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A Geometric Approach to Weakly Identi�ed Econometric Models
By Isaiah Andrews1 and Anna Mikusheva2

Abstract
Many nonlinear Econometric models show evidence of weak identi�cation, including many

Dynamic Stochastic General Equilibrium models, New Keynesian Phillips curve models, and

models with forward-looking expectations. In this paper we consider minimum distance statistics

and show that in a broad class of models the problem of testing under weak identi�cation is

closely related to the problem of testing a �curved null� in a �nite-sample Gaussian model.

Using the curvature of the model, we develop new �nite-sample bounds on the distribution of

Anderson-Rubin-type statistics, which we show can be used to detect weak identi�cation and to

construct tests robust to weak identi�cation. We apply the new method to a small-scale DSGE

model and show that it provides a signi�cant improvement over existing methods.

Key words: weak identification, statistical differential geometry

This draft: May 29, 2012.

1 Introduction

Empirical researchers in Economics frequently �nd that even in large samples the data
provides little information about some model parameters. In such cases, known as weakly
identi�ed, the usual asymptotic approximations for estimators and test statistics may be
quite poor, making standard approaches to inference unreliable. Weak identi�cation has
been detected in a wide range of non-linear estimation contexts, including estimation
of the New Keynsian Phillips Curve (Dufour, Khalaf, and Kichian (2006), Kleibergen
and Mavroeidis (2009b), Mavroeidis (2005), Nason and Smith (2008)), monetary policy
rules (Mavroeidis (2010)), Dynamic Stochastic General Equilibrium (DSGE) Models (
Ruge-Murcia (2007), Canova and Sala (2009), Iskrev (2010), I. Andrews and Mikusheva
(2011), Guerron-Quintana, Inoue and Kilian (2009)), and Euler equations (Yogo (2004)).

1Department of Economics, M.I.T., 50 Memorial Drive, Building E52, Cambridge, MA, 02142. Email:
iandrews@mit.edu. Financial support from the NSF Graduate Research Fellowship Program is gratefully
acknowledged.

2Department of Economics, M.I.T., 50 Memorial Drive, Building E52, Cambridge, MA, 02142. Email:
amikushe@mit.edu. Financial support from the Castle-Krob Career Development Chair is gratefully ac-
knowledged. We are extremely grateful to Professor of Di�erential Geometry Toby Colding for discussing
geometric issues with us, and for checking our geometric proofs. We are grateful to Gary Chamberlain,
Victor Chernozhukov, Jerry Hausman, Mattias Cattaneo, Whitney Newey and Jim Stock for helpful
comments.
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The need for more reliable procedures robust to weak identi�cation in non-linear contexts
has inspired a large literature in econometrics - for a survey, see Dufour (2003) and Stock,
Wright, and Yogo (2002).

A number of di�erent testing procedures have been proposed in this literature, most
of which address two situations: the case in which one is interested in testing the full
parameter vector (also known as testing a simple hypothesis), and the case in which one
is interested in testing only a subset of parameters but the parameters not under test
(the nuisance parameters) are strongly identi�ed. Examples of such tests include Stock
and Wright (2000), Guggenberger and Smith (2005, 2008), Kleibergen (2005, 2007),
I. Andrews and Mikusheva (2011), and Qu (2011). The literature to date has, however,
been largely silent about the case in which part of the nuisance parameter vector may
be weakly identi�ed. A notable exception is the recent paper by D. Andrews and Cheng
(2011).

Our paper directly addresses the question of inference with weakly identi�ed nuisance
parameters in the context of minimum distance estimation. We suggest a fully robust
testing procedure which controls size without any assumption on the strength of iden-
ti�cation of the parameters. Further, if the nuisance parameters are strongly identi�ed,
our procedure is asymptotically equivalent to the �concentrated out� S-test suggested by
Stock and Wright (2000) for hypotheses with strongly identi�ed nuisance parameters.

Our procedure is based on novel �nite-sample bounds on the distribution of the test
statistic under the null. For our asymptotics, we assume only that the model has reduced-
form parameters which are asymptotically normal and hence we do not rely on any
particular asymptotic embedding, such as those used by Stock and Wright (2000) or
D. Andrews and Cheng (2011) to model weak identi�cation. In fact, if one thinks a
normal approximation to the distribution of the reduced-form estimates is reasonable,
our bounds are �nite-sample rather than asymptotic.

The bounds we derive rely on techniques from di�erential geometry which are new
in the econometrics literature. Our starting point is the observation that hypotheses
in non-linear models with strongly identi�ed nuisance parameters are asymptotically
linear in a geometrical sense. In contrast, hypotheses with weakly identi�ed nuisance
parameters need not be asymptotically linear and can exhibit substantial curvature even
in large samples, leading to the breakdown of the usual asymptotic approximations. Our
bounds can be viewed as a strengthening of the usual approximations, where rather
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than appealing to asymptotic linearity of the null hypothesis we quantify the maximal
deviation of the null from linearity and use it to construct stochastic bounds. As a result,
under strong-identi�cation asymptotics our bounds recover the usual approximations.
The test we suggest uses a standard minimum-distance statistic paired with robust critical
values derived using these geometric bounds. The validity of this approach relies only
on assumptions which can be checked directly in applications, and our robust critical
values are very easy to simulate. The bounds we derive are also of potential interest
for a range of other applications, including testing nonlinear hypotheses and inference in
highly non-linear models. Our approach di�ers from the statistical geometry literature
initiated by Efron (1975) in that we produce �nite sample bounds on the distribution of
the test statistic, whereas the statistical geometry literature is primarily concerned with
higher-order asymptotic approximations.

To date the dominant recommendation for testing hypotheses with weakly identi�ed
nuisance parameters has been the projection method (see Dufour and Jasiak (2001),
Dufour and Taamouti (2005), Dufour, Khalaf, and Kichian (2006)). The strength of the
projection method is that it requires no assumptions beyond the validity of the test for
the full parameter vector. It is in general conservative, however, and may be extremely
so in cases where the nuisance parameter is high-dimensional and/or strongly identi�ed.
Our approach is an improvement over the projection method, in that it uses the same
test statistic paired with smaller critical values while still maintaining size.

If one knows that part of the nuisance parameter vector is strongly identi�ed, it has
been proved that in many cases one can obtain a more powerful test by concentrating
out the nuisance parameter as in e.g. Stock and Wright (2000). Maintaining correct
size in such cases, however, relies critically on the strong identi�cation assumption on
the nuisance parameter. In contrast, our approach requires no assumption of strong
identi�cation but, in the event that the nuisance parameters are strongly identi�ed, is
asymptotically equivalent to concentrating them out. In this sense, our robust critical
values can be viewed as providing a continuous transition between projecting over and
concentrating out the nuisance parameters, depending on the strength of identi�cation.

We also use our bounds to derive a pre-test for weak identi�cation which allows one
to control size in two-step testing procedures. In particular, if one is deciding between
concentrating out the nuisance parameter and using a robust procedure, we provide
bounds on the curvature of the null hypothesis which can be used to guide the choice.
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This procedure is quite di�erent from existing tests for weak identi�cation in nonlinear
models such as Inoue and Rossi (2011), Iskrev (2010) and Wright (2003) in that the
existing tests all e�ectively test the null of strong identi�cation and hence do not control
the probability of failing to detect weak identi�cation. In contrast, our pre-test for weak
identi�cation directly bounds the �nite-sample distribution of the test statistic.

As a side result, we provide an example showing that the distribution of an AR-type
statistic in a nonlinear GMM model under weak identi�cation is not in general domi-
nated by the distribution of the same statistic under strong identi�cation. Kleibergen
and Mavroeidis (2009a: initial draft) claimed that such such stochastic dominance holds
for some non-linear GMM models. If such a statement held universally (which Kleibergen
and Mavroeidis did not claim), it would have meant that concentrating out the nuisance
parameter controlled size regardless of identi�cation strength. As we show in this paper,
however, this dominance relationship does not in general hold for our setting, and con-
centrating out weakly identi�ed nuisance parameters can yield substantial over-rejection.

We apply our approach to a small-scale DSGE model and �nd evidence of substan-
tial curvature. We consider the problem of testing composite hypotheses about model
parameters, and show that our robust critical values are substantially smaller than those
used by the projection method while still controlling size.

The paper is structured as follows. In Section 2 we show that hypotheses with strongly
identi�ed nuisance parameters are asymptotically linear, while weakly identi�ed nuisance
parameters may cause non-trivial curvature of the null hypothesis. We also introduce
several examples that �t our framework. In Section 3 we derive our geometric and
stochastic bounds and introduce our fully robust test. In Section 4 we compare our
testing procedures with existing methods, discuss the AR conjecture and introduce our
pre-test. Section 5 is devoted to modi�ed procedures for subsets of nuisance parameters,
and Section 6 presents simulation results from applying our procedures to a small-scale
DSGE model. All proofs may be found in the Appendix.

Throughout the paper we use the following notation: α̇ is the derivative of the function
α, α̈ is the second derivative, BR(x0) = {x ∈ Rk : ‖x − x0‖ ≤ R} is a k-dimensional
ball of radius R with center x0, and BR = BR(0) is a ball around zero. Let DC = {x =

(x(1), x(2)) : ‖x(1)‖ ≤ C, ‖x(2)‖ ≤ C, x(1) ∈ Rp, x(2) ∈ Rk−p} ⊂ Rk, which is a natural
generalization of a cylinder.
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2 Model setting

Suppose we have a single observation θ̂ ∼ N(θ, Ik), where the true value of θ = θ0

is unknown. Further, suppose we have a known regular p-dimensional manifold S̃ in k-
dimensional space. The assumption that S̃ is a regular p-dimensional manifold essentially
means that the tangent space to S̃ at all points is a p-dimensional linear subspace.3 The
LR (likelihood ratio) statistic for testing a null hypothesis H0 : θ ∈ S̃ is

LR = min
θ∈S̃

(θ̂ − θ)′(θ̂ − θ).

Example 1. Let g : Rk → Rk−p be a twice-continuously-di�erentiable function whose
Jacobian has full rank at all points. Assume that we wish to test the null hypothesis
H0 : g(θ) = 0. Then the set of points S̃ = {θ ∈ Rk : g(θ) = 0} describes a p-dimensional
manifold which is known to the researcher. If g is a linear function, the null can be
formulated as H0 : Rθ = r, where R is (k − p)× k full-rank matrix and r is (k − p)× 1

vector. In this special case, the manifold S̃ described by the null hypothesis is a p-
dimensional linear space.¤

Example 2. Suppose we have a structural model which imposes that θ = m̃(β)

for some structural parameter β where the function m̃ : Rp → Rk is twice continuously
di�erentiable with a full-rank Jacobian at all points. The image of the function m̃ is a
p-dimensional regular manifold S̃ known to the researcher. Hence, the LR test for the
hypothesis of correct speci�cation will be based on the statistic

LR = min
β

(θ̂ − m̃(β))′(θ̂ − m̃(β)) = min
θ∈S̃

(θ̂ − θ)′(θ̂ − θ). ¤

The distribution of the LR statistic under the null, that is for θ ∈ S̃, is in general
non-standard and depends on the unknown nuisance parameter θ0, the true value of θ,
making inference di�cult. In what follows, we derive bounds on distribution of LR for
which it su�ces to know the shape of the manifold S̃; that is, which do not require
knowledge of θ0.

To proceed, it is useful for us to introduce the random vector ξ = θ̂ − θ0 ∼ N(0, Ik)

and the p-dimensional manifold S = {x : x = θ−θ0, θ ∈ S̃}, which is simply S̃ translated
by −θ0. If the null is true, then the manifold S passes through the origin. The LR

3More details on regularity conditions can be found in section 3.
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statistic is equal to the squared distance between ξ and S:

ρ(ξ, S)2 = min
x∈S

(ξ − x)′(ξ − x). (1)

The central statistical issue in this paper is how to characterize the distribution of ρ(ξ, S),
the squared distance from ξ to the manifold S, in terms which do not depend on the
unknown θ0. In particular, we develop bounds on this distribution that depend only on
the curvature of the manifold S̃, which is known to the researcher.

A well-known property of the normal distribution is that if S is a p-dimensional linear
sub-space then the squared distance ρ2(ξ, S) has a χ2

k−p distribution. Note that in this
very special case the distribution does not depend on θ0. Numerous classical results on
testing in the presence of a nuisance parameter are based on this fact. Indeed, most of
the classical statistics literature deals with testing hypotheses that are either linear or
asymptotically linear, in the sense that S is either a linear subspace or arbitrarily well-
approximated by one in large samples. In subsection 2.1 below, we argue that testing
in the presence of strongly identi�ed nuisance parameters is asymptotically equivalent
to testing a linear hypothesis, while testing in the presence of weakly identi�ed nuisance
parameters tends to result in asymptotically non-linear null hypotheses. This has im-
portant implications for hypothesis testing, since if S is not a linear sub-space then the
distribution of ρ2(ξ, S) is in general non-standard and depends on the whole shape of S.

There is one natural (less informative) bound that can be placed on ρ2(ξ, S) without
any assumptions, namely that ρ2(ξ, S) is dominated by χ2

k. Indeed, since 0 ∈ S, we have

ρ(ξ, S)2 = min
x∈S

(ξ − x)′(ξ − x) ≤ (ξ − 0)′(ξ − 0) ∼ χ2
k. (2)

We argue below that this bound is precisely the one used by the �projection method�,
which is currently the main approach available for testing with weakly identi�ed nuisance
parameters. As discussed above, the major disadvantage of this bound is that it may
yield quite conservative tests.

2.1 Weak identi�cation is related to curvature

A parameter or group of parameters is known as weakly identi�ed when it is point iden-
ti�ed, but the data is not very informative about the true value. In such cases, it is
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well known that many classical statistical approximations perform quite poorly. As a
result, point estimates tend to be biased, many tests exhibit large size distortions, and
con�dence sets based on these tests have poor coverage. One framework used for develop-
ing better approximations in such cases is the drifting functions approach introduced by
Stock and Wright (2000). This approach models weak identi�cation using an asymptotic
embedding in which the objective function is asymptotically �at along some directions.
To �x ideas, let us consider a GMM model in which the moment function is separable
in the data. In particular, assume that we observe a sample {xi} of size n consisting of
identically and independently distributed observations such that

E(h(xi)−M(α, β)) = 0 for α = α0, β = β0. (3)

Here h(x) is a k-dimensional function with E‖h(xi)‖4 < ∞, while α and β are kα×1 and
kβ×1 vectors respectively, for kα +kβ ≤ k. Assume that θ0 = (α0, β0) is the unique point
at which the moment condition (3) is satis�ed, so that the model is point identi�ed. As
in Stock and Wright (2000), we can allow the function M to change as the sample size
grows. In particular,

M(α, β) = Mn(α, β) = M̃(α) +
1√
n

M∗(α, β), (4)

where M̃(α) and M∗(α, β) are �xed twice-continuously-di�erentiable functions with full-
rank Jacobians. In this setting, α is strongly identi�ed while β is weakly identi�ed,
because information about β does not accumulate as the sample size grows.

Suppose we are interested in testing a hypothesis about the structural parameters α

and β. Consider �rst the problem of testing a full parameter vector hypothesis
H0 : α = α0, β = β0. To test this hypothesis, we can use a generalization of the AR

(Anderson-Rubin) statistic introduced in Stock and Wright (2000):

AR(α0, β0) = n

(
1

n

∑
i

h(xi)−Mn(α0, β0)

)′

Σ−1

(
1

n

∑
i

h(xi)−Mn(α0, β0)

)
,

where Σ is the covariance matrix of vector h(xi) (which we take to be nonsingular) or a
consistent estimate thereof. Under the null, we have that AR(α0, β0) ⇒ χ2

k. This result
requires only that a central limit theorem hold for h(xi) and is fully robust towards
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weak identi�cation of β. An alternative test for the full parameter vector is suggested in
Kleibergen (2005), which uses a score (LM) statistic.

To test a hypothesis with a strongly identi�ed nuisance parameter, e.g. H0 : β = β0,
we can use the AR statistic for a test on both α and β, minimized over the nuisance
parameter α. In particular, we consider

AR(β0) = min
α

AR(α, β0).

Stock and Wright (2000) prove that under the null AR(β0) ⇒ χ2
k−kα

regardless of the
strength of identi�cation of β. Interested readers may �nd a full proof of this result in
Stock and Wright (2000): here, we instead show that the problem of testing H0 : β = β0

for a strongly identi�ed nuisance parameter is asymptotically equivalent to that of testing
a linear hypothesis in the Gaussian model described in the beginning of section 2.

To see that this is the case, de�ne ξn =
√

nΣ−1/2( 1
n

∑
i h(xi) −Mn(α0, β0)). By the

central limit theorem, ξn ⇒ ξ ∼ N(0, Ik). Let Sn be the image of the function

mn(α) =
√

nΣ−1/2(Mn(α, β0)−Mn(α0, β0)) =

=
√

nΣ−1/2(M̃(α)− M̃(α0)) + Σ−1/2(M∗(α, β0)−M∗(α0, β0)) =

=
√

nΣ−1/2(M̃(α)− M̃(α0)) + O(||α− α0||). (5)

The statistic AR(β0) is equal to ρ2(ξn, Sn). For any bounded set B, the intersection
Sn

⋂B converges to the intersection of B with the kα-dimensional linear sub-space S

spanned by the columns of the Jacobian of M̃(α) at point α0. Indeed, according to
equation (5) and the assumption that α is globally identi�ed, one can easily show that
the range of values of α such that mn(α) ∈ Sn

⋂B is of order 1/
√

n. Any regular
manifold, however, is arbitrarily well approximated by its tangent space, which we can
denote here by S, on an in�nitesimal neighborhood of a regular point (see section 3.1 for
de�nitions). As a result, it is easy to show that ρ2(ξn, Sn) ⇒ ρ2(ξ, S) ∼ χ2

k−kα
, where the

last equality is true due to the fact discussed at the beginning of this section that the
squared distance from a standard normal vector to a linear space passing through zero
is χ2-distributed. For another version of this asymptotic linearity result, see section 5,
where we show that in models with strongly identi�ed nuisance parameters the curvature
is of order 1/

√
n.
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Tests for hypotheses with weakly identi�ed nuisance parameters behave quite di�er-
ently. In particular, we show that in general the curvature of a null hypothesis with a
weakly identi�ed nuisance parameter does not disappear asymptotically. To illustrate
this point, assume that the hypothesis of interest is H0 : α = α0, so that β is a weakly
identi�ed nuisance parameter. Again, we consider the AR statistic minimized over the
nuisance parameter:

AR(α0) = min
β

n

(
1

n

∑
i

h(xi)−Mn(α0, β)

)′

Σ−1

(
1

n

∑
i

h(xi)−Mn(α0, β)

)
.

Let us de�ne ξn =
√

nΣ−1/2( 1
n

∑
i h(xi) − Mn(α0, β0)) as before, and let Sn be the

image of the function

mn(β) =
√

nΣ−1/2(Mn(α0, β)−Mn(α0, β0)) = Σ−1/2(M∗(α0, β)−M∗(α0, β0)).

By construction, Sn is a p-dimensional manifold in k-dimensional Euclidean space. In
contrast to the strongly identi�ed case, however, we have that Sn does not change with
the sample size, so denote it S. Hence, if Sn is nonlinear for a given sample size, it
remains nonlinear in the limit. As a result, we have that

AR(α0) = ρ2(ξn, S) ⇒ ρ2(ξ, S),

where ξ ∼ N(0, Ik) and S is a p-dimensional manifold, which is not in general a linear
sub-space. Note, however, that this is precisely the problem discussed at the beginning
of section 2. Hence, the problem of testing a hypothesis with weakly identi�ed nuisance
parameters using the AR statistic is asymptotically equivalent to that of testing a possibly
nonlinear hypothesis in a Gaussian model. As a result, constructing bounds for the
distribution of ρ2(ξ, S) will also allow us to conduct inference in models with weakly
identi�ed nuisance parameters.

Linearity vs strength of identi�cation. We showed that the problem of testing a
hypothesis with strongly identi�ed nuisance parameters is asymptotically equivalent to
that of testing that the mean belongs to linear subspace in a �nite-dimensional Gaussian
model. In contrast, if there are weakly identi�ed nuisance parameters the manifold
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corresponding to the null hypothesis need not converge to a linear subspace, so the usual
critical values may be invalid. Rather than focusing on strength of identi�cation, however,
we may view the key distinction here as between linearity and non-linearity. In particular,
while strong identi�cation guarantees that the null hypothesis will correspond to a linear
subspace in the limit, even with weakly identi�ed nuisance parameters if S (the set of
parameter values satisfying the null) happens to be a linear subspace, the usual χ2

k−kβ

limiting distribution will be correct. Hence, in models where the nuisance parameters
enter the function M linearly, the usual (strong-identi�cation) critical values for the AR

statistic will yield asymptotically valid tests regardless of the strength of identi�cation.
Asymptotic linearity, not strong identi�cation as such, is the essential condition. On a
related note, Andrews and Mikusheva (2011) show that in a parametric model, a score
test which concentrates out the nuisance parameter has asymptotically correct coverage
even for testing a null hypothesis with a weakly identi�ed nuisance parameter as long as
this parameter enters the log-likelihood function linearly.

2.2 Minimal distance statistics

The analysis above generalizes to a broader minimum-distance context. Assume that
we have a sample of size n from a model parameterized by structural parameters (α, β),
which are related to reduced form parameters θ by θ = Mn(α, β) where the function Mn

is of the form described in equation (3). Further, suppose we have an estimator θ̂ of the
reduced-form parameters which is consistent and asymptotically normal:

√
n(θ̂ − θ) ⇒ N(0, Σ),

for Σ either known or consistently estimable: in the GMM example above, we could take
θ = E[h(xi)] and θ̂ = 1

n

∑n
i=1 h(xi). As before, α is strongly identi�ed while β is weakly

identi�ed. The analysis now applies to so-called minimum distance statistics (which we
will continue to refer to as AR for simplicity). In particular, to test the hypothesis
H0 : α = α0, β = β0 we use

AR(α0, β0) = n
(
θ̂ −Mn(α0, β0)

)′
Σ−1

(
θ̂ −Mn(α0, β0)

)
,
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while to test the hypothesis H0 : β = β0 with a strongly identi�ed nuisance parameter
we consider the statistic AR(β0) = minα AR(α, β0) and pair it with χ2

k−kα
critical values.

Taking ξn =
√

nΣ−1/2(θ̂−θ0), the same argument as above shows that this testing problem
is asymptotically equivalent to testing a linear hypothesis in a Gaussian model. Likewise,
testing a hypothesis with a weakly identi�ed nuisance parameter is again asymptotically
equivalent to testing a non-linear hypothesis in a Gaussian model.

Below we discuss several applied examples that can be cast into this setting.

2.2.1 Example: DSGE models

Dynamic Stochastic General Equilibrium (DSGE) models have recently been quite pop-
ular in applied Macroeconomics. These are highly non-linear, very multi-dimensional
dynamic models describing the evolution of the main macro indicators in the economy
and are used by many central banks. A number of concerns have been voiced about iden-
ti�cation in these models (Ruge-Murcia (2007), Canova and Sala (2009), Iskrev (2011),
I. Andrews and Mikusheva (2011), Guerron-Quintana, Inoue and Kilian (2009)), and
many authors have noted that standard frequentist statistical procedures are unreliable.
The source and extent of weak identi�cation in such models is not well understood, and
it is impossible to distinguish which parameters are weakly identi�ed using currently-
available procedures.

Several recent papers (Dufour, Khalaf and Kichian (2009), Guerron-Quintana, Inoue
and Kilian (2009), I. Andrews and Mikusheva (2011), and Qu (2011)) suggest tests for
full parameter vector hypotheses robust towards weak identi�cation. With the exception
of I. Andrews and Mikusheva (2011), these papers suggest the projection method for
inference on subsets of parameters. Due to the high dimension of the parameter vector
in many DSGE models, however, the projection method tends to be quite conservative.

Most DSGE models can be cast into our framework, which seems natural here, as one
suggestion for how to estimate DSGE models is through two-step matching procedures
(Christiano and Eichenbaum (1992), Rotemberg and Woodford (1997), Ruge-Murcia
(2010)). Typical log-linearized DSGE models are of the form:

Γ0(β)zt = Γ1(β)Etzt+1 + Γ2(β)zt−1 + Γ3(β)ut,

where zt is a set of state variables at time t, β is a set of structural parameters, ut are
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i.i.d. mean zero shocks with identity covariance matrix, and Γi(β) are known (often non-
linear) functions. We observe variables xt = Czt, where in many cases C is a deterministic
matrix (usually a selection matrix). There are a number of known procedures for solving
systems of linear rational expectation equations of this form- see Blanchard and Kahn
(1980), Anderson and Moore (1985), King and Watson (1998), and Sims (2002) for
di�erent algorithms.

Once solved, the model can be written in the form

zt = A(β)zt−1 + B(β)ut,

where matrices A(β) and B(β) are generally nonlinear in β and solve the equations

(Γ0 − Γ1A)A− Γ2 = 0; (Γ0 − Γ1A)B − Γ3 = 0.

In this context, a natural choice of reduced-form parameters is the auto-covariances
of the observed vector-series xt. In particular, let Σx(j) be j-th order auto-covariance of
xt (for details see Iskrev (2010)):

Σx(j) = cov(xt, xt−j) = CAjΣz(0)C ′

where Σz(0) = Eztz
′
t = AΣz(0)A′ + BB′. It is helpful to write everything in vectorized

form. In particular,

θj(β) = vec(Σx(j)) = (C ⊗ CAj)(I − (A⊗ A))−1vec(BB′).

One may choose the reduced form parameter θ to be some subset of vec(Σx(j)), so
θ = m(β) = W (θ0(β)′, ..., θj(β)′)′, where W is a selection matrix. In the absence of
persistence (exact or near unit roots) the sample estimators

θ̂j = vec

(
1

T − j − 1

T−j∑
t=1

(xt+j − x)(xt − x)′
)

of θj satisfy a central limit theorem and achieve normality quite quickly. As a result,
normal approximations to the distribution of θ̂ = W (θ̂0, ..., θ̂j) are usually quite reliable
for realistic sample sizes. Hence, we can conduct inference on the structural parameters
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β using the AR statistic

AR(β) = n(θ̂ − θ(β))′Σ−1(θ̂ − θ(β))

where Σ is the covariance matrix of the reduced-form parameter estimates.

2.2.2 Example: Phillips curve

Typical models of the New Keynesian Phillips curve relate present in�ation to expecta-
tions about future in�ation and past values of in�ation. One such formulation is

πt =
n∑

j=0

λjst−j + γfEtπt+1 +
m∑

j=1

γjπt−j + εt, (6)

where πt is the in�ation at time t and st is some driving variable (e.g. labor costs).
One way of estimating such models, popularized by Gali and Gertler (1999), is with
instrumental variables regression.

Mavroeidis (2005) argues that models of forward-looking expectations (like the New
Keynesian Phillips curve) require an analysis of identi�cation distinct from the usual
GMM-IV arguments considered in i.i.d. models. In particular, the error in the Phillips
curve expression above will in general be autocorrelated and heterogeneous, raising iden-
ti�cation issues above and beyond those faced in the i.i.d. case. Mavroeidis (2005) shows
that the dynamics of the forcing variable st are extremely important for determining the
identi�cation of the model and that if these dynamics are insu�ciently rich then the
parameters in (6) will not be identi�ed. He also argues that standard diagnostics for
identi�cation strength designed for i.i.d. models may be quite misleading when applied
to Phillips curve estimation.

To cast New Keynesian Phillips curve estimation into our setting, suppose that the
driving variable st is weakly exogenous and can be modeled as

st =

p∑
j=1

ρjst−j +

q∑
j=1

φjπt−j + vt. (7)

13



One can then solve the model described by (6) and (7) to obtain a reduced form solution

πt =
ls∑

j=0

αjst−j +
lπ∑

j=1

δjπt−j + αεεt. (8)

To test hypotheses on the structural parameters β = (λ0, ..., λn, γf , γ1, ..., γm, ρ1, ..., ρp, φ1, ..., φq),
we �rst estimate the reduced form parameters θ = (α0, ..., αls , δ1, ..., δlπ , ρ1, ..., ρp, φ1, ..., φq)

by OLS regressions (7) and (8). The function θ(β) connecting the structural parameters
to the reduced form is given by the solution to the model and can be found in Mavroeidis
(2005). Using this solution, we can test any hypothesis on the structural parameters by
testing the implied hypothesis on the reduced form parameters. In particular, for a full
parameter vector hypothesis H0 : β = β0 we consider the AR statistic:

AR(β0) = n(θ̂ − θ(β0))
′Σ−1(θ̂ − θ(β0)),

where n is the sample size and Σ is a HAC-consistent estimator of the asymptotic variance
of θ̂. Likewise, any other hypothesis about the structural parameters describes some
manifold in the space of θ's and thus �ts into the framework described in section 2.

3 Geometry

3.1 Manifolds, tangent spaces, curvature

In this paper we focus on regular manifolds embedded in k-dimensional Euclidean space
with the usual Euclidean norm ‖ · ‖. A subset S ⊂ Rk is called a p-dimensional regular
manifold if for each point q ∈ S there exists a neighborhood V in Rk and a twice-
continuously-di�erentiable map x : U → V

⋂
S from an open set U ⊂ Rp onto V

⋂
S ⊂

Rk such that (i) x is a homeomorphism, which is to say it has a continuous inverse and
(ii) the Jacobian dxq has full rank. A mapping x which satis�es these conditions is
called a parametrization or a system of local coordinates, while the set V

⋂
S is called a

coordinate neighborhood.
Note that the manifold S is de�ned as a set, rather than as a map. In keeping with

this spirit, many of the statements below will be invariant to parametrization. Hence,
if we have di�erent parameterizations for the same manifold, which of them we use is
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entirely a matter of convenience. In some problems it may be the case that there does
not exist a global parametrization, that is a �xed mapping x satisfying the conditions
above such that S is the image of x. For instance, in Example 1 we de�ned S as the set of
points q satisfying the k−p-dimensional restriction g(q) = 0 where the twice continuously
di�erentiable function g had a Jacobian of rank k− p at all points. Given this de�nition,
the Implicit Function Theorem guarantees the existence of a local parametrization in a
neighborhood of each point q ∈ S but a global parametrization need not exist.

We begin by developing some geometrical concepts for the special case of a regular 1-
dimensional manifold, also known as a curve. In particular, let S be a curve parameterized
by α : (t0, t1) → Rk where α is twice continuously di�erentiable and (t0, t1) is an interval
in R. The arc length is de�ned as s(t) =

∫ t

t0
‖α̇(τ)‖dτ. Without loss of generality, we can

take α to be parameterized by arc length s, in which case at all points ‖α̇(s)‖ = 1 and
the vector α̈(s) is perpendicular to α̇(s). The vector α̇(s) is called the tangent vector to
S at q = α(s), while κ(s) = ‖α̈(s)‖ is called the curvature at q. The curvature measures
how quickly the curve S deviates from its tangent line local to q, and the scaling is such
that a circle of radius C has curvature 1/C at all points.

The change of variables from arbitrary parametrization t to the arc length s is not
necessary for the calculation of curvature. In particular, as before let α̇(t) and α̈(t) denote
the �rst and second derivatives of α, now with respect to t. If we let (α̈(t))⊥ be the part
of α̈(t) orthogonal to α̇(t), then the curvature at q = α(t) is κ(t) =

‖(α̈(t))⊥‖
‖α̇(t)‖2 . One can

show that this de�nition of curvature is invariant to parametrization, and hence that in
the special case of a curve parameterized by arc length it reduces to the de�nition given
above.

These concepts can all be extended to general regular manifolds. Fixing a p-dimensional
manifold S, for any curve α : (−ε, ε) → S on S which passes through the point
q = α(0) ∈ S the tangent vector α̇(0) is called a tangent vector to S at q. For x a
system of local coordinates at q, the set of all tangent vectors to S at q coincides with
the linear space spanned by the gradient dxq and is called the tangent space to S at q

(denoted Tq(S)). While we have de�ned the tangent space using the local coordinates
x, as one would expect from its geometrical interpretation Tq(S) is independent of the
parametrization.

To calculate the curvature at q, consider a curve α : (t0, t1) → S which lies in S and
passes through q = α(0). Taking T⊥

q to be the k− p-dimensional linear space orthogonal
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to Tq(S) and X = α̇(0) ∈ Tq(S) to be the tangent vector to α at q, de�ne

κq(X, S) =

∥∥(α̈(0))⊥
∥∥

‖X‖2
,

where (W )⊥ stands for the projection of W onto the space T⊥
q . One can show that

κq(X,S) depends on the curve α only through X. The measure of curvature we consider
is

κq(S) = sup
X∈Tq(S)

κq(X, S) = sup
X∈Tq(S)

∥∥(α̈(0))⊥
∥∥

‖X‖2
. (9)

This measure of curvature is closely related to the Second Fundamental Tensor (we refer
the interested reader to Kobayashi and Nomizu (1969, v.2, ch. 7)), and is equal to the
maximal curvature over all geodesics passing through the point q. As with the curvature
measure discussed for curves, (9) is invariant to the parametrization. Also analogous to
the 1-dimensional case, if S is a p-dimensional sphere of radius C then for each q ∈ S

we have κq(S) = 1/C. Finally, if S is a linear subspace then its curvature is zero at all
points.

How to calculate curvature in practice. Let S be a p-dimensional manifold in Rk,
and let x be a local parametrization at a point q, q = x(y∗). Denote the derivatives of
x at q by vi = ∂x

∂yi
(y∗). By the de�nition of a local parametrization, we know that the

Jacobian Z = (v1, ..., vp) is full rank, so the tangent space Tq(S) = span{v1, ..., vp} is p-
dimensional. As before, for any vector W ∈ Rk let W⊥ denote the part of W orthogonal
to Tq(S), that is, W⊥ = (I − Z(Z ′Z)−1Z ′)W . Finally, denote the p2 vectors of second
derivatives Vij = ∂2

∂yi∂yj
x(y∗) . The curvature can then be written as

κq(S) = sup
u=(u1,..,up)∈Rp

‖∑p
i=1 uivi‖=1

∥∥∥∥∥
p∑

i,j=1

uiujV
⊥
ij

∥∥∥∥∥ = sup
(w1,...,wp)∈Rp

∥∥∥∑p
i,j=1 wiwjV

⊥
ij

∥∥∥
‖∑p

i=1 wivi‖2 . (10)

3.2 Geometric bounds

In this section we establish a bound on the distribution of the distance in Rk from a
random point ξ ∼ N(0, Ik) to a p-dimensional non-random manifold S that contains
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zero. Our bound depends on the maximal curvature κq(S) over all relevant points in the
manifold S. Our bound will be based on global properties of the manifold, in the sense
of properties that hold on a �xed bounded set, but we abstract from the behavior of the
manifold at in�nity as irrelevant. In what follows, we restrict attention to a connected
part of the manifold that lies inside of a (large) �nite cylinder centered at zero.

We derive our bound in two steps: �rst, we construct an envelope for the manifold S

using a collection of p-dimensional spheres. We show that the distance from any point ξ

to S is bounded above by the distance from ξ to the most distant sphere in the collection
we consider. Second, we show that our geometric construction implies a bound on the
distribution of ρ2(ξ, S) and hence on the distribution of AR (or LR) statistics. To provide
intuition for our main statement we walk the reader through two simple cases in which
the construction of the envelope can be easily visualized.

Case 1 (k=2, p=1): A curve in R2. Consider a curve S passing through zero (i.e.
(0, 0) ∈ S). Suppose that the curvature of S is less than or equal to 1/C for all points
in S. If we imagine two circles of radius C tangent to S at zero, we can see that the
curve lies between them- see Figure 1 for illustration. Since S lies between the circles, the
distance from any point ξ to S (denoted by d1 in Figure 1) does not exceed the distance
from ξ to the further of the two circles (denoted by d2). This is the geometrical bound we
use. Note that if the maximal curvature of S goes to zero at all points (so that C →∞)

Figure 1: Bounding a line between two circles.
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then the two bounding circles converge to the tangent line to S at zero on any bounded
set. Further, note that the distribution of the distance d2 from a normal random vector
to the furthest of two circles depends only on C and is easy to simulate.

The logic of this example is quite straightforward to generalize to the case of a k− 1-
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Figure 2: Left panel: the envelope for a space curve in R3. Right panel: distribution of the distance d2

dimensional manifold in Rk, known as a hyper-surface or a manifold of co-dimension 1.4

If a regular k − 1 dimensional manifold S in Rk has curvature κq(S) ≤ 1/C at all q ∈ S,
consider the two k−1-dimensional spheres of radius C which are tangent to the manifold
at zero. One can show (see Theorem 1 below) that as in the one-dimensional case S lies
between these two spheres. Hence, we again have that the distance from any point ξ to
S is bounded above by the distance from ξ to the furthest of the two spheres. Likewise,
if the maximal curvature of S goes to zero (so that C →∞) we again have that on any
bounded set the two spheres converge to the tangent space to S at zero, which in this
case is a k − 1-dimensional hyperplane.

Dealing with manifolds of co-dimension greater than 1 is much more challenging, but
the basic principle of the approach can be illustrated using a curve in R3.

Case 2 (k=3, p=1): A curve in R3. Suppose now that we have a one-dimensional
space curve S in R3 which passes through zero and whose curvature at all points is
bounded above by 1/C. We construct our envelope by considering the collection of all
one-dimensional circles of radius C tangent to S at zero. Equivalently, one can take a
given circle tangent to S at zero and rotate it around the tangent line. An example of
the resulting surface is given on the left panel of Figure 2: as in the case of co-dimension
1, we can see that the curve S lies inside the envelope. One can show that the distance
from any point ξ to the curve S (denoted by d1 in Figure 2) is bounded above by the
distance from ξ to the furthest circle in the collection used to construct the envelope

4The co-dimension of a manifold is the di�erence between the dimension of the space and the dimen-
sion of the manifold.
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(denoted d2). Note that if the curvature of S goes to zero at all points (so that C →∞)
then on any bounded set the envelope we consider converges to the tangent line to S at
zero.

This geometric bound immediately implies a bound on the distribution of ρ(ξ, S). For
ξ ∼ N(0, I3) the distribution of the distance d2 from ξ to the furthest circle is quite simple
to simulate. One can show that it is distributed as the distance from two-dimensional
random vector η depicted on the right panel of Figure 2 to the circle of radius C with
center (0,−C) where the coordinates of η are distributed as independent

√
χ2

1 and
√

χ2
2

random variables.

General case With the intuition provided by these examples, we now turn to the
general case. Let S be a regular connected p-dimensional manifold in Rk passing through
zero. By the rotation invariance of standard normal vectors we can assume without loss
of generality that the tangent space T0(S) to manifold S at zero is spanned by �rst p basis
vectors. For each x ∈ Rk, let x = (x(1), x(2)) where x(1) = (x1, ..., xp) ∈ Rp contains the
�rst p coordinates of x while x(2) = (xp+1, ..., xk) ∈ Rk−p contains the last k− p. In what
follows, we restrict attention to points on the manifold that lie inside of a (large) �nite
cylinder DC = {x = (x(1), x(2)) : ‖x(1)‖ ≤ C, ‖x(2)‖ ≤ C, x(1) ∈ Rp, x(2) ∈ Rk−p} ⊂ Rk.
Let SC be the intersection S

⋂
DC if it is connected or the connected part of S

⋂
DC

that passes through zero (that is, the part of S
⋂

DC which can be reached by continuous
paths lying in S

⋂
DC which pass through zero) if S

⋂
DC is not connected. Note that

ρ(ξ, S) ≤ ρ(ξ, SC).
To obtain some of our bounding results, we need one further assumption:

Assumption 1 For any y(1) ∈ Rp with
∥∥y(1)

∥∥ ≤ C there exists a point x ∈ SC such that
x(1) = y(1).

Assumption 1 requires that the projection of S on the tangent space to S at zero covers
some �xed p-dimensional ball, and hence that S has dimension p in a global sense. By
a local property we mean one that holds on an in�nitesimal neighborhood of a point.
In contrast, by a global property we mean one that holds on a �xed bounded set. We
have already imposed a local dimensionality assumption on S by restricting the rank of
the tangent space at all points. The distribution of the AR statistic, however, depends
on global properties of the manifold S and so to bound the distribution we need a
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global dimensionality assumption. To illustrate why local dimensionality assumptions are
insu�cient, imagine a strip S = {(x, y, z) ∈ R3 : z = 0,−ε < y < ε, x ∈ R} in R3. At any
point q ∈ S the dimension of the tangent space is equal to 2, but if ε > 0 is small enough
then S does not satisfy Assumption 1. For ε su�ciently small, however, the distance
from ξ to S behaves like the distance from ξ to the line S∗ = {(x, y, z) : y = 0, z = 0},
which is one dimensional both locally and globally.

Theorem 1 Let S be a regular p-dimensional manifold in Rk passing through zero. As-
sume that the tangent space T0(S) is spanned by �rst p basis vectors. Assume that for
some constant C > 0 we have that κq(S) < 1

C
for all points q ∈ SC. Then:

(a) Manifold SC lies inside the set M∩DC, where

M = {‖x(1)‖2 + (C − ‖x(2)‖)2 ≥ C2}. (11)

(b) If Assumption 1 is satis�ed, then for any point ξ ∈ Rk we have

ρ(ξ, S) ≤ max
u∈Rp−k,‖u‖=1

ρ(ξ, Nu),

where Nu = {x ∈ Rk : x = (x(1), zu), x(1) ∈ Rp, z ∈ R+, ‖x(1)‖2 + (C − z)2 = C2}.

(c) maxu∈Rp−k,‖u‖=1 ρ(ξ, Nu) = ρ(ξ, Nũ), where ũ = − 1
‖ξ(2)‖ξ

(2).

(d) If ξ ∼ N(0, Ik) we have for all x, y:

P

{
max

u∈Rp−k,‖u‖=1
ρ2(ξ,Nu) ≤ x, ‖ξ‖ ≤ y

}
= P

{
ρ2

2(η, NC
2 ) ≤ x, ‖η‖ ≤ y

}
,

where the coordinates of the 2-dimensional random vector η = (
√

χ2
p,

√
χ2

k−p) ∈ R2

are independently distributed, NC
2 = {(z1, z2) ∈ R2 : z2

1 +(C +z2)
2 = C2} is a circle

of radius C with the center at (0,−C), and ρ2 is Euclidian distance in R2.

Theorem 1 (a) establishes that the manifold SC lies inside the set M bounded by
an envelope we construct from a collection of p-dimensional spheres Nu. Statement (b)
asserts that the distance from a point ξ to the manifold S is bounded by the distance
from ξ to the furthest sphere in this collection, while (c) picks out exactly which sphere
Nũ(ξ) is the furthest away for a given ξ. Finally, (d) shows that the distribution of the
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Figure 3: The stochastic bound described in Theorem 1 (d).
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distance from ξ ∼ N(0, Ik) to Nũ(ξ) is the same as the distribution of the distance from
a random variable η to a particular circle in R2 as depicted in Figure 3.

3.3 Stochastic bound

Theorem 1 implies a bound on the distribution of the distance from ξ ∼ N(0, Ik) to a
p-dimensional manifold S. Assume that for some C > 0, S satis�es all the assumptions
of Theorem 1 including Assumption 1. Then almost surely,

ρ2(ξ, S) ≤ ρ2(ξ, Nũ), (12)

as follows from statement (b) of Theorem 1. By Theorem 1 (d), the distribution of the
right hand side of (12) is the same as the distribution of the random variable variable ψC

de�ned as

ψC = ρ2
2(η,NC

2 ), (13)

where the coordinates of the two-dimensional random vector η = (
√

χ2
p,

√
χ2

k−p) ∈ R2

are independently distributed, NC
2 = {(z1, z2) ∈ R2 : z2

1 + (C + z2)
2 = C2} is a circle

of radius C with the center at (0,−C), and ρ2 is Euclidean distance in R2. Combining
these results, we establish the bound

P
{
ρ2(ξ, S) ≥ x

} ≤ P {ψC ≥ x} for all x > 0,

so the distribution of ψC is an upper bound on the distribution of ρ2(ξ, S). We make the
following observations:
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(1) The distribution of ψC depends only on the dimension of the space k, the dimension
of the manifold p and the maximal value of the curvature, 1

C
.

(2) The distribution of ψC is stochastically increasing in the maximal curvature and
hence stochastically decreasing in C, so if C1 < C2 then ψC1 �rst-order stochasti-
cally dominates ψC2 .

(3) ψC ⇒ χ2
k−p as C → ∞, so if the curvature converges to zero at all relevant points

then our bounding distribution converges to distribution of the distance from ξ ∼
N(0, Ik) to a p-dimensional linear subspace.

(4) At the other extreme, ψC ⇒ χ2
k as C → 0 so if the curvature of the manifold

becomes arbitrarily large our bound coincides with the naive bound (2) that can
be imposed without any assumptions on the manifold.

We want to emphasize that what we suggest is a stochastic bound that holds under
quite general assumptions. If the model of interest has additional structure, this can
potentially be exploited to obtain tighter bounds.

3.4 Statistical application of the stochastic bound

Suppose we have a single observation θ̂ from a population θ̂ ∼ N(θ0, Σ) with an unknown
mean θ0. We wish to test a hypothesis of the form H0 : θ0 = θ(β) for some value of the
p-dimensional structural parameter β ∈ U ⊂ Rp. As discussed above, this problem may
arise when we have asymptotically normal reduced form estimates and are interested in
testing hypotheses on the structural parameters as in sections 2.2.1 and 2.2.2. We use
the AR statistic

AR = min
β

(θ̂ − θ(β))′Σ−1(θ̂ − θ(β)) = ρ2(ξ, S), (14)

where ξ = Σ−1/2(θ̂−θ0) ∼ N(0, Ik) is an appropriately normalized version of our reduced
form estimate θ̂ and the manifold S = {Σ−1/2(θ(β)−θ0), β ∈ U ⊂ Rp} ⊂ Rk describes the
restrictions imposed on the reduced-form parameters by the tested hypothesis and passes
through zero if the null is true. If the manifold S satis�es the assumptions of Theorem 1
then by the argument in Section 3.3 the AR statistic is stochastically dominated by ψC
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under the null, so if we use the (1−α)−quantile of the distribution of ψC (which is easy
to simulate) as a critical value the resulting test has size not exceeding α.

A practical question is what value of C to use. According to Theorem 1, the value of
C is tied to the maximum of the curvature of S over the intersection of S with a cylinder
DC centered at zero. Notice, however, that in practice we do not observe the manifold S,
since it depends on the unknown θ0. However, the desired curvature is the same as the
maximal curvature of the manifold S̃ = {Σ−1/2θ(β), β ∈ U ⊂ Rp} ⊂ Rk over all points
in the intersection of S̃ with the cylinder D̃C(x0) = {x ∈ Rk : x− x0 ∈ DC} centered at
x0 = Σ−1/2θ0. This maximal curvature, in turn, is clearly bounded above by the maximal
curvature over the whole manifold, so if we take C̃ = 1/

(
maxq∈S̃ κq(S̃)

)
, using critical

values based on ψC̃ provides a test that controls size. Moreover, since C̃ does not depend
on any unobservables, a test based on these critical values is feasible.

If the null hypothesis has a global parametrization, as when H0 : θ0 = θ(β), β ∈ U ,
let κ(β) = κq=θ(β)(S). The latter is a function on U which depends only on the �rst two
derivatives of θ(β). Hence, if we can evaluate these derivatives �nding C̃ = maxβ κ(β)

is a standard non-stochastic optimization problem. If θ(β) is fairly tractable we may
be able to solve for C̃ analytically, while if not we can use the usual menu of numerical
optimization techniques, such as Newton's method.

There are a variety of problems, however, in which using C̃ may be unappealing.
For example, it may be that calculating derivatives of θ(β) is challenging, or that the
manifold has irregularities or points of high curvature which are far away from θ̂. In
such cases we may wish to restrict attention to the curvature of the manifold over some
smaller set, which raises two issues. First, we do not know the true value θ0 and hence
the center of the cylinder D̃C(x0). Second, if the manifold is close to �at (so C is large)
to �nd the maximal curvature over D̃C(x0) we might need to check the curvature over a
huge set, which could be very computationally demanding.

We suggest a test which overcomes both of these problems and is easy to implement
in practice. For a �xed value R, let C ∧ R = min{C,R}. Denote by Fα(C, R, k, p) the
α−quantile of the distribution of ψC(R) de�ned as

ψC(R) =





ρ2
2(η,NC

2 ) if ‖η‖ ≤ R;

‖η‖2 if ‖η‖ > R,
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where η and and NC
2 are de�ned in statement (d) of Theorem 1. For any �nite R the

distribution of ψC(R) provides a weaker bound than the distribution of ψC . This is the
price paid for calculating curvature over a smaller set of points.

Lemma 1 Assume that we have a single observation θ̂ from a population θ̂ ∼ N(θ0, Σ)

with unknown mean θ0. We wish to test the hypothesis H0 : θ0 = θ(β) for some β ∈ U ⊂
Rp. Let S̃ = {Σ−1/2θ(β), β ∈ U ⊂ Rp} ⊂ Rk be a regular p-dimensional manifold, and
B̃ = B(1+

√
2)R(x̂) a ball of radius (1 +

√
2)R around x̂ = Σ−1/2θ̂, where R is such that

P{χ2
k ≥ R2} < α. Let

Ĉ =





(
minq∈S̃

⋂
B̃ 1/κq(S̃)

)
∧R, if S̃

⋂
B̃ 6= ∅;

0, if S̃
⋂

B̃ = ∅.

Assume that for any x ∈ S̃ such that ‖x−x̂‖ ≤ R we have that the projection of S̃
⋂

BR(x)

onto Tx(S̃) contains a p-dimensional ball centered at x with radius Ĉ ∧R. Then the test
which rejects the null if and only if AR = minβ(θ̂−θ(β))′Σ−1(θ̂−θ(β)) > F1−α(Ĉ, R, k, p)

has size not larger than α.

4 Comparison with other methods available for testing
hypotheses with weak nuisance parameters

As previously discussed, there is a wide literature devoted to the problem of weak-
identi�cation-robust tests for the full parameter vector and for hypotheses with strongly
identi�ed nuisance parameters, but much less is known about testing with weakly iden-
ti�ed nuisance parameters.

Projection method. Recently, the projection method has been the standard approach
to inference with weakly identi�ed nuisance parameters. The projection method was in-
troduced and popularized in econometrics by Dufour and Jasiak (2001) and Dufour and
Taamouti (2005), and recent applications to non-standard testing problems in economet-
rics include Dufour, Khalaf, and Kichian (2006), Guerron-Quintana, Inoue and Kilian
(2009), and Qu (2011).

The projection method is based on the observation that the hypothesis H0 : α = α0
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with nuisance parameter β is equivalent to the hypothesis

H0 : ∃ β0 s.t. α = α0, β = β0.

Hence, to test a hypothesis on α we can use the statistic AR(α0) = infβ∗ AR(α0, β
∗), and

since
AR(α0) = inf

β∗
AR(α0, β

∗) ≤ AR(α0, β0) ∼ χ2
k,

we know that using χ2
k critical values will yield a test which controls size. The name

�projection method� stems from the fact that constructing con�dence sets for α with
this procedure is equivalent to constructing a joint con�dence set for (α0, β0) using the
full-vector AR statistic and then projecting this set on the parameter space for α.

The obvious advantage of the projection method is that it requires no assumptions
about the strength of identi�cation of β, since it relies only on the validity of the test
for the full parameter vector. Other advantages include that it is quite easy to use
and very broadly applicable. The primary disadvantage of the projection method is its
conservativeness. Our test, introduced in Section 3.4, is based on the same statistic as the
projection method (AR minimized over the nuisance parameters) but uses smaller critical
values while still maintaining size. Only in the limiting case of in�nitely high curvature
(C = 0) do our critical values correspond to those of the projection method. As a result,
except for this limiting case our test is strictly more powerful than the projection method
and produces strictly smaller con�dence sets in all realizations of the sample. Further,
all of the assumptions we impose on the manifold S can be directly veri�ed using the
non-stochastic manifold S̃ known to the researcher.

Concentrating out nuisance parameters. If one knows that the nuisance parameter
β in a given testing problem is strongly identi�ed then he/she can simply �concentrate
out� the nuisance parameter, minimizing the AR statistic over β and reducing the degrees
of freedom for the limiting distribution by kβ (that is, using quantiles of a χ2

k−kβ
rather

than a χ2
k). As discussed in section 2.1, this reduction in degrees of freedom stems

from the fact that any manifold corresponding to a hypothesis with a strongly identi�ed
nuisance parameter converges to a linear subspace asymptotically.

The obvious advantage of this approach is that it is strictly more powerful than the
projection method. However, the assumption of strong identi�cation of the nuisance
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parameter is essential, and the test may over-reject if this assumption fails. In many
practical settings, including the DSGE and Phillips curve examples discussed above, the
exact nature and source of weak identi�cation is not clear, and we are unaware of any
test of the null of weak identi�cation which can be used to separate the weakly and
strongly identi�ed parameters. In contrast, the test we suggest in Section 3.4 does not
employ any assumptions about the strength of identi�cation of any parameter in point
identi�ed models. Indeed, since our approach is based on a �nite-sample perspective
(except perhaps for the assumed normality of the reduced-form parameters) we do not
even require that there be a meaningful distinction between the weakly and strongly
identi�ed structural parameters in the model.

4.1 Pre-test for weak identi�cation

If for some reason a researcher does not want to use our test, we suggest a simple proce-
dure which could be called a �pre-test for weak identi�cation.� Imagine that a researcher
wants to use a robust procedure (for example our test or the projection method) unless
she knows that identi�cation issues will not cause large size distortions, in which case she
prefers instead to concentrate out the nuisance parameters. Our stochastic bounds can
be used to address this question and determine whether weak identi�cation constitutes a
problem in a given setting. Below, we suggest a procedure which, when used as the �rst
step of a two-step testing procedure of this sort, ensures that the procedure as a whole
controls size.

To proceed, let us introduce the notion of a �tolerance level�. Suppose that we would
like to have a test of size α, but we are uncertain whether the usual strong-identi�cation
asymptotics provide a reasonable approximation in our context; in the event that these
approximations are imperfect, we are willing to accept a test with true size α + α∗ in
exchange for the additional power and convenience of using conventional critical values.
The potential increase in the size α∗ is called the tolerance level and has been used
previously by e.g. Stock and Yogo (2005). For t-tests in weak IV, Stock and Yogo
(2005) suggest comparing the minimal eigenvalue of the �rst-stage F statistic matrix
to an appropriate threshold: if the minimal eigenvalue exceeds the threshold then the
researcher can be con�dent that the usual 5% t-tests will have true size not exceeding
10%.
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The pretest we propose asks whether the curvature of the model is su�ciently small to
ensure that tests based on classical χ2

k−kβ
critical values (that is, tests which concentrate

out the nuisance parameter β) with nominal size α have true size not exceeding α + α∗.
To determine whether this is the case we calculate C∗, the smallest value C such that the
(1− α)-quantile of a χ2

k−p distribution does not exceed F1−(α+α∗)(C, R, k, p). The cut-o�
C∗ depends on the dimension k of the reduced-form parameter vector, the dimension p of
the nuisance parameter, and R. To implement the pre-test we then calculate the value Ĉ

as described in Lemma 1, that is, the maximal curvature of the manifold at points inside
a ball of radius (1 +

√
2)R around the reduced-form estimator (noting that we may take

R = ∞) and compare Ĉ to C∗. If Ĉ > C∗ the researcher can safely concentrate out β

and use χ2
k−kβ

critical values while if Ĉ ≤ C∗ she should use a robust procedure. We can
guarantee that the resulting two-step test will have size less than α + α∗.

Table 1 reports the cut-o�s C∗ for nominal 5% tests and tolerance level 5% for di�erent
values of p and k for R equal to the 0.99 quantile of a

√
χ2

k. Based on Table 1 we can
see that for a �xed dimension k of the reduced-form parameter, increasing the number
of nuisance parameters p tightens the restrictions imposed on curvature if one wants to
concentrate out the nuisance parameters.

The main di�erence of this pre-test procedure from majority of existing tests of weak
identi�cation is that the resulting two-step procedure controls size. Tests of weak iden-
ti�cation by Inoue and Rossi (2011), Iskrev (2010) and Wright (2003) all test the null of
strong identi�cation against the alternative of weak identi�cation. Those tests control
the probability of falsely rejecting strong identi�cation but do not control the probability
of failing to detect weak identi�cation when it is present (this depends on power for these
tests). As a result, using one of these tests in a two-step procedure, in which one tests
the null of strong identi�cation and uses a robust procedure only if strong identi�cation
is rejected, does not guarantee overall size control. In contrast, the procedure suggested
here controls the size under weak identi�cation.

4.2 AR conjecture

Kleibergen and Mavroeidis (2009a) consider a weak IV model with more than one en-
dogenous regressor in which one wants to test a hypothesis about the coe�cient on one
endogenous regressor, treating the coe�cients on the remaining regressors as nuisance
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parameters. They consider the AR statistic minimized over the nuisance parameters
and show that its distribution under weak identi�cation is dominated by its distribu-
tion under strong identi�cation, and thus that χ2 critical values with reduced degrees of
freedom will always produce tests which maintain size. They also conjectured5 that this
statement could be generalized to some non-linear GMM models. If this statement held
in all GMM models it would have eliminated the trade-o� between projecting over and
concentrating out nuisance parameters and implied that one should concentrate out in all
cases to obtain more powerful tests while still controlling size. Below we provide a simple
example which demonstrates that such a dominance result does not hold generally.

To �x ideas, assume that we have an i.i.d. sample x1, ..., xn from a population that
satis�es the k-dimensional moment condition Efn(xi, θ) = 0 at θ = θ0 and assume that
Σ = var (fn(xi, θ)) is known. We �rst consider the AR statistic for testing the full
parameter hypothesis H0 : θ = θ0:

AR(θ0) =
1

n

(
n∑

i=1

fn(xi, θ0)

)
Σ−1

(
n∑

i=1

fn(xi, θ0)

)

This statistic is used with χ2
k critical values. Assume that θ = (α′, β′)′ and we want to

test the hypothesis H0 : α = α0 with nuisance parameter β. Consider the statistic:

AR(α0) = min
β

AR(α0, β).

We show that it is not in general true that the asymptotic distribution of AR(α0) is
stochastically dominated by a χ2

k−kβ
, that is the limit distribution of AR(α0) if β is

strongly identi�ed.

A counterexample to the AR conjecture. Consider an i.i.d. sample x1, ..., xn

drawn from N(Mn(θ0), Ik) with k-dimensional structural parameter θ ∈ Θ = [0, π]k−2 ×
5The statement was made in one of the earlier versions of Kleibergen and Mavroeidis (2009a) and

via private communication.
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[0, 2π)× R ⊂ Rk. Suppose further that

Mn(θ) =
r√
n

θk




cos(θ1)− 1

sin(θ1) cos(θ2)

sin(θ1) sin(θ2) cos(θ3)
...

sin(θ1)... sin(θk−2) cos(θk−1)

sin(θ1)... sin(θk−2) sin(θk−1)




is a k-dimensional vector-function of k variables. Note that all parameters are weakly
identi�ed in this case. The AR statistic for the full parameter vector is then

AR(θ) =
1

n

(
n∑

i=1

[xi −Mn(θ)]

)′ (
n∑

i=1

[xi −Mn(θ)]

)
.

Now assume that the hypothesis of interest is H0 : θk = 1, where β = (θ1, ..., θk−1)
′ is

a weakly identi�ed nuisance parameter. The AR conjecture suggests that the limiting
distribution of minβ AR(β, 1) is stochastically dominated by a χ2

1. As before let us intro-

Figure 4: Distribution of statistic minβ AR(β, 1) for k = 10
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duce a random variable ξ = 1√
n

∑n
i=1 [xi −Mn(θ0)] ∼ N(0, Ik), whose distribution does

not depend on the sample size, and a function

m(β) =
√

n (Mn(β, 1)−Mn(θ0)) ,
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which also does not depend on the sample size. Notice that for all n the manifold
described by the function m(β) is a hyper-sphere of radius r/

√
n in k-dimensional space

passing through the origin. It is easy to see that

min
β

AR(β, 1) = min
β

(ξ −m(β))
′
(ξ −m(β)) .

Note, however, that the behavior of the last statistic does not depend on the sample size
and can be easily simulated. Note further that since the distribution of a standard normal
vector is rotation invariant, the distribution of minβ AR(β, 1) under the null depends only
on k and the radius r. We simulate the distribution of the statistic of interest under the
null for k = 10 and k = 50 and r equal to the square roots of the .95, .99, and .9999

quantiles of a χ2
k distribution, and plot the resulting cdfs against a χ2

1 cdf. Figures 4 and
5 show that tests which pair the minimized AR statistic with χ2

1 critical values overreject.
Further, the degree of over-rejection is increasing with the dimension k.

Figure 5: Distribution of statistic minβ AR(β, 1) for k = 50
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4.3 Other methods

There are very few other papers that work directly with weakly identi�ed nuisance pa-
rameters. One of them is D. Andrews and Cheng (2011). The authors impose some
additional restrictions by assuming that they know the structure of weak identi�cation,
namely, they assume that it is known which parameters are potentially weakly identi�ed
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and that there is a parameter which de�nes the strength of identi�cation. This assump-
tion is not directly applicable to our DSGE and Phillips curve examples. Andrews and
Cheng (2011) showed that in their case statistics for testing hypotheses with weakly iden-
ti�ed nuisance parameters have non-standard asymptotic distributions which depend on
the value of the nuisance parameter. Their procedure is based on simulating the asymp-
totic distribution of the test statistic for di�erent values of the nuisance parameter and
taking the �least favorable� among those distributions over a set of relevant nuisance
parameter values.

Another example of inference with weakly identi�ed nuisance parameters is given
in I. Andrews and Mikusheva (2011). That paper considers a case when concentrating
out a weakly identi�ed parameter leads to asymptotically correct inferences, but this
result holds only for weakly identi�ed parameters which enter the log-likelihood function
linearly.

5 Working with subset of parameters

Suppose we have a single observation θ̂ from a population θ̂ ∼ N(θ0, Σ) with an unknown
mean θ0. We wish to test a hypothesis of the form H0 : θ0 = θ(β) for some value of the
p-dimensional structural parameter β ∈ U ⊂ Rp. Our testing procedure suggested in
Lemma 1 treats all components of the multi-dimensional vector β in such a way that
only the direction of highest curvature a�ects the value of Ĉ and thus in�uences the
critical values. Imagine instead that β can be divided into two sub-sets of parameters
β = (β′1, β

′
2)
′ in such a way that the curvature corresponding to directions β1 is high, but

the null hypothesis seems to be close to �at in the parameter β2. Let p1 be the dimension
of β1, and p2 the dimension of β2: p = p1 + p2. In this section we propose modi�cations
to our testing procedure (suggested in Lemma 1) and pre-test described in Section 4.1
that treat β1 and β2 di�erently. In particular we reduce the critical value of the test due
to the low curvature with respect to β2 while projecting over β1. The modi�ed procedure
may be more e�cient if the di�erence in curvature with respect to parameters β1 and β2

is large.
We start with a modi�cation of the pre-test described in Section 4.1. This modi�cation

may be thought of as a pre-test for the possibility of concentrating out β2 in the AR

statistic de�ned in (14). The two competing options are 1) use our robust critical values
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based on curvature for the full parameter vector or project over the full parameter vector;
or 2) project over β1, concentrate out β2 and use χ2

k−p2
critical values.

The suggested procedure is the following. For any value β1 consider a p2-dimensional
manifold S(β1) = {Σ−1/2m(β1, β2), β2 ∈ Rp2}. For any point q = Σ−1/2m(β1, β2) ∈ S(β1)

�nd the curvature κq(S(β1)). Let

Ĉ =

(
min
β1

min
q∈S(β1)

⋂
B̃

1/κq(S(β1))

)
∧R, (15)

where B̃ is the ball of radius (1 +
√

2)R around the point x̂ = Σ−1/2θ̂. One also needs
to check that as stated in Lemma 1 the analog of Assumption 1 is satis�ed but now we
are considering only p2-dimensional balls in the tangent space to S(β1). If Ĉ > C∗ it is
safe to use the second approach (that is, to concentrate out β2), while otherwise the �rst
approach should be used. We can likewise adapt the conclusion of Lemma 1 to state that
the test which rejects the null if and only if

AR = min
β

(θ̂ − θ(β))′Σ−1(θ̂ − θ(β)) > F1−α(Ĉ, R, k, p2)

controls size.

Curvature of strongly identi�ed parameters. If a set of nuisance parameters is
strongly identi�ed in the sense of Stock and Wright (2000), the null hypothesis is asymp-
totically linear in these parameters as we argued in Section 2.1. Here we show that the
curvature corresponding to these parameters is asymptotically of order O(1/

√
n), where

n is the sample size.
Consider a sample of size n from some model parameterized by structural parameter

β that belongs to some bounded set U ⊆ Rp and assume that one can estimate the
reduced-form parameters θ in a consistent and asymptotically normal way:

√
n(θ̂ − θ) ⇒ N(0, Σ0).

Assume that the relation between structural and reduced-form parameters θ = θ(β)

is �xed (not changing with n), twice continuously di�erentiable, and that the matrix
∂
∂β

m(β) has full rank in a neighborhood of β0, which is the only point in the closure of
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U that solves the equation θ0 = θ(β). The null hypothesis manifold for sample size n

is Sn = {√nΣ
−1/2
0 m(β), β ∈ U} ⊂ Rk. The maximal curvature over all points of the

manifold Sn is equal to 1/
√

n multiplied by the maximal curvature of the manifold S1

obtained for sample size 1. This can easily be seen by examining the role of the scale of
m in formula (10).

6 Example: A Small-scale DSGE Model

To illustrate the utility of our theoretical results and suggest directions for future research,
we apply our approach to a small-scale DSGE model based on Clarida, Gali and Gertler
(1999). The (log-linearized) equilibrium conditions for the model are




bEtπt+1 + κxt − πt + εt = 0,

−[rt − Etπt+1 − rr∗t ] + Etxt+1 − xt = 0,

λrt−1 + (1− λ)φππt + (1− λ)φxxt + ut = rt,

rr∗t = ρ∆at,

(16)

where the exogenous variables (∆at and ut) evolve according to

∆at = ρ∆at−1 + εa,t; ut = δut−1 + εu,t;

(εt, εa,t, εu,t)
′ ∼ iidN(0, Σ); Σ = diag(σ2, σ2

a, σ
2
u).

Here we assume that a researcher observes data on in�ation πt, the interest rate rt and
some measure of real activity xt. This model has ten parameters: the discount rate b, the
structural parameters κ, φx, φπ, and λ, and the parameters describing the evolution of the
exogenous variables. We calibrate the structural parameters at generally accepted values
similar to those used by Mueller (2010): b = .99, κ = (1−θ)(1+φ)(1−bθ)

θ
≈ .1717, φx = 0.25,

φπ = 1.5 and λ = 0.5. For the parameters describing the exogenous variables, we choose
ρ = .2 and δ = .2 to introduce a degree of persistence while maintaining stationarity,
and set σa = .38, σu = .31, and σ = 1. We generate samples of size 300 from this model
and then discard the �rst 100 observations, using only the last 200 observations for the
remainder of the analysis. Given well-documented problems with estimating b in many
models, from this point forward we calibrate this parameter at its true value and treat
the remaining 9 parameters as unknown.

In Andrews and Mikusheva (2011) we documented the poor performance of the clas-
sical Maximum Likelihood Estimator for this model and showed that classical con�dence
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sets are unreliable. In particular, we argued that the model displays behavior consis-
tent with weak identi�cation. Canova and Sala (2009) argued that many DSGE models
su�er from weak identi�cation. Simulation evidence in Ruge-Murcia (2010) also shows
substantial overrejection for simulated method of moments-based Wald tests in some
models. Unfortunately, however, the source and extent of weak identi�cation in DSGE
models is not well-understood. Most DSGE models are highly nonlinear in parameters,
and are di�cult if not impossible to solve analytically.

Several procedures have recently been proposed for testing simple hypotheses, that
is hypotheses on the full parameter vector, in DSGE models which may be weakly iden-
ti�ed. These tests include the score tests of I. Andrews and Mikusheva (2011) and Qu
(2011), the LR statistic proposed by Guerron-Quintana, Inoue and Kilian (2009), and the
test of Dufour, Khalaf, and Kichian (2009). Most of these papers suggest the projection
method for testing hypotheses on subsets of parameters and con�dence set construc-
tion, the exception being I. Andrews and Mikusheva (2011) who suggest a procedure
for concentrating out strongly identi�ed nuisance parameters. The main problem with
the projection method is that it tends to be very conservative, since DSGE models typi-
cally have a large number of parameters. On the other hand, concentrating out nuisance
parameters is also problematic as it is generally not clear which parameters are weakly
identi�ed, and we are unaware of any currently available procedure which would allow
us to make this determination.

As outlined in section 2.2.1, to test hypotheses on the structural parameters in DSGE
models we can test the implied restriction on the model auto-covariances θ(β). In partic-
ular, we let θ consist of the covariance matrix of the observables (xt, πt, rt) and their �rst
auto-covariance, giving us 15 reduced-form parameters. To focus on the problem of weak
identi�cation and abstract from the problems which may arise from HAC covariance ma-
trix estimation, we treat the true covariance matrix Σ of our reduced-form parameter esti-
mates as known, and consider AR statistics of the form AR(β) = (θ̂−θ(β))′Σ−1(θ̂−θ(β)).

To illustrate the application of our approach, we consider the problem of separately
testing that each of the structural parameters is equal to its true value (as one one needs
to do to construct con�dence sets for each parameter individually). For example, to test
H0 : κ = κ0, we let β̃ contain all the parameters other than κ and consider the AR

statistic AR(κ0) = minβ̃ AR(κ0, β̃). As before, the key issue is what critical values to
use. The projection method uses the 95th percentile of a χ2

15, which is equal to 25. If
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we assume that a q-dimensional sub-vector of β̃ is strongly identi�ed, we can use χ2
15−q

critical values instead, which are equal to 14.07 if we take all of β̃ to be strongly identi�ed
(q = 8). Applying our robust critical values, in contrast, requires no assumption on the
strength of identi�cation. As we might expect in a poorly identi�ed model, tests which
concentrate out the nuisance parameters do not control size. We simulated tests for
each parameter separately, and almost all of them over-reject, though the degree of over-
rejection is limited. For example, nominal 5% tests for ρ and σa which concentrate out
the nuisance parameters have size 9.2% and 9.6% respectively.

For each of the nine parameters, to compute our robust critical values we calculate
the curvature of the submanifold of {Σ− 1

2 θ(β)} obtained by holding that parameter equal
to its null value, intersected with the ball B√

2R(θ(β0)) of radius
√

2R around θ0, for R

the .99 quantile of a χ2
15 distribution. We �nd quite substantial curvature: the manifold

implied by κ = κ0, for example, has a maximal curvature of 1.72 which gives a robust
critical value of 23.8. While smaller than the projection-method critical value, this is still
quite large.

Not all parameters play an equal role in generating this curvature, however. As noted
in I. Andrews and Mikusheva (2011), some parameters seem to be strongly identi�ed,
while other seem quite weak. To relate this to curvature, we consider projecting over
di�erent subsets of parameters as described in section 5. We �nd that by projecting
over the Taylor-rule parameters φx and φπ we can reduce the curvature dramatically,
suggesting that the group of parameters other than φx and φπ may be signi�cantly
better identi�ed. Hence, to obtain smaller critical values, when testing hypotheses on
the structural parameters we project over φx and φπ.

For each structural parameter, Table 2 reports the robust critical value obtained from
this exercise (column 2), together with the simulated size (based on 500 simulations) of
nominal 5% tests based on our robust critical values (column 3), and projection-method
tests (column 4). As we can see, projection-method based tests (using critical values
of 25) are extremely conservative, with simulated size less than or equal to 0.2%. Our
robust critical values range from 18.65 to 20.3 for di�erent parameters, and the size of
tests using these critical values (ranging from .4% to 1.6%) never exceeds the nominal
size. At the same time, these tests are substantially less conservative than the projection
method.
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Parameter tested Robust Critical Value Robust Test Size Projection Size
φx 18.72 1.20% 0.00%
φπ 18.65 0.80% 0.00%
λ 19.86 1.60% 0.00%
ρ 19.68 1.40% 0.00%
δ 20.30 1.40% 0.20%
κ 19.51 1.40% 0.20%
σa 19.84 1.20% 0.00%
σu 19.27 0.40% 0.00%
σ 19.60 1.40% 0.00%

Table 2: Nominal 5% Tests of one-dimensional hypotheses on structural parameters. The �rst column
lists the tested parameter for each row, while the other parameters are treated as nuisance parameters.
The statistic is AR minimized over nuisance parameters. Projection method critical values are 25.
Robust critical values are based on projecting over φx and φπ.

7 Appendix with proofs

7.1 Proof of Theorem 1

The proof is based on the following lemma:

Lemma 2 Assume the curve α(s) : [0, b] → DC ⊂ Rk is parameterized by arc length
and that its curvature κ(s) = ‖α̈(s)‖ < 1

C
for all points s. Assume that α(0) = 0 and

α̇(0) = v ∈ span{e1, ..., ep}, where e1, ..., ep are �rst p basis vectors. Then the curve α(s)

is contained in the set Mv ∩DC, where

Mv = {x : 〈x, v〉2 + (C − ‖x− 〈x, v〉v‖)2 ≥ C2}. (17)

Proof of Lemma 2.
Consider the curve de�ned by β(s) = α̇(s), the �rst derivative of α. Since the curve

α is parameterized by arc length ‖β(s)‖ = ‖α̇(s)‖ = 1 and the new curve β lies on the
unit sphere Sph = {x ∈ Rk : ‖x‖ = 1}, with β(0) = v. Let t ≤ π

2
C and t ≤ b. Consider

the arc length of the restriction of the curve β to the interval [0, t]:

length(t) =

∫ t

0

‖β̇(s)‖ds =

∫ t

0

‖α̈(s)‖ds =

∫ t

0

κ(s)ds ≤ t

C
.

This implies that the geodesic (a curve of a shortest length) on the sphere Sph connecting
β(0) and β(t) has length less than or equal to t

C
or, equivalently, that the angle between
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vectors β(0) = v and β(t) is less than or equal to t
C
. Hence

〈v, β(t)〉 = 〈v, α̇(t)〉 ≥ cos(
t

C
). (18)

Since α(s) is parameterized by arc length, from inequality (18) we have:

‖α̇(t)− 〈v, α̇(t)〉v‖ ≤ | sin(
t

C
)|. (19)

This, in turn, implies that

‖α(t)− 〈v, α(t)〉v‖ = ‖
∫ t

0

(α̇(s)− 〈v, α̇(s)〉v)ds‖ ≤

≤
∫ t

0

‖α̇(s)− 〈v, α̇(s)〉v‖ds ≤
∫ t

0

sin(
s

C
)ds = C − C cos(

t

C
)

Inequality (18) also implies that

〈v, α(t)〉 ≥
∫ t

0

cos(
s

C
)ds = C sin(

t

C
). (20)

Combing these results yields

〈v, α(t)〉2 + (C − ‖α(t)− 〈v, α(t)〉v‖)2 ≥ C2

for all t ≤ π
2
C. Notice that (20) implies that for τ = π

2
C we have 〈v, α(τ)〉 ≥ C and thus

for the �rst p coordinates of α(τ), which we denote α(1)(τ), we have ‖α(1)(τ)‖ ≥ C so
the curve is leaving or has already left the cylinder DC and thus b ≤ π

2
C. This concludes

the proof of the lemma. ¤
Proof of statement (a) of Theorem 1. First, let us show that

⋃

v∈T0(S)
‖v‖=1

Mv = {‖x(1)‖2 + (C − ‖x(2)‖)2 ≥ C2} = M, (21)

where Mv is de�ned in (17), M is de�ned in (11) and T0(S) is the tangent space to S at
zero and is spanned by �rst p basis vectors. Indeed, the set on the left hand side consists
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of points x for which there exists a vector v ∈ span{e1, ..., ep}, ‖v‖ = 1, such that

〈x, v〉2 + (C − ‖x− 〈x, v〉v‖)2 ≥ C2. (22)

For each x let us �nd the maximum of the expression on left-hand side of inequality (22)
over v ∈ T0(S), ‖v‖ = 1 :

〈x, v〉2 + (C − ‖x− 〈x, v〉v‖)2 =

= 〈x, v〉2 + C2 + ‖x‖2 − 〈x, v〉2 − 2C‖x− 〈x, v〉v‖ =

= C2 + ‖x‖2 − 2C‖x− 〈x, v〉v‖

where we used that ‖x−〈x, v〉v‖2 = ‖x‖2−〈x, v〉2. We see that maximizing the left-hand
side of (22) over v ∈ span{e1, ..., ep}, ‖v‖ = 1 is equivalent to minimizing ‖x − 〈x, v〉v‖.
The minimum is achieved at v = 1

‖x(1)‖(x
(1), 0, ..., 0), where x(1) ∈ Rp consists of the �rst

p components of x. As a result, the maximum of the left-hand side of (22) equals

C2 + ‖x‖2 − 2C‖x(2)‖ = ‖x(1)‖2 + (C − ‖x(2)‖)2.

This proves statement (21).
Now assume that the statement (a) of Theorem 1 is incorrect and there exists a point

q ∈ SC that q /∈ M. Take a geodesic line (a curve of the shortest distance lying in SC)
α(s) connecting q and 0 lying in SC , where such curve exists since SC is a connected
manifold. Parameterize this curve by the arc length. The curve α(s) is geodesic in S if
and only if at any point q = α(t) the second derivative α̈(t) is perpendicular to Tq(S)

(see Spivak (1999) for discussion of geodesics, v. 3, p.3). As a result, the curvature of
the geodesic α at each point q = α(t) is equal to κq(X, S) (where X = α̇(t)), and thus
it is less than 1

C
. Denote the tangent to this curve at 0 by v ∈ T0(S). Applying Lemma

2 we obtain that the curve belongs to Mv ∩DC and thus belongs to M⋂
DC . We have

arrived at a contradiction. ¤
Proof of statement (c) of Theorem 1. Let f(u) = ρ(ξ, Nu). We need to �nd the

maximizer of f(u) subject to the constraint ‖u‖ = 1. To di�erentiate f(u) we use the
�envelope theorem� that allows one to di�erentiate a function which is the optimum of
a constrained optimization problem and yields df(u)

du
= ξ(2) − zu. Hence, the �rst-order
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condition for �nding ũ implies that u is proportional to ξ(2). The sign is a re�ection of
the fact that we search for a max rather than a min. ¤

Proof of statement (b) of Theorem 1. For a given point ξ ∈ Rk �nd the
sphere Nũ furthest from ξ, ũ is described in Theorem 1 (c), and the point τ ∈ Nũ

such that ρ(ξ, Nũ) = ρ(ξ, τ). Consider the k − p dimensional linear space Rτ = {x ∈
Rk : x(1) = τ (1)} that restricts the �rst p components of x to coincide with the �rst p

components of τ . We will put forward two statements: �rst, that all points in the inter-
section of Rτ

⋂M⋂
DC are not further from ξ than τ ; and second, that this intersection

Rτ

⋂M⋂
DC contains at least one point from S. Together, these two statements imply

that ρ(ξ, S) ≤ ρ(ξ, τ).
The intersection of the three sets Rτ

⋂M⋂
DC can be written as follows:

Rτ

⋂
M

⋂
DC = {x = (τ (1), x(2)) ∈ DC : ‖τ (1)‖2 + (C − ‖x(2)‖)2 ≥ C2} =

=

{
x = (τ (1), x(2)) : ‖x(2)‖ ≤ C −

√
C2 − ‖τ (1)‖2

}
.

Now let us show that for each x ∈ Rτ

⋂M⋂
DC we have ρ(ξ, x) ≤ ρ(ξ, τ). Indeed, one

can solve the constrained maximization problem

ρ(ξ, x)2 = ‖ξ(1) − τ (1)‖2 + ‖ξ(2) − x(2)‖2 → max s.t. x ∈ Rτ

⋂
M

⋂
DC .

From the �rst-order condition for this problem one can see that the maximum is achieved
at x(2) proportional to ξ(2), and further inspection reveals that it is achieved at x = τ .
Hence, all points lying in the intersection Rτ

⋂M⋂
DC have distance to ξ less or equal

than ρ(ξ, Nũ).
To complete the proof we need only show that Rτ

⋂M⋂
DC contains at least one

point from the manifold S. Recall that from the de�nition of τ ∈ Nũ it follows that
‖τ (1)‖ ≤ C. Then Assumption 1 guarantees that the intersection of SC with Rτ is
non-empty, while statement (a) of Theorem 1 implies that SC ⊆M⋂

DC . ¤
Proof of statement (d) of Theorem 1. Note that both ξ and Nũ belong to the

same p + 1- dimensional linear sub-space Lũ = {x : x = (x(1),−zũ), x(1) ∈ Rp, z ∈ R}.
Let us restrict our attention to this subspace only. Let (x(1), z) be the coordinate system
in this sub-space, so ξ corresponds to ξ̃ = (ξ(1), ‖ξ(2)‖), and Nũ corresponds to the sphere
NC = {x = (x(1), z) ∈ Rp+1 : ‖x(1)‖2 + (C + z)2 = C2}. The distance implied by the
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distance in Rk is the usual Euclidean metric, which we denote by ρ̃. So far, we proved that
ρ(ξ, Nũ) = ρ̃(ξ̃, NC). By invariance of the distance to orthonormal transformations of �rst
p components we have ρ̃(ξ̃, NC) = ρ̃(ξ∗, NC), where ξ∗ = (‖ξ(1)‖, 0, ..., 0, ‖ξ(2)‖) ∈ Rp+1.
From this it is easy to see that

ρ(ξ,Nũ) = ρ2(η,NC
2 ),

where η = (‖ξ(1)‖, ‖ξ(2)‖) ∈ R2, NC
2 = {(z1, z2) ∈ R2 : z2

1 + (C + z2)
2 = C2}, and ρ2 is

Euclidian distance in R2. It then follows that if ξ ∼ N(0, Ik) then components of η have
independent

√
χ2

p and
√

χ2
k−p distributions, respectively. ¤

7.2 Proof of Lemma 1

Proof of Lemma 1. Let ξ = Σ−1/2(θ̂ − θ0) ∼ N(0, Ik) and S = {Σ−1/2(θ − θ0), θ ∈
H0} ⊂ Rk. Let ψC(ξ, R) be de�ned as

ψC(ξ, R) =





ρ2(ξ,Nũ), if ‖ξ‖ ≤ R;

‖ξ‖2, if ‖ξ‖ > R,

where Nũ = {x ∈ Rk : x = (x(1), zũ), x(1) ∈ Rp, z ∈ R+, ‖x(1)‖2 + (C − z)2 = C2}, ũ =

− 1
‖ξ(2)‖ξ

(2). Consider the infeasible test ϕ which rejects (ϕ = 1) if and only if ψC(ξ, R) ≥
F1−α(C,R, k, p). The size Eϕ(ξ) = α, so since P{χ2

k ≥ R2} < α we know that ϕ rejects
for all realizations of ξ where ‖ξ‖ > R. This test is infeasible, however, since we do not
know the true value of θ0 and hence cannot calculate ξ. The (feasible) test described in
Lemma 1 is

ϕ̃ =





1, if AR ≥ F1−α(Ĉ, R, k, p);

0, otherwise.
(23)

We claim that ϕ̃ ≤ ϕ almost surely (realization-by-realization). To show that this is the
case, assume that ϕ̃ = 1. If at the same time ‖ξ‖ > R then ϕ = 1, so the claim holds. If,
on the other hand, ‖ξ‖ ≤ R, then the cylinder D̃R(x0) around x0 = Σ−1/2θ0 lies inside of
ball B̃, and thus

Ĉ =

(
min

q∈S̃
⋂

B̃
1/κq(S̃)

)
∧R ≤

(
min

q∈S̃
⋂

D̃R(x0)
1/κq(S̃)

)
∧R ≤ C.
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Indeed, to justify the last inequality, consider two cases R ≤ C and R > C. In the
�rst case Ĉ ≤ R ≤ C, in the second case D̃C ⊂ D̃R and thus minq∈S̃

⋂
D̃R(x0) 1/κq(S̃) ≤

minq∈S̃
⋂

D̃C(x0) 1/κq(S̃) ≤ C.
Note that the function F1−α(c, R, k, p) is decreasing in c, and hence F1−α(C,R, k, p) ≤

F1−α(Ĉ, R, k, p). Further, all the assumptions of Theorem 1 are satis�ed so AR =

ρ2(ξ, S) ≤ ρ2(ξ, Nũ) ≤ ψC(ξ, R). Combining these results we obtain that

F1−α(C, R, k, p) ≤ F1−α(Ĉ, R, k, p) ≤ AR = ρ2(ξ, S) ≤ ψC(ξ, R),

and thus ϕ = 1. Hence whenever ϕ̃ = 1, we get that ϕ = 1 as well, so ϕ̃ ≤ ϕ as we
wanted to show, and the size of the feasible test ϕ̃ is bounded above by α, completing
the proof. ¤
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A Geometric Approach to Weakly Identi�ed Econometric Models
By Isaiah Andrews1 and Anna Mikusheva2

Abstract
Many nonlinear Econometric models show evidence of weak identi�cation, including many

Dynamic Stochastic General Equilibrium models, New Keynesian Phillips curve models, and

models with forward-looking expectations. In this paper we consider minimum distance statistics

and show that in a broad class of models the problem of testing under weak identi�cation is

closely related to the problem of testing a �curved null� in a �nite-sample Gaussian model.

Using the curvature of the model, we develop new �nite-sample bounds on the distribution of

Anderson-Rubin-type statistics, which we show can be used to detect weak identi�cation and to

construct tests robust to weak identi�cation. We apply the new method to a small-scale DSGE

model and show that it provides a signi�cant improvement over existing methods.

Key words: weak identification, statistical differential geometry

This draft: May 29, 2012.

1 Introduction

Empirical researchers in Economics frequently �nd that even in large samples the data
provides little information about some model parameters. In such cases, known as weakly
identi�ed, the usual asymptotic approximations for estimators and test statistics may be
quite poor, making standard approaches to inference unreliable. Weak identi�cation has
been detected in a wide range of non-linear estimation contexts, including estimation
of the New Keynsian Phillips Curve (Dufour, Khalaf, and Kichian (2006), Kleibergen
and Mavroeidis (2009b), Mavroeidis (2005), Nason and Smith (2008)), monetary policy
rules (Mavroeidis (2010)), Dynamic Stochastic General Equilibrium (DSGE) Models (
Ruge-Murcia (2007), Canova and Sala (2009), Iskrev (2010), I. Andrews and Mikusheva
(2011), Guerron-Quintana, Inoue and Kilian (2009)), and Euler equations (Yogo (2004)).
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iandrews@mit.edu. Financial support from the NSF Graduate Research Fellowship Program is gratefully
acknowledged.
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geometric issues with us, and for checking our geometric proofs. We are grateful to Gary Chamberlain,
Victor Chernozhukov, Jerry Hausman, Mattias Cattaneo, Whitney Newey and Jim Stock for helpful
comments.
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The need for more reliable procedures robust to weak identi�cation in non-linear contexts
has inspired a large literature in econometrics - for a survey, see Dufour (2003) and Stock,
Wright, and Yogo (2002).

A number of di�erent testing procedures have been proposed in this literature, most
of which address two situations: the case in which one is interested in testing the full
parameter vector (also known as testing a simple hypothesis), and the case in which one
is interested in testing only a subset of parameters but the parameters not under test
(the nuisance parameters) are strongly identi�ed. Examples of such tests include Stock
and Wright (2000), Guggenberger and Smith (2005, 2008), Kleibergen (2005, 2007),
I. Andrews and Mikusheva (2011), and Qu (2011). The literature to date has, however,
been largely silent about the case in which part of the nuisance parameter vector may
be weakly identi�ed. A notable exception is the recent paper by D. Andrews and Cheng
(2011).

Our paper directly addresses the question of inference with weakly identi�ed nuisance
parameters in the context of minimum distance estimation. We suggest a fully robust
testing procedure which controls size without any assumption on the strength of iden-
ti�cation of the parameters. Further, if the nuisance parameters are strongly identi�ed,
our procedure is asymptotically equivalent to the �concentrated out� S-test suggested by
Stock and Wright (2000) for hypotheses with strongly identi�ed nuisance parameters.

Our procedure is based on novel �nite-sample bounds on the distribution of the test
statistic under the null. For our asymptotics, we assume only that the model has reduced-
form parameters which are asymptotically normal and hence we do not rely on any
particular asymptotic embedding, such as those used by Stock and Wright (2000) or
D. Andrews and Cheng (2011) to model weak identi�cation. In fact, if one thinks a
normal approximation to the distribution of the reduced-form estimates is reasonable,
our bounds are �nite-sample rather than asymptotic.

The bounds we derive rely on techniques from di�erential geometry which are new
in the econometrics literature. Our starting point is the observation that hypotheses
in non-linear models with strongly identi�ed nuisance parameters are asymptotically
linear in a geometrical sense. In contrast, hypotheses with weakly identi�ed nuisance
parameters need not be asymptotically linear and can exhibit substantial curvature even
in large samples, leading to the breakdown of the usual asymptotic approximations. Our
bounds can be viewed as a strengthening of the usual approximations, where rather
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than appealing to asymptotic linearity of the null hypothesis we quantify the maximal
deviation of the null from linearity and use it to construct stochastic bounds. As a result,
under strong-identi�cation asymptotics our bounds recover the usual approximations.
The test we suggest uses a standard minimum-distance statistic paired with robust critical
values derived using these geometric bounds. The validity of this approach relies only
on assumptions which can be checked directly in applications, and our robust critical
values are very easy to simulate. The bounds we derive are also of potential interest
for a range of other applications, including testing nonlinear hypotheses and inference in
highly non-linear models. Our approach di�ers from the statistical geometry literature
initiated by Efron (1975) in that we produce �nite sample bounds on the distribution of
the test statistic, whereas the statistical geometry literature is primarily concerned with
higher-order asymptotic approximations.

To date the dominant recommendation for testing hypotheses with weakly identi�ed
nuisance parameters has been the projection method (see Dufour and Jasiak (2001),
Dufour and Taamouti (2005), Dufour, Khalaf, and Kichian (2006)). The strength of the
projection method is that it requires no assumptions beyond the validity of the test for
the full parameter vector. It is in general conservative, however, and may be extremely
so in cases where the nuisance parameter is high-dimensional and/or strongly identi�ed.
Our approach is an improvement over the projection method, in that it uses the same
test statistic paired with smaller critical values while still maintaining size.

If one knows that part of the nuisance parameter vector is strongly identi�ed, it has
been proved that in many cases one can obtain a more powerful test by concentrating
out the nuisance parameter as in e.g. Stock and Wright (2000). Maintaining correct
size in such cases, however, relies critically on the strong identi�cation assumption on
the nuisance parameter. In contrast, our approach requires no assumption of strong
identi�cation but, in the event that the nuisance parameters are strongly identi�ed, is
asymptotically equivalent to concentrating them out. In this sense, our robust critical
values can be viewed as providing a continuous transition between projecting over and
concentrating out the nuisance parameters, depending on the strength of identi�cation.

We also use our bounds to derive a pre-test for weak identi�cation which allows one
to control size in two-step testing procedures. In particular, if one is deciding between
concentrating out the nuisance parameter and using a robust procedure, we provide
bounds on the curvature of the null hypothesis which can be used to guide the choice.

3



This procedure is quite di�erent from existing tests for weak identi�cation in nonlinear
models such as Inoue and Rossi (2011), Iskrev (2010) and Wright (2003) in that the
existing tests all e�ectively test the null of strong identi�cation and hence do not control
the probability of failing to detect weak identi�cation. In contrast, our pre-test for weak
identi�cation directly bounds the �nite-sample distribution of the test statistic.

As a side result, we provide an example showing that the distribution of an AR-type
statistic in a nonlinear GMM model under weak identi�cation is not in general domi-
nated by the distribution of the same statistic under strong identi�cation. Kleibergen
and Mavroeidis (2009a: initial draft) claimed that such such stochastic dominance holds
for some non-linear GMM models. If such a statement held universally (which Kleibergen
and Mavroeidis did not claim), it would have meant that concentrating out the nuisance
parameter controlled size regardless of identi�cation strength. As we show in this paper,
however, this dominance relationship does not in general hold for our setting, and con-
centrating out weakly identi�ed nuisance parameters can yield substantial over-rejection.

We apply our approach to a small-scale DSGE model and �nd evidence of substan-
tial curvature. We consider the problem of testing composite hypotheses about model
parameters, and show that our robust critical values are substantially smaller than those
used by the projection method while still controlling size.

The paper is structured as follows. In Section 2 we show that hypotheses with strongly
identi�ed nuisance parameters are asymptotically linear, while weakly identi�ed nuisance
parameters may cause non-trivial curvature of the null hypothesis. We also introduce
several examples that �t our framework. In Section 3 we derive our geometric and
stochastic bounds and introduce our fully robust test. In Section 4 we compare our
testing procedures with existing methods, discuss the AR conjecture and introduce our
pre-test. Section 5 is devoted to modi�ed procedures for subsets of nuisance parameters,
and Section 6 presents simulation results from applying our procedures to a small-scale
DSGE model. All proofs may be found in the Appendix.

Throughout the paper we use the following notation: α̇ is the derivative of the function
α, α̈ is the second derivative, BR(x0) = {x ∈ Rk : ‖x − x0‖ ≤ R} is a k-dimensional
ball of radius R with center x0, and BR = BR(0) is a ball around zero. Let DC = {x =

(x(1), x(2)) : ‖x(1)‖ ≤ C, ‖x(2)‖ ≤ C, x(1) ∈ Rp, x(2) ∈ Rk−p} ⊂ Rk, which is a natural
generalization of a cylinder.
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2 Model setting

Suppose we have a single observation θ̂ ∼ N(θ, Ik), where the true value of θ = θ0

is unknown. Further, suppose we have a known regular p-dimensional manifold S̃ in k-
dimensional space. The assumption that S̃ is a regular p-dimensional manifold essentially
means that the tangent space to S̃ at all points is a p-dimensional linear subspace.3 The
LR (likelihood ratio) statistic for testing a null hypothesis H0 : θ ∈ S̃ is

LR = min
θ∈S̃

(θ̂ − θ)′(θ̂ − θ).

Example 1. Let g : Rk → Rk−p be a twice-continuously-di�erentiable function whose
Jacobian has full rank at all points. Assume that we wish to test the null hypothesis
H0 : g(θ) = 0. Then the set of points S̃ = {θ ∈ Rk : g(θ) = 0} describes a p-dimensional
manifold which is known to the researcher. If g is a linear function, the null can be
formulated as H0 : Rθ = r, where R is (k − p)× k full-rank matrix and r is (k − p)× 1

vector. In this special case, the manifold S̃ described by the null hypothesis is a p-
dimensional linear space.¤

Example 2. Suppose we have a structural model which imposes that θ = m̃(β)

for some structural parameter β where the function m̃ : Rp → Rk is twice continuously
di�erentiable with a full-rank Jacobian at all points. The image of the function m̃ is a
p-dimensional regular manifold S̃ known to the researcher. Hence, the LR test for the
hypothesis of correct speci�cation will be based on the statistic

LR = min
β

(θ̂ − m̃(β))′(θ̂ − m̃(β)) = min
θ∈S̃

(θ̂ − θ)′(θ̂ − θ). ¤

The distribution of the LR statistic under the null, that is for θ ∈ S̃, is in general
non-standard and depends on the unknown nuisance parameter θ0, the true value of θ,
making inference di�cult. In what follows, we derive bounds on distribution of LR for
which it su�ces to know the shape of the manifold S̃; that is, which do not require
knowledge of θ0.

To proceed, it is useful for us to introduce the random vector ξ = θ̂ − θ0 ∼ N(0, Ik)

and the p-dimensional manifold S = {x : x = θ−θ0, θ ∈ S̃}, which is simply S̃ translated
by −θ0. If the null is true, then the manifold S passes through the origin. The LR

3More details on regularity conditions can be found in section 3.
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statistic is equal to the squared distance between ξ and S:

ρ(ξ, S)2 = min
x∈S

(ξ − x)′(ξ − x). (1)

The central statistical issue in this paper is how to characterize the distribution of ρ(ξ, S),
the squared distance from ξ to the manifold S, in terms which do not depend on the
unknown θ0. In particular, we develop bounds on this distribution that depend only on
the curvature of the manifold S̃, which is known to the researcher.

A well-known property of the normal distribution is that if S is a p-dimensional linear
sub-space then the squared distance ρ2(ξ, S) has a χ2

k−p distribution. Note that in this
very special case the distribution does not depend on θ0. Numerous classical results on
testing in the presence of a nuisance parameter are based on this fact. Indeed, most of
the classical statistics literature deals with testing hypotheses that are either linear or
asymptotically linear, in the sense that S is either a linear subspace or arbitrarily well-
approximated by one in large samples. In subsection 2.1 below, we argue that testing
in the presence of strongly identi�ed nuisance parameters is asymptotically equivalent
to testing a linear hypothesis, while testing in the presence of weakly identi�ed nuisance
parameters tends to result in asymptotically non-linear null hypotheses. This has im-
portant implications for hypothesis testing, since if S is not a linear sub-space then the
distribution of ρ2(ξ, S) is in general non-standard and depends on the whole shape of S.

There is one natural (less informative) bound that can be placed on ρ2(ξ, S) without
any assumptions, namely that ρ2(ξ, S) is dominated by χ2

k. Indeed, since 0 ∈ S, we have

ρ(ξ, S)2 = min
x∈S

(ξ − x)′(ξ − x) ≤ (ξ − 0)′(ξ − 0) ∼ χ2
k. (2)

We argue below that this bound is precisely the one used by the �projection method�,
which is currently the main approach available for testing with weakly identi�ed nuisance
parameters. As discussed above, the major disadvantage of this bound is that it may
yield quite conservative tests.

2.1 Weak identi�cation is related to curvature

A parameter or group of parameters is known as weakly identi�ed when it is point iden-
ti�ed, but the data is not very informative about the true value. In such cases, it is
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well known that many classical statistical approximations perform quite poorly. As a
result, point estimates tend to be biased, many tests exhibit large size distortions, and
con�dence sets based on these tests have poor coverage. One framework used for develop-
ing better approximations in such cases is the drifting functions approach introduced by
Stock and Wright (2000). This approach models weak identi�cation using an asymptotic
embedding in which the objective function is asymptotically �at along some directions.
To �x ideas, let us consider a GMM model in which the moment function is separable
in the data. In particular, assume that we observe a sample {xi} of size n consisting of
identically and independently distributed observations such that

E(h(xi)−M(α, β)) = 0 for α = α0, β = β0. (3)

Here h(x) is a k-dimensional function with E‖h(xi)‖4 < ∞, while α and β are kα×1 and
kβ×1 vectors respectively, for kα +kβ ≤ k. Assume that θ0 = (α0, β0) is the unique point
at which the moment condition (3) is satis�ed, so that the model is point identi�ed. As
in Stock and Wright (2000), we can allow the function M to change as the sample size
grows. In particular,

M(α, β) = Mn(α, β) = M̃(α) +
1√
n

M∗(α, β), (4)

where M̃(α) and M∗(α, β) are �xed twice-continuously-di�erentiable functions with full-
rank Jacobians. In this setting, α is strongly identi�ed while β is weakly identi�ed,
because information about β does not accumulate as the sample size grows.

Suppose we are interested in testing a hypothesis about the structural parameters α

and β. Consider �rst the problem of testing a full parameter vector hypothesis
H0 : α = α0, β = β0. To test this hypothesis, we can use a generalization of the AR

(Anderson-Rubin) statistic introduced in Stock and Wright (2000):

AR(α0, β0) = n

(
1

n

∑
i

h(xi)−Mn(α0, β0)

)′

Σ−1

(
1

n

∑
i

h(xi)−Mn(α0, β0)

)
,

where Σ is the covariance matrix of vector h(xi) (which we take to be nonsingular) or a
consistent estimate thereof. Under the null, we have that AR(α0, β0) ⇒ χ2

k. This result
requires only that a central limit theorem hold for h(xi) and is fully robust towards
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weak identi�cation of β. An alternative test for the full parameter vector is suggested in
Kleibergen (2005), which uses a score (LM) statistic.

To test a hypothesis with a strongly identi�ed nuisance parameter, e.g. H0 : β = β0,
we can use the AR statistic for a test on both α and β, minimized over the nuisance
parameter α. In particular, we consider

AR(β0) = min
α

AR(α, β0).

Stock and Wright (2000) prove that under the null AR(β0) ⇒ χ2
k−kα

regardless of the
strength of identi�cation of β. Interested readers may �nd a full proof of this result in
Stock and Wright (2000): here, we instead show that the problem of testing H0 : β = β0

for a strongly identi�ed nuisance parameter is asymptotically equivalent to that of testing
a linear hypothesis in the Gaussian model described in the beginning of section 2.

To see that this is the case, de�ne ξn =
√

nΣ−1/2( 1
n

∑
i h(xi) −Mn(α0, β0)). By the

central limit theorem, ξn ⇒ ξ ∼ N(0, Ik). Let Sn be the image of the function

mn(α) =
√

nΣ−1/2(Mn(α, β0)−Mn(α0, β0)) =

=
√

nΣ−1/2(M̃(α)− M̃(α0)) + Σ−1/2(M∗(α, β0)−M∗(α0, β0)) =

=
√

nΣ−1/2(M̃(α)− M̃(α0)) + O(||α− α0||). (5)

The statistic AR(β0) is equal to ρ2(ξn, Sn). For any bounded set B, the intersection
Sn

⋂B converges to the intersection of B with the kα-dimensional linear sub-space S

spanned by the columns of the Jacobian of M̃(α) at point α0. Indeed, according to
equation (5) and the assumption that α is globally identi�ed, one can easily show that
the range of values of α such that mn(α) ∈ Sn

⋂B is of order 1/
√

n. Any regular
manifold, however, is arbitrarily well approximated by its tangent space, which we can
denote here by S, on an in�nitesimal neighborhood of a regular point (see section 3.1 for
de�nitions). As a result, it is easy to show that ρ2(ξn, Sn) ⇒ ρ2(ξ, S) ∼ χ2

k−kα
, where the

last equality is true due to the fact discussed at the beginning of this section that the
squared distance from a standard normal vector to a linear space passing through zero
is χ2-distributed. For another version of this asymptotic linearity result, see section 5,
where we show that in models with strongly identi�ed nuisance parameters the curvature
is of order 1/

√
n.

8



Tests for hypotheses with weakly identi�ed nuisance parameters behave quite di�er-
ently. In particular, we show that in general the curvature of a null hypothesis with a
weakly identi�ed nuisance parameter does not disappear asymptotically. To illustrate
this point, assume that the hypothesis of interest is H0 : α = α0, so that β is a weakly
identi�ed nuisance parameter. Again, we consider the AR statistic minimized over the
nuisance parameter:

AR(α0) = min
β

n

(
1

n

∑
i

h(xi)−Mn(α0, β)

)′

Σ−1

(
1

n

∑
i

h(xi)−Mn(α0, β)

)
.

Let us de�ne ξn =
√

nΣ−1/2( 1
n

∑
i h(xi) − Mn(α0, β0)) as before, and let Sn be the

image of the function

mn(β) =
√

nΣ−1/2(Mn(α0, β)−Mn(α0, β0)) = Σ−1/2(M∗(α0, β)−M∗(α0, β0)).

By construction, Sn is a p-dimensional manifold in k-dimensional Euclidean space. In
contrast to the strongly identi�ed case, however, we have that Sn does not change with
the sample size, so denote it S. Hence, if Sn is nonlinear for a given sample size, it
remains nonlinear in the limit. As a result, we have that

AR(α0) = ρ2(ξn, S) ⇒ ρ2(ξ, S),

where ξ ∼ N(0, Ik) and S is a p-dimensional manifold, which is not in general a linear
sub-space. Note, however, that this is precisely the problem discussed at the beginning
of section 2. Hence, the problem of testing a hypothesis with weakly identi�ed nuisance
parameters using the AR statistic is asymptotically equivalent to that of testing a possibly
nonlinear hypothesis in a Gaussian model. As a result, constructing bounds for the
distribution of ρ2(ξ, S) will also allow us to conduct inference in models with weakly
identi�ed nuisance parameters.

Linearity vs strength of identi�cation. We showed that the problem of testing a
hypothesis with strongly identi�ed nuisance parameters is asymptotically equivalent to
that of testing that the mean belongs to linear subspace in a �nite-dimensional Gaussian
model. In contrast, if there are weakly identi�ed nuisance parameters the manifold
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corresponding to the null hypothesis need not converge to a linear subspace, so the usual
critical values may be invalid. Rather than focusing on strength of identi�cation, however,
we may view the key distinction here as between linearity and non-linearity. In particular,
while strong identi�cation guarantees that the null hypothesis will correspond to a linear
subspace in the limit, even with weakly identi�ed nuisance parameters if S (the set of
parameter values satisfying the null) happens to be a linear subspace, the usual χ2

k−kβ

limiting distribution will be correct. Hence, in models where the nuisance parameters
enter the function M linearly, the usual (strong-identi�cation) critical values for the AR

statistic will yield asymptotically valid tests regardless of the strength of identi�cation.
Asymptotic linearity, not strong identi�cation as such, is the essential condition. On a
related note, Andrews and Mikusheva (2011) show that in a parametric model, a score
test which concentrates out the nuisance parameter has asymptotically correct coverage
even for testing a null hypothesis with a weakly identi�ed nuisance parameter as long as
this parameter enters the log-likelihood function linearly.

2.2 Minimal distance statistics

The analysis above generalizes to a broader minimum-distance context. Assume that
we have a sample of size n from a model parameterized by structural parameters (α, β),
which are related to reduced form parameters θ by θ = Mn(α, β) where the function Mn

is of the form described in equation (3). Further, suppose we have an estimator θ̂ of the
reduced-form parameters which is consistent and asymptotically normal:

√
n(θ̂ − θ) ⇒ N(0, Σ),

for Σ either known or consistently estimable: in the GMM example above, we could take
θ = E[h(xi)] and θ̂ = 1

n

∑n
i=1 h(xi). As before, α is strongly identi�ed while β is weakly

identi�ed. The analysis now applies to so-called minimum distance statistics (which we
will continue to refer to as AR for simplicity). In particular, to test the hypothesis
H0 : α = α0, β = β0 we use

AR(α0, β0) = n
(
θ̂ −Mn(α0, β0)

)′
Σ−1

(
θ̂ −Mn(α0, β0)

)
,
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while to test the hypothesis H0 : β = β0 with a strongly identi�ed nuisance parameter
we consider the statistic AR(β0) = minα AR(α, β0) and pair it with χ2

k−kα
critical values.

Taking ξn =
√

nΣ−1/2(θ̂−θ0), the same argument as above shows that this testing problem
is asymptotically equivalent to testing a linear hypothesis in a Gaussian model. Likewise,
testing a hypothesis with a weakly identi�ed nuisance parameter is again asymptotically
equivalent to testing a non-linear hypothesis in a Gaussian model.

Below we discuss several applied examples that can be cast into this setting.

2.2.1 Example: DSGE models

Dynamic Stochastic General Equilibrium (DSGE) models have recently been quite pop-
ular in applied Macroeconomics. These are highly non-linear, very multi-dimensional
dynamic models describing the evolution of the main macro indicators in the economy
and are used by many central banks. A number of concerns have been voiced about iden-
ti�cation in these models (Ruge-Murcia (2007), Canova and Sala (2009), Iskrev (2011),
I. Andrews and Mikusheva (2011), Guerron-Quintana, Inoue and Kilian (2009)), and
many authors have noted that standard frequentist statistical procedures are unreliable.
The source and extent of weak identi�cation in such models is not well understood, and
it is impossible to distinguish which parameters are weakly identi�ed using currently-
available procedures.

Several recent papers (Dufour, Khalaf and Kichian (2009), Guerron-Quintana, Inoue
and Kilian (2009), I. Andrews and Mikusheva (2011), and Qu (2011)) suggest tests for
full parameter vector hypotheses robust towards weak identi�cation. With the exception
of I. Andrews and Mikusheva (2011), these papers suggest the projection method for
inference on subsets of parameters. Due to the high dimension of the parameter vector
in many DSGE models, however, the projection method tends to be quite conservative.

Most DSGE models can be cast into our framework, which seems natural here, as one
suggestion for how to estimate DSGE models is through two-step matching procedures
(Christiano and Eichenbaum (1992), Rotemberg and Woodford (1997), Ruge-Murcia
(2010)). Typical log-linearized DSGE models are of the form:

Γ0(β)zt = Γ1(β)Etzt+1 + Γ2(β)zt−1 + Γ3(β)ut,

where zt is a set of state variables at time t, β is a set of structural parameters, ut are
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i.i.d. mean zero shocks with identity covariance matrix, and Γi(β) are known (often non-
linear) functions. We observe variables xt = Czt, where in many cases C is a deterministic
matrix (usually a selection matrix). There are a number of known procedures for solving
systems of linear rational expectation equations of this form- see Blanchard and Kahn
(1980), Anderson and Moore (1985), King and Watson (1998), and Sims (2002) for
di�erent algorithms.

Once solved, the model can be written in the form

zt = A(β)zt−1 + B(β)ut,

where matrices A(β) and B(β) are generally nonlinear in β and solve the equations

(Γ0 − Γ1A)A− Γ2 = 0; (Γ0 − Γ1A)B − Γ3 = 0.

In this context, a natural choice of reduced-form parameters is the auto-covariances
of the observed vector-series xt. In particular, let Σx(j) be j-th order auto-covariance of
xt (for details see Iskrev (2010)):

Σx(j) = cov(xt, xt−j) = CAjΣz(0)C ′

where Σz(0) = Eztz
′
t = AΣz(0)A′ + BB′. It is helpful to write everything in vectorized

form. In particular,

θj(β) = vec(Σx(j)) = (C ⊗ CAj)(I − (A⊗ A))−1vec(BB′).

One may choose the reduced form parameter θ to be some subset of vec(Σx(j)), so
θ = m(β) = W (θ0(β)′, ..., θj(β)′)′, where W is a selection matrix. In the absence of
persistence (exact or near unit roots) the sample estimators

θ̂j = vec

(
1

T − j − 1

T−j∑
t=1

(xt+j − x)(xt − x)′
)

of θj satisfy a central limit theorem and achieve normality quite quickly. As a result,
normal approximations to the distribution of θ̂ = W (θ̂0, ..., θ̂j) are usually quite reliable
for realistic sample sizes. Hence, we can conduct inference on the structural parameters
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β using the AR statistic

AR(β) = n(θ̂ − θ(β))′Σ−1(θ̂ − θ(β))

where Σ is the covariance matrix of the reduced-form parameter estimates.

2.2.2 Example: Phillips curve

Typical models of the New Keynesian Phillips curve relate present in�ation to expecta-
tions about future in�ation and past values of in�ation. One such formulation is

πt =
n∑

j=0

λjst−j + γfEtπt+1 +
m∑

j=1

γjπt−j + εt, (6)

where πt is the in�ation at time t and st is some driving variable (e.g. labor costs).
One way of estimating such models, popularized by Gali and Gertler (1999), is with
instrumental variables regression.

Mavroeidis (2005) argues that models of forward-looking expectations (like the New
Keynesian Phillips curve) require an analysis of identi�cation distinct from the usual
GMM-IV arguments considered in i.i.d. models. In particular, the error in the Phillips
curve expression above will in general be autocorrelated and heterogeneous, raising iden-
ti�cation issues above and beyond those faced in the i.i.d. case. Mavroeidis (2005) shows
that the dynamics of the forcing variable st are extremely important for determining the
identi�cation of the model and that if these dynamics are insu�ciently rich then the
parameters in (6) will not be identi�ed. He also argues that standard diagnostics for
identi�cation strength designed for i.i.d. models may be quite misleading when applied
to Phillips curve estimation.

To cast New Keynesian Phillips curve estimation into our setting, suppose that the
driving variable st is weakly exogenous and can be modeled as

st =

p∑
j=1

ρjst−j +

q∑
j=1

φjπt−j + vt. (7)
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One can then solve the model described by (6) and (7) to obtain a reduced form solution

πt =
ls∑

j=0

αjst−j +
lπ∑

j=1

δjπt−j + αεεt. (8)

To test hypotheses on the structural parameters β = (λ0, ..., λn, γf , γ1, ..., γm, ρ1, ..., ρp, φ1, ..., φq),
we �rst estimate the reduced form parameters θ = (α0, ..., αls , δ1, ..., δlπ , ρ1, ..., ρp, φ1, ..., φq)

by OLS regressions (7) and (8). The function θ(β) connecting the structural parameters
to the reduced form is given by the solution to the model and can be found in Mavroeidis
(2005). Using this solution, we can test any hypothesis on the structural parameters by
testing the implied hypothesis on the reduced form parameters. In particular, for a full
parameter vector hypothesis H0 : β = β0 we consider the AR statistic:

AR(β0) = n(θ̂ − θ(β0))
′Σ−1(θ̂ − θ(β0)),

where n is the sample size and Σ is a HAC-consistent estimator of the asymptotic variance
of θ̂. Likewise, any other hypothesis about the structural parameters describes some
manifold in the space of θ's and thus �ts into the framework described in section 2.

3 Geometry

3.1 Manifolds, tangent spaces, curvature

In this paper we focus on regular manifolds embedded in k-dimensional Euclidean space
with the usual Euclidean norm ‖ · ‖. A subset S ⊂ Rk is called a p-dimensional regular
manifold if for each point q ∈ S there exists a neighborhood V in Rk and a twice-
continuously-di�erentiable map x : U → V

⋂
S from an open set U ⊂ Rp onto V

⋂
S ⊂

Rk such that (i) x is a homeomorphism, which is to say it has a continuous inverse and
(ii) the Jacobian dxq has full rank. A mapping x which satis�es these conditions is
called a parametrization or a system of local coordinates, while the set V

⋂
S is called a

coordinate neighborhood.
Note that the manifold S is de�ned as a set, rather than as a map. In keeping with

this spirit, many of the statements below will be invariant to parametrization. Hence,
if we have di�erent parameterizations for the same manifold, which of them we use is
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entirely a matter of convenience. In some problems it may be the case that there does
not exist a global parametrization, that is a �xed mapping x satisfying the conditions
above such that S is the image of x. For instance, in Example 1 we de�ned S as the set of
points q satisfying the k−p-dimensional restriction g(q) = 0 where the twice continuously
di�erentiable function g had a Jacobian of rank k− p at all points. Given this de�nition,
the Implicit Function Theorem guarantees the existence of a local parametrization in a
neighborhood of each point q ∈ S but a global parametrization need not exist.

We begin by developing some geometrical concepts for the special case of a regular 1-
dimensional manifold, also known as a curve. In particular, let S be a curve parameterized
by α : (t0, t1) → Rk where α is twice continuously di�erentiable and (t0, t1) is an interval
in R. The arc length is de�ned as s(t) =

∫ t

t0
‖α̇(τ)‖dτ. Without loss of generality, we can

take α to be parameterized by arc length s, in which case at all points ‖α̇(s)‖ = 1 and
the vector α̈(s) is perpendicular to α̇(s). The vector α̇(s) is called the tangent vector to
S at q = α(s), while κ(s) = ‖α̈(s)‖ is called the curvature at q. The curvature measures
how quickly the curve S deviates from its tangent line local to q, and the scaling is such
that a circle of radius C has curvature 1/C at all points.

The change of variables from arbitrary parametrization t to the arc length s is not
necessary for the calculation of curvature. In particular, as before let α̇(t) and α̈(t) denote
the �rst and second derivatives of α, now with respect to t. If we let (α̈(t))⊥ be the part
of α̈(t) orthogonal to α̇(t), then the curvature at q = α(t) is κ(t) =

‖(α̈(t))⊥‖
‖α̇(t)‖2 . One can

show that this de�nition of curvature is invariant to parametrization, and hence that in
the special case of a curve parameterized by arc length it reduces to the de�nition given
above.

These concepts can all be extended to general regular manifolds. Fixing a p-dimensional
manifold S, for any curve α : (−ε, ε) → S on S which passes through the point
q = α(0) ∈ S the tangent vector α̇(0) is called a tangent vector to S at q. For x a
system of local coordinates at q, the set of all tangent vectors to S at q coincides with
the linear space spanned by the gradient dxq and is called the tangent space to S at q

(denoted Tq(S)). While we have de�ned the tangent space using the local coordinates
x, as one would expect from its geometrical interpretation Tq(S) is independent of the
parametrization.

To calculate the curvature at q, consider a curve α : (t0, t1) → S which lies in S and
passes through q = α(0). Taking T⊥

q to be the k− p-dimensional linear space orthogonal
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to Tq(S) and X = α̇(0) ∈ Tq(S) to be the tangent vector to α at q, de�ne

κq(X, S) =

∥∥(α̈(0))⊥
∥∥

‖X‖2
,

where (W )⊥ stands for the projection of W onto the space T⊥
q . One can show that

κq(X,S) depends on the curve α only through X. The measure of curvature we consider
is

κq(S) = sup
X∈Tq(S)

κq(X, S) = sup
X∈Tq(S)

∥∥(α̈(0))⊥
∥∥

‖X‖2
. (9)

This measure of curvature is closely related to the Second Fundamental Tensor (we refer
the interested reader to Kobayashi and Nomizu (1969, v.2, ch. 7)), and is equal to the
maximal curvature over all geodesics passing through the point q. As with the curvature
measure discussed for curves, (9) is invariant to the parametrization. Also analogous to
the 1-dimensional case, if S is a p-dimensional sphere of radius C then for each q ∈ S

we have κq(S) = 1/C. Finally, if S is a linear subspace then its curvature is zero at all
points.

How to calculate curvature in practice. Let S be a p-dimensional manifold in Rk,
and let x be a local parametrization at a point q, q = x(y∗). Denote the derivatives of
x at q by vi = ∂x

∂yi
(y∗). By the de�nition of a local parametrization, we know that the

Jacobian Z = (v1, ..., vp) is full rank, so the tangent space Tq(S) = span{v1, ..., vp} is p-
dimensional. As before, for any vector W ∈ Rk let W⊥ denote the part of W orthogonal
to Tq(S), that is, W⊥ = (I − Z(Z ′Z)−1Z ′)W . Finally, denote the p2 vectors of second
derivatives Vij = ∂2

∂yi∂yj
x(y∗) . The curvature can then be written as

κq(S) = sup
u=(u1,..,up)∈Rp

‖∑p
i=1 uivi‖=1

∥∥∥∥∥
p∑

i,j=1

uiujV
⊥
ij

∥∥∥∥∥ = sup
(w1,...,wp)∈Rp

∥∥∥∑p
i,j=1 wiwjV

⊥
ij

∥∥∥
‖∑p

i=1 wivi‖2 . (10)

3.2 Geometric bounds

In this section we establish a bound on the distribution of the distance in Rk from a
random point ξ ∼ N(0, Ik) to a p-dimensional non-random manifold S that contains

16



zero. Our bound depends on the maximal curvature κq(S) over all relevant points in the
manifold S. Our bound will be based on global properties of the manifold, in the sense
of properties that hold on a �xed bounded set, but we abstract from the behavior of the
manifold at in�nity as irrelevant. In what follows, we restrict attention to a connected
part of the manifold that lies inside of a (large) �nite cylinder centered at zero.

We derive our bound in two steps: �rst, we construct an envelope for the manifold S

using a collection of p-dimensional spheres. We show that the distance from any point ξ

to S is bounded above by the distance from ξ to the most distant sphere in the collection
we consider. Second, we show that our geometric construction implies a bound on the
distribution of ρ2(ξ, S) and hence on the distribution of AR (or LR) statistics. To provide
intuition for our main statement we walk the reader through two simple cases in which
the construction of the envelope can be easily visualized.

Case 1 (k=2, p=1): A curve in R2. Consider a curve S passing through zero (i.e.
(0, 0) ∈ S). Suppose that the curvature of S is less than or equal to 1/C for all points
in S. If we imagine two circles of radius C tangent to S at zero, we can see that the
curve lies between them- see Figure 1 for illustration. Since S lies between the circles, the
distance from any point ξ to S (denoted by d1 in Figure 1) does not exceed the distance
from ξ to the further of the two circles (denoted by d2). This is the geometrical bound we
use. Note that if the maximal curvature of S goes to zero at all points (so that C →∞)

Figure 1: Bounding a line between two circles.
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then the two bounding circles converge to the tangent line to S at zero on any bounded
set. Further, note that the distribution of the distance d2 from a normal random vector
to the furthest of two circles depends only on C and is easy to simulate.

The logic of this example is quite straightforward to generalize to the case of a k− 1-
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Figure 2: Left panel: the envelope for a space curve in R3. Right panel: distribution of the distance d2

dimensional manifold in Rk, known as a hyper-surface or a manifold of co-dimension 1.4

If a regular k − 1 dimensional manifold S in Rk has curvature κq(S) ≤ 1/C at all q ∈ S,
consider the two k−1-dimensional spheres of radius C which are tangent to the manifold
at zero. One can show (see Theorem 1 below) that as in the one-dimensional case S lies
between these two spheres. Hence, we again have that the distance from any point ξ to
S is bounded above by the distance from ξ to the furthest of the two spheres. Likewise,
if the maximal curvature of S goes to zero (so that C →∞) we again have that on any
bounded set the two spheres converge to the tangent space to S at zero, which in this
case is a k − 1-dimensional hyperplane.

Dealing with manifolds of co-dimension greater than 1 is much more challenging, but
the basic principle of the approach can be illustrated using a curve in R3.

Case 2 (k=3, p=1): A curve in R3. Suppose now that we have a one-dimensional
space curve S in R3 which passes through zero and whose curvature at all points is
bounded above by 1/C. We construct our envelope by considering the collection of all
one-dimensional circles of radius C tangent to S at zero. Equivalently, one can take a
given circle tangent to S at zero and rotate it around the tangent line. An example of
the resulting surface is given on the left panel of Figure 2: as in the case of co-dimension
1, we can see that the curve S lies inside the envelope. One can show that the distance
from any point ξ to the curve S (denoted by d1 in Figure 2) is bounded above by the
distance from ξ to the furthest circle in the collection used to construct the envelope

4The co-dimension of a manifold is the di�erence between the dimension of the space and the dimen-
sion of the manifold.
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(denoted d2). Note that if the curvature of S goes to zero at all points (so that C →∞)
then on any bounded set the envelope we consider converges to the tangent line to S at
zero.

This geometric bound immediately implies a bound on the distribution of ρ(ξ, S). For
ξ ∼ N(0, I3) the distribution of the distance d2 from ξ to the furthest circle is quite simple
to simulate. One can show that it is distributed as the distance from two-dimensional
random vector η depicted on the right panel of Figure 2 to the circle of radius C with
center (0,−C) where the coordinates of η are distributed as independent

√
χ2

1 and
√

χ2
2

random variables.

General case With the intuition provided by these examples, we now turn to the
general case. Let S be a regular connected p-dimensional manifold in Rk passing through
zero. By the rotation invariance of standard normal vectors we can assume without loss
of generality that the tangent space T0(S) to manifold S at zero is spanned by �rst p basis
vectors. For each x ∈ Rk, let x = (x(1), x(2)) where x(1) = (x1, ..., xp) ∈ Rp contains the
�rst p coordinates of x while x(2) = (xp+1, ..., xk) ∈ Rk−p contains the last k− p. In what
follows, we restrict attention to points on the manifold that lie inside of a (large) �nite
cylinder DC = {x = (x(1), x(2)) : ‖x(1)‖ ≤ C, ‖x(2)‖ ≤ C, x(1) ∈ Rp, x(2) ∈ Rk−p} ⊂ Rk.
Let SC be the intersection S

⋂
DC if it is connected or the connected part of S

⋂
DC

that passes through zero (that is, the part of S
⋂

DC which can be reached by continuous
paths lying in S

⋂
DC which pass through zero) if S

⋂
DC is not connected. Note that

ρ(ξ, S) ≤ ρ(ξ, SC).
To obtain some of our bounding results, we need one further assumption:

Assumption 1 For any y(1) ∈ Rp with
∥∥y(1)

∥∥ ≤ C there exists a point x ∈ SC such that
x(1) = y(1).

Assumption 1 requires that the projection of S on the tangent space to S at zero covers
some �xed p-dimensional ball, and hence that S has dimension p in a global sense. By
a local property we mean one that holds on an in�nitesimal neighborhood of a point.
In contrast, by a global property we mean one that holds on a �xed bounded set. We
have already imposed a local dimensionality assumption on S by restricting the rank of
the tangent space at all points. The distribution of the AR statistic, however, depends
on global properties of the manifold S and so to bound the distribution we need a
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global dimensionality assumption. To illustrate why local dimensionality assumptions are
insu�cient, imagine a strip S = {(x, y, z) ∈ R3 : z = 0,−ε < y < ε, x ∈ R} in R3. At any
point q ∈ S the dimension of the tangent space is equal to 2, but if ε > 0 is small enough
then S does not satisfy Assumption 1. For ε su�ciently small, however, the distance
from ξ to S behaves like the distance from ξ to the line S∗ = {(x, y, z) : y = 0, z = 0},
which is one dimensional both locally and globally.

Theorem 1 Let S be a regular p-dimensional manifold in Rk passing through zero. As-
sume that the tangent space T0(S) is spanned by �rst p basis vectors. Assume that for
some constant C > 0 we have that κq(S) < 1

C
for all points q ∈ SC. Then:

(a) Manifold SC lies inside the set M∩DC, where

M = {‖x(1)‖2 + (C − ‖x(2)‖)2 ≥ C2}. (11)

(b) If Assumption 1 is satis�ed, then for any point ξ ∈ Rk we have

ρ(ξ, S) ≤ max
u∈Rp−k,‖u‖=1

ρ(ξ, Nu),

where Nu = {x ∈ Rk : x = (x(1), zu), x(1) ∈ Rp, z ∈ R+, ‖x(1)‖2 + (C − z)2 = C2}.

(c) maxu∈Rp−k,‖u‖=1 ρ(ξ, Nu) = ρ(ξ, Nũ), where ũ = − 1
‖ξ(2)‖ξ

(2).

(d) If ξ ∼ N(0, Ik) we have for all x, y:

P

{
max

u∈Rp−k,‖u‖=1
ρ2(ξ,Nu) ≤ x, ‖ξ‖ ≤ y

}
= P

{
ρ2

2(η, NC
2 ) ≤ x, ‖η‖ ≤ y

}
,

where the coordinates of the 2-dimensional random vector η = (
√

χ2
p,

√
χ2

k−p) ∈ R2

are independently distributed, NC
2 = {(z1, z2) ∈ R2 : z2

1 +(C +z2)
2 = C2} is a circle

of radius C with the center at (0,−C), and ρ2 is Euclidian distance in R2.

Theorem 1 (a) establishes that the manifold SC lies inside the set M bounded by
an envelope we construct from a collection of p-dimensional spheres Nu. Statement (b)
asserts that the distance from a point ξ to the manifold S is bounded by the distance
from ξ to the furthest sphere in this collection, while (c) picks out exactly which sphere
Nũ(ξ) is the furthest away for a given ξ. Finally, (d) shows that the distribution of the
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Figure 3: The stochastic bound described in Theorem 1 (d).
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distance from ξ ∼ N(0, Ik) to Nũ(ξ) is the same as the distribution of the distance from
a random variable η to a particular circle in R2 as depicted in Figure 3.

3.3 Stochastic bound

Theorem 1 implies a bound on the distribution of the distance from ξ ∼ N(0, Ik) to a
p-dimensional manifold S. Assume that for some C > 0, S satis�es all the assumptions
of Theorem 1 including Assumption 1. Then almost surely,

ρ2(ξ, S) ≤ ρ2(ξ, Nũ), (12)

as follows from statement (b) of Theorem 1. By Theorem 1 (d), the distribution of the
right hand side of (12) is the same as the distribution of the random variable variable ψC

de�ned as

ψC = ρ2
2(η,NC

2 ), (13)

where the coordinates of the two-dimensional random vector η = (
√

χ2
p,

√
χ2

k−p) ∈ R2

are independently distributed, NC
2 = {(z1, z2) ∈ R2 : z2

1 + (C + z2)
2 = C2} is a circle

of radius C with the center at (0,−C), and ρ2 is Euclidean distance in R2. Combining
these results, we establish the bound

P
{
ρ2(ξ, S) ≥ x

} ≤ P {ψC ≥ x} for all x > 0,

so the distribution of ψC is an upper bound on the distribution of ρ2(ξ, S). We make the
following observations:

21



(1) The distribution of ψC depends only on the dimension of the space k, the dimension
of the manifold p and the maximal value of the curvature, 1

C
.

(2) The distribution of ψC is stochastically increasing in the maximal curvature and
hence stochastically decreasing in C, so if C1 < C2 then ψC1 �rst-order stochasti-
cally dominates ψC2 .

(3) ψC ⇒ χ2
k−p as C → ∞, so if the curvature converges to zero at all relevant points

then our bounding distribution converges to distribution of the distance from ξ ∼
N(0, Ik) to a p-dimensional linear subspace.

(4) At the other extreme, ψC ⇒ χ2
k as C → 0 so if the curvature of the manifold

becomes arbitrarily large our bound coincides with the naive bound (2) that can
be imposed without any assumptions on the manifold.

We want to emphasize that what we suggest is a stochastic bound that holds under
quite general assumptions. If the model of interest has additional structure, this can
potentially be exploited to obtain tighter bounds.

3.4 Statistical application of the stochastic bound

Suppose we have a single observation θ̂ from a population θ̂ ∼ N(θ0, Σ) with an unknown
mean θ0. We wish to test a hypothesis of the form H0 : θ0 = θ(β) for some value of the
p-dimensional structural parameter β ∈ U ⊂ Rp. As discussed above, this problem may
arise when we have asymptotically normal reduced form estimates and are interested in
testing hypotheses on the structural parameters as in sections 2.2.1 and 2.2.2. We use
the AR statistic

AR = min
β

(θ̂ − θ(β))′Σ−1(θ̂ − θ(β)) = ρ2(ξ, S), (14)

where ξ = Σ−1/2(θ̂−θ0) ∼ N(0, Ik) is an appropriately normalized version of our reduced
form estimate θ̂ and the manifold S = {Σ−1/2(θ(β)−θ0), β ∈ U ⊂ Rp} ⊂ Rk describes the
restrictions imposed on the reduced-form parameters by the tested hypothesis and passes
through zero if the null is true. If the manifold S satis�es the assumptions of Theorem 1
then by the argument in Section 3.3 the AR statistic is stochastically dominated by ψC
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under the null, so if we use the (1−α)−quantile of the distribution of ψC (which is easy
to simulate) as a critical value the resulting test has size not exceeding α.

A practical question is what value of C to use. According to Theorem 1, the value of
C is tied to the maximum of the curvature of S over the intersection of S with a cylinder
DC centered at zero. Notice, however, that in practice we do not observe the manifold S,
since it depends on the unknown θ0. However, the desired curvature is the same as the
maximal curvature of the manifold S̃ = {Σ−1/2θ(β), β ∈ U ⊂ Rp} ⊂ Rk over all points
in the intersection of S̃ with the cylinder D̃C(x0) = {x ∈ Rk : x− x0 ∈ DC} centered at
x0 = Σ−1/2θ0. This maximal curvature, in turn, is clearly bounded above by the maximal
curvature over the whole manifold, so if we take C̃ = 1/

(
maxq∈S̃ κq(S̃)

)
, using critical

values based on ψC̃ provides a test that controls size. Moreover, since C̃ does not depend
on any unobservables, a test based on these critical values is feasible.

If the null hypothesis has a global parametrization, as when H0 : θ0 = θ(β), β ∈ U ,
let κ(β) = κq=θ(β)(S). The latter is a function on U which depends only on the �rst two
derivatives of θ(β). Hence, if we can evaluate these derivatives �nding C̃ = maxβ κ(β)

is a standard non-stochastic optimization problem. If θ(β) is fairly tractable we may
be able to solve for C̃ analytically, while if not we can use the usual menu of numerical
optimization techniques, such as Newton's method.

There are a variety of problems, however, in which using C̃ may be unappealing.
For example, it may be that calculating derivatives of θ(β) is challenging, or that the
manifold has irregularities or points of high curvature which are far away from θ̂. In
such cases we may wish to restrict attention to the curvature of the manifold over some
smaller set, which raises two issues. First, we do not know the true value θ0 and hence
the center of the cylinder D̃C(x0). Second, if the manifold is close to �at (so C is large)
to �nd the maximal curvature over D̃C(x0) we might need to check the curvature over a
huge set, which could be very computationally demanding.

We suggest a test which overcomes both of these problems and is easy to implement
in practice. For a �xed value R, let C ∧ R = min{C,R}. Denote by Fα(C, R, k, p) the
α−quantile of the distribution of ψC(R) de�ned as

ψC(R) =





ρ2
2(η,NC

2 ) if ‖η‖ ≤ R;

‖η‖2 if ‖η‖ > R,
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where η and and NC
2 are de�ned in statement (d) of Theorem 1. For any �nite R the

distribution of ψC(R) provides a weaker bound than the distribution of ψC . This is the
price paid for calculating curvature over a smaller set of points.

Lemma 1 Assume that we have a single observation θ̂ from a population θ̂ ∼ N(θ0, Σ)

with unknown mean θ0. We wish to test the hypothesis H0 : θ0 = θ(β) for some β ∈ U ⊂
Rp. Let S̃ = {Σ−1/2θ(β), β ∈ U ⊂ Rp} ⊂ Rk be a regular p-dimensional manifold, and
B̃ = B(1+

√
2)R(x̂) a ball of radius (1 +

√
2)R around x̂ = Σ−1/2θ̂, where R is such that

P{χ2
k ≥ R2} < α. Let

Ĉ =





(
minq∈S̃

⋂
B̃ 1/κq(S̃)

)
∧R, if S̃

⋂
B̃ 6= ∅;

0, if S̃
⋂

B̃ = ∅.

Assume that for any x ∈ S̃ such that ‖x−x̂‖ ≤ R we have that the projection of S̃
⋂

BR(x)

onto Tx(S̃) contains a p-dimensional ball centered at x with radius Ĉ ∧R. Then the test
which rejects the null if and only if AR = minβ(θ̂−θ(β))′Σ−1(θ̂−θ(β)) > F1−α(Ĉ, R, k, p)

has size not larger than α.

4 Comparison with other methods available for testing
hypotheses with weak nuisance parameters

As previously discussed, there is a wide literature devoted to the problem of weak-
identi�cation-robust tests for the full parameter vector and for hypotheses with strongly
identi�ed nuisance parameters, but much less is known about testing with weakly iden-
ti�ed nuisance parameters.

Projection method. Recently, the projection method has been the standard approach
to inference with weakly identi�ed nuisance parameters. The projection method was in-
troduced and popularized in econometrics by Dufour and Jasiak (2001) and Dufour and
Taamouti (2005), and recent applications to non-standard testing problems in economet-
rics include Dufour, Khalaf, and Kichian (2006), Guerron-Quintana, Inoue and Kilian
(2009), and Qu (2011).

The projection method is based on the observation that the hypothesis H0 : α = α0
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with nuisance parameter β is equivalent to the hypothesis

H0 : ∃ β0 s.t. α = α0, β = β0.

Hence, to test a hypothesis on α we can use the statistic AR(α0) = infβ∗ AR(α0, β
∗), and

since
AR(α0) = inf

β∗
AR(α0, β

∗) ≤ AR(α0, β0) ∼ χ2
k,

we know that using χ2
k critical values will yield a test which controls size. The name

�projection method� stems from the fact that constructing con�dence sets for α with
this procedure is equivalent to constructing a joint con�dence set for (α0, β0) using the
full-vector AR statistic and then projecting this set on the parameter space for α.

The obvious advantage of the projection method is that it requires no assumptions
about the strength of identi�cation of β, since it relies only on the validity of the test
for the full parameter vector. Other advantages include that it is quite easy to use
and very broadly applicable. The primary disadvantage of the projection method is its
conservativeness. Our test, introduced in Section 3.4, is based on the same statistic as the
projection method (AR minimized over the nuisance parameters) but uses smaller critical
values while still maintaining size. Only in the limiting case of in�nitely high curvature
(C = 0) do our critical values correspond to those of the projection method. As a result,
except for this limiting case our test is strictly more powerful than the projection method
and produces strictly smaller con�dence sets in all realizations of the sample. Further,
all of the assumptions we impose on the manifold S can be directly veri�ed using the
non-stochastic manifold S̃ known to the researcher.

Concentrating out nuisance parameters. If one knows that the nuisance parameter
β in a given testing problem is strongly identi�ed then he/she can simply �concentrate
out� the nuisance parameter, minimizing the AR statistic over β and reducing the degrees
of freedom for the limiting distribution by kβ (that is, using quantiles of a χ2

k−kβ
rather

than a χ2
k). As discussed in section 2.1, this reduction in degrees of freedom stems

from the fact that any manifold corresponding to a hypothesis with a strongly identi�ed
nuisance parameter converges to a linear subspace asymptotically.

The obvious advantage of this approach is that it is strictly more powerful than the
projection method. However, the assumption of strong identi�cation of the nuisance
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parameter is essential, and the test may over-reject if this assumption fails. In many
practical settings, including the DSGE and Phillips curve examples discussed above, the
exact nature and source of weak identi�cation is not clear, and we are unaware of any
test of the null of weak identi�cation which can be used to separate the weakly and
strongly identi�ed parameters. In contrast, the test we suggest in Section 3.4 does not
employ any assumptions about the strength of identi�cation of any parameter in point
identi�ed models. Indeed, since our approach is based on a �nite-sample perspective
(except perhaps for the assumed normality of the reduced-form parameters) we do not
even require that there be a meaningful distinction between the weakly and strongly
identi�ed structural parameters in the model.

4.1 Pre-test for weak identi�cation

If for some reason a researcher does not want to use our test, we suggest a simple proce-
dure which could be called a �pre-test for weak identi�cation.� Imagine that a researcher
wants to use a robust procedure (for example our test or the projection method) unless
she knows that identi�cation issues will not cause large size distortions, in which case she
prefers instead to concentrate out the nuisance parameters. Our stochastic bounds can
be used to address this question and determine whether weak identi�cation constitutes a
problem in a given setting. Below, we suggest a procedure which, when used as the �rst
step of a two-step testing procedure of this sort, ensures that the procedure as a whole
controls size.

To proceed, let us introduce the notion of a �tolerance level�. Suppose that we would
like to have a test of size α, but we are uncertain whether the usual strong-identi�cation
asymptotics provide a reasonable approximation in our context; in the event that these
approximations are imperfect, we are willing to accept a test with true size α + α∗ in
exchange for the additional power and convenience of using conventional critical values.
The potential increase in the size α∗ is called the tolerance level and has been used
previously by e.g. Stock and Yogo (2005). For t-tests in weak IV, Stock and Yogo
(2005) suggest comparing the minimal eigenvalue of the �rst-stage F statistic matrix
to an appropriate threshold: if the minimal eigenvalue exceeds the threshold then the
researcher can be con�dent that the usual 5% t-tests will have true size not exceeding
10%.
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The pretest we propose asks whether the curvature of the model is su�ciently small to
ensure that tests based on classical χ2

k−kβ
critical values (that is, tests which concentrate

out the nuisance parameter β) with nominal size α have true size not exceeding α + α∗.
To determine whether this is the case we calculate C∗, the smallest value C such that the
(1− α)-quantile of a χ2

k−p distribution does not exceed F1−(α+α∗)(C, R, k, p). The cut-o�
C∗ depends on the dimension k of the reduced-form parameter vector, the dimension p of
the nuisance parameter, and R. To implement the pre-test we then calculate the value Ĉ

as described in Lemma 1, that is, the maximal curvature of the manifold at points inside
a ball of radius (1 +

√
2)R around the reduced-form estimator (noting that we may take

R = ∞) and compare Ĉ to C∗. If Ĉ > C∗ the researcher can safely concentrate out β

and use χ2
k−kβ

critical values while if Ĉ ≤ C∗ she should use a robust procedure. We can
guarantee that the resulting two-step test will have size less than α + α∗.

Table 1 reports the cut-o�s C∗ for nominal 5% tests and tolerance level 5% for di�erent
values of p and k for R equal to the 0.99 quantile of a

√
χ2

k. Based on Table 1 we can
see that for a �xed dimension k of the reduced-form parameter, increasing the number
of nuisance parameters p tightens the restrictions imposed on curvature if one wants to
concentrate out the nuisance parameters.

The main di�erence of this pre-test procedure from majority of existing tests of weak
identi�cation is that the resulting two-step procedure controls size. Tests of weak iden-
ti�cation by Inoue and Rossi (2011), Iskrev (2010) and Wright (2003) all test the null of
strong identi�cation against the alternative of weak identi�cation. Those tests control
the probability of falsely rejecting strong identi�cation but do not control the probability
of failing to detect weak identi�cation when it is present (this depends on power for these
tests). As a result, using one of these tests in a two-step procedure, in which one tests
the null of strong identi�cation and uses a robust procedure only if strong identi�cation
is rejected, does not guarantee overall size control. In contrast, the procedure suggested
here controls the size under weak identi�cation.

4.2 AR conjecture

Kleibergen and Mavroeidis (2009a) consider a weak IV model with more than one en-
dogenous regressor in which one wants to test a hypothesis about the coe�cient on one
endogenous regressor, treating the coe�cients on the remaining regressors as nuisance
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parameters. They consider the AR statistic minimized over the nuisance parameters
and show that its distribution under weak identi�cation is dominated by its distribu-
tion under strong identi�cation, and thus that χ2 critical values with reduced degrees of
freedom will always produce tests which maintain size. They also conjectured5 that this
statement could be generalized to some non-linear GMM models. If this statement held
in all GMM models it would have eliminated the trade-o� between projecting over and
concentrating out nuisance parameters and implied that one should concentrate out in all
cases to obtain more powerful tests while still controlling size. Below we provide a simple
example which demonstrates that such a dominance result does not hold generally.

To �x ideas, assume that we have an i.i.d. sample x1, ..., xn from a population that
satis�es the k-dimensional moment condition Efn(xi, θ) = 0 at θ = θ0 and assume that
Σ = var (fn(xi, θ)) is known. We �rst consider the AR statistic for testing the full
parameter hypothesis H0 : θ = θ0:

AR(θ0) =
1

n

(
n∑

i=1

fn(xi, θ0)

)
Σ−1

(
n∑

i=1

fn(xi, θ0)

)

This statistic is used with χ2
k critical values. Assume that θ = (α′, β′)′ and we want to

test the hypothesis H0 : α = α0 with nuisance parameter β. Consider the statistic:

AR(α0) = min
β

AR(α0, β).

We show that it is not in general true that the asymptotic distribution of AR(α0) is
stochastically dominated by a χ2

k−kβ
, that is the limit distribution of AR(α0) if β is

strongly identi�ed.

A counterexample to the AR conjecture. Consider an i.i.d. sample x1, ..., xn

drawn from N(Mn(θ0), Ik) with k-dimensional structural parameter θ ∈ Θ = [0, π]k−2 ×
5The statement was made in one of the earlier versions of Kleibergen and Mavroeidis (2009a) and

via private communication.

29



[0, 2π)× R ⊂ Rk. Suppose further that

Mn(θ) =
r√
n

θk




cos(θ1)− 1

sin(θ1) cos(θ2)

sin(θ1) sin(θ2) cos(θ3)
...

sin(θ1)... sin(θk−2) cos(θk−1)

sin(θ1)... sin(θk−2) sin(θk−1)




is a k-dimensional vector-function of k variables. Note that all parameters are weakly
identi�ed in this case. The AR statistic for the full parameter vector is then

AR(θ) =
1

n

(
n∑

i=1

[xi −Mn(θ)]

)′ (
n∑

i=1

[xi −Mn(θ)]

)
.

Now assume that the hypothesis of interest is H0 : θk = 1, where β = (θ1, ..., θk−1)
′ is

a weakly identi�ed nuisance parameter. The AR conjecture suggests that the limiting
distribution of minβ AR(β, 1) is stochastically dominated by a χ2

1. As before let us intro-

Figure 4: Distribution of statistic minβ AR(β, 1) for k = 10
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duce a random variable ξ = 1√
n

∑n
i=1 [xi −Mn(θ0)] ∼ N(0, Ik), whose distribution does

not depend on the sample size, and a function

m(β) =
√

n (Mn(β, 1)−Mn(θ0)) ,
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which also does not depend on the sample size. Notice that for all n the manifold
described by the function m(β) is a hyper-sphere of radius r/

√
n in k-dimensional space

passing through the origin. It is easy to see that

min
β

AR(β, 1) = min
β

(ξ −m(β))
′
(ξ −m(β)) .

Note, however, that the behavior of the last statistic does not depend on the sample size
and can be easily simulated. Note further that since the distribution of a standard normal
vector is rotation invariant, the distribution of minβ AR(β, 1) under the null depends only
on k and the radius r. We simulate the distribution of the statistic of interest under the
null for k = 10 and k = 50 and r equal to the square roots of the .95, .99, and .9999

quantiles of a χ2
k distribution, and plot the resulting cdfs against a χ2

1 cdf. Figures 4 and
5 show that tests which pair the minimized AR statistic with χ2

1 critical values overreject.
Further, the degree of over-rejection is increasing with the dimension k.

Figure 5: Distribution of statistic minβ AR(β, 1) for k = 50
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4.3 Other methods

There are very few other papers that work directly with weakly identi�ed nuisance pa-
rameters. One of them is D. Andrews and Cheng (2011). The authors impose some
additional restrictions by assuming that they know the structure of weak identi�cation,
namely, they assume that it is known which parameters are potentially weakly identi�ed
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and that there is a parameter which de�nes the strength of identi�cation. This assump-
tion is not directly applicable to our DSGE and Phillips curve examples. Andrews and
Cheng (2011) showed that in their case statistics for testing hypotheses with weakly iden-
ti�ed nuisance parameters have non-standard asymptotic distributions which depend on
the value of the nuisance parameter. Their procedure is based on simulating the asymp-
totic distribution of the test statistic for di�erent values of the nuisance parameter and
taking the �least favorable� among those distributions over a set of relevant nuisance
parameter values.

Another example of inference with weakly identi�ed nuisance parameters is given
in I. Andrews and Mikusheva (2011). That paper considers a case when concentrating
out a weakly identi�ed parameter leads to asymptotically correct inferences, but this
result holds only for weakly identi�ed parameters which enter the log-likelihood function
linearly.

5 Working with subset of parameters

Suppose we have a single observation θ̂ from a population θ̂ ∼ N(θ0, Σ) with an unknown
mean θ0. We wish to test a hypothesis of the form H0 : θ0 = θ(β) for some value of the
p-dimensional structural parameter β ∈ U ⊂ Rp. Our testing procedure suggested in
Lemma 1 treats all components of the multi-dimensional vector β in such a way that
only the direction of highest curvature a�ects the value of Ĉ and thus in�uences the
critical values. Imagine instead that β can be divided into two sub-sets of parameters
β = (β′1, β

′
2)
′ in such a way that the curvature corresponding to directions β1 is high, but

the null hypothesis seems to be close to �at in the parameter β2. Let p1 be the dimension
of β1, and p2 the dimension of β2: p = p1 + p2. In this section we propose modi�cations
to our testing procedure (suggested in Lemma 1) and pre-test described in Section 4.1
that treat β1 and β2 di�erently. In particular we reduce the critical value of the test due
to the low curvature with respect to β2 while projecting over β1. The modi�ed procedure
may be more e�cient if the di�erence in curvature with respect to parameters β1 and β2

is large.
We start with a modi�cation of the pre-test described in Section 4.1. This modi�cation

may be thought of as a pre-test for the possibility of concentrating out β2 in the AR

statistic de�ned in (14). The two competing options are 1) use our robust critical values

32



based on curvature for the full parameter vector or project over the full parameter vector;
or 2) project over β1, concentrate out β2 and use χ2

k−p2
critical values.

The suggested procedure is the following. For any value β1 consider a p2-dimensional
manifold S(β1) = {Σ−1/2m(β1, β2), β2 ∈ Rp2}. For any point q = Σ−1/2m(β1, β2) ∈ S(β1)

�nd the curvature κq(S(β1)). Let

Ĉ =

(
min
β1

min
q∈S(β1)

⋂
B̃

1/κq(S(β1))

)
∧R, (15)

where B̃ is the ball of radius (1 +
√

2)R around the point x̂ = Σ−1/2θ̂. One also needs
to check that as stated in Lemma 1 the analog of Assumption 1 is satis�ed but now we
are considering only p2-dimensional balls in the tangent space to S(β1). If Ĉ > C∗ it is
safe to use the second approach (that is, to concentrate out β2), while otherwise the �rst
approach should be used. We can likewise adapt the conclusion of Lemma 1 to state that
the test which rejects the null if and only if

AR = min
β

(θ̂ − θ(β))′Σ−1(θ̂ − θ(β)) > F1−α(Ĉ, R, k, p2)

controls size.

Curvature of strongly identi�ed parameters. If a set of nuisance parameters is
strongly identi�ed in the sense of Stock and Wright (2000), the null hypothesis is asymp-
totically linear in these parameters as we argued in Section 2.1. Here we show that the
curvature corresponding to these parameters is asymptotically of order O(1/

√
n), where

n is the sample size.
Consider a sample of size n from some model parameterized by structural parameter

β that belongs to some bounded set U ⊆ Rp and assume that one can estimate the
reduced-form parameters θ in a consistent and asymptotically normal way:

√
n(θ̂ − θ) ⇒ N(0, Σ0).

Assume that the relation between structural and reduced-form parameters θ = θ(β)

is �xed (not changing with n), twice continuously di�erentiable, and that the matrix
∂
∂β

m(β) has full rank in a neighborhood of β0, which is the only point in the closure of
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U that solves the equation θ0 = θ(β). The null hypothesis manifold for sample size n

is Sn = {√nΣ
−1/2
0 m(β), β ∈ U} ⊂ Rk. The maximal curvature over all points of the

manifold Sn is equal to 1/
√

n multiplied by the maximal curvature of the manifold S1

obtained for sample size 1. This can easily be seen by examining the role of the scale of
m in formula (10).

6 Example: A Small-scale DSGE Model

To illustrate the utility of our theoretical results and suggest directions for future research,
we apply our approach to a small-scale DSGE model based on Clarida, Gali and Gertler
(1999). The (log-linearized) equilibrium conditions for the model are




bEtπt+1 + κxt − πt + εt = 0,

−[rt − Etπt+1 − rr∗t ] + Etxt+1 − xt = 0,

λrt−1 + (1− λ)φππt + (1− λ)φxxt + ut = rt,

rr∗t = ρ∆at,

(16)

where the exogenous variables (∆at and ut) evolve according to

∆at = ρ∆at−1 + εa,t; ut = δut−1 + εu,t;

(εt, εa,t, εu,t)
′ ∼ iidN(0, Σ); Σ = diag(σ2, σ2

a, σ
2
u).

Here we assume that a researcher observes data on in�ation πt, the interest rate rt and
some measure of real activity xt. This model has ten parameters: the discount rate b, the
structural parameters κ, φx, φπ, and λ, and the parameters describing the evolution of the
exogenous variables. We calibrate the structural parameters at generally accepted values
similar to those used by Mueller (2010): b = .99, κ = (1−θ)(1+φ)(1−bθ)

θ
≈ .1717, φx = 0.25,

φπ = 1.5 and λ = 0.5. For the parameters describing the exogenous variables, we choose
ρ = .2 and δ = .2 to introduce a degree of persistence while maintaining stationarity,
and set σa = .38, σu = .31, and σ = 1. We generate samples of size 300 from this model
and then discard the �rst 100 observations, using only the last 200 observations for the
remainder of the analysis. Given well-documented problems with estimating b in many
models, from this point forward we calibrate this parameter at its true value and treat
the remaining 9 parameters as unknown.

In Andrews and Mikusheva (2011) we documented the poor performance of the clas-
sical Maximum Likelihood Estimator for this model and showed that classical con�dence
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sets are unreliable. In particular, we argued that the model displays behavior consis-
tent with weak identi�cation. Canova and Sala (2009) argued that many DSGE models
su�er from weak identi�cation. Simulation evidence in Ruge-Murcia (2010) also shows
substantial overrejection for simulated method of moments-based Wald tests in some
models. Unfortunately, however, the source and extent of weak identi�cation in DSGE
models is not well-understood. Most DSGE models are highly nonlinear in parameters,
and are di�cult if not impossible to solve analytically.

Several procedures have recently been proposed for testing simple hypotheses, that
is hypotheses on the full parameter vector, in DSGE models which may be weakly iden-
ti�ed. These tests include the score tests of I. Andrews and Mikusheva (2011) and Qu
(2011), the LR statistic proposed by Guerron-Quintana, Inoue and Kilian (2009), and the
test of Dufour, Khalaf, and Kichian (2009). Most of these papers suggest the projection
method for testing hypotheses on subsets of parameters and con�dence set construc-
tion, the exception being I. Andrews and Mikusheva (2011) who suggest a procedure
for concentrating out strongly identi�ed nuisance parameters. The main problem with
the projection method is that it tends to be very conservative, since DSGE models typi-
cally have a large number of parameters. On the other hand, concentrating out nuisance
parameters is also problematic as it is generally not clear which parameters are weakly
identi�ed, and we are unaware of any currently available procedure which would allow
us to make this determination.

As outlined in section 2.2.1, to test hypotheses on the structural parameters in DSGE
models we can test the implied restriction on the model auto-covariances θ(β). In partic-
ular, we let θ consist of the covariance matrix of the observables (xt, πt, rt) and their �rst
auto-covariance, giving us 15 reduced-form parameters. To focus on the problem of weak
identi�cation and abstract from the problems which may arise from HAC covariance ma-
trix estimation, we treat the true covariance matrix Σ of our reduced-form parameter esti-
mates as known, and consider AR statistics of the form AR(β) = (θ̂−θ(β))′Σ−1(θ̂−θ(β)).

To illustrate the application of our approach, we consider the problem of separately
testing that each of the structural parameters is equal to its true value (as one one needs
to do to construct con�dence sets for each parameter individually). For example, to test
H0 : κ = κ0, we let β̃ contain all the parameters other than κ and consider the AR

statistic AR(κ0) = minβ̃ AR(κ0, β̃). As before, the key issue is what critical values to
use. The projection method uses the 95th percentile of a χ2

15, which is equal to 25. If
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we assume that a q-dimensional sub-vector of β̃ is strongly identi�ed, we can use χ2
15−q

critical values instead, which are equal to 14.07 if we take all of β̃ to be strongly identi�ed
(q = 8). Applying our robust critical values, in contrast, requires no assumption on the
strength of identi�cation. As we might expect in a poorly identi�ed model, tests which
concentrate out the nuisance parameters do not control size. We simulated tests for
each parameter separately, and almost all of them over-reject, though the degree of over-
rejection is limited. For example, nominal 5% tests for ρ and σa which concentrate out
the nuisance parameters have size 9.2% and 9.6% respectively.

For each of the nine parameters, to compute our robust critical values we calculate
the curvature of the submanifold of {Σ− 1

2 θ(β)} obtained by holding that parameter equal
to its null value, intersected with the ball B√

2R(θ(β0)) of radius
√

2R around θ0, for R

the .99 quantile of a χ2
15 distribution. We �nd quite substantial curvature: the manifold

implied by κ = κ0, for example, has a maximal curvature of 1.72 which gives a robust
critical value of 23.8. While smaller than the projection-method critical value, this is still
quite large.

Not all parameters play an equal role in generating this curvature, however. As noted
in I. Andrews and Mikusheva (2011), some parameters seem to be strongly identi�ed,
while other seem quite weak. To relate this to curvature, we consider projecting over
di�erent subsets of parameters as described in section 5. We �nd that by projecting
over the Taylor-rule parameters φx and φπ we can reduce the curvature dramatically,
suggesting that the group of parameters other than φx and φπ may be signi�cantly
better identi�ed. Hence, to obtain smaller critical values, when testing hypotheses on
the structural parameters we project over φx and φπ.

For each structural parameter, Table 2 reports the robust critical value obtained from
this exercise (column 2), together with the simulated size (based on 500 simulations) of
nominal 5% tests based on our robust critical values (column 3), and projection-method
tests (column 4). As we can see, projection-method based tests (using critical values
of 25) are extremely conservative, with simulated size less than or equal to 0.2%. Our
robust critical values range from 18.65 to 20.3 for di�erent parameters, and the size of
tests using these critical values (ranging from .4% to 1.6%) never exceeds the nominal
size. At the same time, these tests are substantially less conservative than the projection
method.
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Parameter tested Robust Critical Value Robust Test Size Projection Size
φx 18.72 1.20% 0.00%
φπ 18.65 0.80% 0.00%
λ 19.86 1.60% 0.00%
ρ 19.68 1.40% 0.00%
δ 20.30 1.40% 0.20%
κ 19.51 1.40% 0.20%
σa 19.84 1.20% 0.00%
σu 19.27 0.40% 0.00%
σ 19.60 1.40% 0.00%

Table 2: Nominal 5% Tests of one-dimensional hypotheses on structural parameters. The �rst column
lists the tested parameter for each row, while the other parameters are treated as nuisance parameters.
The statistic is AR minimized over nuisance parameters. Projection method critical values are 25.
Robust critical values are based on projecting over φx and φπ.

7 Appendix with proofs

7.1 Proof of Theorem 1

The proof is based on the following lemma:

Lemma 2 Assume the curve α(s) : [0, b] → DC ⊂ Rk is parameterized by arc length
and that its curvature κ(s) = ‖α̈(s)‖ < 1

C
for all points s. Assume that α(0) = 0 and

α̇(0) = v ∈ span{e1, ..., ep}, where e1, ..., ep are �rst p basis vectors. Then the curve α(s)

is contained in the set Mv ∩DC, where

Mv = {x : 〈x, v〉2 + (C − ‖x− 〈x, v〉v‖)2 ≥ C2}. (17)

Proof of Lemma 2.
Consider the curve de�ned by β(s) = α̇(s), the �rst derivative of α. Since the curve

α is parameterized by arc length ‖β(s)‖ = ‖α̇(s)‖ = 1 and the new curve β lies on the
unit sphere Sph = {x ∈ Rk : ‖x‖ = 1}, with β(0) = v. Let t ≤ π

2
C and t ≤ b. Consider

the arc length of the restriction of the curve β to the interval [0, t]:

length(t) =

∫ t

0

‖β̇(s)‖ds =

∫ t

0

‖α̈(s)‖ds =

∫ t

0

κ(s)ds ≤ t

C
.

This implies that the geodesic (a curve of a shortest length) on the sphere Sph connecting
β(0) and β(t) has length less than or equal to t

C
or, equivalently, that the angle between
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vectors β(0) = v and β(t) is less than or equal to t
C
. Hence

〈v, β(t)〉 = 〈v, α̇(t)〉 ≥ cos(
t

C
). (18)

Since α(s) is parameterized by arc length, from inequality (18) we have:

‖α̇(t)− 〈v, α̇(t)〉v‖ ≤ | sin(
t

C
)|. (19)

This, in turn, implies that

‖α(t)− 〈v, α(t)〉v‖ = ‖
∫ t

0

(α̇(s)− 〈v, α̇(s)〉v)ds‖ ≤

≤
∫ t

0

‖α̇(s)− 〈v, α̇(s)〉v‖ds ≤
∫ t

0

sin(
s

C
)ds = C − C cos(

t

C
)

Inequality (18) also implies that

〈v, α(t)〉 ≥
∫ t

0

cos(
s

C
)ds = C sin(

t

C
). (20)

Combing these results yields

〈v, α(t)〉2 + (C − ‖α(t)− 〈v, α(t)〉v‖)2 ≥ C2

for all t ≤ π
2
C. Notice that (20) implies that for τ = π

2
C we have 〈v, α(τ)〉 ≥ C and thus

for the �rst p coordinates of α(τ), which we denote α(1)(τ), we have ‖α(1)(τ)‖ ≥ C so
the curve is leaving or has already left the cylinder DC and thus b ≤ π

2
C. This concludes

the proof of the lemma. ¤
Proof of statement (a) of Theorem 1. First, let us show that

⋃

v∈T0(S)
‖v‖=1

Mv = {‖x(1)‖2 + (C − ‖x(2)‖)2 ≥ C2} = M, (21)

where Mv is de�ned in (17), M is de�ned in (11) and T0(S) is the tangent space to S at
zero and is spanned by �rst p basis vectors. Indeed, the set on the left hand side consists
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of points x for which there exists a vector v ∈ span{e1, ..., ep}, ‖v‖ = 1, such that

〈x, v〉2 + (C − ‖x− 〈x, v〉v‖)2 ≥ C2. (22)

For each x let us �nd the maximum of the expression on left-hand side of inequality (22)
over v ∈ T0(S), ‖v‖ = 1 :

〈x, v〉2 + (C − ‖x− 〈x, v〉v‖)2 =

= 〈x, v〉2 + C2 + ‖x‖2 − 〈x, v〉2 − 2C‖x− 〈x, v〉v‖ =

= C2 + ‖x‖2 − 2C‖x− 〈x, v〉v‖

where we used that ‖x−〈x, v〉v‖2 = ‖x‖2−〈x, v〉2. We see that maximizing the left-hand
side of (22) over v ∈ span{e1, ..., ep}, ‖v‖ = 1 is equivalent to minimizing ‖x − 〈x, v〉v‖.
The minimum is achieved at v = 1

‖x(1)‖(x
(1), 0, ..., 0), where x(1) ∈ Rp consists of the �rst

p components of x. As a result, the maximum of the left-hand side of (22) equals

C2 + ‖x‖2 − 2C‖x(2)‖ = ‖x(1)‖2 + (C − ‖x(2)‖)2.

This proves statement (21).
Now assume that the statement (a) of Theorem 1 is incorrect and there exists a point

q ∈ SC that q /∈ M. Take a geodesic line (a curve of the shortest distance lying in SC)
α(s) connecting q and 0 lying in SC , where such curve exists since SC is a connected
manifold. Parameterize this curve by the arc length. The curve α(s) is geodesic in S if
and only if at any point q = α(t) the second derivative α̈(t) is perpendicular to Tq(S)

(see Spivak (1999) for discussion of geodesics, v. 3, p.3). As a result, the curvature of
the geodesic α at each point q = α(t) is equal to κq(X, S) (where X = α̇(t)), and thus
it is less than 1

C
. Denote the tangent to this curve at 0 by v ∈ T0(S). Applying Lemma

2 we obtain that the curve belongs to Mv ∩DC and thus belongs to M⋂
DC . We have

arrived at a contradiction. ¤
Proof of statement (c) of Theorem 1. Let f(u) = ρ(ξ, Nu). We need to �nd the

maximizer of f(u) subject to the constraint ‖u‖ = 1. To di�erentiate f(u) we use the
�envelope theorem� that allows one to di�erentiate a function which is the optimum of
a constrained optimization problem and yields df(u)

du
= ξ(2) − zu. Hence, the �rst-order
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condition for �nding ũ implies that u is proportional to ξ(2). The sign is a re�ection of
the fact that we search for a max rather than a min. ¤

Proof of statement (b) of Theorem 1. For a given point ξ ∈ Rk �nd the
sphere Nũ furthest from ξ, ũ is described in Theorem 1 (c), and the point τ ∈ Nũ

such that ρ(ξ, Nũ) = ρ(ξ, τ). Consider the k − p dimensional linear space Rτ = {x ∈
Rk : x(1) = τ (1)} that restricts the �rst p components of x to coincide with the �rst p

components of τ . We will put forward two statements: �rst, that all points in the inter-
section of Rτ

⋂M⋂
DC are not further from ξ than τ ; and second, that this intersection

Rτ

⋂M⋂
DC contains at least one point from S. Together, these two statements imply

that ρ(ξ, S) ≤ ρ(ξ, τ).
The intersection of the three sets Rτ

⋂M⋂
DC can be written as follows:

Rτ

⋂
M

⋂
DC = {x = (τ (1), x(2)) ∈ DC : ‖τ (1)‖2 + (C − ‖x(2)‖)2 ≥ C2} =

=

{
x = (τ (1), x(2)) : ‖x(2)‖ ≤ C −

√
C2 − ‖τ (1)‖2

}
.

Now let us show that for each x ∈ Rτ

⋂M⋂
DC we have ρ(ξ, x) ≤ ρ(ξ, τ). Indeed, one

can solve the constrained maximization problem

ρ(ξ, x)2 = ‖ξ(1) − τ (1)‖2 + ‖ξ(2) − x(2)‖2 → max s.t. x ∈ Rτ

⋂
M

⋂
DC .

From the �rst-order condition for this problem one can see that the maximum is achieved
at x(2) proportional to ξ(2), and further inspection reveals that it is achieved at x = τ .
Hence, all points lying in the intersection Rτ

⋂M⋂
DC have distance to ξ less or equal

than ρ(ξ, Nũ).
To complete the proof we need only show that Rτ

⋂M⋂
DC contains at least one

point from the manifold S. Recall that from the de�nition of τ ∈ Nũ it follows that
‖τ (1)‖ ≤ C. Then Assumption 1 guarantees that the intersection of SC with Rτ is
non-empty, while statement (a) of Theorem 1 implies that SC ⊆M⋂

DC . ¤
Proof of statement (d) of Theorem 1. Note that both ξ and Nũ belong to the

same p + 1- dimensional linear sub-space Lũ = {x : x = (x(1),−zũ), x(1) ∈ Rp, z ∈ R}.
Let us restrict our attention to this subspace only. Let (x(1), z) be the coordinate system
in this sub-space, so ξ corresponds to ξ̃ = (ξ(1), ‖ξ(2)‖), and Nũ corresponds to the sphere
NC = {x = (x(1), z) ∈ Rp+1 : ‖x(1)‖2 + (C + z)2 = C2}. The distance implied by the
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distance in Rk is the usual Euclidean metric, which we denote by ρ̃. So far, we proved that
ρ(ξ, Nũ) = ρ̃(ξ̃, NC). By invariance of the distance to orthonormal transformations of �rst
p components we have ρ̃(ξ̃, NC) = ρ̃(ξ∗, NC), where ξ∗ = (‖ξ(1)‖, 0, ..., 0, ‖ξ(2)‖) ∈ Rp+1.
From this it is easy to see that

ρ(ξ,Nũ) = ρ2(η,NC
2 ),

where η = (‖ξ(1)‖, ‖ξ(2)‖) ∈ R2, NC
2 = {(z1, z2) ∈ R2 : z2

1 + (C + z2)
2 = C2}, and ρ2 is

Euclidian distance in R2. It then follows that if ξ ∼ N(0, Ik) then components of η have
independent

√
χ2

p and
√

χ2
k−p distributions, respectively. ¤

7.2 Proof of Lemma 1

Proof of Lemma 1. Let ξ = Σ−1/2(θ̂ − θ0) ∼ N(0, Ik) and S = {Σ−1/2(θ − θ0), θ ∈
H0} ⊂ Rk. Let ψC(ξ, R) be de�ned as

ψC(ξ, R) =





ρ2(ξ,Nũ), if ‖ξ‖ ≤ R;

‖ξ‖2, if ‖ξ‖ > R,

where Nũ = {x ∈ Rk : x = (x(1), zũ), x(1) ∈ Rp, z ∈ R+, ‖x(1)‖2 + (C − z)2 = C2}, ũ =

− 1
‖ξ(2)‖ξ

(2). Consider the infeasible test ϕ which rejects (ϕ = 1) if and only if ψC(ξ, R) ≥
F1−α(C,R, k, p). The size Eϕ(ξ) = α, so since P{χ2

k ≥ R2} < α we know that ϕ rejects
for all realizations of ξ where ‖ξ‖ > R. This test is infeasible, however, since we do not
know the true value of θ0 and hence cannot calculate ξ. The (feasible) test described in
Lemma 1 is

ϕ̃ =





1, if AR ≥ F1−α(Ĉ, R, k, p);

0, otherwise.
(23)

We claim that ϕ̃ ≤ ϕ almost surely (realization-by-realization). To show that this is the
case, assume that ϕ̃ = 1. If at the same time ‖ξ‖ > R then ϕ = 1, so the claim holds. If,
on the other hand, ‖ξ‖ ≤ R, then the cylinder D̃R(x0) around x0 = Σ−1/2θ0 lies inside of
ball B̃, and thus

Ĉ =

(
min

q∈S̃
⋂

B̃
1/κq(S̃)

)
∧R ≤

(
min

q∈S̃
⋂

D̃R(x0)
1/κq(S̃)

)
∧R ≤ C.
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Indeed, to justify the last inequality, consider two cases R ≤ C and R > C. In the
�rst case Ĉ ≤ R ≤ C, in the second case D̃C ⊂ D̃R and thus minq∈S̃

⋂
D̃R(x0) 1/κq(S̃) ≤

minq∈S̃
⋂

D̃C(x0) 1/κq(S̃) ≤ C.
Note that the function F1−α(c, R, k, p) is decreasing in c, and hence F1−α(C,R, k, p) ≤

F1−α(Ĉ, R, k, p). Further, all the assumptions of Theorem 1 are satis�ed so AR =

ρ2(ξ, S) ≤ ρ2(ξ, Nũ) ≤ ψC(ξ, R). Combining these results we obtain that

F1−α(C, R, k, p) ≤ F1−α(Ĉ, R, k, p) ≤ AR = ρ2(ξ, S) ≤ ψC(ξ, R),

and thus ϕ = 1. Hence whenever ϕ̃ = 1, we get that ϕ = 1 as well, so ϕ̃ ≤ ϕ as we
wanted to show, and the size of the feasible test ϕ̃ is bounded above by α, completing
the proof. ¤
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