1998),

Theorem 2.7.6), that v1 will be supermodular in xi. By recursion then, v2, v3, . . . are all super-

modular in xi and so is consequently the pointwise limit v∗ (Topkis (1998), Lemma 2.6.1). It

is trivial to show that when ui is increasing in xi and Γi is expansive in xi in the sense of the

theorem’s assumption, vn+1 will be increasing in xi, hence the pointwise limit v∗ will also be

increasing in xi. Since
∫
v0
i (yi, z

′
i, β)µzi(dz

′
i) exhibits increasing differences in yi and β and is

increasing in yi, β
∫
v0
i (yi, z

′
i, β)µzi(dz

′
i) will exhibit increasing differences in yi and β.44 It follows

from Hopenhayn and Prescott (1992), Lemma 1, that v1
i will exhibit increasing differences in

xi and β, and again this property recursively carries over to the pointwise limit v∗. By Topkis’s

Monotonicity Theorem, we conclude that the policy correspondence Gi(xi, zi, β) will be increasing

in β. The conclusion of the Theorem now follows by running through the proof of Theorem 5

with an increase in β playing the role of a positive shock rather than an increase in a.

Proof of Theorem 7. The conclusions are trivial consequences of the comparative statics

results of Topkis (1978) and the first part of the proof of Theorem 5. This is because Q can now

be treated as an exogenous variable (alongside a) so that we in effect are dealing with just the

question of how an individual’s set of stationary strategies varies with Q and a. The details are

left to the reader.

8.1.4 Proofs from Section 5.1

Proof of Theorem 8. This proof is nearly identical to the proof of theorem 5. As mentioned

after Assumption 5, Gi(xi,t, zi,t, µzi) will be ascending in µzi under the Theorem’s assumptions

when stationary distributions are ordered by first-order stochastic dominance (Hopenhayn and

Prescott (1992)). Therefore first-order stochastic increases in µzi for (a subset of) agents will

correspond to “positive shocks” in exactly the same way as increases in exogenous parameters in

44Let f(y, β) exhibit increasing differences and be increasing in y. Then βf(ỹ, β)− βf(y, β) is clearly increasing
in β for ỹ ≥ y, showing that βf(y, β) exhibits increasing differences.
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the proof of Theorem 5. Once we realize this, Theorem 8 follows from the exact same argument

that was used to prove Theorem 5.

8.1.5 Proofs from Section 5

In this section we prove Theorem 9. The basic idea is to show that a mean-preserving spread

to the distributions of the agents’ environment constitutes a “positive shock” in the sense of

this paper: it leads to an increase in individuals’ stationary strategies for any fixed equilibrium

aggregate Q. Once again Theorem 3 plays a critical role because the spaces we work with have no

lattice structure. Once it has been established that mean-preserving spreads are positive shocks,

the proof follows the proof of Theorem 5 line by line.

To prove that mean-preserving spreads constitute positive shocks we need to introduce a bit of

additional notation as well as an intermediate lemma. We begin by noting that under Assumption

6, the policy correspondence of (10) will be single-valued, i.e., Gi(xi, zi, Q) = {gi(xi, zi, Q)} where

gi is the (unique) policy function. For a given stationary market aggregate Q ∈ Q, an agent’s

optimal strategy is therefore described by the following stochastic difference equation:

xi,t+1 = gi(xi,t, zi,t, Q, µzi) (13)

Note that here we have made gi’s dependence on the distribution of zi,t explicit. We already

know that gi will be increasing in xi and zi (Assumptions 3-4). By Theorem 8 of Jensen (2012), gi

will in addition be convex in xi as well as in zi under the conditions of the theorem. We now turn

to proving that gi will be �cx-increasing in µzi (precisely, this means that gi(xi,t, zi,t, Q, µ̃zi) ≥
gi(xi,t, zi,t, Q, µzi) whenever µ̃zi �cx µzi). From Jensen (2012) (corollary in the proof of Theorem

8 applied with k = 0), Dxivi(xi, zi, Q) will (in the sense of agreeing with a function with these

properties almost everywhere) be convex in zi because Dxiui(xi, yi, zi, Q) is non-decreasing in yi

and convex in (zi, yi) (the latter is true because ki-convexity is stronger than convexity). This

is precisely one of the conditions of the following lemma (the other is supermodularity, already

used). The lemma is stated in some generality because it is of independent interest (note that Q

is suppressed in the lemma’s statement).

Lemma 1 Assume that ui(xi, yi, zi) is supermodular in (xi, yi) and denote the value function by

vi(xi, zi, µzi) where µzi is the stationary distribution of zi. Let xi be ordered by the usual Euclidean

order and µzi be ordered by �cx. Then the value function exhibits increasing differences in xi and

µzi if for all x̃i ≥ xi the following function is convex in zi (for all fixed µzi):

vi(x̃i, zi, µzi)− vi(xi, zi, µzi)
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When the value function vi(xi, zi, µzi) exhibits increasing differences in xi and µzi it in turn

follows that
∫
vi(yi, z

′
i, µzi)µzi(dz

′
i) exhibits increasing differences in yi and µzi and so if vi is

supermodular in yi, the policy function gi(xi, zi, µi) will be increasing in µi.

Proof. Let vni denote the n’th iterate of the value function and consider the n + 1’th iterate

vn+1
i (x, z, µzi) = supy∈Γi(x,z){ui(x, y, z) + β

∫
vni (y, z′, µzi)µzi(dz

′)}. Assume by induction that

vni exhibits increasing differences in (y, µzi) and that the hypothesis of the theorem holds for vni .

When ỹ ≥ y and µzi �cx µ′zi we then have
∫
vni (ỹ, z′, µzi)−vni (y, z′, µzi)µzi(dz

′) ≥
∫
vni (ỹ, z′, µzi)−

vni (y, z′, µzi)µ
′
z(dz

′) ≥
∫
vni (ỹ, z′, µ′zi)− v

n
i (y, z′, µ′zi)µ

′
z(dz

′). Here the first inequality follows from

the definition of the convex order, and the second inequality follows from increasing differences

of vni in (y, µzi). Note that this evaluation implies the second conclusion of the lemma once the

first has been established. Since ui(x, y, z) + β
∫
vni (y, z′, µzi)µzi(dz

′) is supermodular in (x, y) by

assumption and trivially exhibits increasing differences in (x, µzi) it follows from the preservation

of increasing differences under maximization that vn+1(x, z, µzi) exhibits increasing differences in

(x, µzi). The first conclusion of the lemma now follows from a standard argument (increasing

differences is a property that is pointwise closed and the value function is the pointwise limit of

the sequence vn, n = 0, 1, 2, . . .).

Proof of Theorem 9. We begin with some notation. For a set Z, let P(Z) denote the set

of probability distributions on Z with the Borel algebra. A distribution λ ∈ P(Z) is larger than

another probability distribution λ̃ ∈ P(Z) in the monotone convex order (written λ �cxi λ̃) if∫
Z f(τ)λ(dτ) ≥

∫
Z f(τ)λ̃(dτ) for all convex and increasing functions f : Z → R for which the

integrals exist (see Huggett (2004) and Shaked and Shanthikumar (2007), Chapter 4.A). The

stochastic difference equation (13) gives rise to a transition function PQ,µzi in the usual way (here

xi ∈ Xi and Ai is a Borel subset of Xi):

PQ,µzi (xi, A) ≡ µzi({zi ∈ Zi : gi(xi, zi, Q, µzi) ∈ A}) (14)

This in turn determines the adjoint Markov operator:

T ∗Q,µzi
µxi =

∫
PQ,µzi (xi, ·)µxi(dxi) (15)

µ∗xi is an invariant distribution for (13) if and only if it is a fixed point for T ∗Q,µzi
, i.e., µ∗xi =

T ∗Q,µzi
µ∗xi . We are first going to use that gi is convex and increasing in xi to show that T ∗Q,µzi

will be

a �cxi-monotone operator, i.e., we are going to show that µ̃xi �cxi µxi ⇒ T ∗Q,µzi
µ̃xi �cxi T ∗Q,µziµxi .

The statement that T ∗Q,µzi
µ̃xi �cxi T ∗Q,µziµxi by definition means that for all convex and increasing
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functions f : Xi → R: ∫
f(τ) T ∗Q,µzi

µ̃xi(dτ) ≥
∫
f(τ) T ∗Q,µzi

µxi(dτ)

But since this is equivalent to,∫
Zi

[

∫
Xi

f(gi(xi, zi, Q, µzi))µ̃xi(dxi)]µzi(dzi) ≥
∫
Zi

[

∫
Xi

f(gi(xi, zi, Q, µzi))µxi(dxi)]µzi(dzi) ,

we immediately see that this inequality will hold whenever µ̃xi �cxi µxi (the composition of two

convex and increasing functions is convex and increasing). This proves that T ∗Q,µzi
is a �cxi-

monotone operator.

Our next objective is to prove that µ̃zi �cx µzi ⇒ T ∗Q,µ̃zi
µxi �cxi T ∗Q,µziµxi for all µxi ∈ P(Xi).

As above, we can rewrite the statement that T ∗Q,µ̃zi
µxi �cxi T ∗Q,µziµxi :∫

Zi

[

∫
Xi

f(gi(xi, zi, Q, µ̃zi))µxi(dxi)]µ̃zi(dzi) ≥
∫
Zi

[

∫
Xi

f(gi(xi, zi, Q, µzi))µxi(dxi)]µzi(dzi) (16)

Since f is increasing and gi is �cx-increasing in µzi , it is obvious that for all zi ∈ Zi:∫
Xi

f(gi(xi, zi, Q, µ̃zi))µxi(dxi) ≥
∫
Xi

f(gi(xi, zi, Q, µzi))µxi(dxi)

Hence:∫
Zi

[

∫
Xi

f(gi(xi, zi, Q, µ̃zi))µxi(dxi)]µ̃zi(dzi) ≥
∫
Zi

[

∫
Xi

f(gi(xi, zi, Q, µzi))µxi(dxi)]µ̃zi(dzi) (17)

But we also have:45∫
Zi

[

∫
Xi

f(gi(xi, zi, Q, µzi))µxi(dxi)]µ̃zi(dzi) ≥
∫
Zi

[

∫
Xi

f(gi(xi, zi, Q, µzi))µxi(dxi)]µzi(dzi) (18)

Combining (17) and (18) we get (16) under the condition that µ̃zi �cx µzi . This is what we

wanted to prove.

We are now ready to use Theorem 3 to conclude that Fi(Q,µzi) ≡ {µxi ∈ P(Xi) : µxi =

T ∗Q,µzi
µxi} will be type I and type II monotone in µzi when P(Zi) is equipped with the order �cx

and P(Xi) is equipped with �cxi.46 Note that in the language of Theorem 3, F equals {T ∗Q,µzi}
and t corresponds to µzi .

The rest of the proof proceeds exactly as the proof of Theorem 5 with (µzi)i∈I) replacing

the exogenous variables (ai)i∈I in that proof. To be a bit more specific, we let F (Q,µz) =

(Fi(Q,µzi)i∈I where µz = (µzi)i∈I and consider:

45To verify (18), reverse the order of integration and use the convexity of f(gi(xi, ·, Q, µ̃zi)) and the definition of
�cx.

46�cxi is a closed order on P(Xi).
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Ĥ(Q, a) = {H(x) ∈ R : x ∈ F (Q,µz) for all i}

The rest of the proof then follows the proof of Theorem 5 line-by-line except that, as mentioned,

µz replaces a. We are thus able to conclude that a mean-preserving spread to (any subset of) the

agents leads to an increase in the greatest and least equilibrium aggregates.

8.2 Appendix II: Dynamic Programming with Transition Correspondences

Consider a standard recursive stochastic programming problem with functional equation:

v(x, z) = sup
y∈Γ(x,z)

[u (y, x, z) + β

∫
v(y, z′)µz(dz

′)] (19)

As is well known, (19) has a unique solution v∗ : X × Z → R (and this will be a continuous

function) when u : X2 ×Z → R and Γ : X ×Z → 2X are continuous, X and Z are compact, and

β ∈ (0, 1) (Stokey and Lucas (1989)). From v∗, the policy correspondence G : X × Z → 2X is

then defined by,

G(x, z) = arg sup
y∈Γ(x,z)

u (y, x, z) + β

∫
v∗(y, z′)µz(dz

′) (20)

Clearly, G will be upper hemi-continuous under the above assumptions. A policy function is a

measurable selection from G, i.e., a measurable function g : X×Z → X such that g(x, z) ∈ G(x, z)

in X × Z. Throughout it is understood that X × Z is equipped with the product σ-algebra,

B(X)⊗B(Z). Recall that a correspondence such as G is (upper) measurable if the inverse image of

every open set is measurable, that is ifG−1(O) ≡ {(x, z) ∈ X×Z : G(x, z)∩O 6= ∅} ∈ B(X)⊗B(Z),

whenever O ⊆ X is open. An upper hemi-continuous correspondence is measurable (Aubin and

Frankowska (1990), Proposition 8.2.1.).47 Since a measurable correspondence has a measurable

selection (Aubin and Frankowska (1990), Theorem 8.1.3.), any upper hemi-continuous policy

correspondence admits a policy function g. Let G denote the set of measurable selections from

G, which was just shown to be non-empty.

Given a policy function g ∈ G, an x ∈ X, and a measurable set A ∈ B(X) let:

Pg(x,A) ≡ µz({z ∈ Z : g(x, z) ∈ A})
(

=

∫
Z
χA(g(x, z))µz(dz)

)
(21)

For fixed x ∈ X, Pg(x, ·) is a measure and for fixed A ∈ B(X), Pg(·, A) is measurable (the last

statement is a consequence of Fubini’s Theorem). So Pg is a transition function.

47Specifically, this is true when X × Z is a metric space with the Borel algebra and a complete σ-finite measure
(see Aubin and Frankowska (1990) for details and a proof).

44



The family of policy correspondences G then gives rise to the transition correspondence:

P (x, ·) = {Pg(x, ·) : g ∈ G}

Intuitively, given a state xt at date t, there is a set of possible probability measures P (x, ·)
each of which may describe the probability of being in a set A ∈ B(X) at date t+ 1.

Lemma 2 (The Transition Correspondence is Upper Hemi-Continuous) Consider a

sequence (xn)∞n=0 in X that converges to a limit point x ∈ X. Let Pgn(xn, ·) ∈ P (xn, ·) be an asso-

ciated sequence of transition functions from the transition correspondence P . Then for any weakly

convergent subsequence Pgnm
(xnm , ·) there exists a Pg(x, ·) ∈ P (x, ·) such that Pgnm

(xnm , ·) →w

Pg(x, ·).

Proof. We loose no generality by assuming that the original sequence actually converges,

Pgn(xn, ·) →w µ, where µ is a probability measure on (X,B(X)). Precisely, this means that

for all f ∈ C(X) (the set of continuous real-valued functions on X):

lim
n→∞

∫
f(z)Pgn(xn, dz) =

∫
f(z)µz(dz)

We must show that that this equality holds with µz(·) = Pg(x, ·) for some g ∈ G. Fix

z ∈ Z and consider the sequence gn(xn, z), n = 0, 1, 2, . . .. By the upper hemi-continuity of G,

limn→∞ gn(xn, z) ∈ G(x, z) (passing, if necessary to a subsequence which we index here again

by n to simplify notation). Then let g(x, z) = limn→∞ gn(xn, z) ∈ G(x, z) for all z. Since each

gn(xn, ·) is measurable (in z), so is g(x, z) (it is the pointwise limit of the sequence of functions

(g1(x1, ·), g2(x2, ·), . . .)). Since f is continuous, f ◦ gn(xn, ·) is measurable for all n, and so we

have:

lim
n→∞

∫
f(z)Pgn(xn, dz) = lim

n→∞

∫
f ◦ gn(xn, z)µz(dz)

Since f ◦ gn(xn, z) → f ◦ g(x, z) for all z (pointwise), it follows by Lebesgue’s Dominated

Convergence Theorem that:

lim
n→∞

∫
f ◦ gn(xn, z)µz(dz) =

∫
f ◦ g(x, z)µz(dz)

Combining the above expressions we conclude that limn→∞
∫
f(z)Pgn(xn, dz) =

∫
f◦g(x, z)µz(dz) =∫

f(z)Pg(x, dz) which is what we wanted to show.

Remark 6 Since an upper hemi-continuous correspondence is measurable, we get what Blume

(1982) calls a multi-valued stochastic kernel K : X → 2P(X) by taking P (x, ·) = K(x) for all

x ∈ X.
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Given g ∈ G, define the adjoint Markov operator in the usual way from the transition function

Pg:

T ∗g λ =

∫
Pg(x, ·)λ(dx) (22)

Next define the adjoint Markov correspondence:

T ∗λ = {T ∗g }g∈G (23)

To clarify, T ∗ maps a probability measure λ into a set of probability measures, namely the set

{T ∗g λ : g ∈ G}. A probability measure λ∗ is invariant if:

λ∗ ∈ T ∗λ∗

Of course this is the same as saying that there exists g ∈ G such that λ∗ = T ∗g λ
∗.

Lemma 3 (The Adjoint Markov Correspondence is Upper Hemi-Continuous) Let λn →w

λ and consider a sequence (µn) with µn ∈ T ∗λn. Then for any convergent subsequence µnm →w µ,

it holds that µ ∈ T ∗λ.

Proof. Although easy to prove directly, we shall not because it is a direct consequence of Propo-

sition 2.3. in Blume (1982) (see Remark 6).

One way to prove existence of an invariant distribution with transition correspondences is

based on convexity, upper hemi-continuity, and the Kakutani-Glicksberg-Fan Theorem (Blume

(1982)). Alternatively, one can look at suitable increasing selections and prove existence along

the lines of Hopenhayn and Prescott (1992) using the Knaster-Tarski Theorem. However, for

this paper’s developments, we need a set-valued existence result that integrates with the results

of Section 4.1. Mathematically, this can be accomplished by using the set-valued fixed point

theorem of Smithson (1971), and this is what we shall do below. The order is the first-order

stochastic dominance order.

We begin by proving a new result saying that if the policy correspondence G(x, z) has an

increasing and measurable greatest (respectively, least) selection in x (for fixed z), then the

adjoint Markov correspondence will be type I (respectively, type II) monotone in the sense of

Definition 4.

Theorem 12 Assume that the policy correspondence G : X×{z} → 2X has an increasing greatest

[least] selection for each fixed z ∈ Z. Then the adjoint Markov correspondence T ∗ is type I [type
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II] monotone. If G depends on an exogenous variable a ∈ A so that G : X × {z} × A → 2X and

the greatest [least] selection from G is increasing in a, then T ∗a will in addition be type I [type II]

monotone in a.

Proof. We prove the greatest/type I case only (the second case is similar). Consider probability

measures µ2 � µ1. We wish to show that for any λ1 ∈ T ∗µ1, there exists λ2 ∈ T ∗µ2 such that

λ2 � λ1. λ1 ∈ T ∗µ1 if and only if there exists a measurable selection g1 ∈ G such that:

λ1(·) =

∫
X
Pg1(x, ·)µ1(dx)

where,

Pg1(x,A) =

∫
Z
χA(g1(x, z))µz(dz) , for A ∈ B(X)

Similarly for λ2 ∈ T ∗µ2 where we denote the (not yet determined) measurable selection by

g2 ∈ G. Given these measurable selections, we have λ2 � λ1 if and only if for every increasing

function f : ∫
X
f(x)λ2(dx) ≥

∫
X
f(x)λ1(dx)⇔

∫
X

∫
Z
f ◦ g2(x, z)µz(dz)µ2(dx) ≥

∫
X

∫
Z
f ◦ g1(x, z)µz(dz)µ1(dx) (24)

But taking g2 to be the greatest selection from G (which is measurable), it is clear that,

∫
X

∫
Z
f ◦ g2(x, z)µz(dz)µ1(dx) ≥

∫
X

∫
Z
f ◦ g1(x, z)µz(dz)µ1(dx) (25)

In addition, since g2 is increasing in x, the function x 7→
∫
Z f ◦ g2(x, z)µz(dz) is increasing in x.

Since µ2 � µ1 it follows that,

∫
X

∫
Z
f ◦ g2(x, z)µz(dz)µ2(dx) ≥

∫
X

∫
Z
f ◦ g2(x, z)µz(dz)µ1(dx) (26)

Now simply combine (25) and (26) to get (24). Thus we have proved that if G has an increasing

maximal selection, T ∗ will be type I monotone.

The statements concerning the variable a ∈ A are proved by essentially the same argument

and is omitted.

We now get the following existence result. Note that unless T ∗ is also convex valued (which

is not assumed here), the set of invariant distributions will generally not be convex.
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Theorem 13 (Existence in the Type I/II Monotone Case) Assume that the adjoint Markov

correspondence is either type I (or type II) order preserving. In addition assume that the state

space (strategy set) has an infimum. Then T ∗ has a fixed point (there exists an invariant mea-

sure). In addition, the fixed point correspondence will be upper hemi-continuous if T ∗ is upper

hemi-continuous in (µ, θ) where θ is a parameter.

Proof. By Proposition 1 in Hopenhayn and Prescott (1992), (P(X),�) is chain complete (mean-

ing that any chain C in P(X) has a supremum in P(X)). In order to apply Theorem 1.1. of

Smithson (1971) we need therefore only verify his “Condition III” and establish the existence of

some µ ∈ P(X) such that there exists a λ ∈ T ∗µ with µ � λ. The first of these (“Condition

III”) follows directly from upper hemi-continuity of T ∗ (proof omitted). For the second, we do

as Hopenhayn and Prescott (1992), proof of Corollary 2, and pick a measure δa from P(X) that

places probability one on the infimum {a} ≡ inf X ∈ X. Then λ � δa for all λ ∈ P(X). It is then

clear that if we take µ = δa we have λ � µ for (in fact, every) λ ∈ T ∗µ. The upper hemi-continuity

claim is trivial under the stated assumptions.

8.3 Appendix III: Aggregation of Risk and Laws of Large Numbers

This appendix is devoted to possible mathematical interpretations of the baseline aggregator (7)

of Section 3:

H((xi,t)i∈I) =

∫
[0,1]

xi,tdi (27)

Since the integrands on the right-hand-side of (27) are random variables, we must define what

it means to integrate across them. And the fact is that there simply is not a uniformly accepted

way to define this. In addition, we must ensure that some law of large numbers supports the

assertion that the function’s values are real numbers. There is a large and growing theoretical

literature on how this can be done. The following are some of the most popular approaches to

eliminating risk at the aggregate level.

• (The Sampling Approach) If one defines the integral
∫

[0,1] xi,tdi as the limiting average

over an infinite (randomly drawn) subset of agents (Bewley (1986)), a law of large numbers

will immediately apply and H will take values in R.

• (Stochastic Integrals) This approach is originally due to Uhlig (1996). Integrals of ran-

dom functions with respect to deterministic measures is a special case of integrals of random
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functions with respect to random measures, also known as stochastic integrals.48 Viewing∫
[0,1] xidi as a stochastic integral, we have:∫

[0,1]
xidi ≡ lim

n→∞

n∑
i=1

xti(ti − ti−1) (28)

where the convergence is usually taken to be in L2-norm, and as n→∞, the lengths of the

subdivision 0 = t1 < t2 < . . . < tn = 1 tends to zero. Given this interpretation,
∫

[0,1] xi,tdi

will itself be a random variable, but when the xi’s satisfy assumptions of some appropriate

law of large numbers, the distribution will be degenerate. We may then identify it with a real

number H((xi,t)i∈I) equal to the degenerate distribution’s point of unit-mass as explained

above. See the discussion below for further details on the stochastic integral approach.

• (Pathwise Integration and Dependency Settings) Another interpretation of (7) is that

of Judd (1985) and Feldman and Gilles (1985) who suggest integrating over the set of sample

paths (or rather, the measurable ones). As Judd (1985) and Feldman and Gilles (1985)

explain, this approach runs into technical difficulties, however, making it inappropriate

for the present purposes. Instead, Feldman and Gilles (1985) suggest looking at shocks

across agents that are not independent of each other. This potentially solves the problems

associated with pathwise integration in the i.i.d. case. Since independence of shock plays

no other role for the results in our paper than that of ensuring that a law of large numbers

applies, such “dependency” assumptions pose no problems as long as they lead to a well-

defined aggregator.

• (Discrete Set of Players) In some contexts it may be unappealing to look at a continuum

of agents, but one still wishes formalize the notion that each player is infinitely small relative

to the market so that aggregate risk disappears by a law of large numbers type of argument.

A way to model this is to look at a countable set of agents I ⊆ [0, 1] (think of an infinitely fine

“grid” such as the set of rational numbers) and equip this set with a non-atomic measure.

Such a measure cannot be countably additive (or else the measure of the entire set of players

would be 0). The setting thus becomes non-standard, but the advantage is that pathwise

integration over sample paths becomes well-defined and the integral over a sample path will

equal the sample average almost surely (the difficulties mention in the previous case thus

disappear). See Al-Najjar (2004) for more on this idea. In terms of (27), the expression∫
[0,1] xi,tdi must now be interpreted as the integral over sample paths. When a law of large

48One can think of the former case as a stochastic integral where the random measures being integrated with
respect to has a degenerate distribution. See for example Gourieroux (1997), page 71-72, who develops stochastic
integrals from precisely this perspective (beginning with the deterministic measure case considered here.
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numbers applies we once again get a well-defined aggregator. As may be verified, this paper’s

results nowhere make explicit use of our favored assumption of a continuum of agents - so

if the reader prefers the approach of Al-Najjar (2004) (or any other non-standard approach

for that matter), this is easily accommodated by taking I to be an uncountable but discrete

set throughout.

The stochastic integral approach of Uhlig (1996) is further detailed in Acemoglu and Jensen

(2010). Here we wish to expand upon this approach. To repeat, the idea is to take
∫

[0,1] xi,tdi

to be equal to the random variable that is given by the limit in L2-norm of the sequence of

“Riemann sums”,
∑n

i=1 xτi,t(τi − τi−1), n = 1, 2, 3, . . ., for a narrowing sequence of subdivisions

0 = τ1 < τ2 < . . . < τn = 1, n = 1, 2, 3, . . .. Whenever the random variables considered

are bounded (which they will be in our setting, cf. Assumption 1), convergence in L2-norm is

equivalent to convergence in probability.49 Another thing worth mentioning is that sums of the

type
∑n

i=1 xτi,t(τi − τi−1) may seem less general than the standard Riemann sums considered by

Uhlig (1996) (precisely, the standard definition of the Riemann integral uses tagged partitions of

the type
∑n

i=1 xρi,t(τi−τi−1) where ρi ∈ [τi−1, τi] for all i). However, it is well know that using the

“left-hand” Riemann sum is no less general than general tagged partitions for the simple reason

that any tagged partition can be subdivided into a new finer partition whose subdivisions’ left

end-points are precisely the original tags. The following lemma is useful for determining when

the limit of the Riemann sums is well-defined, and evaluating the integral.

Lemma 4 Consider the integral in (27) defined as the L2-norm limit of the Riemann sums as de-

scribed above. Then the limit is well-defined (i.e., it exists and is independent on the subdivisions)

if the following condition is met:

∫
[0,1]

E[(xi,t)
2]di < +∞ (29)

Furthermore, under this condition (or any other condition that implies that the limit is well-

defined), the integral can be calculated as:

∫
[0,1]

xi,tdi = lim
n→∞

n∑
i=1

1

n
Xi,t (30)

where (X1,t, X2,t, X3,t, . . .) is the sequence of random variables defined by recursively halving the

interval [0, 1], i.e., X1,t ≡ x1,t, X2,t ≡ x 1
2
,t, X3,t ≡ x 1

4
,t, X4,t ≡ x 3

4
,t, X5,t ≡ x 1

8
,t, . . ..

49Since convergence almost surely implies convergence in probability, L2-norm convergence is consequently weaker
than convergence almost surely in the present setting. This will be used repeatedly below.
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Proof. The first claim of the lemma is found in Gourieroux (1997), p.71. As for (30), we begin

by observing that when the subdivisions do not matter, we may focus attention on a convenient

sequence of subdivisions such as the even subdivisions, 0 < 1
n <

2
n < . . . < n−1

n < 1, n = 1, 2, 3, . . ..

With this subdivision, (27) becomes:

∫
[0,1]

xi,tdi = lim
n→∞

n∑
i=1

1

n
x i

n
,t (31)

In the summation we get for a given n a sum over the set of random variables

{x 1
n
,t, x 2

n
,t, . . . , xn−1

n
,t, x1,t}. If we look at the subsequence n = 1, 2, 4, 8, . . . (which we clearly

may do without loss of generality), we get an expanding sequence of random variables: {x1,t} ⊆
{x 1

2
,t, x1,t} ⊆ {x 1

4
,t, x 1

2
,t, x 3

4
,t, x1,t} ⊆ {x 1

8
,t, x 1

4
,t, x 3

8
,t, x 1

2
,t, x 5

8
,t, x 3

4
,t, x 7

8
,t, x1,t} ⊆ . . .. In terms of

(31) (slightly modified to the subsequence n = 1, 2, 4, . . .), this exactly brings us to the sequence

of random variables X1,t, X2,t, X3,t, . . ..

The upshot of the previous lemma is that (30) allows us to appeal to a standard version of

the law of large numbers such as that of Chebyshev (1867) (see Acemoglu and Jensen (2010)) in

order to conclude that:

lim
n→∞

n∑
i=1

1

n
Xi

will be a degenerate random variable with unit mass at:

lim
n→∞

E[

∫ n∑
i=1

1

n
Xi]

The only remaining problem then is to ensure that this limit exists.

Lemma 5 If the function i 7→ E[Xi] is Riemann-integrable, µn converges to the limit
∫
E[Xi]di

as n→∞ where the integral is the Riemann integral.50

Proof. Since µn = E[An] =
∑n

i=1
1
nE[Xi] is a Riemann sum, the existence of a limit follows

directly from the definition of the Riemann integral.

If there is an at most countable number of types, the previous lemma applies. This is because

the function i 7→ E[Xi] will in this case be continuous almost everywhere (in fact, it will be

piecewise constant). Since a bounded and continuous almost everywhere function is Riemann

integrable, the conclusion follows.

50When the Riemann integral exists, as it does here by assumption, the Riemann and Lebesgue integrals coincide.
So it would be equally true to write that µn →

∫
E[Xi]di where the integral is the Lebesgue integral.
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