
Analog and Digital Control of an
Electronic Throttle Valve

By
Tomis V. Martins

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE

DEGREE OF

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 2012

@2012 Tomas V. Martins. All rights reserved

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copes of this thesis document

in whole or in part in any medium no known or hereafter created.

ARCHIVES
MASSCHUSETFS INSTITUTE

OF TECH 2012

MAR 2 2012

Signature of Author:

Department of Mechanical Engineering
January 23th,2012

Certified by:
r

John B. Heywood
Sun Jae Professor, Emeritus

D artment of Mechanical Engineering
Thesis Supervisor

Accepted by:

. enhard'1 Vn-'
"Samuel C. Colins Professor

Department of Mechanical Engineering
Undergraduate Officer

Analog and Digital Control
of an Electronic Throttle Valve

by

Tomis V. Martins

Submitted to the Department of Mechanical Engineering
on January 24, 2012 in Partial Fulfillment of the

Requirements of the Degree of Bachelor of Science in
Mechanical Engineering

ABSTRACT

Two electronic throttler controllers were designed and implemented for
an automotive throttle valve on a four-cylinder, spark-ignition gasoline en-
gine. The first controller was designed using operational amplifiers and
other analog componentry to realize a proportional-integral controller and
feedback loop. The second controller utilized a programmable digital mi-
crocontroller to replace the analog componentry for signal processing. The
use of analog to digital signal conversion by the microcontroller allows for
the simple implementation of control logic and feedback loops through pro-
gramming. Additionally, control architecture and characteristic gains imple-
mented in the controller's code can be quickly changed and uploaded during
testing. The digital controller was tested on the engine's throttle valve dur-
ing motoring to demonstrate its actuation capabilities and response times.

The digital controller was programmed to quickly switch between dif-
ferent feedback signals like throttle angle, manifold pressure, and indicated
mean effective pressure for control. The controller was designed for use in
experimental testing of an experimental 2.0 liter, GM EcoTec engine in the
Sloan Automotive Laboratory at MIT.

This study shows that rapid controller prototyping can be accomplished
by using an inexpensive microcontroller for signal processing. This design
concept greatly decreases implementation time and performance optimiza-
tion time, increases controller flexibility and capabilities, and maintains fa-
vorable response characteristics.

Thesis Supervisor: John B. Heywood
Title: Professor of Mechanical Engineering

Acknowledgements

Although the purpose of this project is to learn about the design and im-

plementation of throttle valve controllers, my involvement began after Kevin

Cedrone built the analog PI throttle controller for use on his experimental

engine. I would like to acknowledge both the work he put into designing the

analog controller, and all the help he provided during the following stages

of the project. His help with controller design, fabrication, and testing was

invaluable.

Contents

1 Introduction 5

2 Design of Analog Throttle Controller 9
2.1 User Interface by Potentiometer.......... 10
2.2 Analog Implementation of a Voltage Subtracter. 12
2.3 Analog Controller Architecture...... 13
2.4 PWM Generation.................. 14
2.5 Gain Tuning . 16

3 Design of Digital Throttle Controller 17
3.1 Arduino Microcontroller.............. 17
3.2 Digital Controller System Architecture....... 20
3.3 Implementation of Control Logic............ 20
3.4 Fast Gain Tuning . 23
3.5 Additional Control Capabilities: MAP

& NIMEP......................... 24

4 Controller Features & Perforrnance 25
4.1 Performance Validation........... 27

5 Conclusion 30

A Arduino Code 33

List of Figures

1.1 Basic Carburetor Cross Section 6

2.1 Block Diagram of System with Analog Controller 10
2.2 Potentiometer Circuit 11
2.3 Differential Amplifier Circuit......... 12
2.4 Analog Proportional-Integral (PI) Controller.. 14
2.5 Absolute Value Circuit. The output signal is always a positive

voltage with the same magnitude as the input signal. 15
2.6 Electronic circuitry of the analog controller implementation. . 16

3.1 Front View of the Arduino Nano. 19
3.2 Block Diagram of System with Digital Controller 20

4.1 Diagram of Digital Controller User Interface.. 26
4.2 Throttle Body Step Response..... 28
4.3 Manifold Absolute Pressure Step Response.. 29

Chapter 1

Introduction

The internal combustion, spark ignition engine has been widely used as the

dominant form of mechanical work production for consumer automobiles

over the last century. Throughout this time, advancements in sensing, ac-

tuation, and fabrication have greatly improved the production, operation,

and reliability of such automobiles. The development of electronic con-

trolled solenoids and motors have greatly facilitated the implementation of

engine air-fuel mixing with electronic fuel injection systems and electronic

throttle valves. This paper discusses and compares the implementation of

electronic throttle valve controllers through hard-wired analog circuits and

soft-programmed digital microcontrollers1 .

The spark ignition (SI) engine uses a spark to ignite gasoline with air to

release thermal energy for conversion to mechanical work. For the oxidation

of gasoline to occur properly, a specific ratio between fuel and air must

be preserved for optimal combustion. This ratio, called the air fuel ratio,

asserts that for every unit by mass of gasoline, 14.7 units by mass of air must

'While both valve controller designs may use analog, or variable voltage, and digital, or

on/off, signals, the terms "analog" and "digital" are used to describe the components that

make up the controllers themselves. That is, one design uses amplifiers and components

for logic, while the other implements logic in code and programming.

also be present in the combustion chamber during ignition. [3] If there is too

much air, the mixture is said to be lean. If there is not enough air in the

mixture, it is said to be rich. The two components that directly control the

amount of air and fuel per cycle in an SI engine are the fuel injectors and the

throttle valve. They represent two of the most important components in the

spark ignition (SI) engine. Fuel metering and intake air control were once

performed together in a component called the carburetor. The carburetor

was developed in the late nineteenth century and used as the predominant

mechanism for air and fuel metering until the late 1980's. Shown in the figure

1.1, the carburetor was comprised of two main components: the butterfly

valve and the fuel metering venturi and jet region.

AIR Basic Carburetor
(o"M see""n)

FUE L
a-"

Figure 1.1: Basic carburetor cross section. Air enters from the top, is accel-

erated in the venturi, and mixed with fuel that is pulled from jet by lower

static air pressure. 3

'Image courtesy of Wikipedia.org

The carburetor's operation relies on fluid mechanics to mix fuel with air.

As air enters the carburetor, it will be forced into the narrow section, the

venturi, which will accelerate the air. Bernoulli's principle indicates that

the faster air travels, the lower its static pressure will be. As the accelerated

air in the venturi passes the fuel jet, the lower pressure will pull fuel out of

the jet for mixture. The amount of air that passes through the carburetor

is controlled by the butterfly valve below. The more the valve is turned,

the more air is pulled into the intake manifold by the pumping action of the

pistons [3].

The development of solenoid actuation and electronic control in the

1980's made precise, reliable electronic fuel injection systems a reality. This

lead to the separation of air and fuel control through a intake air throttle

valve and electronically controlled fuel injectors. The throttle valve assem-

bly, or the throttle body has since become responsible for controlling the

flow of air into the engine intake manifold. It accomplishes this using both

an electric motor driven butterfly valve, as well as an angle sensing throttle

position sensor(TPS). The signal from the throttle position indicates the

angle of the butterfly valve and can be used to ensure proper actuation of

the throttle valve based on desired angles.

The throttle body's electric motor and throttle position sensor must be

coupled with a capable electronic controller for operation. The throttle

controller consists of signal processing logic and components that use the

throttle position sensor signal of valve angle as feedback when attempting

to drive the valve to a desired angle. This controller can be composed

of purely electronic components such as operational amplifiers, capacitors,

and resistors, resulting in a purely analog architecture, or it can also use

a microcontroller, with programming capabilities for a more digital control

architecture.

Both an analog and a digital throttle controller were built to compare the

implementation and flexibility of each design. While the analog controller

proved to be reliable and robust in many applications, an inexpensive micro-

controller such as an Arduino, greatly decreases implementation and setup

time and effort, increases controller flexibility, all the while maintaining rea-

sonable performance and reliability.

This paper will show that improvements and advancements in elec-

tronic development platforms, such as the Arduino series, have made pro-

grammable control an excellent alternative to pure analog control. With

an electronic, programmable development platform, implementation time is

greatly decreased because many processing operations can be programmed

into the microcontroller's processor. Flexibility is greatly increased as con-

trol schemes, architecture, and input can be be change by simply uploading

a new program. Controller tuning and optimization time is significantly

decreased as gains are adjusted on-the-fly in the code, instead of having to

replace individual resistors or capacitors in the controller circuit. The digital

controller built is to be used for testing purposes on a GM, turbocharged,

four-cylinder EcoTec LNF engine.

Chapter 2

Design of Analog Throttle

Controller

While transfer functions and control systems theory are both extensively

discussed in core undergraduate mechanical engineering courses, one does

not often learn about the realization of transfer functions through electronic

circuits in such classes. Operational amplifiers can be conveniently used

to implement lead-lag controllers, proportional, integral, derivative (PID)

controllers, as well as nearly any other transfer function imaginable. In this

manner, an analog PI controller was built to actuate the throttle valve to

a desired user angle setpoint, while using the measured throttle position

sensor signal as feedback. The subject matter covered in this chapter will

relate to the design and implementation of the analog throttle controller.

The system's architecture, shown in figure 2.1, includes a desired throttle

angle signal, an analog controller, the controlled plant, a feedback signal, and

a subtracter that compares the voltage of the desired angle to that of the

measured angle.

Figure 2.1: System architecture and block diagram. The throttle controller
is implemented with exclusively analog components.

2.1 User Interface by Potentiometer

A potentiometer was used as a voltage divider to create a variable input

voltage that the user controls. The potentiometer knob corresponds to the

desired throttle angle, which is then converted to a signal from one to four

volts. The voltage dividing range of the potentiometer was chosen to be the

same as the sensing range of the throttle position sensor. This ensures that

turning the potentiometer fully to the right will correspond to a wide open

throttle and turning it all the way to the left corresponds to a completely

closed throttle.

It was important to match the operational voltage ranges of the control

knob potentiometer and the throttle position sensor so that the actuation

error goes to zero when the throttle has reached the desired angle setpoint.

Otherwise, if the potentiometer produces a setpoint voltage that the throttle

position sensor cannot produce, the actuation error will always be nonzero

and the controller might become unstable. This was accomplished by adding

a 3 kQ resistor to either side of the 10 kQ potentiometer. This configuration

is shown in figure 2.2.

Creating a control knob for the system was important to convert the

3kQ
+4V

10kQ

3kQ
+ 1V

Figure 2.2: Voltage dividing potentiometer circuit used for user's input sig-
nal. Allows for easy, quick control of the system command.

user's desired behavior to an interpretable voltage signal. Other ways of

accomplishing this would be to use a signal generator, or some form of

computer controlled analog output. Generally, a signal generator will be

able to produce a one to four volt analog signal, while also having other

capabilities such as producing square waves or sinusoidal waves over a wide

range of frequencies. While this is very useful for testing and validation,

we wanted the user to have an easily accessible knob to control throttle

angle. Similarly, a computer controlled analog output would provide various

different capabilities with respect to throttle behavior control. However,

its use would not be as straightforward and easily accessible as a simple

input control knob. The control knob is also used in the digital controller

implementation and will be discussed in Chapter 4.

2.2 Analog Implementation of a Voltage Subtracter

The feedback control loop requires the measured feedback signal to be sub-

tracted from the input signal, so that an actuation error can be used for

proper control of the plant. The simple voltage subtracter can be realized

with an operation amplifier and four resistors, as shown in Figure 2.3. In

this differential amplifier configuration, if all resistors are of the same value,

the component becomes a unity gain amplifier with a characteristic equation

of V3 = V2 - V1 [5].

The differential amplifier outputs the actuation error signal. This rep-

resents, in volts, how far off the actual throttle angle is from the dialed-in

desired angle. If the signal is negative, the throttle needs to open more.

If the signal is positive, the valve needs to close to decrease the actuation

error. This error is received and processed by the controller logic.

R3

V1 R1

VV

3

Figure 2.3: Differential Amplifier Circuit. This operational amplifier config-
uration subtracts two input voltages from each other, yielding the actuation
error signal.

2.3 Analog Controller Architecture

The analog controller is responsible for processing the actuation error and

sending a command signal to the plant to minimize the error. For a simple

throttle controller, a proportional controller is sufficient for actuation and

control. That is, the controller will send a command to the controlled plant

that is proportional to the error and no more. However, the throttle valve

uses a return spring to bring the valve back to the idle position when the

drive motor is not applying any torque. This means that if the throttle is at

the correct angle and there is no actuation error, a proportional controller

will send no control signal, and there will be no torque to overcome the

return spring and keep it at the desired angle. With such a controller, there

will always be steady-state error and the valve will not reach its desired

angle [4].

The inclusion of error integration in the analog controller eliminates

steady-state error and improves valve actuation. Over time, actuation error

is integrated so that a control effort may be applied to the valve motor even

when the actuation error is zero. Such a controller is characterized by the

following equation:

Vc = kp* Ve + ki * Vedt (2.1)

Where V is the control effort voltage sent to drive the motor, Ve is the

actuation error voltage, while kp and ki are the controller amplification gains

[5].

This was realized using three operational amplifiers. The actuation er-

ror signal is sent to an analog integrator and a simple amplifier, as shown

in figure 2.4. The outputs of each operation amplifier is then summed to

Inverting Integrator
- - - - - - -

I I
L -I

Inverting Summer
p- - - - - ---4-

Inverting VC

Amplifier O

L ---------------- J

Figure 2.4: Analog Proportional-Integral (PI) Controller

produce the motor control effort.

2.4 PWM Generation

We cannot apply the motor control signal from the PI controller directly to

the throttle body DC motor because the sensing and amplification circuit

components cannot be exposed to the higher current flows that the motor

experiences. Additionally, the coil loops of the motor effectively act as an

inductor and must be isolated from the low current electronic componentry,

so that voltage and current surges do not propagate and damage these com-

ponents. The bi-directional control of the throttle dc motor using the PI

controller's output signal is accomplished using an H-bridge. The H-bridge

uses transistors to switch open and close both positive and negative twelve

volts to the dc motor.

R3 R4 D3

Figure 2.5: Absolute Value Circuit. The output signal is always a positive
voltage with the same magnitude as the input signal.

The H-bridge requires a pulse-width modulation (PWM) command to

switch the transistors and drive the motor at different torques. Converting

the control effort signal to a PWM is accomplished by an absolute-value

circuit, a sign comparator, and a 555 timer. The absolute-value circuit, as

shown in figure 2.5, extracts the voltage magnitude from the control effort

signal that is outputted from the PI controller [5]. This is passed into the

555 timer to produce a PWM signal of appropriate duty cycle.

The 555 timer is an integrated circuit that is used to produce a square

wave whose duty cycle is determined by an input analog voltage, which

comes from the absolute-value circuit in our controller implementation. This

yields a PWM signal that depends on the controller output and is fed into

the H-bridge to drive the valve motor. The control effort signal is also fed

to a comparator to determine the direction of commanded motor torque.

Once the H-bridge receives a PWM signal and a direction signal, it

applies a voltage to the motor for actuation. The throttle position sensor

senses the valve angle and the loop is closed. Figure 2.6 illustrates the

controller logic implemented in the analog design.

Absolute Value
Inverting Integrator

Potentiometer Subtractor

Inverting Summer

Inverting
Amplifier

Comparator

Direction

L -- - ---.-.-.-.-..

Figure 2.6: Electronic circuitry of the analog conntry waslmenation.

2.5 Gain Tuning

Once the controller is assembled, it is necessary to validate its functionality,

and if need be, change the controller gains to improve performance charac-

teristics. Most component blocks in figure 2.6 have an effective amplification

gain as set by the resistors and/or capacitors that are connected around the

operation amplifiers. For simplicity, we have maintained the gain in all com-

ponents but the PI control at unity. The effective amplification gain in the

analog control as set by the PI controller componentry was -2-. This was

the gain as set by Kevin that optimized actuation stability and performance.

The process by which the amplification gains are tuned for the analog

controller is somewhat tedious, requiring the removal and installation of re-

sistors and capacitors of different values. Controller performance is observed

after the installation of the new components and the process is repeated until

satisfactory performance and stability is achieved.

Chapter 3

Design of Digital Throttle

Controller

The purpose of redesigning a throttle controller for the experimental 2.OL

GM EcoTec engine was to not only learn about prototyping, controller de-

sign, and throttle actuation, but also provide a more capable engine control

platform for experiments to be conducted. This was accomplished through

the use of a microcontroller for signal processing and command control.

While more expensive, creating a controller in such a manner cuts down

on implementation time and effort, increases control capability and flexi-

bility, all the while providing desirable performance characteristics. The

microprocessor used for this project was an Arduino Nano, and was entirely

responsible for signal processing and motor control.

3.1 Arduino Microcontroller

The Arduino Nano is a breadboard-friendly microcontroller carrier that is

commonly used in hobby projects, and simple electrical engineering projects.

Its input and output capabilities, along with its compact size and processing

speed make it an excellent candidate for use in a throttle controlling project.

The board has over twenty input/output pins that can be used for sensing

and control. Eight Arduino Nano pins are dedicated "analog input" pins

that perform analog-to-digital voltage conversion and six pins are capable

of pulse-width modulation signal generation. Two of the pins can act as

external interrupts for low power operation. The board has an internal

voltage regulator capable of producing a steady five and 3.3 volt supply.

It also has a sixteen megahertz clock used for processing as well as PWM

generation. As shown in figure 3.1, this entire package is available on a

board less than an inch by two inches large and sold for under $ 40 dollars

[1].

Despite the many features and capabilities available with the Arduino

Nano, only four input/output pins were needed to achieve throttle angle

control. Two analog input pins were used to sense the user input signal and

the throttle position sensor signal. The same control knob configuration

from the analog controller discussed in section 3.1 was used with the digital

controller setup for the user to dial in their desired angle. The analog input

pins are capable of analog to digital conversion in a range of zero to five

volts with an effective resolution of 0.005 volts. The other two pins used

were "digital pins", that can function as both a digital input and digital

output. That is, each pin, once configured, can either sense zero or nonzero

voltage signal or output a steady five volt or zero volt signal. One of the

digital pins was configured to output a digital on/off signal for the direction

pin on the H-bridge, while the other digital pin produced a PWM signal

representing the torque command for the H-bridge [1].

Figure 3.1: Front View of the Arduino Nano.

19

3.2 Digital Controller System Architecture

In the digital controller design, the Arduino Nano is responsible for receiving

all the input and sensing signals as well as outputting the appropriate signals

to control the motor. Figure 3.2 illustrates the new system block diagram,

where the Arduino takes the place of the analog circuit's subtractor, PI

controller, comparator, absolute value circuit, and 555 timer. With the

Arduino Nano in place, no operational amplifiers need to be configured or

used at all.

3.3 Implementation of Control Logic

Once the Arduino is connected to the potentiometer, the throttle position

sensor, and the motor controlling H-bridge, the control logic must be written

as an Arduino program that can be uploaded and executed within its pro-

cessor. A basic knowledge of the Arduino code syntax is needed to write and

implement scripts, however the language is very similar to C/C++ and the

most common Arduino commands are well described on Arduino's reference

website. Furthermore, due to its low cost and ease of use and implemen-

tation, the Arduino development platform has amassed a large following,

Degrees Volts vots Cvolts Throttle Valve

Fi r e Volts I Ef tt Angle
Setpoint Arduino Nano Plant Dynarnics

Miaocontroler

Desired
Throttle Angle Feedbact volts D&e Throttle Valve

voltage Angle

Throttle Position Sensor

Figure 3.2: Block Diagram of System with Digital Controller

resulting in an abundance of documentation and support for almost any

project one can think of with an Arduino board.

Here is a list of the most commonly used Arduino commands and their

purpose [1]:

* setup() The initialization function for every arduino script.

" loop() The continuously running function that executes operational

commands.

" pinMode (Pin) Configures the specified digital pin to either be a digital

input or a digital output.

* analogRead(Pin) Commands the specified analog pin to measure the

voltage applied to it and convert it to a digital value. This function

will return a value from 0 to 1023 corresponding to zero and five volts,

respectively.

* digitalRead(Pin) Commands the specified digital pin to read either

a LOW (+OV) or a HIGH (OV) applied as its pin. This function will

return a boolean 1 or 0.

* digitalWrite (Pin,Value) Commands the specified digital pin to out-

put a LOW (0V) or HIGH (+5V) signal. The input value is either

HIGH or LOW.

" analogWrite (Pin,Value) Commands the specified digital pin to sim-

ulate an analog voltage by outputting a pulse-width modulation signal.

The input value is the representation of the desired duty cycle on a

range from 0 to 255, where 0 is 0% PWM duty or zero volts, and 255

is 100% PWM or five volts

Once the analogRead(Pin) command is called to sense the voltages of

the desired angle signal and tps signal, their values need to be subtracted

from one another to obtain the actuation error. This error is then passed

into a discrete PI controller to calculate the control effort. A simplified

version of this command logic is written below for demonstration purposes.

The actual implemented Arduino code can be found in Appendix A.

//READ SIGNALS AT ANALOG PINS

Here the setpoint and TPS signals are read.

UserSetpoint = analogRead(PinA1);

Read the potentiometer signal at the analog pin 1.

TPSSignal = analogRead(PinA2);

Read the throttle position sensor signal at analog pin 2.

//CALCULATE ACTUATION ERROR

ActuationError = UserSetpoint - TPSSignal;

This line implements the signal subtracter.

ErrorSum = ActuationError + PreviousErrorSum;

Approximation of the integral of the error

//PI CONTROLLER

Discrete implementation of the P1 Controller

ControlEffort = k-p*ActuationError + ki * ErrorSum;

Kp represents the proportional gain and

Ki represents the integral gain.

//MAGNITUDE AND DIRECTION

The control effort signal is compared

to zero to determine direction.

if (ControlEffort > O){

If it is above zero,

MotorDirection = 1;

set the motor actuation direction,

MotorCommand = ControlEffort;

and keep the positive magnitude.

}else{

If its below zero,

MotorDirection = 0;

set the motor actuation direction the other way,

MotorCommand = -1*Control_Effort;}

and take the positive magnitude.

//SEND COMMAND TO H-BRIDGE

Actuate valve motor using H-bridge.

digitalWrite(DirPin, MotorDirection);

Output the direction signal on the Direction Pin.

analogWrite(PWMPin, MotorCommand);

Output the pwm magnitude signal on the PWM Pin.

3.4 Fast Gain Tuning

Unlike the analog controller, no components need to be disconnected or

replaced to tune the controller or change its configuration. This can be

achieved by simply writing a new script that has the new numerical gains

or control logic to be used. Even simpler, for expedited tuning, a program

can be written to interpret any numbers sent through the serial port to

the Arduino as its gain parameters. For example, a user can configure the

Arduino to expect a two digit number to be received in the serial port. Once

the number is received, the Arduino would then set that number as the new

controller gain, and resume its control operation with the new gain. With

this method, gains and control parameters can be changed in a few seconds,

compared to the minutes or tens of minutes necessary to change those of the

analog controller.

3.5 Additional Control Capabilities: MAP

& NIMEP

The implementation of a throttle controller assembly with an easily pro-

grammable microcontroller provides the freedom to easily change the con-

trol architecture, or add new ones by simply writing and uploading a new

Arduino program. We took advantage of this flexibility and supplemented

the controller's angle control that uses TPS feedback with two new control

schemes. The controller assembly was set up to also receive the manifold

absolute pressure (MAP) signal from the MAP sensor on the engine and the

nominal indicated mean effective pressure (NIMEP) signal from the engine's

control computer.

The MAP and NIMEP signals are important in the characterization of

the engine and its state of operation at any point in time. During engine

testing, it may become more important to not keep the throttle angle con-

stant, but rather to keep the engine's manifold pressure (MAP) or mean

effective pressure (NIMEP) constant. Consequently, the controller assembly

was assembled with a three way control switch, allowing the user to choose

between TPS, MAP or NIMEP control. This switch toggles the input signal

that is fed to the PI controller logic in the Arduino control program.

Chapter 4

Controller Features &

Performance

The completed digital throttle controller, provides a simple and useful in-

terface for operation and was tested on an experimental engine setup for

performance validation. By installing the controller in a project enclosure,

all components lay neatly hidden inside, while the small, 6" x 3" x 3" box can

be placed near the engine's controls without taking up much space. The ana-

log controller resided in a 6" x 6" x 10" box with multiple larger breadboards

needed for the componentry around the many integrated circuits, and was

clearly much more obtrusive than the smaller digital controller box. While

these analog electric circuits can be greatly decreased in size by soldering the

components onto a prototyping board, or designing a printed circuit board

to be custom made, these options often require hours to accomplish, if not

days.

The face of the project enclosure box has five main features that make

the controller's operation easy and straightforward. The switch in the top

center toggles the power supplied to the Arduino board, and the motor

controlling H-bridge. This switch is used to turn the entire system on and

off. To the right of this switch, is an indicator light emitting diode (LED),

which lights upon enabling the entire system. It indicates that the power

is on and all components are at live voltage. In the bottom left corner

is three-way switch used to toggle the operation mode the controller is in.

The up position corresponds to the TPS-based, throttle angle control mode.

The middle position corresponds to the NIMEP-based, nominal cylinder

pressure control mode. The down position corresponds to the MAP-based,

ON/OFF
Switch

ON
OFF

Potentiometer
Knob

Control Mode
Switch

T NTPS
fNIMEP

ON/OFF
LED

Figure 4.1: Diagram of Digital Controller User Interface

Arduino USB Port

E$:

manifold pressure control mode. In the upper right corner, there is a blue

knob connected to a potentiometer. This knob is used to dial in the control

setpoint for any control mode. In TPS control mode, the knob controls

the setpoint signal for the throttle angle and in other modes, the knob

acts accordingly. At the bottom center of the controller's front panel is the

Arduino Nano board's USB port. Without even opening the entire enclosure,

a user can connect the Arduino to his computer to upload new programs

or use the serial communication to tune gains or monitor variable behavior.

Figure 4.1 illustrates the user interface and its features -more clearly.

4.1 Performance Validation

The validation of the controller operation was performed on a GM 2.OL

LNF EcoTec engine. This engine is a direct ignition, direction injection,

turbocharged, 4-cylinder engine. The engine was operated at constant speed

while the throttle controller command changed. Different input signals were

applied to the controller to observe its response characteristics. A square

wave was applied to the controller to observe its step response, shown in

figure 4.2. The controller was also tested in its normal knob controlled

operation.

The controller actuates the valve to its new angle setpoint within 780

crank angle degrees. At 1150 RPM, this translates to less than 0.1 seconds

of response time. The remaining presence of steady-state error, which is

under 10% indicates that the integral gain on the controller is not large

enough. Designed to optimize response time and not steady state error,

the current configuration sufficed for testing and use. However, as gain

tuning progresses, some response time can be sacrificed to eliminate the

small overshoot observed and to implement higher integral control'for the

0

0

3-

U __ __ __ __ _

1 - TPS (Response) Signal
- Signal Generator (Input) Signal

0.50 1000 2000 3000 4000 5000 6000 7000 8000
Crank Angle Degrees [0]

Figure 4.2: Throttle Body Step Response.

elimination of steady-state error.

The throttle position signal in figure 4.2 is accompanied with signifi-

cant high frequency noise. While this noise can be minimized using a low

pass filter, the integral term of the PI controller also serves to cancel out

contributions from random noise.

Measurements of the manifold absolute pressure signal were also taken

during the validation of the controller. Figure 4.3 show the immediate effect

that the closing throttle valve has on the engine flow dynamics. Although

the pressure fluctuates due to cylinder-to-cylinder intake pulses, the average

pressure drops as the step control input is applied and as the valve closes.

1.15

0

1.05 -

0.95 -

0.9
0

0.85 -

0.8 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000

Crank Angle Degrees [*]

Figure 4.3: Manifold Absolute Pressure Step Response

Chapter 5

Conclusion

The Arduino microcontroller development platform opens a new door for

inexpensive, fast, and easy controller prototyping for a large variety of ap-

plications. For example, using the analog inputs together with PWM gen-

eration for throttle control, ignition coil control, and fuel injector control

signals is enough to quickly implement an engine control unit. At under

$40, the Arduino Nano may be considerably more expensive than the com-

ponentry used in the analog controller. However, taking into consideration

implementation, tuning, and debugging time as well as capabilities, flexibity,

and processing speed, $40 is a small price to pay. Additionally, other capa-

ble versions of the Arduino development board are available at even lower

prices. The Arduino Pro Mini is half the size of the Nano and costs half as

much.

The Arduino's 16 megaherz clock allows for processing speeds that re-

sult in fast response times and complex control architectures. Using a simple

programmed PI control scheme, the system was able to control the throt-

tle valve with response times being as fast as 100 millaseconds. In under

10 minutes, dozens of control gains were used in the search for acceptable

controller behavior and valve responses. Additionally, the simple toggling

of different control architectures made facilitated engine control for testing.

This project gave me a wonderful opportunity to learn more about elec-

tronic circuits, microcontroller usability and engine control methods, all the

while contributing to the research efforts of a student in the Sloan Automo-

tive Lab, Kevin Cedrone. It was possible to greatly reduce implementation

effort and increase controller flexibility by using a programmable microcon-

troller such as an Arduino. Two throttle controllers were built and tested,

and it was shown, that digital throttle controller is more than capable of

controlling an engine throttle body with favorable performance characteris-

tics.

Bibliography

[1] Arduino Reference Homepage. Arduino. Web. 11 Dec. 2011.

[2] Bosch Automotive Handbook. Plochingen, Germany. Warrendale, PA.

Robert Bosch Society of Automotive Engineers. 2011.

[3] Heywood, John. Internal Combustion Engine Fundamentals. New York:

McGraw-Hill, 1988.

[4] Nise, Norman. Control Systems Engineering. Hoboken, NJ: Wiley, 2011.

[5] Trumper, David. Operational Amplifiers. 2.14 Course Notes. 2011.

Appendix A

Arduino Code

//Arduino Throttle Control Code
//Written by Kevin Cedrone and Tomas Martins

// **

int pwmPin = 11; // Output Pwm pin to H-Bridge
int dirPin = 2; // Output Direction Pin to H-Bridge

// **

int setPointPin = 1; // Input pot. voltage for set point
int tpsPin = 6; // Input TPS2 voltage (0.5-4V for full closed to WOT)
int mapPin=5; // Input MAP voltage (1-6V = 0-25psia ==> 1-3.94V = 0-1 atm)
int imepPin=4; // Connected
int modePin1 = 7; // Mode select pin 1
int modePin2 = 8; // Mode select pin 2
// Physical mode switch up [modePinl,modePin2]=[LOW, HIGH]
// Physical mode switch middle [modePinl,modePin2]=[HIGH, HIGH]
// Physical mode switch down [modePinl,modePin2]=[HIGH, LOW]

i **

int kplnv=1;
int kiInv=10;

int setPoint = 0;
int tps = 0;
int mapSig=0;

int error = 0;
int errorInt = 0;

int ctrlSig=O;
int actual=O;
boolean dir;
int pwm = 0;

int filtSP=O;
int filtTPS=O;
int filtMAP=O;

void setup()

// set TIMER2 for PWM 32 kHz

// clear all prescaler bits in TCCR2B = the last 3 Bits
// leave other bits as set by arduino init() in wiring.c

byte mask = B11111000;
TCCR2B &= mask; // TCCR2B is now xxxxxOOO

//
// set CS22:20 in TCCR2B see p 156 of datasheet

TCCR2B 1= (0<<CS22) I (0<<CS21) I (1<<CS20); // same as TCCR2B 1= B00000001; TCCR'

pinMode(dirPin, OUTPUT);

pinMode(pwmPin, OUTPUT);

pinMode(setPointPin, INPUT);
pinMode(tpsPin, INPUT);
pinMode(mapPin, INPUT);

pinMode(modePinl, INPUT);
pinMode(modePin2, INPUT);
Serial.begin(9600);

}

void loop()

setPoint=analogRead(setPointPin);
tps=analogRead(tpsPin);
mapSig=analogRead(mapPin);

// low pass filter to get rid of noise

filtSP = ((filtSP << 3) - filtSP + setPoint) >> 3;

setPoint=filtSP;

filtTPS = ((filtTPS << 3) - filtTPS + tps) >> 3;

tps=filtTPS;

filtMAP = ((filtMAP << 3) - filtMAP + mapSig) >> 3;
mapSig=filtMAP;

//TPS mode, Physical mode switch up
if ((digitalRead(modePinl) == LOW) && (digitalRead(modePin2) == HIGH))
{

actual = tps;
kpInv=1;
kiInv=10;

}

//MAP mode, Physical mode switch middle
if ((digitalRead(modePinl) == HIGH) && (digitalRead(modePin2) == HIGH))
{

actual=mapSig;
kpInv=100;
kiInv=2;

//WOT Override, Physical mode switch low
if ((digitalRead(modePinl) == HIGH) && (digitalRead(modePin2)

//Physical mode switch error (impossible state)
if ((digitalRead(modePinl) == LOW) && (digitalRead(modePin2)

== LOW)){

== LOW)){

errorInt += error;

//Anti-windup
if(errorInt > 400) { errorInt=400; }
if(errorInt < -400) { errorInt=-400; }

error=setPoint - actual;

ctrlSig=error/kpInv + errorInt/kiInv;

if (ctrlSig >= 0)

dir = LOW;

pwm = ctrlSig;

}
else

{
dir = HIGH;
pwm = -1*ctrlSig;

setPoint:

setPoint=(

//Saturation limits on pwm output
if (pwm > 255) { pwm=255; }
if (pwm < 0) { pwm=O; }

// SEND OUTPUT TO H-BRIDGE
analogWrite(pwmPin, pwm); // analogRead values go from 0 to 1023, analogWrite va:
digitalWrite(dirPin, dir);

