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Abstract

In mechanism design, we replace the strong assumption that each player knows his
own payoff type exactly with the more realistic assumption that he knows it only
approximately: each player i only knows that his true type 9; is one among a set Ki,
and adversarially and secretly chosen in Ki at the beginning of the game.

This model is closely related to the Knightian [20] notion of uncertainty in eco-
nomics, but we consider it from purely mechanism design's perspective. In particular,
we study the classical problem of maximizing social welfare in auctions when players
know their true valuations only within a constant multiplicative factor 6 E (0,1).

For single good auctions, we prove that no dominant-strategy mechanism can
guarantee better social welfare than assigning the good to a random player. On the
positive side, we provide tight upper and lower bounds for the social welfare achievable
in undominated strategies, whether deterministically or probabilistically.

For multiple-good auctions, we prove that all dominant-strategy mechanisms can
guarantee only an exponentially small fraction of the maximum social welfare, and
the celebrated VCG mechanism (which is no longer dominant-strategy) guarantees,
in undominated strategies, at most a doubly exponentially small fraction.

For general games beyond auctions, we provide definitional foundations for this
new approximate-type model, and provide a universality result showing that all rea-
sonable (including Bayesian or Knightian) models of type uncertainty are equivalent
to our set-theoretic one, at least for the setting when the type space is "convex".

This work was done in collaboration with Silvio Micali and Alessandro Chiesa.

Thesis Supervisor: Silvio Micali

Title: Professor
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Chapter 1

Introduction

Mechanism design aims at producing a desired outcome by leveraging each player's

rationality and his knowledge of his own (pay-off) type. But:

What happens when each player knows his own type only approximately?

In this thesis, we explore this general topic from the following four major directions:

" Guaranteeing social welfare in auctions of a single good with n players.

" Guaranteeing social welfare in auctions of m goods with n players.

" Generalizing our notions to arbitrary games.

" Comparing our notions to other models of player uncertainty, such as Bayesian

and Knightian.

1.1 Single-Good Auctions

We explore this general direction by first focusing on a specific goal (trivially achieved

when the players know their own types exactly):

Guaranteeing high social welfare in auctions of a single good with n players.

We do so from a finite perspective: namely, we consider players with only finitely

many possible types and mechanisms specifying for each player only finitely many

strategies.



1.1.1 Our Model of Self Uncertainty

In a single-good auction, a player type is a natural number, referred to as a valuation.

The possibility that a player in such an auction may not precisely know his own

valuation strikes us to be quite realistic. No one would be too surprised if, tasked to

figure out a firm's true valuation for the good, different employees reported different

values, or some of them reported ranges of values rather than single values. This

said, for decision theory -let alone mechanism design!- to be meaningful at all, the

players must know something about their own types. The classical work of [20] (see

also [5]) envisages that each player knows that his own type is distributed according

to one of several possible distributions. Other works -e.g., [14, 24, 30]- envisage a

more structured kind of "self knowledge": namely, each player knows the distribution

from which his own type has been drawn.

Our model of the players' "self uncertainty" is purely set-theoretic. In essence,

each player i only knows that his own valuation O is one of several candidates in a

set Ki. In this model we investigate how good mechanisms one can design when each

Ki is relatively clustered: that is, when "each player knows his own valuation within

the same fixed percentage 6."

1.1.2 Our Results

Our main results contain the following three theorems:

Theorem 1 (informal). When 6 > 0, the best dominant-strategy mechanism can

guarantee only a ~ - fraction of the maximum social welfare.

Theorem 2 (informal). When 6 > 0, the best deterministic undominated-strategy

mechanism is the second-price mechanism, that guarantees ; ( )2 fraction of the

maximum social welfare.

Theorem 3 (informal). When 6 > 0, the best probabilistic undominated-strategy
mecanim M6~ utprfom t d d t (1_,5)2+48J

mechanism M( outperfrms the second-price one, and guarantees ~ z - frac-

tion of the maximum social welfare.



The picture emerging from auctions of a single good is quite "reassuring": domi-

nant strategies are no longer attractive, but then the classical second-price mechanism

(although developed for the simpler, exact-type setting) continues to deliver lots of

efficiency in undominated strategies. Only if one insisted on optimal worst-case per-

formance, should he consider our more complex probabilistic mechanism M 3 from

Theorem 3 above.

And of course, since we are in a new model, we need to carefully define notions

like dominant and undominated strategies, as well as what it means by guaranteeing

certain fraction of the maximum social welfare, when players do not even exactly

know their true types.

1.1.3 Our Techniques

Exploring a new direction requires developing a new set of tools. To guide the design

and analysis of mechanisms in our new setting, we find it useful to establish two

structural lemmas. Note that the first one generalizes to any approximate-type game

settings, and the second one generalizes to any single-parameter approximate-type

game settings.

The Undominated Intersection Lemma. To prove impossibility results for gen-

eral mechanisms, we must deal with arbitrary sets of strategies. In our model, even

the "natural" strategies are richer than before. For instance, a player i having set

Ki might report a single number (e.g., a member in Ki), or a set of numbers (e.g.,

K; itself). However, no matter what strategies a mechanism may grant, we prove

that for any two nontrivially overlapping sets Ki and Kj, the corresponding sets of

undominated strategies for player i must have a pair of (mixed) strategies that are

"arbitrarily close".

The Distinguishable Monotonicity Lemma. To prove possibility results, we

are instead happy to consider only special sets of strategies. In particular, we con-

sider mechanisms that constrain the players to report individual bids, just like the

second-price mechanism. We shall prove that, if the allocation function of the mech-



anism grows monotonically with players' reports, plus some mild requirement, the

mechanism will provide a clean characterization of the set of undominated strategies

associated to any set Ki of a player i: namely, the strategies between the minimum

and the maximum value in Ki.

1.2 Multi-Good Auctions

Now we raise the bar and consider a second goal (also trivially achieved when the

players know their own types exactly):

Guaranteeing social welfare in combinatorial auctions1 of m good with n players.

In combinatorial auctions, player i's type O6 is a function from all possible subsets

of the goods to non-negative numbers, referred to as a valuation. As before, we assume

that each player knows only some set Ki where O6 E Ki, while each Ki is relatively

clustered: that is, "each player knows his own valuation for each subset of the goods

within the same fixed percentage 6."

Our first impossibility result states that our negative result in Theorem 1 gener-

alizes, with a exponentially worse bound in terms of the number of goods m.

Theorem 4 (informal). When 6 > 0, the best dominant-strategy mechanism for

combinatorial auctions can guarantee only a ~ _- fraction of the maximum social

welfare.

Now we turn to the VCG mechanism [10, 18, 33], the celebrated extension of the

second-price mechanism in combinatorial auctions. Recall that it is not a dominant-

strategy mechanism anymore, and guarantees a reasonable fraction of the maximum

social welfare in single-good approximate-valuation world (see Theorem 2). Should

the similar result also hold in the multi-good case, mechanism design with approx-

imate types would offer a pleasant off-the-road walk. Unfortunately, our reassuring

picture in the single-good case vaporizes:

'Here the term "combinatorial auction" refer to multi-good auctions without any restriction about

player's valuations. It is used in contract to for instance single-minded auctions, where players can

have positive valuations to only one subset of the goods.



Theorem 6 (informal). For any n > 2 and m > 2, the VCG mechanism can only

guarantee {{S)2 -2 fraction of the maximum social welfare.

Extensions of this negative result, or even positive results but also utilizing player's

external knowledge will be discussed in Chapter 5.

1.3 General Games

Our approximate valuation Ki for player i can be similarly defined in any general

game, as long as Ki contains a list of possible candidate types of player i, rather

than a list of valuations. We provide a self-contained chapter in this thesis for the

notions of approximate-type games, along with the corresponding dominant and un-

dominated implementations. Notice that a similar set-theoretic model but for a set

of Bayesian distributions has been studied as a part of the Knightian decision theory,

see Section 1.5 for comparisons.

Traditional definitions. Recall that in the exact-type world, for player i and

his two strategies si and ti, there are three naturally-defined notions of dominance.

Informally,2

" si very-weakly dominates t1 if for all strategies of other players, si > ti;

f for all strategies of other players, si > t1 and
e si weakly dominates t1 if

for some strategy of other players, si > t
" si strictly dominates t4 if for all strategies of other players, si > ti.

Also, a strategy is said to be dominant if it very-weakly dominates everything else;

and undominated if it is not weakly dominated by any other strategy.

Extensions to approximate types. A very straightforward generalization to the

approximate-type world, at least for very-weak and strict dominance, is to require

that si > t1 or si > t1 to hold not only for all strategy sub-profiles of other players,

but also for all possible type Gi E Ki. Notice that, when there is only one single
2We remark here that the names of the three notions are defined inconsistently among literatures,

for instance, the very-weak dominance is also referred to weak dominance some times.



player, our quantifier on strategy sub-profiles of other players is vacuous, and this

special case was also studied for instance by [1, 5, 11, 12, 17, 21, 25, 27, 29, 31]. To

the best of our knowledge, in the approximate-type world, the notion of dominance

taking into account strategy sub-profiles of other players was not studied before.

The generalization for weak dominance is more subtle. Essentially, we want to

capture the weakest condition for ti to be discarded in favor of si. We say then that

weak dominance holds if very-weak dominance holds and, moreover, there exist a

"witness" strategy sub-profile and also a "witness" type O; E Ki such that si > tj is

strict.

Mechanism design. Even in our close-related set-theoretic Knightian settings (see

Section 1.5 for comparisons), little attempt has been made towards mechanism design

(with an exception coming from the work Lopomo et al. [21]), and thus also towards

understanding solution concepts and implementations in this setting. We provide

modeling results in this direction.

In settings of incomplete information, two naturally-defined solution concepts

are, informally speaking, "to guarantee desired property when players play domi-

nant/undominated strategies".

Implementations in dominant strategy. We say that a mechanism implements

some property H in dominant strategy if H is achieved when each player plays a specific

dominant strategy. For example, a dominant strategy truthful (DST) mechanism

belongs to this category. In our approximate-type setting, a DST mechanism will ask

each player to report a set of types, instead of a single type; a mechanism is DST and

implements some property H, if "reporting the truth K" is (very-weakly) dominant

for each player i, and H is achieved under this strategy profile. We have been able to

extend the revelation principle to the setting of approximate types:

Lemma 7.13 (Revelation Principle, Informal). In the approximate-type world, if a

property can be achieved via any dominant-strategy mechanism, it can also be achieved

via a dominant-strategy-truthful mechanism.

In the setting of a single player, our notion of DST mechanism is also studied by



Lopomo et al. [21]. However, we emphasize here a difference. If players are uncertain

about their types, how to check if a property -which takes players' type 9 as an

input- is achieved? In our paper, we use the worst-case analysis from computer

science, and define it to be achieved only when for any possible type 0 E K, the

property holds; while in [21], they consider that the property holds at some possible

type 0 E K.

Implementation in undominated strategies. Since DST mechanisms are not

always desirable (also when players know their types exactly), we also define and

study implementations that guarantee a social property to hold whenever each player

chooses an arbitrary strategy that is not (weakly) dominated. Similar ideas have al-

ready been used successfully (but when players know their types exactly) for designing

mechanisms in single-value multi-minded auctions [2].

1.4 Universality of Approximate Types

For any general game, it is unrealistic not only to assume that "each player i knows

exactly his own payoff type 9j", but also "each player i knows an exact Bayesian prior

Di from which his own payoff type O6 is drawn". In principle, there are more than one

possible candidates to model a player's uncertainty without such exact knowledge:

" Approximate Type Uncertainty. The internal knowledge of each player i is

modeled as a set of types Ki called the player's approximate type.

" Knightian Type Uncertainty. The internal knowledge of each player i is mod-

eled as a set -9 of Bayesian distributions that is promised to contain the true

distribution Di where his own payoff type 9; is drawn. This model was first

introduced in economics by Knight [20], and then formalized by Bewley [5].

" Hierarchy Type Uncertainty. The internal knowledge of each player i is mod-

eled a tree hierarchy: player i may know a set of distributions over types, a

distribution over sets of distributions over types, or any other kinds of complex

composition of uncertainty using "sets" and "distributions".



Note that the Hierarchy Type Uncertainty model is a strict generalization of

the all previous ones (i.e., exact, approximate, Bayesian and Knightian). We

are unaware of any reasonable type uncertainty model (suitable for the setting

of incomplete information) that cannot be defined within this model.

While a set-theoretic notion of Approximate Type Uncertainty is already very well

motivated, we show that it is actually universal for modeling player uncertainties, at

least for the very broad class of games with convex player types.

Theorem 7 (informal). Whenever a player's type is convex, the Hierarchy Type

Uncertainty (and thus any exact, Bayesian, Knightian) model is equivalent to the

Approximate Type Uncertainty model.

This theorem also explains that why in this thesis we focus only on mechanism

design with approximate types for auctions, which is just without loss of generality.

1.5 Related Work

In settings of incomplete information, two types of uncertainties have been long s-

tudied: (1) that of each player i about 0_i, the type subprofile of his opponents, and

(2) that of a designer about the players' types. Notice, however, that neither type of

uncertainty is the one we are interested in. As said, we focus solely on the uncertainty

that each player i has about his own payoff type O6.

Bayesian models of "self uncertainty". Various works model the players' self

uncertainty via probability distributions. Let us mention a few examples.

In single-good auctions, Milgrom [23] studies the revenue difference between second-

price and English auctions, when the players do not exactly know their valuations,

but only that they are drawn from a common distribution.

Sandhohn [30] presents an example of an auction (with an unconventionally-

defined utility function) where a player's valuation is drawn from the uniform distri-

bution over [0,1], and argues that reporting the expected valuation (i.e., 0.5) is no

longer dominant-strategy.



Porter et al. [28] consider a scheduling problem where tasks are to be assigned to

players, and each player i privately knows that he would fail to perform task j with

probability pij. This failure rate can be understood as a distribution of player's private

type. Their paper studies efficient dominant-strategy mechanisms in this setting.

Feige and Tennenholtz [14] consider the problem of scheduling n players to use

the same machine. Each player i has a task requiring time length li, but he does not

know li: he only knows that li is drawn from a distribution Li. The authors study

dominant-strategy mechanisms without monetary transfer, and prove that even if Li's

support has two elements, then no constant fraction of the maximum social welfare

can be guaranteed. To overcome this difficulty, they introduce a different measure of

social efficiency, which they call "fair share", and provide mechanisms to guarantee

an Q(1) fair share.3

Set-theoretic models of "self uncertainty". As already mentioned, in his work

(further formalized by Bewley [5]) Knight [20] considers that a player has a set of

distributions and knows that his true type is drawn from one of them. The Knightian

model immediately implies that the preferences for a player are no longer complete-

ly ordered: some pairs of preferences may become incomparable. (For single-good

auctions, as argued in Section 1.4, it is equivalent to each player i knowing a set of

candidates Ki for his true valuation.)

Most of the works in the Knightian model address decision making. Some au-

thors, such as Aumann [1], Dubra et al. [12], Ok [27] and Nascimento [25] work with

incomplete orders. Others authors discuss various ways of bypassing the set-theoretic

component of the Knightian model by computing a single number from the set of

expected utilities: [11] picks the average or an arbitrary one, [31] picks the so-called

Choquet expectation, and [17] picks the maximum.

General equilibrium models with unordered preferences have been considered by

Mas-Colell [22], Gale and Mas-Colell [16], Shafer and Sonnenschein [32], and Fon and

Otani [15]. More recently, Rigotti and Shannon [29] characterize the set of equilibria

3A "p fair share" is a property such that each player i has at least p success rate if all other
players share the same distribution as his Ii.



in a financial market problem.4

Lopomo and the previous two authors [21] also construct explicit mechanisms in a

Knightian model, but for a single player. Specifically they consider the rent-extraction

problem under two notions of implementation: 1) when reporting the truth is at least

as good as any other strategy 2) when reporting the truth is not strictly eliminated

in favor of another strategy. (Notice that, not envisaging other players, these are

not notions of dominance, since the latter should take into account all strategy sub-

profiles of other players.)

4 A strategy profile is an equilibrium if no player can deviate and strictly benefit no matter which
distribution is picked from his set. Notice that such an equilibrium is not a notion of dominance.



Chapter 2

Single-Good Auctions

We first choose to investigate the feasibility of mechanism design in the approximate-

valuation model for a very simple and familiar application, maximizing social welfare

in single-good auctions, for which the second-price mechanism gives us a simple,

elegant, and perfect solution in the traditional, exact-valuation model.

2.1 The Model

As for any game, an auction of a single-good can be thought as consisting of two

parts, a context and a mechanism. Later, to analyze players' behaviors in such

an auction, we need solution concepts: implementation in dominant strategies and

implementation in undominated strategies. As mentioned earlier, our specific goal in

this chapter is to guarantee high social welfare as a performance measure. All these

notions are going to be redefined in our approximate-valuation world.

2.1.1 The Auction Context

For J E [0, 1], a 6-approximate (auction) context C is a tuple (n, B, 6, 0, K). In such a

context there are n players, with all possible valuations being integers between 0 and

a valuation bound B. Each player i does not know his own true valuation Bi, but a

set Ki C {0,..., B} such that



(i) O; E Ki and (ii) Ki C 6[cI,

where ci is the "center" of Ki and, for all x E R, 6[x] consists of all possible valuations

within x t 6x, that is, 6[x] t [(1 - 6)x, (1 + 6)x] n {0o, 1, ... , B}.

We refer to 6 as an approximation accuracy, and to each Ki as i's approximate

valuation, or 6-approximate valuation if we wish to be more precise. We denote by

rej the class of all 6-approximate contexts with n players and valuation bound B.

Each approximate valuation Ki should be interpreted as the set of all and only

candidates for O6 in i's mind. For instance, when 6 = 0 he knows his own valuation

exactly, and when 6 = 0.1 "within a 10% accuracy." No matter how accurately each

player knows his own true valuation, every context is 6-approximate for a suitably

large 6: after all, all contexts are 1-approximate!

There are two more components that are presumed in a single-good auction when

a context C is given:

Q = ([n] U {I}) x R["l, the set of outcomes. If (a, P) E Q is an outcome, then

we refer to a as its allocation and to P as its profile of prices. (If a E [n] then

player a wins the good; if a = I then the good remains unallocated.)

e Player i's utility on outcome (a, P) is U (0j, (a, P)), which is 92 - P if a = i,

and -P otherwise.

Question and answer.

" Why 6? In our purely set-theoretic framework, the approximation accuracy 6

can be interpreted as quantifying the "quality of the players' knowledge about

themselves." We thus find it natural to measure the performance of a mechanism

as a function of 6. Without identifying any structure in the players' possible

multiple valuations, one may at most design elementary mechanisms, rather

than "good" single-good auctions. In sum, the accuracy parameter 6 is our

Trojan horse for bringing meaningful mechanism design into our model.

" Why 9; E Ki? A player's approximate valuation contains the player's true

valuation because we consider each player to be "the ultimate authority about

himself."



" Why is Ki not just an interval of integers? An approximate valuation

Ki may indeed be just that. But defining it to be a more general subset of

{0,. . , B} may be necessary in some contexts. For instance, consider a player i

who is about to participate to a yard-sale auction of a large sofa. He may know

precisely the amount v he would pay for the sofa, but also that, if he wins it, he

would have to carry it on top of his car, which is illegal and punishable with a

fine f. In a Bayesian setting, he should compute his expected value of the sofa

from the probability of being caught by the police on his way home (presumably

based on the specific time of day, the immediate weather forecast, the immediate

traffic forecast, the likelihood that other crimes might compete for the police's

attention, and so on). But in our set-theoretic model, his approximate valuation

Ki blissfully consists of just two separate values: namely, Ki = {v, v - f}.'
" Multiplicative or additive accuracy? A greater level of generality is achieved

by considering two distinct accuracy parameters: a multiplicative one, *, and

an additive one, 6+, leading to the following modified constraint:

K; C [(1 - 6*)xi - 6+, (1 + 6*)x + 6+] n {, 1,..., B} for some value xi E R.

All of our theorems hold for such more general approximate valuations. For

simplicity, however, we consider only one kind of accuracy parameters, and we

find the multiplicative one more meaningful.

" Multiple possible 6's? Yes: indeed, 6 > 6' implies that every f'-approximate

context also is a 6-approximate one, and that Vn ;;_ID ,'n

" Do the players know 6? A player i in a (-approximate context may know

nothing about a "global 6." Of course, knowing Ki, he can certainly compute

his smallest "local" 6i: namely, maix"-r"mK. But he may not have enoughmax K,+niin K,*

information about his opponents to realize that he is in a 6-approximate context

for 6 < 1.

" Does the designer know 6? When disproving the existence of mechanisms

with a given efficiency guarantee for V,', we gladly assume that the mecha-

'Note that such fine it is not paid to the seller, and cannot be modeled "within the game." It is
an element extraneous to the auction, but clearly affecting the valuation of our particular player.



nism designer does know 6 precisely, since this makes our impossibility results

stronger. When proving the existence of such mechanisms, we shall specify

whether or not the designer knows a "sufficient" 6.

* Can real 's be really large? Absolutely. Valuations may indeed be "very

approximate." Consider a firm participating to an auction for the exclusive

rights to manufacture solar panels in the US for a period of 25 years. Even if the

demand were precisely known in advance, and the only uncertainty were to come

from the firm's ability to lower its costs of production via some breakthrough

research, an approximation accuracy of the firm's own valuation for the license

could easily exceed 0.5.

2.1.2 The Mechanism

While our contexts have K as a new component, our mechanisms are finite and

ordinary. Indeed a mechanism for VB is a pair M = (S, F) where

" S = Si x ... x Sn, where each Si, the set of i's pure strategies under M, is finite

and non-empty; and

" F: S -+ ([n] U {_L}) x R["I is M's (possibly probabilistic) outcome function.

NOTATION.

" We denote pure strategies by Latin letters, and possibly mixed strategies by

Greek ones.

" If M = (S, F) is a mechanism and s E S, then by FA(s) and Ff (s) we re-

spectively denote the probability that the good is assigned to player i and the

expected price paid by i under strategy profile s. For mixed strategy profile

o E A(S), we define FA(o-) l E.,, [FA(s)] and Ff(o-) 4 ,,[FP(s)].

" We refer to FA as the allocation function of M. More generally, an allocation

function is a function f: S -+ [0,1"['] such that, for all strategy profile s E S,

Zieln] fi(s) < 1.



2.1.3 Solutions Concepts

In a non-Bayesian setting of incomplete information, two notions of implementations

are natural to explore: implementation in dominant strategies and in undominated

strategies [19]. However, the classical definitions of dominance need to be extended

in order to apply to our approximate-valuation model. (Essentially, we adapt the

generalized notions of dominance for Knightian uncertainty [5, 20] to our purely set-

theoretic setting.)

Informally, a strategy si of a player i very-weakly dominates another strategy tj

of i, relative to a mechanism M and an approximate valuation Ki of i, if, for all

candidate valuations in Ki and all possible strategy subprofiles of his opponents, si

gives i a utility greater than or equal to that given him by ti. If it is further the

case that si gives i strictly greater utility than t1 for at least some valuations in Ki

and strategy subprofiles of i's opponents, then si weakly dominates ti. A strategy

of i is undominated if it is not weakly dominated. The set of such undominated

strategies is denoted by UDedi(Ki) when M is clear from context, and let UDed(K) d-

UDed1(K1) x ... x UDedn(Kn). Notice that the following fact is obvious:

Fact 2.1. UDedi(Ki) $ 0 for all K.

We defer the reasons of such choice and a more detailed definition to Chapter 7,

when the approximate types for general games are introduced.

2.1.4 The Performance Measure

As mentioned at the beginning, our plan is to provide "worst-case guarantees" about

social welfare for single-good auctions in the approximate valuationting. This plan

requires some explaining: indeed, when all knowledge resides with the players and

they are uncertain about their own valuations, what should "maximum social welfare"

and "actual social welfare" mean? Conceptually, we envisage the following process:

1. A context in ?' materializes: that is, there is one good for sale and n players

show up, each player i with a 6-approximate valuation set Ki.



2. A mechanism designer, knowing only n and B (and in some applications also

a valid accuracy parameter 6), chooses a solution concept and constructs a

(possibly probabilistic) mechanism M for auctioning the good.

3. The "devil", knowing everything specified so far, secretly selects a true valuation

profile 0 such that 64 E Ki for every player i.

4. Each player i, based on his approximate valuation Ki, selects (possibly proba-

bilistically) and reports a strategy si in the set of strategies Si provided to him

by M. (Perhaps, player i may learn O; after the auction is over. Perhaps, he

may never learn it.)

5. The mechanism then evaluates its (possibly probabilistic) outcome function F

on the reported strategy profile s so as to produce an outcome w = (j, P): that

is, the outcome F(s) specifies the player j winning the good, and the profile of

prices P = P1,..., P, that the players pay.

Given this process, whether or not the players eventually become aware of their

own true valuations, the maximum social welfare relative to the secret devil-chosen

0, MSW(6), is taken to be maxi 06, and the actual social welfare relative to 0 for

outcome w = (j, P), SW(6,w) is taken to be Oj. We are interested in studying, as a

function of 6 and the chosen solution concept, the expected value (over all possible

sources of randomness) of the ratio

SW(0, w)
MSW(0)

2.2 Our Results

How much social welfare can we guarantee in approximate-valuation auctions?

In a classical setting the answer is trivial: 100% in (very-weakly-)dominant strate-

gies, via the second-price mechanism. The situation is quite different with approxi-

mate valuations.



2.2.1 The Inadequacy of Dominant-Strategy Mechanisms

A bit superficially, one might argue that very-weakly-dominant-strategy mechanisms

cannot be meaningful in the approximate-valuation world as follows: If a player has

multiple possible candidates for his true valuation, how can he know which one is "the

best" for him to bid no matter what his opponents do?

This "reasoning" presupposes that, as in the exact-valuation world, an auction

mechanism can safely restrict a player's strategies to (reporting) single valuations.

In our setting, however, it is not only reasonable but even natural for a mechanis-

m to allow a player to report a set of valuations (e.g., his own Ki). Indeed, it is

easy to realize that the revelation principle [24] continues to guarantee that every

very-weakly-dominant-strategy mechanism for W,, has an equivalent very-weakly-

dominant-strategy-truthful mechanism. In our approximate world, a mechanism is of

the latter kind if, for each player i: (1) Si, the strategies of i, consists of reporting an

arbitrary 6-approximate set V of valuations, and (2) reporting his true approximate

valuation Ki is a very-weakly-dominant strategy.

With such richer strategy sets, in principle there might be a dominant-strategy

mechanism guaranteeing maximum social welfare. More realistically, in light of the

approximate accuracy of the players' self knowledge, one should expect some degra-

dation of performance to be unavoidable. For instance, one might conjecture that, in

a 6-approximate context, a dominant-strategy mechanism might be able to guarantee

some 6-dependent fraction -such as (1 - 6), (1 - 36), or (1 - 6)2- of the maximum

social welfare. We prove, however, that also this is too optimistic.

Theorem 1. For all n, 6 E (0, 1), B > L, and (possibly probabilistic) very-weakly-

dominant-strategy-truthful mechanism M = (S, F), there exists a 6-approximate-

valuation profile K and a true-valuation profile 0 E K such that

I SW(0, F(K)) <( - [ + ) MSW(0).

(The proof of Theorem 1 can be found in Section 4.1.)

As a relative measure of the quality of the players' self knowledge, 6 should be



independent of the magnitude of the players' valuations. But to ensure an upper

bound on the players' valuations, B should be very large. Accordingly, the above

result essentially implies that any very-weakly-dominant-strategy mechanism can only

guarantee a fraction ~ of the maximum social welfare. However, such a fraction

can be trivially achieved by the "stupid" very-weakly-dominant-strategy mechanism

that, dispensing with all bids, assigns the good to a random player! Thus, Theorem 1

essentially says that no dominant-strategy mechanism can be smart: "the optimal

one can only be as good as good as the stupid one." In other words,

dominant strategies are intrinsically linked to each player having exact 2

knowledge of his own valuations.

A conceptual contribution. The superficial reasoning at the beginning of this

section may be wrong, but not the gut feeling that dominant strategies must be

"wrong" for the approximate valuationting! Intuition, however, must be formalized.

This is what Theorem 1 does. Although not very hard to prove, this theorem is

conceptually important. By formally ruling out dominant-strategy mechanisms from

meaningful consideration, it opens the door to alternative solution concepts: in par-

ticular, to implementation in undominated strategies. We actually believe that our

approximate valuationting will provide a new and vital role for this classical, robust,

and non-Bayesian solution concept.

2.2.2 The Power of Deterministic Undominated-Strategy Mech-

anisms

Our next theorem states that the deterministic second-price mechanism: (1) essen-

tially guarantees a fraction )2 of the maximum social welfare in undominat-

ed strategies, and (2) is essentially optimal among all deterministic undominated-

strategy mechanisms. More formally, denoting by UDed(K) the Cartesian product

UDed1(K1) x ... x UDeda(K.),

2Here "exact" also includes exact Bayesian knowledge, which we will discuss in Chapter 8.



Theorem 2. The following two statements hold:

a. Let M 2p = (S2 p, F2p) be the second-price mechanism with a deterministic tie-

breaking rule. Then, for all n, J E [0,1), B, 6-approximate-valuation profiles

K, true-valuation profiles 0 E K, and strategy profiles v E UDed(K):

/1-5\2 1-6
SW(0,F 2P(v)) > MSW() - 2 .3

1 +j 1+6

b. Let M = (S, F) be a deterministic mechanism. Then, for all n, 6 E (0, 1)

and B > , there exist a 6-approximate-valuation profile K, a true-valuation

profile 0 E K, and a strategy profile s E U Ded (K) such that:

SW(0, F(s)) <( 1 ) + ) MSW()

(Theorem 2a and Theorem 2b are respectively proven in Section 4.4 and Sec-

tion 4.2.4)

Avoiding confusion. In the exact-valuation world, the second-price mechanism

achieves perfect efficiency both in dominant strategies and in undominated strategies.

But in the approximate-valuation world, it is no longer a dominant-strategy one.

Easier and harder. Theorem 2a is not hard to prove. At a very high level,
"It is obvious that each player i should only consider bidding a value vi inside

his own approximate valuation K. It is further obvious that the worst possible

gap between the maximum and the actual social welfare is achieved in the

following case. Let w be the winner in the second-price mechanism, and let

h, h $ w, be the player with the largest candidate valuation. Player w bids

vw = max Kw, and player h bids Vh = min K (and v, only slightly exceeds

Vh). In this case it is obvious that the second-price mechanism guarantees at

most a fraction ~ (,6)2 of the maximum social welfare.

3 Breaking ties at random, the performance guarantee is only marginally better: namely, exactly

(162MSW(6).
4To denote a strategy profile, we use "v" in the statement of Theorem 2a to emphasize that each

player in the M2p indeed bids a valuation; and "s" in Theorem 2b to emphasize that a player's
strategies can be totally arbitrary.



Of course, things are a bit more complex. In particular, the fact that a player i

should only consider bids in Ki requires a proof (and is actually "technically" wrong

as stated).

Theorem 2b is harder to prove, as we should expect for all impossibility results.

Working in undominated strategies, the revelation principle no longer applies. Thus,

rather than analyzing a single mechanism (the "direct truthful" one), in principle we

should consider all possible mechanisms, and establish that each one of them does

no better than the second-price one. In particular, while the second-price mecha-

nism has a clear and simple strategy space (namely, an integer in {0, 1, ... B}), we

should consider mechanisms giving the players absolutely arbitrary strategies: even

reporting arbitrary subsets of {0, 1, . . ., B} would be a strong restriction! Establishing

Theorem 2b thus requires new techniques, to be discussed in Section 3.1.

2.2.3 The Greater Power of Probabilistic Undominated-Strategy

Mechanisms

Our final Theorem shows that, in undominated strategies, there exists an essentially

optimal probabilistic mechanism.

Theorem 3. The following two statements hold:

a. Vn, V6 E (0,1), and VB, there exists a mechanism5 M b) such that for every 6-

approximate-valuation profile K, every true-valuation profile 0 E K, and every

strategy profile s E UDed(K):

((1 - 6)2 +45

SW (0, Fp (s)) ; > ( (1+ J)2 " MSW(0).

b. Let M = (S, F) be a (deterministic or probabilistic) mechanism. Then for all

n, 6 E (0,1), and B > 1% there exist a 6-approximate-valuation profile K, a

strategy profile s E U Ded(K), and a true-valuation profile 0 E K such that

E ISW (0, F(s))) < I " ) + -) MSW(O).
(1+6)2 B

,See Chapter B for a concise definition of M 2.



(The proofs of Theorem 3a and Theorem 3b can be found in Section 4.5 and

Section 4.3 respectively. Note that the mechanism M(6 of Theorem 3a is constructed

given knowledge of 6.6)

Theoretical significance. Theorem 3 highlights a novelty of the approximate-

valuation world: namely, probabilism enhances the power of implementation in un-

dominated strategies even for guaranteeing social welfare. By contrast, probabilism

offers no such advantage in the exact-valuation world, since the deterministic second-

price mechanism already guarantees maximum social welfare. We conjecture that,

in the approximate-valuation world, probabilistic mechanisms will enjoy a provably

better performance in other applications as well.

Technical difficulty. The impossibility result in Theorem 3b is again non-trivial,

but Theorem 3a is even much harder to prove. Indeed, it is the technically hardest

one in this paper.

Practicality. Despite the technical difficulty of its proof, we would like to emphasize

that mechanism M(5 actually requires almost no computation from the players, and

a very small amount of computation from the mechanism. In essence, it is very

practically played.

In addition, its performance is practically preferable to that of the second-price

mechanism. For instance, when 6 = 0.5, Mp guarantees a social welfare that is at

least five times higher that of the second-price mechanism when there are 2 players,

and at least three times higher when there are 4 players. Even when 6 = 0.25, the

guaranteed performance of M(5 is almost two times higher than that of the second-

price when there are 2 players. (For a full comparison chart, see Appendix A.)

6With extra pains, however, one can actually get a reasonable performance if the mechanism only
knows a good upper bound on 6.
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Chapter 3

Single-Good Auctions:

Techniques of Independent Interest

New ventures require new tools. We thus wish to highlight two techniques that we

believe will prove useful to the design and analysis of mechanisms in the approximate

valuationting. We shall prove them in the setting of a single-good auction, but notice

that it is a simple exercise to have the Undominated Intersection Lemma generalized

to any game setting, and the Distinguishable Monotonicity Lemma generalized to

any single-parameter setting. (See Chapter 7 for notions of our approximate types in

general games.)

3.1 The Undominated Intersection Lemma

To prove that a given social choice function cannot be implemented in undominated

strategies in the approximate-valuation model, as it is needed for Theorem 2b and

Theorem 3b, we wish to establish some basic structural properties about undominated

strategies.

For example, as an intuitive warm-up, if the strategies Si available to each player

i simply consisted of reporting single valuations, that is, if Si = {0, 1, ... , B}, would

it be the case that

UDedi(Ki) = Ki ? (3.1)



If so, this would imply the following:

Ki n Ki 7 0 => UDedi(Ki) n UDedi(ki) = 0 . (3.2)

However, relation (3.1) is in general false. Even if the strategies given to each

player are valuations between 0 and B, a mechanism does not need to interpret a

bid vi reported by i as i's true valuation Oi. For instance, the mechanism could first

replace each vi by 7r(vi) where 7r is some fixed permutation over {0, 1, ... , B} and

then run the second-price mechanism as if each player i had bid ir(vi). In this case,

after U Ded(Ki) has been correctly computed, it will look very different from Ki.

Relation (3.2) might hold even if relation (3.1) does not. But it is unclear that it

does: the set of strategies Si's provided by a mechanism can be absolutely arbitrary,

rather than {0, 1, ... , B}. Therefore, as soon as Ki and Ki are even slightly different,

their corresponding UDedi(Ki) and UDedi(ki) may in principle be totally unrelated.

We prove however that a sufficiently simple variant of relation (3.2) holds for all

mechanisms, not just the ones with Si = {0, 1,. .. , B}. Informally,

For any mechanism, no matter whether it is probabilistic or not, if Ki and

Ki have at least two values in common, then there exist two (possibly mixed)

"almost payoff-equivalent" strategies oi and ai respectively having U Dedi (Ki)

and UDedi(K 2) as their support.a

'Actually relation (3.2) holds when the total number of coins usable by the players is
bounded.

This simple property will be powerful enough to derive all of our impossibility

results for implementation in undominated strategies.

Let us emphasize that this lemma actually applies to all undominated-strategy

mechanisms in the approximate-valuation world, not just to auction mechanisms,

let alone single-good ones. The Undominated Intersection Lemma is the key to our

impossibility results for undominated strategies.



3.1.1 Details

Lemma 3.1 (Undominated Intersection Lemma). Let M = (S, F) be a mecha-

nism, i a player, and Ki and Ki two approximate valuations of i intersecting in at least

two integers. Then, for every e > 0, there exist mixed strategies o-i E A(UDedi(Ki))

and ai E A(UDedi(Ki)) such that

V s _i E S_i,, F ̂ (o-i L s-i) - F^(Ai eA s)i} < e

|Fr(o- Li s-i) - Pf(3i u s-i) < E

Proof. Let xi and yi be two distinct integers in KinKi, and, without loss of generality,

let xi > yi. Recall that, by Fact 2.1, UDedi(K) and UDedi(Ki) are both nonempty.

If there exists a common (pure) strategy si E UDedi(Ki) n UDedi(ki), then set-

ting o- =3;i = si completes the proof. Therefore, let us assume that UDedi(Ki) and

UDedi(Ki) are disjoint, and let si be a strategy in UDed2(Ki) but not in UDedi(ki).

The finiteness of the strategy set Si implies the existence of a strategy ai E A(UDedi(ki))

such that oi >- si. We now argue that
i,Ki

~T i E A(UDedi(Ki)) such that Ti >- i (3.3)
i,Ki

Letting 3i = ZjEX af(j)SZ -where X is a subset of Si- and invoking again the

disjointness of the two undominated strategy sets, we deduce that for each j E X there

exists a strategy r E A(UDedi(Ki)) such that hj) w -s. Thus, Ti X a a(j)
i,Ki

satisfies Eq. (3.3).

For the same reason, we can also find some i E A(U Dedi(ki)) such that i >- ri.
i,Ki

Continuing in this fashion, "jumping" back and forth between A(UDedi(Ki)) and

A(UDedi(Ki)), we obtain an infinite chain of (not necessarily distinct) strategies,

{o) kEN, where:

(-( 
(2) -2)

ii i ,K i,K iK

'Note that, while we have only defined what it means for a pure strategy to be dominated by
a possibly mixed one, the definition trivially extends to the case of dominated strategies that are

mixed, as is the case in "ri > 0i" in Eq. (3.3).
i,Ki



Since weak dominance implies very-weak dominance, we have that for all s-i E S-i

and all k E N:

V5e E ki, F(lk) i s_O - F U(axk) L s_*) < FA(O(k) i s_ - FP(p(k) U s-i)

V6i E Ki, Fe(Jk) H s_ - FP (~(k) U si) < Fe(0Ik+l) U s_ - FP(Jk+l) U s

Because xi E Ki n Ki, setting O =

k E N

Wi = xi we see that, for all s-i E S-i and all

FA(oyk) U s_ )xi - FP(ak) [oS_*) <

FA(-) Us )xi - Fp(k)is_ ) <

F(o(k+l) U s_)xi - Ff(ok+l) U S)

Now notice that, s-i E Sj, the infinite and non-decreasing sequence

FA(o l) U s_i)xi - Fr (1) s__) <FA(- 2 ) U s-)xi - FT (- 2 U s )

<FA(oj3 U sF )x - FP(o(3 ) U s_) < - -

is upperbounded by B. (Indeed, xi B, FA ranges between 0 and 1, and each price is

non-negative.) Thus, by the Bolzano-Weierstrass theorem, for every s-i E S-i there

must exist some HS-''0 E N such that Vk > H ,2i

FpA(o-4k) U s_i)xi - FP (c(k) U s) <

Fp(-(k) U s_i)xi - F (&k s_) 

FA(-(k) U s _)xi - FP(-(k) U s__

F(o (k+l) U s__)x - FP(o (k+l) U s )

FA( (k+l) U s_)xi - FP(O k+l) U s_) 5F(ok) U s_i)Xi - FP(o(k) U si)

(3.4)

(3.5)
6

± 3B

(3.6)

Similarly, because y2 E Ki n Ki, setting 9; = Wi = yi, we have that for every



s_; E S-i there must exist some H,'-''") E N such that Vk > H "-''"d

FA(o7(k) U s-i)yj - FP(o-() U si)

FA (-(k) U si)y - FP( (k) U S_)

F07(o-k+1) U s_ i)y - Ff (o- k+1) US .)

F PA (a5k U s_i)yi - Ff (-(k) U S_)

SF (o (k+1) Usiy-F (k+1)

(3.7)

(3.8)

< F(o(k) U Sj)y - F(o-(k) U si) +
3B

(3.9)

Notice now that, because the set of strategies Sj is finite,

HE = max {Hjs-''xd, H8"-i'Y}

is a well defined integer. Next, we pick arbitrarily k > H., and prove that o4 k+1) and

o are the two strategies that we are looking for.

To this end, pick arbitrarily s-i E S-i and sum up Eq. (3.4), Eq. (3.6) and

Eq. (3.8). The (expected) prices and the F(o , s-i)xi term will cancel out so as to

yield

FA(o;(k+l) U s_i)(X - yi) <FUs)k)(x - yi) ±
3B

Then, sum up Eq. (3.5), Eq. (3.7) and Eq. (3.9). The (expected)

F ( ,k) S)y term will cancel out yielding

prices and the

FA^(ak) U Si)(Xi - yi) F (O+l) U s- )(xi - yg) + 3B
3B

Since xi - y > 1, we conclude that for all s_ E SE :

|FA(-(k) U s..) - FA(oQC+1) U S...(310i _ F < ~3B (.0

That is, the first inequality of Lemma 3.1 has been proved. Let us now consider the

price terms.



Fixing arbitrarily s-i E S-i and combining Eq. (3.5) and Eq. (3.10), we get:

FA(&(k) j s - F -(k) j S <i F(o(k+l) U s_x - FP U s)

< F (_k Ljs_i) + )xi - FT (oif+l)L Si

-F[(' U s_) - F (o k+l) U s ) . (3.11)
3

Summing up Eq. (3.4) and Eq. (3.6) and then substituting Eq. (3.10), we get:

F ̂ u(+1 U _ Ff (o+ _i) <F(k) Lj s_i)xi - FT(aik Lj s_i) +Us _ -3B

FA k+1) G ~)+ )Xi -F & Gsi

(Fof+0 U si - F (ak Lj s_i) .
z rU u 3B 3B

=F (o-k+1)S) 6 -FP(aik)UjS _i)
3

(3.12)

Finally, combining inequalities Eq. (3.11) and Eq. (3.12) we immediately get that

for all s-i E S-i:

|FT(&k) U si) - Fr(o.(k+1) Si)I < E

That is, the second desired inequality also holds, completing the proof of Lemma 3.1.

0

3.2 The Distinguishable Monotonicity Lemma

To prove that a given social choice function can be implemented in undominated

strategies, as it is needed for Theorem 2a and Theorem 3a, we are happy to work

with a suitable class of restricted mechanisms, using only very special strategies and

allocation functions. But what should "suitable" mean?

On one hand, these restrictions should suffice for proving Theorem 2a and The-

orem 3a. On the other hand, they should ensure that the undominated strategies

corresponding to a given approximate-valuation set can be characterized in a way

that is both conceptually simple and easy to work with.

Specifically, we consider mechanisms whose strategies consist of possible valua-

tions, namely the set {o, ... , B}, and whose allocation functions are restrictions (to



{O, 1, . . , B}N) of integrable functions (over [0, B|N) satisfying a suitable monotonic-

ity property. A simple lemma, the Distinguishable Monotonicity Lema, will then

guarantee that

The set of undominated strategies of a player i with approximate-valuation set

Ki consist of all valuations between the minimum integer and the maximum

integer in Ki.

We believe that this simple property will be useful beyond our immediate need to

prove Theorem 2a and Theorem 3a. Note that:

" Our setting is still discrete: continuous domains are only tools for proving the

lemma.

" The Distinguishable Monotonicity Lemma, when specialized to the case where

players know their valuations exactly, is a strengthening of a classical lemma

that characterizes those mechanisms that are (very-weakly-)dominant-strategy-

truthful in single-good auctions.

" The Distinguishable Monotonicity Lemma actually applies to all single-parameter

domains, not just single-good auctions (the same way that the classical lemma

does).

3.2.1 Details

Before we describe our lemma, let us recall a traditional way to define auction mech-

anisms from suitable allocation functions.

Definition 3.2. If f : [0, B] [n -> [0, 1| [n] is an integrable2 allocation function, then we

denote by M5 the mechanism (S, F) where S = {0, 1, ... , B}I"n and F is so defined:

on input bid profile v E S,

" with probability fi(v) the good is assigned to player i, and

" if player i wins, he pays Pi =vi - f fi f(zUv-) dz (and all other players pay P = 0

for j $ i.)

2Specifically, we require that, for each v-i, the function f2 (z U vi) is integrable with respect to
z on [0, B].



Remark 3.3.

" M1 is deterministic if and only if f({, 1, ... , B}) C {0, I}["'.

" For all player i and bid profile v, the expected price FT (v) = vi - fi(vi Li v_) -

"'i fi(z U v_) dz.

" We stress that Mf continues to have discrete strategy space S = {O, 1,..., B},

as the analysis over a continuous domain for f is only a tool for proving the

lemma.

" Recall that an allocation function f is monotonic if each fi is non-decreasing in

the bid of player i, for any fixed choice of bids of all other players. In the exactly-

valuation world, the class of mechanisms Mf's when f is both integrable and

monotonic gives a full characterization to all (very-weakly-)dominant-strategy-

truthful mechanisms in single-good auctions.

Now, we want to slightly strengthen this notion of monotonicity.

Definition 3.4. Let f : [0, B][I -+ [0, 1]["I be a allocation function. For d E {1, 2},

we say that f is d-distinguishably monotonic (d-DM, for short) if f is integrable,

monotonic, and satisfying the following "distinguishability" condition:

Vi E [n] , Vv,vi E Si s.t. vi < v'-d, 3 _ E S i (fi(zUv_j)-f(vLUv_j)) dz > 0

If f is d-DM, we say that Mf is d-DM.

Distinguishable monotonicity is certainly an additional requirement to monotonic-

ity, but actually quite mild. Indeed, the second-price mechanism is 2-DM and, if ties

are broken at random, even 1-DM (see Example 3.5). Yet, in our approximate-

valuation world, this mild additional requirement is quite useful for "controlling" the

undominated strategies of a mechanism, and thus for engineering implementations of

desirable social choice functions in undominated strategies.

Example 3.5 (Second-Price Mechanism). Recall that the second-price mechanism

is a direct mechanism that assigns the good to the highest bidder at a price equal to

the second-highest bid: it is a pair M 2p = (S2p, F2p) with S2P = {0, 1, ... , B}["I and



F2P(v) d

1. Assign the good to the highest bidder: i* = argmaxC[] vi.
def2. Charge the highest bidder the second price: P = maxiE[n] vi.

(And everyone else pays nothing.)

In the language of allocation functions, M 2P can be represented as a mechanism Mf,

where f is 2-DM; also, if we require that the ties (for the highest bidder) are broken at

random (by giving a positive, but not necessarily equal, probability to every highest

bidder), then f is 1-DM. So let us prove these two facts:

Proof. At a high level, the allocation function f for M2 p is almost unique, except for

those input bids that contain ties. Now take an arbitrary second-price mechanism

M2p with a specific tie breaking rule. For each player i E [n], we define fi as follows:

for every bid sub-profile zj E [0, B]["H , letting * df maxjp zy,

" for every x < x*, define fi(x LI z_) = 0,

" for every x > x*, define fi(x U zj) = 1,

" for x = x* then there is a tie, in which case

- if zj is a valid integer bid in {O, 1,... , B}[Hn]-, then define f (x* U zj)

to be the winning probability according to how M 2p breaks the tie,3 and

- if zj is not a valid integer bid in {0, 1, ... , B}[H}, then define f (x* uz_)

arbitrarily (say 0 for example).4

One can verify that the mechanism M according to the definition above is exactly

the given M 2p; this is because the two coincide on the allocation probabilities for all

integer points v E {O, 1, ... , B}["], and the price (recall the integral in Definition 3.2)

is exactly the winning probability multiplied by the second highest bid.

It is clear that f is monotonic. Moreover, for any vi, v E {0,1, ... , B} such that

vi < o1 - 1, let everyone else bid some integer x in the open interval (vi, v) by setting

vi = {x, x, ... , x}. By construction, fi(vi u vj) = 0 and every (not necessarily

3 If in M2p player i receives the good with probability 1, then we set fi(x* U zj) = 1; if player i
receives the good with probability 0.2, then fi(x* U z-j) 'f 0.2, and so on.

4Indeed, Mf will never be invoked on an input with more than one non-integer points. It invokes
integer points for calculating allocation probabilities, and one non-integer points for calculating the
price.



integer) z E (x, vf] satisfies f (z U vj) = 1; but this establishes that f is 2-DM:

(fi(z j v_j) - fi(vi U v_ )) dz > (v - x)(1 - 0) !1 > 0

If instead we tweak M 2p to break ties at random by giving a positive (but not nec-

essarily equal) probability to every highest bidder, then, for any vi, vo E {0, 1,... , B}

such that vi < v', let everyone else bid some x = vi by setting vj = {x, X,... ,x}. We

have that for every z E (x, 4i], f(z U v-i) = 1, but f(vi Li v_) < 1 (since every highest

bidder is awarded the good with positive probability); but this establishes that f is

1-DM:

j (fi(z U v_j) - f (vi U v_i)) dz > (v' - x) -(1 - f(vi LI v_i)) >0

as desired.

Lemma 3.6 (Distinguishable Monotonicity Lemma). If f is a d-DM allocation

function, then Mf is such that, for any player i and 6-approximate-valuation profile

K,

UDedi(Ki) {min Ki,..., maxKi} if d = 1, and

UDed(Kj) {minKi-1,...,maxK +1} ifd=2.

(Above, min Ki and max Ki respectively denote the minimum and maximum in-

tegers in K.)

Proof. For every i E N, let vi def min Ki and vT = max Kr. Then, to establish our

lemma it suffices to prove that, Vi E N and Vd E {1, 2}, the following four properties

hold:

1. vi- very-weakly dominates every vi < vt - d.

2. vi very-weakly dominates every vi > v + d.

3. There is a strategy sub-profile vj for which vi is strictly better than every

vi <v - d.

4. There is a strategy sub-profile vj for which v is strictly better than every

vi viT+ d.



Proof of Property 1. Fix any (pure) strategy sup-profile v-i E S-i for the other players

and any possible true valuation 0; E Ki. Letting v' = (v u vj) and v = (vi U vi),

we prove that

E [U(0j, F(v')) - E [U(0j, F(v))

= (fi(v') - fi(v)) -0 - (F (v') - Fr (v))

= (fM(v') - fi(v)) -i - (Ve . fi(va) - ft fi(z u v_) dz -vi fi(v) + j fi(z U v_) dz)

= (fM(v') - fi(v)) - (0A - i ) + ft (fi(z U v_) - fi(v)) dz

Now note that, since 0 E Ki, 01 - v = Oj - min Ki > 0; moreover, by the mono-

tonicity of f, whenever z > vi, it holds that fi(z u vj) > fi(v). We deduce that

EUj (0 , F(v-)) > EU (0i, F(v)). We conclude that v very-weakly dominates vi.

Proof of Property 2. Analogous to that of Property 1 and omitted.

Proof of Property 3. Due to the d-distinguishable monotonicity of M, vi < v - d

implies the existence of a strategy sub-profile vj making f"i (fi(z U vj) - fi(v)) dz

strictly positive. For such v_, therefore, playing v is strictly better than vi.

Proof of Property 4. Analogous to that of Property 3 and omitted. O
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Chapter 4

Single-Good Auctions:

Missing Proofs

4.1 Proof of Theorem 1

Recall that, with the help from the Revelation Principle (which we will prove indepen-

dently in Section 7.5), it suffices to prove this negative result for "direct" mechanisms

where players report arbitrary 6-approximate sets of valuations, and for each player

reporting his true approximate valuation Ki is a very-weakly-dominant strategy.

Theorem 1. For all n, 6 E (0, 1), B > , and (possibly probabilistic) very-weakly-26

dominant-strategy-truthful mechanisms M = (S, F), there exist a 6-approximate-

valuation profile K and a true-valuation profile 0 E K such that

E [SW(0, F(K))< + 5 J1 MSW(9)

Proof. Fix arbitrarily n, 6, and B such that B > 1. We start by proving a separate

claim: essentially, if a player reports a 6-interval whose center is sufficiently high,

then his winning probability and expected price remain constant.

Claim 4.1. For all players i, integers x E (3-, B], and 6-approximate-valuation

sub-profiles Ki,

FA(6[x|u k.i) = F (6[x + 11 u i-) (4.1)



and

Fi (6[x] LI Kj) = FJ'(6[x + 1] L K-) . (4.2)

Proof of Claim 4.1. Because the approximate valuation Ki of player i can be 6[x],

and because when this is the case reporting the truth 6[x] very-weakly dominates

6[x + 1], the following inequality must hold: V Oi E J[x],

F (6[x] Ok_&)-0-FT(6[x1Uk_i) > Ff ([x+1]uk-i)-0i-Ff (6[x+1] uk-i) (4.3)

Because Ki of player i can also be 6[x + 1], and when this is the case reporting

the truth 6[x + 1] very-weakly dominates 6[x], the following inequality also holds:

VG E 6[x +1],

F (6[x+1]UK--i)-0'-.F,, (6[x+1]UK--i) > F (6[x]uk_&)-0 -FT(6[x]uk-i) . (4.4)

Thus, setting 8i = x in Eq. (4.3) and O; = x + 1 in Eq. (4.4), and summing up the

resulting inequalities, the F" price terms and a few other terms cancel out yielding

the following inequality:

F^(6[x + 1] L ki) > FA(6[x] u k_i) . (4.5)

Also, setting O = [x(1 + 6)] in Eq. (4.3) and ' = [(x + 1)(1 - 6)1 in Eq. (4.4),1 and

summing up the resulting inequalities we obtain the following one:

(F (6[xi Gk _i) -FiA(6[x+1] +1 k-i)) - (Lx(1 +6)J - [(x +1)(1 - 6)) > 0 . (4.6)

Now notice that Lx(1 + 6)J - [(x + 1)(1 - 6)1 > 0, because, by hypothesis, x > 3.

Thus from Eq. (4.6) we deduce

FA(6[x] G K.i) ;> FA(6[x + 1] A K-) (4.7)

Together, Eq. (4.5) and Eq. (4.7) imply the desired Eq. (4.1). Finally, combining

Eq. (4.1) with Eq. (4.3) and Eq. (4.4) we obtain the desired Eq. (4.2). 0

Let us now finish the proof of Theorem 1.

1The hypothesis x > 3 implies that x > -g, which in turn implies that, under the above
choices, 6; E 6[x] and 0' E 6[X + 1].



Choose the profile of approximate valuations K - (6[c],6[c],..., 6[c]), where c =

'J + 1. By averaging, because the summation of FA(K) over i E [n] cannot be

greater than 1, there must exist a player j such that Fj(k) < 1/n. Without loss of

generality, let such player be player 1. Then, invoking Claim 4.1 multiple times we

have

FA(J[B], I [c],.., 6[c]) = FA (6[B - 1], J[c], .. . , J[c]) =.--.

= F (6[c], 6[c], ... , 6[c]) = Fj4 (K) .
n

Now suppose that the true approximate-valuation profile of the players is K t

(6[B], 6[c], . . . , 6[c]). Then, for the choice of true-valuation profile 0 = (B, c,.. ., c) E

K, the expected social welfare is:

E[SW(o,F(K))] < 1 B + c C < + - B + - MSW(O)
n n (n B n B

as desired. U

4.2 Proof of Theorem 2b

Theorem 2b. Let M = (S, F) be a deterministic mechanism. Then, for all n, 6 E

(0,1) and B , there exist a 6-approximate-valuation profile K, a true-valuation

profile 0 E K, and a strategy profile s E UDed(K) such that:

SW(0, F(s)) < + MW() (4.8)

def B a de (1-6)x+2 hv
Proof. Choose x + - , we have x > y due to our choice of

B 2 1  . Recalling that 6[x] tf [(1-6)x, (1+6)x] n{0, 1,..., B}, one can verify that

6[x] and 6[y] both contain the two integers [(1 - 6)xl and [(1 - 6)xl + 1,2 satisfying

the requirement of the Undominated Intersection Lemma 3.1.

Choose e such that - + e < 1. Then the Undominated Intersection Lemma 3.1

2 We have [(1 - 6)xl + 1 5 x(1 - 6) + 2 = g B + 2 5 B = (1 + 6)x as B > 1-+, and therefore
J[x] contains both points. We also have [(1 - )x] > [(1 - 6)y and [(1 - 6)xl + 1 [(1 - )xj +2 =

L(1 + J)yJ, and therefore J[y] contains both points.



guarantees that

Vi C [n] ]oi E A(UDedj(6[x])) and of E A(UDedi(6[y])) such that Vs-i E S-i

F (O-i Us) - F (o u si)| <e . (4.9)

Now consider the allocation distribution F^(-1,...,of), where the randomness

comes from the mixed strategy profile since M is a deterministic mechanism. Since

the good will be assigned with a total probability mass of 1, by averaging, there

exists a player j such that F(o-', ... , o-,) < 1: that is, player j wins the good with

probability at most 1. Without loss of generality, let j = 1. In particular, there existn

S'1 E UDed2(6[y]) x ... x UDedn(6[y]), such that F(o-', s'_1) < . This together with

Eq. (4.9) implies that FA(o-1 u sL'1) < I + e < 1. In turn, this implies that there
defAS)=.

exists a pure strategy si E UDed1(6[x]) such that, setting s = (s, Li s' 1), Fj(s) = 0.

Now we construct the desired 6-approximate candidate-valuation profile K and

the true-valuation profile 0 as follows:

K = (6[x], 6[y], . .. ,6[y]) and 0 9 ((1 + 6)x, [(1 - 6)y,..., [(1-6)y)

Note that s E UDed(K), 0 E K, and MSW(9) = (1 + 6)x = B. Since F1A(s) = 0,

SW(, F(s)) = [(1 - 6)y] < (1 - 6 )y + 1

<(1 - 6)2X + 3 = (1 + )2 (1 + 6)x + 3

(1 -6 ) 2  3 _) _

- +- MSW6) .

(1 + 6)2 B

Thus the theorem holds.

4.3 Proof of Theorem 3b

Theorem 3b. Let M = (S, F) be a (deterministic or probabilistic) mechanism. Then

for all n, 6 E (0,1), and B > 1-5, there exist a 6-approximate-valuation profile K, a



strategy profile s E UDed(K), and a true-valuation profile 0 E K such that

[ ] (1 - 6)2 + L 3

E [SW(0, F(s)) (I5 ")2 >n + - MSW(0) . (4.10)

Proof. (The first part of the proof closely tracks that of Theorem 2b in Section 4.2.3)

def B _e 1-6)x+2 hvChoose again x = and y = -+2, we have x > y due to our choice of

B ;> +6, and 6[x] and 6[y] both contain the two integers [(1- 6)x] and [(1 - 6)xl + 1,

satisfying the requirement of the Undominated Intersection Lemma 3.1.

Since we always have [(1 - 6 )y] < (1 - 6)y + 1, we can choose e > 0 small enough

such that

nl( 1 - 6)y] + 6(1 + 6)X - E[(1 - 6)y] < n (1-6)y+1.
n n

Then the Undominated Intersection Lemma 3.1 guarantees that

Vi E [n] there exist oi E A(UDed2 (6[x])) and orf E A(UDedj(6[y])) such that Vs-i E Si:

JFA(o- U si) - FA(of U si) <6 . (4.11)

Again consider the allocation distribution FA(-',... , Or). By averaging, there

exists some player j such that (o-1,..., on) < -. Without loss of generality let

j = 1. Thus, by our choice of e and Eq. (4.11), we have that F(o-1 U or' 1) < +1 e.

This implies that there exists a pure strategy profile s = (si Li s'_1) that is in the

support of (-ui o-'. 1) -and thus in UDed1(6[x]) x U Ded 2(6[y]) x ... x UDed 2(6[y])-

such that Fj (si u s' _) < + e. Now define

KLe (6[x], 6[y], ... , 6[y]) and 0 ((1+6)x,[(1-6)y],...,[(1-6)y])

Notice that s E UDed(K), 0 E K, and MSW(0) = (1 + 6)x = B. We now show

3Very informally, the only differences are that the allocation distribution FA(o,..., a') now
depends also on the "coin tosses of the mechanism", and that one can no longer guarantee the
existence of a pure strategy s such that FiA(s) = 0.



that s, K, and 0 satisfy the desired Eq. (4.10):

E[SW (O,F(si uI s'_i) + E -.(1 + 5)x + - (1 - 6)y]

= -(1+5) x+ - [(1 - 6)y] + EL(1 +6)xj - e(1 -- )y]n n

< 1 .(1+6)x + - (1 -6)y +1I
n n
1 n- (1- 6 )2

< - -(1 +6)x + -+ 3
-n n 1 +j

= I + n 1_j2+ - (1+6J)x
n n (1 +5)2 B

+ ~ - (I_62+3 MSW(O)
n n (1 +6)2 B)

(1 j)2+ + - MSW(O)
(1+6)2 B

4.4 Proof of Theorem 2a

Theorem 2a. Let M2p = (S 2 p, F2 p) be the second-price mechanism with a determin-

istic tie-breaking rule. Then, for all n, 6 E [0,1), B, 6-approximate-valuation profiles

K, true-valuation profiles 9 E K, and strategy profiles v E UDed(K):

SW(0, F2P (V)) ;>2 MSW(O) - 2 1 + 6 (4.12)

Proof. Let M2p = (S2 p, F2p) be (a version of) the second-price mechanism with a

deterministic tie-breaking rule. Since K is a 6-approximate valuation, for each player

i let xi be such that Ki g 6[xj] n {o,... , B}. Then, in light of the Distinguishably

Monotonicity Lemma 3.6 and the previous observation that F2, is a 2-DM allocation

function, we have that, for each player i:

UDedi(x) C { [(1 - 6)xi] - 1, ... , L(1 + 6)xij + 1} . (4.13)

Now we prove the lower bound to the social welfare. Let 0 E K be a candidate

true-valuation profile, i* the player with the highest valuation according to 9, and

j* the player winning the good under the bid profile v. (Thus, Oj. = maxi 9i and



vr = maxj v.) We now bound the difference between Oi- and Oj when i* # j*.

From Eq. (4.13) we know that [(1 - 6)xi* - 1 < vi. and v 5 [(1 + 6 )xj*J + 1.

Because j* is the winner, we also know that vi. < vp. Combining these facts and

removing "floors and ceilings" we have (1- 6)xi. < (1 + 6 )xz + 2. Since we also know

that Or (1 - 6 )xzr and (1 + 6)xi. Oj., we obtain:

SW(9, F2P(v)) = Op (1 - 6)Xz > (1 - 5) 1 z . -2(1-J)
1 + (1+6)

1 - 6 1 2(1 - 6) (1 -6)2 _2(1 - J)
> 1 6 6.- MSW(9) 2- 6)-I +J 6+j (1 + 6) (1 + 6)2 (1+ )

Thus, the claim of our theorem holds.

Consider the case where the second-price mechanism breaks ties at random (as-

signing a positive probability to each tie). Then, one can use a proof analogous to the

one above, with the only difference being that F2, is 1-DM (instead of only 2-DM),

and invoking the stronger inclusion of the Distinguishably Monotonicity Lemma 3.6,

to show the following, stronger lower bound:

E[SW(0,F2P(v))] > (1 +) 2 MSW(O)
(1±+ 6)2

4.5 Proof of Theorem 3a

In this section we explicitly construct and analyze the desired mechanism M.) This

process is not going to be trivial, and thus we break it into several steps, providing

intuition as needed.

4.5.1 A Very Restricted Search

In order to leverage our Distinguishably Monotonicity Lemma 3.6, it is natural for

us to search for M6 among 1-DM mechanisms. Let us now distill an additional

requirement for the underlying allocation function of such mechanisms that suffices

for our goals. We shall do so in terms of the following positive quantity D6: for all



6 E (0, 1),

def 1+6)2
D6 - 1.

Definition 4.2. We say that a allocation function f is 6-good if it is 1-DM and:

Vi E [n), Vv E {0,1,..., B}[", Zfj(v)vj+D.fi(v)vi > - vi(n+D) . (4.14)
j=1

The reason why the additional requirement is sufficient is easily understood:

Lemma 4.3. If f is 6-good, then Mf satisfies that such that for every 6-approximate-

valuation profile K, every strategy profile s E UDed(K) and every true-valuation

profile 0 E K:

(1-6)2±-

E 1 SW(0, F2 P Cv))j (i±62 "l MSW(0).

Proof. Let K be an arbitrarily chosen 6-approximate-valuation profile. Then, because

in any allocation the social welfare coincides with the welfare of a given player, to

prove our lemma it suffices to prove that

n (1 -- 6)2 + LJ
VOEK, VvEUDed(K), ViE[n], I g fj(v)2 (1+6)2 " 0. (4.15)

=1

For every i E [n], let xi E R be such that Ki C 6[xi], and let 6[x] = 6[xl] x ... x

J[x,]. Then, 0 E K and the Distinguishable Monotonicity Lemma respectively imply

(1 - 6)xi < i < (1 + 6)xi and (1 - 6)xi 5 min Ki < vi < max Ki < (1 + 6)xi.

Combining these two chains of inequalities yields

1 -6 1±+6
1 -6 vi < 0 1 6 v . (4.16)1+6 2- -1-_6

Let us now argue that Eq. (4.15) holds by arbitrarily fixing v and i and showing

that it is impossible to construct a "bad" 0 so as to violate Eq. (4.15).

In trying to construct a "bad" 0, it suffices to choose 03 (for j # i) to be as small

as possible, since 0, only appears on the left-hand side with a positive coefficient. For

O6, however, we may want to choose it as large as possible if fi(v) (1,)2 or

as small as possible otherwise. So there are two extreme O's.



Considering these extreme choices, we conclude that no 0 contradicts Eq. (4.15)

if:
n 1 -6 (1 - 6)2 + " 1 -6 )6 , n

E (1+6 )vf(v) ( (1 +6)2 ((1+6) \ 1±n
j=1

n 1 -6 1+6 1 -6 (1 -6)2 + - +
E( )vgfg(v) + (- - -)vifi(v) > +6()2;
=11+6 1 - 1+6 (1_) 1 -6i

Simplifying the above equations, Eq. (4.15) holds if both the following inequalities

hold:
n ~ n + D,5 1

on fy (V) 1 - vi, (4.17)

nn D

vj f(v)+ D.-vifd(v) > v±D . (4.18)
j=1

Note that Eq. (4.18) holds because it is implied by the hypothesis that f is 6-good;

note also that Eq. (4.17) holds because it is implied by Eq. (4.18). Indeed, since

D 1 6) 2 < 1 for all 6 E (0, 1),

Zvf (v) > D 1 (v_ fJ(v) + Davif (v) > 1+1vi
j=15+1 j=1D,+1 n

Thus both Eq. (4.15) and our lemma hold. 0

4.5.2 Our Allocation Function

In light of our last lemma, all is left is to find a suitable 6-good allocation function f.

Some intuition. If the players' bids are not "clustered", then f should clearly give

a much higher probability mass to the highest bids, as lower bids are less likely to

come from players with high true valuations. However, when the highest bids are

close to each other, it is hard for f to "infer" from them who the player with the

highest true valuation really is - after all, we are in an approximate-valuation model.

The intelligent thing for f to do in such a case is to assign the good to a randomly

chosen high-bidding player. To achieve optimality, however, one must be much more

careful in allocating probability mass, and some complexities should be expected.



Since the mechanism M2 of Theorem 3a is allowed to depend on the approxi-

mation accuracy 6, we construct its allocation function, f)(0, depending on it. Our

proposed f(') derives from the players' bids a threshold, and probabilistically chooses

the winning player only among those bids lying above the threshold. We now explain

the rationale for these choices.

Recall that, to be 6-good, a allocation function f : [0, B] [n] _ [0, 1] [n] should

satisfy Eq. (4.14), that is:

n1
Vi E [n], Vv E {0, 1Z .. . B}["] fj(v)vj + D. -fi(v) vi - v(n + D)

j=1

A reasonable guess to "solve for f" is to restrict our attention to symmetric functions.

The most natural candidate is simply

1 zi (n + D,5) -_, z
Vz E [oB] 1 , f(z = z- - ± ) Zi

n zjDb

One could verify that the function f, in addition to being symmetric, sums up to 1,

is 1-DM, and satisfies the desired condition Eq. (4.14). (In fact, as we shall see, the

above candidate f coincides with our proposed f(0 when no threshold is introduced.)

We would be done, except for one crucial fact: f sometimes takes negative values!

We therefore need to "patch" the guessed function f by forcing non-negativity

while maintaining the other required properties, and this is exactly where the idea

of a threshold, winners, and losers comes in. Roughly, only players with sufficiently

low reported valuations are at risk of a "negative probability" and, because are most

likely to have low true valuations, we remove them from the auction altogether. To

preserve the other properties, though, we need to re-weight the function, thereby

obtaining Eq. (4.19). Thus, at high level, we simply keep removing players until all

of the players are given non-negative probability (by virtue of being in the auction or

having been thrown out). A similar idea previously appeared in [6].

While the introduction of a threshold fixes the "negativity problem", it introduces

additional complexities. (For example, even the simple task of verifying monotonicity,

where the bids of all players but i are fixed, becomes non-trivial. Indeed, the number

of winners n* varies as the bid of player i increases, and thus the definition of f(0)



varies too.)

Let us now proceed more formally. Recall that D = ( +_2 - 1 > 0.

Definition 4.4. For every 6 E (0,1), define the function f(): [0, B][I -+ [0, 1][I as

follows: for every i E [n] and every z = (z1,..., z,,) E [0, B][]

e if zi >z 2 >---;>z, then

1 n+D zi(n*+D 6)- z3  .

(Z) n n*+Ds izDf (4.19)
0, if i > n*;

where n* E {1, 2, ... ,n} is the index in [n] (whose existence and uniqueness will

be proved shortly) such that

Z1 >- - - zn* > E* z > Zn*+1 >- --- > Zn (4.20)
n* + Ds

e else, f (z) = fi (z,,(1),..., Zw(n)) where 7r is any permutation of the players

such that z,(1) >-- > z,in) (i.e., we define fP5) by extending it symmetrically).

We call n*+z, the threshold, players 1,...,n* the winners, and players n* +

1, .. ., n the losers.

Lemma 4.5. f(0) is a well-defined allocation function.

Proof. We first prove that n* exists and is unique, and begin with the existence proof.

Assume, without loss of generality, that zi > Z2 - > zn. Note that there exists

an index n' in [n] such that

Vi> n' z 1 Z' -- n'+ D6

Indeed, Eq. (4.21) vacuously holds for n' = n. Now take n" to be the least such index.

Accordingly,

V i > n", z; < E,(1 zi (4.21)
-n"1 + Dj

Next we claim that

Vi<n", z;> E= i (4.22)
- ' n" + D,5



To prove Eq. (4.22), it suffices to consider i = n" because z is non-increasing. Indeed,

by the minimality of n" we know that ("n" - 1 does not work", that is) there exists

some j > n" such that
n"-1

zn > zj > Ej zy
Zl >n""-1+D 6

which, after rearranging, is equivalent to zni > as desired.

At last, combining Eq. (4.21) and Eq. (4.22), and choosing n* = n", Eq. (4.20) is

satisfied.

Next, we prove that n* is unique. Suppose by way of contradiction that there

exist two integers ni' and nT , with ni < nT both satisfying Eq. (4.20). Now define

S-Lde EZj7 S df Z A def T _ ALdef T _ _Si L' 2 zyS z, S'S -S, andmn n n - ni
j=1 j=1

By invoking Eq. (4.20) with n T and n', we deduce that for i E {n + 1 ... , T},

S-L S T  S+SA
-> zi> - =.

nL + D5 - nT + D6  n + nA + Ds

Averaging over all zi for i E {n'+ . ... ,nT}, we get

> ± > (4.23)

Let us now show that the second inequality of Eq. (4.23) contradicts the first inequal-

ity Eq. (4.23):

SA S- + S^ 
SL A

SA S
S(n' + D6)S^ > n'S' - > . (4.24)

nA (n' + D6 )

The contradiction establishes the uniqueness of n*.

We are left to prove that (a) f 5)(z) 2 0 for every i and z, and (b) E> fi 65(z) 5 1

for every z. (Indeed, the last two properties imply that f!6)(z) < 1.)

Assume, again without loss of generality, that zi > Z2 > - - - > zn. Eq. (4.20) tells

us that zi (n* + Db) - E" z3 > 0 for each i < n*, so (a) follows immediately. As for



(b),

n ) 1 n + D6  z(n* + D5) - Ez

= ) .n n* ± DS ziDj

1 n + Dj *±D)5 z
= -- -n*(n* + D,5) - E -

n (n* + D)Ds= =i z)

< - .D (n*(n* + D6) - n*n*) = .*

n (n* + D6)D 6 n n* + Ds-

Lemma 4.6. f(6) is monotonic.

Proof. By symmetry it suffices to show that f(6) is monotonic with respect to the

n-th coordinate. Without loss of generality, assume z1 > z2 > - - z_.. We need

to prove that for any z' and z' with 0 < z' <zT < B,

fL U ) < fl( (z_ u z) (4.25)

We will prove Eq. (4.25) in three steps.

* Step 1. Letting n' be the number of winners in a game where only the first

n - 1 players are bidding z_,, we first prove that:

Zn < E 1z - f (zn U zn) = 0 (i.e., n is a loser) (4.26)
n' + D,

Zn/Z
zn > E,61 zi n fl (zn U zn) > 0 (i.e., n is a winner) (4.27)

n'+ D

To show Eq. (4.26), recall that, in the game with only the first n - 1 players

bidding Z_, we have n' winners satisfying,

Vi E {1, 2, ... , n'}, zi > 1 ; Vi E {n' 1,.. ., n - 1}, zi < .
n'+ D, n' + D5

Then imagine that player n comes with bid zn that is at most ' . In this

new game, because the threshold does not change, the set of winners continues

to be {1, 2, ... , n'} and therefore n must be a loser. Indeed,

Vi E {1,72, .. ., n'}, zi > ,1 z ; Vi E {n'+ 1, ... n},zi! = ,z

n' + D6 n' + Dj



To show Eq. (4.27), we actually prove its contrapositive: namely,

ff (z_ L za) = 0 (i.e. n is a loser) -+ z < E=1 z,
n' ± D6

Let n* be the number of winners when fn'P (z_. U zn) = 0, that is, in the game

where there are n players, the bid profile is z, and player n is a loser; then,

Vi E {1, 2, . . . , n1*}, zi > EzC zj ; Vi E {n* + 1,...,±nzi < E D6 i
n* + Dj n* + Dj

The above also implies the following, where player n has been removed:

E"* znE*z-

Vi E {1,2, ... ,n*}, zi > i Vi E {n* + 1 ... ,n - 1},zi <Z 1 Zn* + Dj n* + Dj

This means, n* is also the number of winners for the (n - 1)-player game, i.e.,

n* = n'. This gives zn < 3
- 1 3 = E z 3

-n*+D,& n'+D,6

Because of Step 1, we only need to show Eq. (4.25) for z' and zn' satisfying

znT > z-' > n . Notice that in such a case, player n is always a winner. Therefore,

let {1, ... ,n }, and {1, ... , nT, n} be the winners when the bid profiles are (zuzi)

and (z_ L ZT ) respectively.

* Step 2. We now prove that

n > nT (4.28)

Assume by way of contradiction that n' < n T and. As in Lemma 4.5, set
A~~~ LefT Sdef andL ST def n Z

n n n, z = S' + S". Then each player

i, with n' < i < nT, is a loser when the bid profile is (z U z') while a winner

when the bid profile is (z_ L zT); in particular,

S-L + z I ST + zT Si+S+zT

+ n > zj > T+1+n 
L+SA+Z

n-L+1 Dj - nT 1 D,5 nL+n*&+1+D,

Averaging over all n' < i < nT we get:

SL +zL Ss S- + SA^+ zT

n+1+ D ~ n- n + n"+1+D&

but this is already a contradiction, since the right hand side is equivalent to



(using a similar technique as Eq. (4.24)):

SA SL+SA+zT SA
nA nL +nA+1+ Ds nA

n-L + DzT
>n
n-L±1±Ds

which actually contradicts the left hand side, as znT > zn. Therefore, n' >

nT.

We now use the fact that n' > n T to obtain Eq. (4.25) for such zn9 and zT satisfying

Zn > Zn' > /D

Step 3. We now prove Eq. (4.25).

If n' = n T, then for both (zn U zLT) and (zn U z,), the set of winners is

{1, 2,... , n , n}. Let n* = n' + 1 = nT + 1 be the number of winners and we

get

1 n+D8

n n* + Db

1
n

n + D5

n* + D6

zi(n* + DN) - E" z_ - zI

zgD6

zn (n*+Ds) -" zy - z5)
= f)(zn U z)

If n' > nT, let n' = n + n', ST = "Tz and S' = zj = ST + S' as

before. Then we average over all zi for nT < i n' and get:

-'& > "- ++D
nA n-L+ 1+ Ds

ST +SA+zI

nT +nA+1+D 6

But this is equivalent to (again using the same technique as Eq. (4.24))

SIN ST + z I

-> n
nA n+1+D8

Letting C1 = n+Da, we now do the final calculation:

( uz ) - f )(z__ U z)

=C1-(zT(n
T + 1 + D6) - ST 

-zT
(nT+1+Ds)z.T

c1 (n + 1 + D)zn

z)zn(n-L + 1 + D6)-S-
(n-L+ 1+ D,)z-L

(n + 1 + D8)ZT)

C 2 - ((S + zn)(nT + 1+Ds)zT - (ST + zT)(n + 1 + D)zi)

C2 - ((ST + SA + zL) (nT + 1 + D.5)zT - (ST + zT) (nT + n + 1 + D6)z

fn(5 L (Z u n Z)

(4.29)

(4.30)



= C2- (ST (nT + 1 + D6)(z - z) + S(nT + 1 + Ds) zT - nA(S T + zT zL

> C2 (ST (nT + 1 + Ds)(zT - z.-) + S"(nT + 1 + Dj)zT - n(S T + z4)zT) > 0

Here the last inequality has used z -z > 0 and S"(nT +1+D)-n(S T ±+z) >

0 (by Eq. (4.30)). E

This finishes the proof that f(6) is monotonic. E

Lemma 4.7. f(0) is 1-distinguishably monotonic.

Proof. We already know from Lemma 4.6 that f(6) is monotonic. Also, the integra-

bility of f(s) is obvious, because f(S) is piecewise continuous, and there are at most n

pieces, as the number of winners decreases when z, increases (recall Eq. (4.28)). We

are therefore left to prove the "distinguishability condition".

Fix a player i E [n] and two distinct valuations vi, v' E {0, 1, .. . , B}, and assume

that vi < vi. Define v_j = (vi, vi,.. ,vi), then:

* f(vi U vj) = since there are n winners, all bidding the same valuation.

f f(z U v_j) = g(D,5 +n - 1 - (n - 1)) > -, when vi < z < (1 + D,5)vi.

Here the upper bound z < (1 + Ds)vi is to make sure that the number of winners is

still n on input (z U vi). Notice that f(z U vj) is a function that is strictly increasing

when z increases in such range, and therefore

/vi minv ,(1+DS~i}
(f (z Uv.) - f (vi uv_)) dz ;> (f(zuvj) - f (viuvi)) dz > 0 ,

as desired.

Lemma 4.8. f(s) is 6-good.

Proof. We already know from Lemma 4.7 that f(0) is 1-DM. Therefore, in order to

prove that f(6) is 6-good, we only need to show that Eq. (4.14) holds. We will actually

prove that Eq. (4.14) holds not only for the discrete cube {, 1, ... , B}[I but also in

the continuous cube [0, B][*



Without loss of generality, assume zi ;> z 2 > ... > zn. We first observe that:

nf)zz =* 1 7+D 5  n* zi(n*+D,5) _ZEn*
fil")(z) zi = ff6 (z) zi = - n + 5 D - zE n += D3 "i 

1+D i=1 nD8

1 n+D
=n .n* + D,5

For each player k with k > n*, because he is a loser, we have,

n n n n +D6
Ef ')(z) )z + D, - (f (Z z z = f (Z z i = n + D,5 K=1 zi n + s-z

j=1 i=1 n n* + D - n

satisfying Eq. (4.14), where the last inequality is due to k > n* and Eq. (4.20).

For each winner i (i.e., with i < n*), we have

f 6 )(z)zj + D, - ff 6 (z)zi = 1+ D (z)zi

1 n+D 6  1- - i(n* + D6) = zi(n + D6)
n n* +D6 n

again satisfying Eq. (4.14).

4.5.3 Our Mechanism Mw

Theorem 3a. Vn, V6 E (0,1), and VB, there exists a mechanism M005 such thatopt

for every 6-approximate-valuation profile K, every true-valuation profile 0 E K, and

every strategy profile v E UDed(K):

SW(0, F2P(v))] > "1_j) MSW(0).(1 + 6)2

Proof. By Lemma 4.8, the function f(O from Definition 4.4 is a (well-defined) allo-

cation function that is also 6-good. Therefore, invoking Lemma 4.3, the mechanism

M.M5) M yields the target social welfare.

Finally, we note that M.6p can be implemented efficiently (just like the second-

price mechanism):

Claim 4.9. The outcome function F of M.05 is efficiently computable.



Proof. It suffices to show that both the allocation function FA = f(6) 1 .B[n] and

expected price function FP are efficiently computable over {0, 1,..., B}I.

First, f(") is efficiently computable for trivial reasons: the number of winners n*

is between 1 and n and can be determined in linear time.

However, FP is efficiently computable for a more involved reason. Without loss

of generality, we show how to compute the expected price for player n as a function

of V, i.e.,

F4S(v_ LIvn)= f(6)(v LI vs).-- f2l)(v~n LIz) dz.

Indeed, when v_, is fixed, f() is a function piece-wisely defined according with

respect to Vn, since different values of Vn may result in different numbers of winners

n*. Assume without loss of generality that vi v2 > - _ - n1, and let n' be the

number of winners when player n is absent.

When v_ <; ,"" Ithe proof of the monotonicity of f(49 implies that fn(P = 0, so

that integral below this line is zero.

When v, > n,+D ) one can again see from the proof of the monotonicity of

f() that n* is non-increasing as a function of vn. Therefore, f() contains at most n

different pieces and, for each piece with n* fixed, fn')(vnGV) = a+b/vn is a function

that is symbolically intergrable. Therefore, the only question is how to calculate the

pieces for fjI.

This is again not hard, by using a simple line sweep method. One can start from

Vn = n "" and move v, upwards. At any moment, one can calculate the earliest

time that Eq. (4.20) is violated, and claim that another piece of f(6) is found. O



Chapter 5

Multi-Good Auctions

We now raise the bar, and consider mechanism design in the approximate-valuation

world for combinatorial auctions. We start with its definitional difference from that

for single-good auctions.

5.1 The Model

As before, we start with the auction contexts in (truly-) combinatorial auctions. For

6 E [0, 1), a 6-approximate (auction) context consists of the following components.

" [n] = {1, 2,.. . , n}, the set of players.

" [m] ={1,..., m}, the set of goods.

" 0, the true-valuation profile, where each 02: 2[m] -+ R>o with Oi(0) = 0.

" Q = An x R["I, where An is the set of profiles A = (AO, A 1 ,..., An) that are

partitions of [m], is the set of outcomes; if (A, P) E Q is an outcome, then we

refer to A as its allocation (i.e., Ai is the subset of the goods assigned to i, and

AO is the set of unallocated goods) and to P as its profile of prices.

" U, the profile of utility functions; each U maps any outcome (A, P) to 9i(Ai) -

P.

* K, the approximate-valuation profile, where, for all i, K: 2[' - 2R>0 gives the

list of possible valuations of player i for each non-empty subset of the goods

(i.e., it always satisfies Ki(0) = {0}). Each Ki is 6-approximate: for all S ; [ml



and S # 0, we have

(i) Oi(S) E Ki(S) and (ii) Ki(S) C 6[cj(S)],

where cl(S) is the "center" of Ki(S) and, for all X E R, 6[x] consists of all

possible valuations within x ± 6x, that is, 6[x] [(1 - 6)X, (1 + 6)X].

Notice that C is fully specified by n, m, 5, 0, K, that is C = (n, m, 6, 0, K). Similarly as

before, in a context C = (n , M, , 0, K) each player i only knows Ki and that 9i E Ki

(which means i(S) E Ki(S) for all S), but not necessarily 6 or K for other player

We remark here that slightly different from the definitions in single-good auctions,

we let players' set of possible valuations be R, for each subset of the goods, rather

than a discrete set {0, 1,... ,B}. This greatly simplifies the proof of one of our

theorems.

The social welfare (function) SW is defined as SW(9, (A, P)) 0;(Aj) for

every true-valuation profile 0 and outcome (A, P). The maximum social welfare of

a true-valuation profile 0, MSW(0), is defined to be the maximum of SW(9, (A, P))

over all possible outcomes (A, P) E Q.

5.2 Our Results

5.2.1 A First Impossibility Result

In dominant-strategies, our impossibility result Theorem 1 for single-good auctions

dramatically generalizes to truly combinatorial auctions.

Theorem 4. For all n, 6 E (0, 1), and (possibly probabilistic) very-weakly-dominant-

strategy-truthful mechanism M = (S, F), there exists a 6-approximate-valuation pro-

file K and a true-valuation profile 0 E K such that

E SW(0, F (K)) <n 1 MSW()

(The proof of Theorem 4 can be found in Section 6.2.)



Further notice that a fraction n(2 1)of the maximum social welfare can be trivial-

ly achieved by the "stupid" very-weakly-dominant-strategy mechanism that, ignoring

all bids, assigns a random non-empty subset of the goods to a random player, and

leaves all other goods unassigned. Our theorem is thus asymptotically tight (up to a

factor of 2).

Exactly for the same reason as Theorem 1, Theorem 4 is non-trivial because each

player i is allowed to for instance bid his own Ki, then in principle there might be a

smart way for a dominant-strategy mechanism to turn such "truthful" bids into an

outcome of reasonable welfare!

5.2.2 A Second Impossibility Result

Recall that for combinatorial auctions in the exact-valuation world, the VCG mech-

anism guarantees perfect social welfare in dominant strategies. The same is true for

the same mechanism but in undominated strategies. That is,

Fact 5. In the exact-valuation world, the VCG mechanism guarantees maximum so-

cial welfare in undominated strategies.

(We have been unable to ascertain whether this fact was previously known, but

we are eager to attribute it properly. Meanwhile, to avoid any doubts, we provide a

proof of it in Section 6.1.)

The above fact legitimizes asking whether our second, positive result for single-

good auctions (i.e., result Theorem 2) generalizes. That is: can the VCG mechanism,

in approximate-valuation combinatorial auctions, guarantee some reasonable efficien-

cy in undominated strategies? Our answer is a resounding NO.

Theorem 6. Let M = (S, F) be a VCG mechanism with any tie-breaking rule. Then,

for all n > 2, m > 2 and 6 E (0,1), there exist a 6-approximate-valuation profile K,

a true-valuation profile 0 E K, and a strategy profile s E UDed(K) such that:

SW (0, Fs) < 7- MSW(O).



(The proof of this theorem is very technical, and can be found in Section 6.3.)1

In other words, while the VCG essentially is the top mechanism for achieving

efficiency in traditional combinatorial auctions (even in undominated strategies, as

we pointed out in Fact 5), in the approximate-valuation world it is close to the bottom.

In fact, it is outperformed by quite simple-minded undominated-strategy mechanisms.

For example, the mechanism that first asks each player to report a single set along

with a value for it, and then runs the second-price mechanism, guarantees a -

fraction of the maximum social welfare in undominated strategies.

One might certainly conceive more sophisticated uses of "dimensionality-reduction

techniques" to improve the performance of the above simple-minded (i.e., "dimension-

1") mechanism, but we do not believe that such approaches can yield a social welfare

guarantee that solely depends on the approximation factor of the players' internal

knowledge (i.e., solely on 6). Actually, the author is aware of a technique to extend

this impossibility result at least to all Maximal-in-Range (MIR) mechanisms.

'Let us note that the exponentially poor performance of the VCG continues to hold even if the
players are p-utility-indifferent for y < 5. (If p > 6, then the performance of the VCG is restored,
but then we will be in a "degenerate" approximate-valuation setting, since a player's uncertainty is
"drowned" by his utility indifference.)



Chapter 6

Multi-Good Auctions:

Missing Proofs

6.1 Proof for Fact 5

In the exact-valuation world, it is well known that the VCG mechanism guarantees

full social welfare in (very-weakly) dominant strategies: if every player reports the

truth then full social welfare is guaranteed and, moreover, reporting the truth is a

very-weakly dominant strategy.

However, when analyzing the same mechanism but in undominated strategies, we

do not assume that players will report the truth just because it is undominated. For

instance, when there are two goods [m] = {1, 2}, a player with true valuation ({i} =

6, {2} = 10, {1, 2} = 8) may also consider to bid ({1} = 6, {2} = 10, {1, 2} = 7), since

underbidding on {1, 2} does not affect the allocation in the VCG mechanism. Indeed,

as we will formalize later in Claim 6.1, when players deviate to some undominated

non-truthful strategy, the allocation "does not change". We will then use Claim 6.1

to prove Fact 5. Details now follow:

Fact 5 (restated). In the exact-valuation setting, the VCG mechanism with random-

ized tie breaking rule1 guarantees full social welfare also in undominated strategies.

'See Remark 6.2 for a brief discussion about how tie breaking rules affect our statement.



Recall that in the VCG mechanism, player i's set of possible strategies Si equals to

his set of possible valuations E8 := R>[ . In this paper we consider truly combinatorial

auctions so that each player can have an arbitrary non-negative valuation function.

Often in the literature, people have also studied restricted cases of E8 (e.g., for instance

letting E8 contain only submodular or matroid-rank sum functions); we emphasize

that our proof below also works for arbitrary choices of E8's as a subset of R2m].
>0

Let the true valuation profile of the players be 0 E E8. It is straightforward to see

that for each player i bidding his truth is an undominated strategy 9; E UDed(Oj),

since a very-weakly-dominant strategy is always not-weakly-dominated. By Lem-

ma 7.9, this implies that UDed1 (0) = Dntj(92 ) so each undominated strategy is also

a (very-weakly-)dominant one for each player i.

Let A(v) be the set of allocations that maximizes the social welfare according to

bidding profile v, i.e.,

A(v) = rgmax ) vi (A)
A=(Ao,Aj,..,A,) i

The VCG mechanism with randomized tie breaking rule will output a random one

among the finite number of choices in A(v), each with some positive probability.

The proof of Fact 5 now relies on the following crucial observation.

Claim 6.1. In the VCG mechanism with randomized tie breaking rule, for any player

i with true valuation 9i and some other undominated strategy 0j E UDedi(0i), we have

V v-i E 0-i, A(9j U vi) C A(0; U vi) . (6.1)

Proof. Fix some vj and let {(Pa, a)}aeA(9u,_,) be the probability distribution over

allocations that the VCG mechanism outputs on input bid profile 9Uv-i, and similarly

define {(q, b)}bEA(ouvj) for that on input bid profile 9; U vj.

Since 0j E UDedj(91 ) = Dnti(3), 0j very-weakly dominates 0G, i.e.,

EU(i, VCG (9j U vi)) > EU(4, VCG (9i U vi)) ,



and by writing down the utilities and canceling out common terms, we have

Z pa(Oi(a) + v_i(a)) ;> > qb(Oi(b) + v_(b))
aEA(jUv-.1 ) bEA(OiUv-i)

If we use OPT to denote the maximum social welfare on input bid profile Oi Jv_i, then

obviously the right hand side equals to OPT, as all b's are by definition maximizers

to this welfare. On the contrary, for every allocation a on the left, we have: Oi(a) +

v_j(a) < OPT by the definition of OPT. This, along with the fact that pa > 0 for all a,

gives us the conclusion that all allocation a on the left will satisfy Oi(a)+v_(a) = OPT,

and thus a E A(j LI vi). This concludes that Eq. (6.1) holds. 5

Now we come back to the proof of Fact 5. Recall that 0 = (01, ... , 0) is the

true valuation profile of the players, and for each i E [n], let Oj E UDed1 (91 ) be some

arbitrary undominated strategy to be played by player i. By repeatedly applying the

above claim, we have

A(0, L 0' --- L 0' ) C A(01 U 0' L -- ' ) 9 -- -A(01 02 u -un).

This says, when players are playing undominated strategies, the possible allocations

that the VCG mechanism may output, is still a subset of all social welfare maximizers

with respect to the true valuations. This completes the proof that the VCG mech-

anism with randomized tie breaking rule guarantees full social welfare when players

play arbitrary undominated strategies.

Remark 6.2. We now make several remarks:

* Fact 5 holds for arbitrary valuation space 0j, including for instance a discrete

space 91 = {0, 1, 2,... , B}21 , or a submodular space. It can also be extended

to maximal-in-range (MIR) or maximal-in-distributional-range (MIDR) mech-

anisms. As a consequence, noticing that undominated-strategy implementation

is provably a safer solution concept than dominant-strategy one, Fact 5 imme-

diately strengthens all prior results on designing VCG-type mechanisms; see for

instance [13].



" If the VCG mechanism breaks ties deterministically, or probabilistically but

with a probability zero at some of the social welfare maximizers, then our above

proof no longer holds. However, Fact 5 still holds when E8 is continuous. The

proof is different and much more involved. We omit it in this thesis.

" If the VCG mechanism breaks ties deterministically, and at the same time

84 = {0, 1, 2,... , B}21 is discrete, then the maximum social welfare might not

be guaranteed. As a simple example in a single-good auction, if the VCG mech-

anism (i.e., the Vickery auction) breaks tie lexicographically, the first player

may underbid by an additive 1, and the last player may overbid by an additive

1, resulting in a maximum additive 1 loss in the social welfare.

6.2 Proof for Theorem 5

We present a slightly stronger version of the theorem, which assumes that each player's

valuations on each non-empty subset of the goods can only reside in a discrete set

{0, 1,... , B}, instead of the entire R,0 . It is easy to see that by letting B -+ 00, the

same theorem also holds for R>.

The main idea of the proof is similar to the one that we used in the case of single-

good auctions in Theorem 1. What lets us achieve a stronger negative result in the

multi-good case is the fact that now we have many more valuations (namely, n(2m -1)

in total) among which the probability mass is spread.

Theorem 4 (restated for discrete valuations). For all n, m, 6 E (0, 1), B > 3,

and (possibly probabilistic) very-weakly-dominant-strategy-truthful mechanisms M =

(S, F), there exist a 6-approximate-valuation profile K and a true-valuation profile

0 E K such that

E[SW(O,F(K))] < n2"-1 + 1 MSW(9)

Proof. We want to prove a similar auxiliary claim as Claim 4.1, that says if a player

reports a 6-approximate valuation that is "sufficiently high", his "winning probabili-



ty" and expected price remain constant. We need to introduce several new definitions

before we can even state our claim in this complicated combinatorial scenario.

For every 6-approximate-valuation profile k and possible outcome w E Q, define

F, (K) to be the probability that mechanism F(K) chooses the outcome W. For every

player i E [n], subset S C [m], and outcome w E Q, we say that the pair (i, S) is

consistent with w, denoted (i, S) w w, if w = (A, P) and Ai = S. Next, for every

6-approximate-valuation profile k, player i E [n], and subset S C [m], we define

Ff,(K) to be the probability that player i receives subset S, i.e.,

FVis(K) = E FO (K).
wEQ

(i,S)~w

This last definition is motivated by the fact that, in a combinatorial auction, player

i is only interested in his own allocation Ai, and is indifferent to A_1. We now show

the variant of Claim 4.1 as follows:

Claim 6.3. For all player i, integer x E (1, B], 6-approximate-valuation profile

K, 6-approximate valuation Ki, and non-empty S C [m]. If Ki(S) = 6[x], Kj(S) =

6[x + 1], while Ki (T) = Kj(T) for all T # S, then

Fs Ki U K-i) = FIs (Ki .K-i) and

F|(ki u k_i) = Ff(kj u k_i).

Proof. We consider two cases:

" If player i has approximate type Ki then reporting Ki very-weakly dominates

reporting Kj:

V01 E ki: (FiT (ki Li ki) -01(T)) - Fp(k Li ki)
TC[m]

>- F|~juki) - i(T)) - Fip(kLJ k-i).
TC[m]

" If player i has approximate type Kj then reporting Kj very-weakly dominates



reporting Ki:

Voi E kR : F ,(kRju k_i) -0 (T)) -F (kj u kAi
TG[m]

> T (F(ki Li k-i) -'(T)) - FT(ki Li ki)
TC[m]

On one hand, we can choose i(S) = x and 9j(S) = x + 1, and for all T 54 S choose

Oi(T) = 0 (T) to be some arbitrary point in Ki(T) = Kj(T). Summing up the two

inequalities, we get:

F st U i) ;> Fski u k-i)-

On the other hand, we can choose Oi(S) = [x(1 + 6)J E ki(S) and O;(S) = [(x +

1)(1 -6)] E k(S), and for all T $ S choose 9i(T) = Vi(T) to be some arbitrary point

in ki(T) = Kj(T). 2 Again summing the two inequalities, most of the terms cancel,

and we are left with the following:

(Fski L k-i) - F.( u k-i)) - ([x(1 + 6) - [(x + 1)(1 - 6)) ;> 0

Therefore, whenever x > 9, we always have [x(1 + 6)J - [(x + 1)(1 - 6)1 > 0 and

thus F (ki,s u I i) = F's(1i U k-i). Finally, going back to the two inequalities for

very-weak dominance, we can also deduce that FT(Ki u K-i) = Ff(K4 u k-i), as

desired. E

We can now go back to the proof of the theorem. Define c def 1 and

Zi (T) 6[c] for all nonempty T C [m] and players i E [n]. Because the mechanism

assigns disjoint outcomes with a maximum total probability of 1, we have:

ZF (K) < 1.
iE [n] TC [m]

1ET

Again, the events in the summation are disjoint, because there is only one good

1 E [m] and it can be assigned to only one of the n players. Also because I{T C G:

1 E T} = 2m-1, at least one of the probabilities, say FiJs(K), is at most n~m_1

2Again, as long as x > -, it is guaranteed that, for these choices, O6 E K1 and Gi E ki. But later
we will choose x > 3-, so we are safe.



Now define K 1 (S) de! 6[B] and K'(T) 6[c] for all nonempty T = S, and

Ki(T) = 6[c] for all players i # 1 and nonempty T C [m]. Invoking Claim 6.3

multiple times with player 1 and the subset S, Kj of this proof, and x going from c

to B, we obtain that

Fs(K)= Fjs(K) m2m-1

Now suppose that the true approximate type profile of the players is K. Then, for

the choice of the true type profile 0 = (01,... , 0,) with 01(S) = B and 01(T) = c for

all nonempty T = S, and O (T) = c for all players i 1 and nonempty T C [m], we

get the following social welfare:

E [SW(e, F(K))] < n2B- 1 + 1- n21 -c (fn2 -1 ± -B

S n2rn-1 +C) SW0

6.3 Proof for Theorem 6

In this section we prove the following theorem:

Theorem 6. Let M = (S, F) be a VCG mechanism with any tie-breaking rule. Then,

for all n > 2, m > 2 and 6 E (0,1), there exist a 6-approximate-valuation profile K,

a true-valuation profile 0 E K, and a strategy profile s E UDed(K) such that:

SW (0, F(s)) < - 2- MSW(O).

6.3.1 Proof Sketch

The very high level reason behind Theorem 6 is that the "arg max function" of the

VCG mechanism, which selects the best allocation of the goods given the reported

valuations, is extremely "unstable" in high dimensions (i.e., when the number of

goods is large) with 6-approximate valuations.

Translating the above idea into a proof is not easy, but let us try to give its flavor.



"Highly-deviating" undominated strategies. Which strategies are undomi-

nated in the VCG mechanism? Consider a player i such that, for a fixed value x,

Ki(S) = 6[x] = [(1 - )x, (1 + 6)x] for all non-empty subset S of the goods (i.e., his

uncertainly is 6-clustered around x everywhere). Now let us consider two possible

strategies of player i.

The first consists of reporting the valuation wi such that wi(S) = x(1 + 106) for

every non-empty S. This strategy is intuitively dominated, since it deviates too much

from the "approximate truth" Ki. Indeed, it can be verified that wi is dominated by

a strategy of reporting x(1 + 6) for every subset S.

Let us now consider a second example. Call a permutation of all non-empty

subsets of the goods 7r = (i, ... ,i 2 m_ 1 ) proper if j < k = iry 2 iFk.3 Then, for any

proper -r, define the valuation vi as follows:

Y j E {1,72, . . ., 2m 1}, =;7 x + 2(j - 1)Jx. (6.2)

Surprisingly, this "high deviating" strategy is actually undominated.

Let us now give a very rough explanation to why this is so. Consider first a pure

strategy v : vi. Then, there must exist some consecutive sets iry and 7ry+1, such that

vi(7rj) - vi(7rj+1) > v(7rs) - v (irj+i). Assume by way of contradiction now that vi

is dominated by v'. If the rest of the players happen to bid such that only subsets

ir3 or -rj+1 could possibly be given to player i by the VCG mechanism, then only

the difference between Ki(7rs) and Ki(7rj+1) matters in terms of player i's utility.

However, we see in Eq. (6.2) that the relative difference between vi(7ry) and vi(irj+1)

is not even more than 26x, resulting in a contradiction. A very careful analysis will

justify that vi cannot in fact be dominated, by any mixed strategy.

More generally (and loosely speaking), for each proper permutation ir, any bid vi

satisfying the following constraints is undominated:

V 1 < i < 2m - 1, vi(7rj) - vi(lrj+1 ) ;> minKi(7rj) - maxK i (7rj +1)

which is a full-dimensional triangular cylinder. Hence, by taking the union over

3When m = 3 such a permutation could be ({1},{2},{3},{1,2}, {1,3},{2,3},{1,2,3}) or
({1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}); and there are plenty more such proper permutations.



all proper permutations (of which there are exponentially many), we obtain a full-

dimensional subset of the bid space, each of whose points is an undominated strategy

of player i; we call it a "bird" and each triangular cylinder a wing of the bird. For

more details, see the Bird Lemma 6.4.

(A characterization. In fact, the reverse is also true: namely, if there does not

exist a wing containing a given bid vi, then vi must be dominated. This gives the

first characterization of the undominated strategies of the VCG in an approximate-

valuation setting. We omit proving this direction in this thesis, because it is not

necessary for the proof of Theorem 6.)

A hard instance. Finally, in order to show that the social welfare guaranteed by

the VCG mechanism is not more than (,)22, as claimed in Theorem 6, we design

two "highly-deviating" undominated strategies for two different players, one strate-

gy significantly overbidding and one strategy significantly underbidding, in order to

"confuse" the VGC mechanism. This hard instance will be chosen in Section 6.3.4.

6.3.2 The Bird Lemma

Lemma 6.4 (Bird Lemma). In the VCG mechanism, no matter how the ties are

broken, for a player, if his approximate valuation K and his bid v satisfy the following

requirements, then v E UDed(K) for him.

1. Each K(S) is an interval: VS C [m] and S # 0, K(S) = [K(S)', K(S)T ] for

some real K(S)',K(S)T .

2. K' and KT are weakly monotone:

V0 S C T Cm|, K(S)' < K(T)-,

VO #S C T [m, K(S)T < K(T)T .

3. v is strictly monotone:

V0 54 S C T C [m|, v(S) < v(T ).



4. At least one coordinate of v is above (resp. below) its lower (resp. upper) bound:

]S' E [im], v(S') 5 K(S')T  (6.3)

3S" E [im], v(S") > K(S")L (6.4)

5. There exists a proper permutation w of all non-empty subsets of [m], such that:

VI < i < 2" - 1, v(-ri) - v(wri+1) > K(iri)' - K(-ri+1)T . (6.5)

Here we assume that r( 2m) = ir(1).

6.3.3 Proof of the Bird Lemma

Let the player that we consider be the first player. Assume by contradiction that

his bidding strategy v is weakly dominated by some mixed strategy {pj, v(U)} , where

the probabilities pj's sum up to one and vU) : v for all j. Our goal is to provide a

witness bid of the other player w4, and a witness true valuation 0 E K such that, if

U is the utility function for the first player, then

U(9,VCG(v u w)) > pjU(, VCG(o0) Li w)) . (6.6)

This will contradict the fact that the mixed strategy {p, v()}i weakly dominates v.

We shall, however, create such witness w : 2["] -+ R,0 and 0 E K based on different

cases.

Notation.

" We call the player bidding v the first player, and the player bidding w the second

(or the witness) player. We drop the subscript for notational simplicity.

" We say that the allocation of VCG (v u w) is (S, T) if the first player receives S

and the second player receives T.

" We use SW[(S, T)] = v(S) + w(T) to denote the "social welfare" of the allo-

cation, as if both players have exactly the reported bids v U w as their true

valuations.

4Notice that it suffices to consider only a two-player game, since if we have more than two players,
we can let the rest of them bid 0 as a witness.



" Since VCG mechanism is maximizing social welfare, we have that SW[VCG(v Li

w)] = max(S,T){v(S) +w(T)} where the maximization is over all partition (S, T)

of the good set [m].

" For notational simplicity, given a bid v, we define its monotonizer U to be such

that:

U(S) = max v(T)
TCS

Now, among the following inequalities, at least one of them cannot hold:

v(7ri+1 ) - v(ri) < miny {jV)(ri+1) - v)(iri)}, V1 < i < 2 -1Sv(S') < minf {()(S')} (6.7)
"(S") > maxi -()(S))

We now show that if all inequalities above hold, there must be a contradiction.

Indeed, we can infer from the first inequality that for each i and j, v(7ri+1)-v(7ri) <

v) (7ri+1) - v0)(-ri), but this sum up to 0 < 0 for all 1 < i < 2' - 1. This means, all

such inequalities must be tight, so for each j, v) must be the same as v only up to

a constant shift. In other words,

VS C [m] and S $ 0, v0)(S) = v(S) + cU) for some constant cG).

But substituting this into the second and third inequality in Eq. (6.7), we know that

0 < mini c() and 0 > maxj c), and therefore c )'s must all be 0, contradicting the

fact that vj) # v.

Therefore, one of the three kinds of inequalities in Eq. (6.7) must fail, and accord-

ing to which one of them fails, we have three subcases. Now, we will show that for

each possible case, Eq. (6.6) holds, and therefore the bidding strategy v cannot be

weakly dominated.



Case 1

Suppose that the first inequality of Eq. (6.7) is broken. Without loss of generality,

we assume that it is broken for i = 1:

v(-r2) - v(71) > min {v )(7r 2 ) - v)(ri)}

We let J = arg ming {(i)(7 2 ) - vi)(7ri)} be the set of minimizers, and let j* E J

be one of them. We can always choose some A such that

v(7r2) - v(7ri) > A > v*)(r2) -v(i*)(ri) , (6.8)

and for every j g J:

V(j) (r2) - )(71) > A.(6.9)

Now, we set the witness bid of the other player to be w(i) = H + A, w(T) = H

and w(S) = 0 anywhere else. Here H is some very large value. We will deal with

the case when iTW = 0 or F = 0 later, since we cannot set the second player to have

non-zero valuation on an empty set. We claim that:

Claim 6.5. If M L 0 and 72 0:

a. The allocation of VCG (v U w) is w = (ir2, T)

b. For all j* E J, the allocation of VCG (v(j*) U w) is w = (T, iT) for some T E

arg maxTC.. v(*) (T) (or a probabilistic distribution over them in case of ties).

c. For all j V J, the allocation of VCG(v(j) U w) is w = (T, 2) for some T E

arg maxCr,2 e(j) (T) (or a probabilistic distribution over them in case of ties).

Proof. For any candidate allocation (S, T) of the VCG mechanism when the second

player bids w, if T g {7T, 2}, then SW[(S, T)] does not contain the big term H and

is thus smaller than any SW[w] in all three cases. Therefore, we only need to consider

outcomes of the form (S, Fy) and (S, ).

a. In this case, SW[w] = v(7r2) + H. If the allocation is of the form (S,2), by

the strict monotonicity of v, (7r2, T) = w must be the allocation with the best

social welfare. If the allocation is of the form (S, WT), similarly, (7ri, 7j) must be

the allocation with the best social welfare, however, in this case v (7r1) + w(T) =



v(-ri) + H + A < v(r 2 ) + H = SW[w], using Eq. (6.8). In sum, w = (?r2 , T)

must be the allocation of the VCG mechanism.

b. In this case, SW[w] = v(7*)(lri) + H + A. For the allocation of (S,i-), S

must be a subset of 7r1 and therefore S E arg maxTcy, v(j*)(T) as desired, since

the VCG mechanism is outputting an allocation with the maximum reported

social welfare. For the allocation of (S,T2-), SW[(S,T2-)] < v(j*)(7r2) + H <

v(*)(-7r) + H + A = SW[w] (using Eq. (6.8)) is worse than the choice of w. So

the allocation must be of the desired form.

c. In this case, SW[w] = v)(7r2 ) + H. For the allocation of (S, wy), we have that

SW[(S,iy)] < v()(iri) + H + A < v(U)( 7r2 ) + H = SW[w] (using Eq. (6.9)) is

worse than the choice of w. For the allocation of (S,T2), S must be a subset of

r2 and therefore S E arg maxTc, v s)(T) as desired, since the VCG mechanism

is outputting an allocation with the maximum reported social welfare. In sum,

the allocation must be of the desired form.

Claim 6.6. When Wj = 0 or T2 = 0, Claim 6.5 only requires the following small

changes:

a. When Tj- = 0 (i.e., 71r = [m]), at any time (T, i) is a possible allocation

declared in Claim 6.5, (T, R) for R C T is now also possible.'

b. When T2 = 0 (i.e., , 2 = [m]), at any time (T,T2-) is a possible allocation

declared in Claim 6.5, (T, R) for R C T is now also possible.6

Proof.

a. This is because, due to the (strict) monotonicity of v we have v(ri) > v(r 2) and

thus Eq. (6.8) tells us that A < 0. Instead of choosing some sufficiently large

H, we can choose H = -A. It will make sure that w(0) = w(-T) = 0 while

w(Tri) = -A > 0. The only place that we used H being sufficiently large, is

where we declare that the only possible candidate allocation for VCG(. U w) is

5As a consequence, Claim 6.5a and Claim 6.5c still hold, but Claim 6.5b will be changed to
include the possible outcomes of w = (T, R) where T is still in arg maxTC, o(A (T) but w C T.

'As a consequence, Claim 6.5b still holds, but Claim 6.5a and Claim 6.5c need small changes.



of the form (S, fj) or (S, T-). This is no longer true as we have to also consider

(S, R) for R $ Wij or T2. However, since w(R) = 0, SW[(S, R)] = SW[(S, 0)] =

SW[(S, Ti)]. This means, allocation (S, R) will be possible only if (S, Wj) is

possible.

b. This is because, due to the weak monotonicity of v&*) we have V(*) (7 2 ) >

v(*)(ri) and thus Eq. (6.8) tells us that A > 0. Instead of choosing some

sufficiently large H, we can choose H = 0. It will make sure that w(0) =

w(T2) = 0 while w(Wij) = A > 0. The only place that we used H being

sufficiently large, is where we declare that the only possible candidate allocation

for VCG(- U w) is of the form (S, Ti) or (S, W2). This is no longer true as we

have to also consider (S, R) for R =A Tj or T. However, since w(R) = 0,

SW[(S, R)] = SW[(S, 0)] = SW[(S,)2)]. This means, allocation (S, R) will be

possible only if (S, 7F) is possible.

0

Now, we have some knowledge about what outcomes could be outputted by the

VCG mechanism, on input v U w, and on bid vj) U w. We now come to the final part

that is to show that Eq. (6.6) holds. We first compute the utilities in all three cases:

Claim 6.7. If we choose 0(7 2 ) = K(7r2)T and C(S) = K(S)' for everything else (i.e.,

S , 0 and S A 7r2).

a. U(0, VCG (v U w)) = K(r 2)T + H - maxs w(S),

b. U(0,VCG (v(*) U w)) < K(ri)' + H + A - maxs w(S) for every j* E J, and

c. U(0, VCG (vU) U w)) < K((7r2 )T + H - maxs w(S) for every j g J.

Proof.

a. We have proved in Claim 6.5a that (ir2, F2) is the only possible allocation in

this case, and therefore U(O, VCG(v U w)) = U(0, (7r2, F2)) = K(7r2)T ± w(i) -

maxs w(S) = K(7r2)T + H - maxs w(S).

b. We have proved in Claim 6.5b that (T, li) is the only possible allocation in

this case, and therefore if T : ir2, we have U(0,VCG(v(3*) U w)) = K(T)1 +



w(wi) - maxs w(S) K(7r1)I + H + A - maxs w(S). (Here we used the weak

monotonicity of K', i.e., K(T)' < K(ri)'.)

Otherwise, if T = r2 (i.e., the allocation is (7r2 , i), we must have that ir2 G; gri

By the (strict) monotonicity of v and Eq. (6.8), we have that A < V(r 2) -

V(7r1) < 0. In this case, since w(Wi) = H + A = w(Tri) + A, we know that

SW[(7r2,T2)] = SW[(7r2,T1)] - A > SW[(7r2,WT)]. This indicates that (r 2, Wi)

will never be a possible outcome , giving a contradiction.

c. We have proved in Claim 6.5c that (T, T2) is the only possible allocation in

this case, and therefore U(0, VCG (v(3*) u w)) < K(T)T + w(W2) - maxs w(S) 5

K(r 2 )T + w(T2) - maxs w(S) = K(7r2)T + H - maxs w(S). (Here we used the

weak monotonicity of K T , i.e., K(T)T < K(7r2 )T -)

We remark here that, in the case when 1 = 0 or 2 = 0, the allocation might also

be (S, R) for some w(R) = 0, but one can check that the same conclusions still hold,

by our choice of H.)

Corollary 6.8. Eq. (6.6) is satisfied.

Proof. We recall that Eq. (6.5) tells us that v(7r2) - v(ri) < K(wr2)T - K(ri)', but

we have v(r 2) - v(7ri) > A in Eq. (6.8). This tells us that K(ir2)T > K(r 1)' + A.

Now, for every j* E J,

U(9, VCG(v u w)) = K(7r2 )' + H - maxw(S) > K(iri)' + H + A - maxw(S)
S S

> U(0, VCG(v3*) u w))

while for every j g J,

U(9, VCG(v u w)) = K(7r2 )T + H - maxw(S) > U(9, VCG(vj) U w))
S

The combination of them immediately implies Eq. (6.6)

We recall that Eq. (6.6) gives a contradiction and says that v is an undominated

strategy, and this ends the proof of the Bird Lemma 6.4, for Case 1.



Case 2

Suppose that the second inequality of Eq. (6.7) is broken, that is, v(S') > mini{v(i)(S')}.

Similar as Case 1, we let J = arg mini {(v3)(S') } be the set of minimizers, and let

j* E J be one of them. We can always choose some A such that

v(S') > A > V(*)(S') , (6.10)

and for every j V J:

VU) (S') > A. (6.11)

Now, consider the following witness player, with w(F) = H and w([m]) = H + A,

and w(S) = 0 everywhere else. Notice that unlike Case 1, A > 0 is always positive.

We also let H be sufficiently large when S' $ 0. We choose H = 0 if S' = 0.

Claim 6.9 (A variant of Claim 6.5). If S' $ 0,

a. The allocation of VCG (v U w) is w = (S', S')

b. For all j* E J, the allocation of VCG(v(3*) U w) is w = (0, [m]).

c. For all j V J, the allocation of VCG(vU) U w) is w = (T,S7), where

T E argmaxvUj)(T)
TCS'

(or a probabilistic distribution over them in case of ties).

Proof. For any candidate allocation (S, T) of the VCG mechanism when the second

player bids w, if T V {S, [m]}, then SW[(S, T)] does not contain the big term H and

is thus smaller than any SW[w] in all three cases. Therefore, we only need to consider

outcomes of the form (S, Y) and (0, [m]).

a. In this case, SW[w] = v(S') + H. If the allocation is of the form (S, S'), by

the strict monotonicity of v, (S',Y) = w must be the allocation with the best

social welfare. If the allocation is (0, [m]) its social welfare SW[(O, [m])] =

A + H < v(S') + H = SW[w], using Eq. (6.10). In sum, w = (S', S') must be

the allocation of the VCG mechanism.

b. In this case, SW[w] = H+A. For the allocation of the form (S, S'), SW[(S, S')] <

vU*)(S) + H < H + A = SW[w] (using Eq. (6.10)) is worse than the choice of



c. In this case, SW[w] = v0)(S') + H. For the allocation of (0, [m]), we have that

SW[(0, [m])] = H±+A < v)(S') + H = SW[w] (using Eq. (6.11)) is worse than

the choice of w. For the allocation of the form (S, S'), S must be a subset of

S' and therefore S E arg maxTcs, v )(T) as desired, since the VCG mechanism

is outputting an allocation with the maximum reported social welfare. In sum,

the allocation must be of the desired form.

Claim 6.10 (A variant of Claim 6.6). When ' = 0 (i.e., S' = [m]), Claim 6.9 only

requires the following small changes:

at any time (T, S) is a possible allocation declared in Claim 6.9, (T, R) for

R C T is now also possible.7

Proof. Recall that, instead of choosing some sufficiently large H, we choose H = 0

in this case. The only place that we used H being sufficiently large, is where we

declare that the only possible candidate allocation for VCG (- U w) is of the form S, ')

or (0, [m]). This is no longer true as we have to also consider (S, R) for R 4 Y' or

[m]. However, since w(R) = 0, SW[(S, R)] = SW[(S, 0)] = SW[(S, 3)]. This means,

allocation (S, R) will be possible only if (S, 7) is possible. E

Now, we have some knowledge about what outcomes could be outputted by the

VCG mechanism, on input v U w, and on bid vU) U w. We now come to the final part

that is to show that Eq. (6.6) holds. We first compute the utilities in all three cases:

Claim 6.11 (A variant of Claim 6.7). If we choose 0(S) = K(S)T for everything

non-empty S:

a. U(0, VCG (v U w)) = K(S')T + H - maxs w(S),

b. U(0, VCG (vU*) U w)) = H + A - maxs w(S) for every j* E J, and

c. U(9, VCG (v) U w)) < K(S')T + H - maxs w(S) for every j g J.

Proof.

7As a consequence, Claim 6.9b still holds, but Claim 6.9a and Claim 6.9c need small changes.



a. We have proved in Claim 6.9a that (S', S') is the only possible allocation in

this case, and therefore U(0, VCG (v Li w)) = U(0, (S',S')) = K(S') T + w(S') -

maxs w(S) = K(S')T + H - maxs w(S).

(In the case when Y = 0, the allocation might also be (S', R) for some w(R) =

0, and since we have chosen H = 0 this utility equation still holds.)

b. We have proved in Claim 6.9b that (0, [m]) is the only possible allocation in

this case, and therefore U(O,VCG(v(j*) Li w)) = 0 + w([m]) - maxsw(S) =

H + A - maxs w(S).

c. We have proved in Claim 6.9c that (T, S') is the only possible allocation in

this case, and therefore U(0,VCG(v0) Li w)) < K(T)T + w(3) - maxsw(S) <

K(S')T + w(S) - maxs w(S) = K(S')T + H - maxs w(S).

(Here we used the weak monotonicity of K T, i.e., K(T) T < K(S') T . In the case

when ' = 0, the allocation might also be (T, R) for some w(R) = 0, and since

we have chosen H = 0 this utility equation still holds.)

0

Corollary 6.12. Eq. (6.6) is satisfied.

Proof. We recall that Eq. (6.3) and Eq. (6.10) tell us that A < v(S') < K(S') T . Now,

for every j* E J,

U(9, VCG (vLJw)) = K(S')T +H-maxw(S) > H+A-maxw(S) = U(O,VCG(v(3*)Lw))
S S

while for every j g J,

U(9, VCG (v Li w)) = K(S')T + H - maxw(S) > U(O, VCG (vUj) Li w))
S

The combination of them immediately implies Eq. (6.6) 0

We recall that Eq. (6.6) gives a contradiction and says that v is an undominated

strategy, and this ends the proof of the Bird Lemma 6.4, for Case 2.



Case 3

Suppose that the second inequality of Eq. (6.7) is broken, that is, v(S") < maxy{v(i)(S")}.

Similar as Case 1/2, we let J = arg max, {vi) (S") } be the set of maximizers, and

let j* E J be one of them. We can always choose some A such that

v(S") < A < v(*)(S") , (6.12)

and for every j V J:

v()(S") <A . (6.13)

Now, consider the following witness player, with w(S) = H and w([m]) = H+A,

and w(S) = 0 everywhere else. Notice that unlike Case 1, A > 0 is always positive.

We also let H be sufficiently large when S" = 0. We choose H = 0 if S" = 0.

Claim 6.13 (A variant of Claim 6.5). If SY' 0,

a. The allocation of VCG (v U w) is w = (0, [m]).

b. For all j* E J, the allocation of VCG(v(i*) U w) is w = (T,S"), where T E

arg maxTcs v() (T) (or a probabilistic distribution over them in case of ties).

c. For all j § J, the allocation of VCG (v) U w) is w = (0, [m]).

Proof. For any candidate allocation (S, T) of the VCG mechanism when the second

player bids w, if T V {S", [m]}, then SW[(S, T)] does not contain the big term H and

is thus smaller than any SW[w] in all three cases. Therefore, we only need to consider

outcomes of the form (S, S") and (0, [m]).

a. In this case, SW[w] = H + A. If the allocation is of the form (S, ), by

the strict monotonicity of v, (S", S) = w must be the allocation with the best

social welfare. However, its social welfare SW[(S", S")] = v(S") +H < H+A =

SW[w], using Eq. (6.12). In sum, (0, [m]) must be the allocation of the VCG

mechanism.

b. In this case, SW[w] = v(j*) (S") + H. For the allocation of (0, [m]), we have that

SW[(0, [m])] = H+A < v(i*)(S") +H = SW[w] (using Eq. (6.12)) is worse than

the choice of w. For the allocation of the form (S, S"), S must be a subset of S"

and therefore S E arg maxTcS,, v(j*) (T) as desired, since the VCG mechanism



is outputting an allocation with the maximum reported social welfare. In sum,

the allocation must be of the desired form.

c. In this case, SW[w] = H+A. For the allocation of the form (S, S"), SW[(S,")]

v)(S) + H < H + A = SW[w] (using Eq. (6.13)) is worse than the choice of w.

Claim 6.14 (A variant of Claim 6.6). When S" = 0 (i.e., S" = [m]), Claim 6.13

only requires the following small changes:

at any time (T, 5") is a possible allocation declared in Claim 6.13, (T, R) for

R C T is now also possible.8

Proof. Recall that, instead of choosing some sufficiently large H, we choose H = 0 in

this case. The only place that we used H being sufficiently large, is where we declare

that the only possible candidate allocation for VCG (. U w) is of the form (S, S") or

(0, [m]). This is no longer true as we have to also consider (S, R) for R / S" or

[m]. However, since w(R) = 0, SW[(S, R)] = SW[(S, 0)] = SW[(SS")]. This means,

allocation (S, R) will be possible only if (S, S") is possible. E

Now, we have some knowledge about what outcomes could be outputted by the

VCG mechanism, on input v U w, and on bid vj) U w. We now come to the final part

that is to show that Eq. (6.6) holds. We first compute the utilities in all three cases:

Claim 6.15 (A variant of Claim 6.7). If we choose 0(S) = K(S)T for all non-empty

S:

a. U(0, VCG (v U w)) = H + A - maxs w(S),

b. U(6, VCG (v&*) U w)) H + K(S")' - maxs w(S) for every j* E J, and

c. U(6, VCG (v) U w)) = A+ H - maxs w(S) for every j g J.

Proof.

a. We have proved in Claim 6.13a that (0, [m]) is the only possible allocation

in this case, and therefore U(0, VCG(v U w)) = U(0, (0, [M])) = 0 + w(S") -

maxs w(S) = H + A - maxs w(S).

8As a consequence, Claim 6.13a and Claim 6.13c still hold, but Claim 6.13b needs small changes.



b. We have proved in Claim 6.13b that (T, S") is the only possible allocation in

this case, and therefore U(9, VCG(v(j*) L w)) < K(T)' + w(5') - maxs w(S) <

K(S")' + w(S") - maxs w(S) = K(S")- + H - maxs w(S).

(Here we used the weak monotonicity of K', i.e., K(T)' < K(S")-'. In the case

when S" = 0, the allocation might also be (T, R) for some w(R) = 0, and since

we have chosen H = 0 this utility equation still holds.)

c. We have proved in Claim 6.13c that (0, [m]) is the only possible allocation

in this case, and therefore U(O, VCG(v3) Li w)) = 0 + w([m]) - maxs w(S) =

H + A - maxs w(S).

Corollary 6.16. Eq. (6.6) is satisfied.

Proof. We recall that Eq. (6.4) and Eq. (6.12) tell us that A > v(S") > K(S")'.

Now, for every j* E J,

U(O,VCG(vLjw)) = H+A-maxw(S) > H+K(S")'-maxw(S) = U(9,VCG(v(i*)uw))S S

while for every j V J,

U(G, VCG(v U w)) = H + A - max w(S) = U(O,VCG(v0) U w))S

The combination of them immediately implies Eq. (6.6)

We recall that Eq. (6.6) gives a contradiction and says that v is an undominated

strategy, and this ends the proof of the Bird Lemma 6.4, for Case 3.

6.3.4 The Hard Instance

In this subsection we will provide an example that is a two-player auction with m > 2

goods, and show that the social welfare may be broken exponentially, even though

both players only consider undominated bidding strategies. In particular, we will

provide approximate valuations K 1 and K 2 for the two players, undominated strate-

gies vi E UDed(Ki) and v2 E UDed(K 2), and at last show that in the game play of



v1 U v2, the allocation VCG (vi U v2) may be exponentially bad. Here we will use the

Bird Lemma 6.4 twice to claim v1 E UDed(Ki) and v2 E UDed(K 2).

Before we start, let us consider a specific permutation ir for over all 2m - 1 non-

empty subsets of [m], satisfying:

1. if i < j, then 7ri g wr;

2. 'ri = 7r2m-1_i; and

3. 7r2m-1 = [M].

For instance, when m = 3 we can let:

7r = ({1}, {2}, {3},{1, 2},{1, 3}, {2, 3},{1, 2, 3})

We choose some arbitrary positive constant x to start with:

Claim 6.17. v1 E UDed(Ki) if we choose:

" K1 to be such that K1 (7ri) = [x(1 - 6), x(1 +6)] for all i E { 1, 2, ...,72M _ 1

" vi to be such that v1 (7ri) = x(1 + 2(i - 1)6) for all i E {1, 2, ... , 2m - 1.

Proof. We only need to check that all assumptions in Bird Lemma 6.4 hold. Indeed,

K1 and KT are weakly monotone because they are constant. vi is strictly monotonic

since v 1 (wri) < v1 (wr) if i < j. If we choose S' = S" = 7ri, we definitely have

v1(S') = x < x(1 + 6) = K 1 (S')T and vi(S") = x > x(1 - 6) = K 1 (S")'. At last, we

verify Eq. (6.5). If we just choose this specific 7r, we have:

V1 < i < 2 m - 2, v 1 (7ri) - v1(7ri+1) = -26x = K1 (7ri)' - K1(ri+1)T

and for i = 2m - 1,

V 1 (7r2ml) - v 1 (7r 1 ) > 0 > -26x = K1(r2m_ 1 ) - K1(7r1)T

Now we choose some arbitrarily small constant e > 0 and come to the second

player:

Claim 6.18. v 2 E UDed(K 2) if we choose:



* K 2 to be such that

K2 (7ri) = x - x - (1 56) (1-6), (1 6) (1+5)1

for all i E {1, 2, ... , 2m - 2}, and K 2 (7r 2-- 1 ) being a set of a single value

K 2 (ir 2-- 1 ) = {K 2 (7r2--2)T + x} .

* v2 to be such that v2 (wri) = 2iox -e for all i E {1, 2, ... ,2m-2}, andv2 (r 2 m_ 1 ) =

x + 2(2 m - 2)Jx - e.

Proof. First, it is obvious that when e is sufficiently small, K 2 (wri)' and K 2 (r,)T are

both positive. We now need to check that all assumptions in Bird Lemma 6.4 hold.

Indeed, K2, K2T and v2 are all strictly monotonic:

" K2(-ri) < K2(-rj) for i <j,

" K2T(7ri) < K2T(r) for i < j, and

* v1(wri) < v1(rj) if i < j.

If we choose S' = S" = 7ri, we have v 2 (S') = 25x - e < (26x - e) = K 2 (S')T and

v 2 (S") = 26x - e = K 2(S")'. At last, we verify Eq. (6.5). This time we choose the

reverse permutation, that is, letting ri = T2m--, and we have:

" for 2 < i < 2' - 2 and letj= 2m I i E {1,2,...,2m - 3}:

v 2 (r) - v2 (7r 1) =V2(rj+) - v2(irj) = 26x

((1 + )+1 (+ 6 )i
(1 - 5)j+1x - (1 - 6 )j+!)1 -6)

(( )i (1+6) -1
- . - - .) e 1 ) 6

- K2(wrj+1) - K 2 (7rj) T = K 2(r) - K 2 ( r+ 1 )T

" for i = 1 and let j = 2m - 1 - i = 2- 2:

v 2 (7r ) - v 2 (7rl+1) = v2 (irj+1) - v 2 (7r3) = X

= K 2 (7rj+1)1 - K 2 (7rj) T = K2(lrj)' - K 2 (7rl+1)T , and

" for i = 2m - 1, instead of computing the formula directly, we do something

cleverer. If one sums up all inequalities in Eq. (6.5) for 1 < i < 2m - 1, he will



get

0 -> EK2(7r'-) -_K2(7r')T

3

which is obviously always true. However, we have already shown that when

1 < i < 2m - 2, the inequality is not only true but also tight, so the last one of

them (which corresponds to i = 2' - 1) has to be true.

6.3.5 Main Proof

Let the first two players have approximate valuations K 1 and K2, and bid vi and

v2 according to Claim 6.17 and Claim 6.18, and the rest of the players have zero

approximate valuations and bid zero. We make the following observations.

" When players bid v1 U v2 U 0 U ... U 0, the VCG mechanism will always pick

allocation w = ([m], 0, ... , 0).

This is because, the social welfare computed using reported bids for w is

v1([m]) = v 1 (7r2 m1) = x(1 + 2(2m - 2)6) ,

while any other combination, if giving 7ri = 0 to player 1 and 7r2 m 1 _i = TI to

player 2, will result in a reported social welfare

Vl(ri)+V2(7r2m_1_i) = x(1+2(i-1))+2(2m-1-i)6x-E = x(1+2(2m -2)6)-e

smaller than w. At last, if giving 0 to player 1 and [m] to player 2, the reported

social welfare is

v 2 ([m]) = V 2 (r2m_1) = x(1 + 2(2' - 2)6) - e

also smaller than w.

" Assume that we pick the true valuation 01 E K 1 such that 01(S) = x for all

non-empty S, and 02 E K 2 such that 02(S) = K 2 (S)T . Of course, TVI(S) = 0

for all i > 2.

" Now, the true social welfare on allocation w is SW(O, w) = 01([m]) = x.



* The maximum social welfare

MSW(9) > 02 ([m]) = K 2 (7r2 m- 2 )T + x

(1 + 6)2T--2 (1 + 6)2m-3 )

(1 - )- )2m26) (1+6) + X

S(1+ )2--1

(1 - 6)27n-2 ~ 1+ 6

* In sum, we have shown that the fraction of the social welfare guaranteed in this

case is

SW(O, w)
MSW(9) (1+5)2 1 X ) - '

(1-6)2 -;( x+5x J

and since we can choose e > 0 arbitrarily small, the social welfare guarantee of

the VCG mechanism is at most

1
(1+3)2mE-1 -

(1 -5)2mL-2

At last, we slightly weaken the bound that we have just proved, to provide a

cleaner fraction:

1 (1 - 6)2m-2 (1 - j)2m-2

£1T j - (1 + 6)2--1 - 6(1 _6)2--2 - (1 + 6)2m-2

1 6)2m-2

1+6o
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Chapter 7

General Games

In this chapter we formally generalize our notions in the single-good or multiple-good

auction cases, into any general game where players have approximate types.

7.1 Game: Context and Mechanism

The most basic notion is that of a pre-context: it keeps track of the number of players,

the set of possible types for each of the players, the set of all possible outcomes, the

utility function for each of the players, and a promise on each player's "quality of

approximation" about his own type. Formally:

Definition 7.1. A pre-context is a tuple PreC = ([n], E, Q, U, Q) such that:

" [n] = {1, 2, ... ,n} is a set of players;

"e E= (E)jijE[nj where each Ei is a set of types for player i;

" Q is a set of outcomes;

" U = (U)ie[ ] where each U1 : e0 x S2 -+ R is the utility function of player i; and

" Q = (QiE[n] where each Qj, a subset of 2ei, indicates the approximation quality

of player i.

Remark 7.2. A "new" component in Definition 7.1 (as compared to the usual defi-

nition of a pre-context) is the approximation quality Q that players are promised to

have: for each player i, Qj is an explicit collection of subsets of Oj; each subset in



Qj is a possible approximate type for player i. Our definition reduces to the usual

definition of a pre-context whenever each Qj is the collection of all singletons in 2 9i

(i.e., the only "allowed" approximation is the perfect approximation).

A pre-context becomes a context when it is augmented with a specific set of

players, i.e., a specific profile of approximate types and true (but secret) types:

Definition 7.3. A context is a tuple C = ([n], E, Q, U, Q, K, 0) such that:

* PreC = ([n], E, Q, U, Q) is a pre-context;

* K = (Kij)i[n] where each Ki, a set in Qj, is the approximate type of player i;

and

* 9 E K where each 9i is the true type of player i.

Notation. We emphasize that by augmenting appropriate K E Q, and appropriate

9 E K, a pre-context PreC actually specifies a class of contexts (just like our W- ,

in the single-good auction case). We therefore in this chapter allows quantifiers like

"VC E PreC".

As usual, a mechanism specifies the players' strategies and how these strategies

determine outcomes:

Definition 7.4. A mechanism for players [n] and outcome set Q is a tuple M =

(S, F) such that:

" S = (Si) iE[n] where each Si is the set of strategies for player i; and

" F: S -+ Q is the (possibly probabilistic) outcome function.

We say that M is for a pre-context PreC if [n] and Q respectively match the set of

players and set of outcomes in PreC.

As usual, we will denote strategies with Latin letters (such as s and t), and

mixtures of strategies with Greek letters (such as o- and r).

Finally, we state the knowledge model considered in this thesis:

Definition 7.5. In the incomplete information knowledge model, when con-

sidering a context C = ([n], e, Q, U, Q, K,) and a mechanism M,



" the pre-context ([n], E), Q, U, Q) is common knowledge;

" each Ki is known to player i (and no other player);

e each O is secret to player i (and all other players); and

" the mechanism M is common knowledge.

7.2 Dominance

A natural comparison to make between two actions is establishing some kind of domi-

nance relation. We discuss the three natural definitions of dominance, whose intuitive

meaning we now summarize:

* "never worse than" - an action c- of player i very-weakly dominates another

action o if -i is never worse than oa, when considering all other players' possible

actions;

" "never worse than, and at least once better" - an action o-1 of player i weakly

dominates another action of if c- is never worse than oa, when considering all

other players' possible actions, and o-r is better than o for at least one choice

of other players' actions; and

" "always better" - an action oi of player i strictly dominates another action

of if o-i is always better than o, when considering all other players' possible

actions.

Formally:

Definition 7.6. Given mechanism M = (S, F) for pre-context PreC = ([n] , E, Q, U, Q),
and a player i E [n] with approximate type Ki E Qj, for his two (possibly mixed) s-

trategies o- E A(Si) and of E A(Sj), we say that:

oi very-weakly dominates of, in symbols o-i - oi, if:
i,Ki

V 0; cE KiI V -r-i E S-i , EUj (Bi, F(o- ui -r-j)) ;> EUj (Oj, F(oi' u -r-j)).



oi weakly dominates o, in symbols og > o, if:
iKi

V0i E Ki, V Tri E S-i, EUi(Oi, F(oi u r-i)) > EU (0j, F(o ur'i)) , and

(7.1)

3 O E Ki, 3 T-i E S_, EU (0i, F(o-i Lri)) > EUi(0, F(o U rir)) . (7.2)

S

* o- strictly dominates or, in symbols o-i >- of, if:
i,Ki

V0G E Ki, V-T-j E Sj, EU (0, F(ogL uT)) > EU (0j, F(oa L ri))

(It is a simply exercise to see that those definitions remain the same if one replaces

"T-j E S-i" by "ru E A(S )", incorporating mixed strategies for the rest of the

players.)

Remark 7.7. We have defined the approximate type Ki of a player to be an arbi-

trary subset of E9, because we certainly do not want to place any restrictions on the

structure of a player's lack of knowledge about his own true type (e.g., by assuming

that it is an interval).

In the setting of a (known) single-parameter domain, however, where e8 = [0, B]

for some large B, a player's reasoning can be greatly simplified. Specifically, a player

with approximate type Ki could equivalently reason in the world Kj = [min Ki, max Kj]

or in the world Ki' = {min Ki, max Ki}. This is an easy consequence of Definition 7.6:

there is only one parameter to play with on two sides of the inequalities, so we only

need to care about extreme points.

For instance, in a single good auction, a player with an approximate valuation

Ki = {90, 91, 92, 1001 might as well imagine he is in the world Kj = [90, 100] or in

the world Ki' = [90, 1001. In other words, only the extremal points of Ki matter for

the purpose of determining dominance relations, and all other points are irrelevant.

7.3 Solution Concepts

The three notions of dominance from Definition 7.6 should give rise to three corre-

sponding sets of "undominated" strategies and three corresponding sets of "domi-



nant" strategies, both in the approximate player type case. However, following the

convention of game theory, we here only define and study the set of very-weakly-

dominant strategies, and the set of not-weakly-dominated strategies.

Definition 7.8. Given mechanism M = (S, F) for pre-context PreC = ([n], E, Q, U, Q),
and a player i E [n] with approximate type Ki E Qi, then

" The set of very-weakly-dominant (or simply dominant) strategies of i with

respect to Ki is defined as

def{
Dnti(Ki) = si E Si : VTr E A(Si), si ri

i, Ki

" The set of not-weakly-dominated (or simply undominated) strategies of i

with respect to Ki is defined as

def ( ,W 1
UDedi(Ki) i s Si E ri E A(S) s.t. ri >- si

i,Ki

Note that all the above definitions reduce to the usual ones in the case where all

the players' types are exact (i.e., Ki is a singleton).

Notation. Whenever we ignore the subscript we denote the Cartesian product of

the set among players. For instance, UDed(K) =e UDedi(Ki) x ... x UDed (K,).

Next, we prove that whenever there is at least one very-weakly-dominant strategy,

then every strategy that is undominated is also a very-weakly-dominant strategy. We

will invoke this lemma at times for the purpose of understanding the meaningfulness

of certain solution concepts. See Remark 7.12.

Lemma 7.9. Fix a game g. For every player i E [n],

Dnti(Ki) # 0 -+ Dnti(Ki) = UDedi(Ki)

Proof. The set inclusion Dnti(K) C UDed2 (Ki) easily follows from the definition of

the two sets. The reverse set inclusion, Dnti(Ki) ; UDedi(Ki), is the interesting one.

So consider a strategy si E UDedi(Ki). Suppose by way of contradiction that there

exists a strategy oi E A(Si) for which it is not the case that si > o-;, i.e.,
i,Ki

E6; E Ki, 3 -r_; E Sj : EU (O, F(si U ri)) < EU (0j, F(o- Li r..)) . (7.3)



Let o-Z be any strategy in Dntj(Ki), so that, in particular, we know that o-' e -,
iKi

and thus

EUj(0j, F(o-i uL ri)) < EUi(0i, F(- Li ri)) (7.4)

We also know that o >- si, which, combined with Eq. (7.3) and Eq. (7.4), yields that
i,Ki

ou >-. si, contradicting the fact that si E UDedi(Ki). We conclude that si E Dnti(Ki),
i,Ki

as desired. 5

7.4 Implementation

We can now state what it means for a mechanism to "implement" a social property

relative to a pre-context (i.e., a certain class of contexts) in the approximate-type

world. A social property is simply a predicate over the players' types and an outcome

distribution, indicating which possible outcome is desirable:

Definition 7.10. A social property is a function H: E x A(Q) -+ {O,1}.

Definition 7.11 (Implementation). Let M be a mechanism for PreC = ([n], 9, Q, U, Q)
and H a social property. We say that:

" M implements H in dominant strategies (with respect to PreC) if

VK E Q, 3 s E Dnt(K), V0 E K : H(, F(s)) = 1 .

" M implements H in undominated strategies (with respect to PreC) if

VK E Q, Vs E UDed(K), VO E K : fl(O,F(s)) = 1

Remark 7.12.

" We actually choose a worst-case perspective. That is, we require that the prop-

erty H hold at every possible type 0 E K.

" Following the convention, we put an existential quantifier to s for dominant-

strategy implementation, but a universal quantifier for undominated-strategy

implementation. Although being weaker in the former case, to be proved in
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Section 7.5, it is actually equivalent to dominant-strategy-truthful mechanisms

in the approximate-type world by revelation principle.

* If one also put a universal quantifier on s for dominant-strategy implementation,

this safer notion, according to Lemma 7.9 is equivalent to implementation in

undominated strategies. (But, of course, the reverse does not always hold.)

7.5 New Revelation Principle

We prove an analogue of the Revelation Principle in the setting of approximate play-

er types. A version of the classical Revelation Principle states that, when consider-

ing partial implementations in dominant strategies, it suffices to consider dominant-

strategy-truthful mechanisms where strategy sets are identical to type spaces E, and

reporting the true type is a (very-weakly-)dominant strategy.

In our setting of approximate types, we will construct a mechanism where the

strategies are identical to approximate types Q.1 We will invoke the Revelation

Principle in our impossibility results for implementation in very-weakly-dominant

strategies.

Lemma 7.13 (Revelation Principle). Given a mechanism M = (S, F) for PreC =

([n], E, Q, U, Q), and social choice function W: Q -+ A(Q) such that,

VK E Q, 3s E Dnt(K) s.t. F(s) = W(K) ,

then there exists a direct mechanism M' = (S', F') for which S' = Q and

VK E Q, K E Dnt'(K) and F'(K) = W(K)

In other words, the direct mechanism M' is a (very-weakly-)dominant-strategy-

truthful one that guarantees reporting the truth K is (very-weakly-)dominant, and

yields the same outcome. Here Dnt' is the set of dominant strategies in M'.

'Here is one place where it becomes important for pre-contexts to contain the component Q
promising what kinds of approximate types the players will have. If we had not introduced the
additional component Q, and defined the set of strategies in the revealed mechanism to be 2 9' for
player i, the Revelation Principle would no longer hold.
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Proof. There exists a function f: Q -+ A(S) such that f(K) is the lexicographically

first strategy s E Dnt(K) for which M(s) = W(K). Consider the mechanism M' =

( , def def
(S', F') for which S = Q and F'(K) = F(f(K)) for every K E Q.

Fix any K E Q and suppose that ] a- E Dnt(K) for which M(c-) = W(K), and let

it be the lexicographically first oie. By construction, F'(K) = F(f(K)) = F(o-) =

W(K). We are left to prove K E Dnt'(K). Indeed, consider any alternative strategy

Kj E Q for player i. Then, for every 8
j E Ki and every KI E Q-i,

EU(0, F'(Ki Li K_)) = EU(0, F(f(Ki U KU i)))

> EU(Oi, F(f (Kj u Ksi))) = EU(0, F'(Kl u KI))

where the inequality comes from the fact that f (Ki L K_) E Dnt(K). This completes

the proof. 0

Corollary 7.14. Fix any mechanism M = (S, F) for PreC = ([n], E, Q, U, Q) that

partially implements some social property [l: E x A(Q) -+ {O, 1} in dominant strate-

gies. We can construct a direct dominant-strategy-truthful (DST) mechanism M' such

that reporting the the true K is dominant and implements T1.

Indeed, an analogue of Lemma 7.13 also holds for implementation in ex-post Nash,

and therefore all of our impossibility results in Theorem 2b and Theorem 3b can be

extended to implementation in ex-post Nash equilibria. (See, for example, Corollary

9.26 in [26] for the idea.)
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Chapter 8

Universality of Approximate Types

While accounting for the uncertainty that players have about their own types by

introducing a set-theoretic approximate type (as we did throughout this thesis) is

very well motivated, in this chapter we argue that for any game, any reasonable

(including Bayesian or Knightian) model for player type uncertainty is equivalent

to our set-theoretic approximate-type model, at least for the setting when the type

space E is "convex" (which is the case in almost all natural problem domains; see

Remark 8.1 below).

More concretely, we describe more and more general models of player type uncer-

tainty, where the most general one is an infinite "hierarchy type uncertainty" (mod-

eling uncertainty, uncertainty about uncertainty, and so on) consisting of alternating

levels of sets and distributions. Our set-theoretic approximate type is merely one of

the two types of models in the first level of this hierarchy. For convex E, we show

how this hierarchy "collapses" to our model, thus proving that it is universal as far

as modeling type uncertainty of players is concerned. Details follow.

No Type Uncertainty. Let us first recall what it means for a player to know his

own type exactly: if player i knows that his type is O (and is completely sure about

it!), when he sees an outcome outcome w E Q, his utility is by definition the single

real U (0, w) E R.

Approximate Type Uncertainty. One way of relaxing the No Type Uncertainty
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model into a safer model is to consider a set-theoretic approximate type model, which

is the model that we introduced in Section 7.1 (and whose universality we are going

to prove). Recall, from Definition 7.3, that a context captures the internal knowledge

of player i via an approximate type Ki, which is a set that is promised to contain the

true type Oi of player i. Therefore, when player i sees an outcome W E Q, his utility

is a set of reals {Uj(O, w)}oeK 1 , and, because player i knows that O6 E Ki, he also

knows that Ui(Oi, w) is in his "utility set".

Bayesian Type Uncertainty. Another way of relaxing the No Type Uncertainty

model into a safer model is to consider an (individual) Bayesian type model, where

each player i does not only know a set Ki containing his true type O but also knows a

distribution D* E A(E8) over Ki assigning probabilities to the possible values for O.

Let us recall the following widely-accepted assumption about the behavior of players:

Assumption 1 (Bernoulli'). A player seeks to maximize his own expected utility.

Under Bernoulli's Assumption, when player i sees an outcome w E Q, his utility is

the single real value Eo, D; [Ui (0i, w)].

While this model is formally "safer" than the No Type Uncertainty model, it can

be collapsed to it whenever ej is "convex"; indeed, in such a case, we can write

E;~Di [Ui(Oi, W)] = Ui(9i, w) with 0' defined informally as "E;~Dj [Osi]", so that player

i can equivalently take O6 as his exact true type. (See Theorem 7 for the formal

statement.)

Knightian Type Uncertainty. We could combine the previous two relaxations

into an even safer model, an Knightian type model, where each player i knows a set

of distributions 9 i that is promised to contain the true distribution Dj' from which

his true type 81 is drawn. In other words, a player i may individually know that his

own true type is drawn from some distribution Di in some class of distributions 9j,

without being sure of which distribution in 94 is the right one.

For example, while a player may not know the exact distribution from which his

true type is drawn, he may still know all kinds of probabilistic information about his

'A theory on expected utility was first introduced by Daniel Bernoulli ([3] in Latin; see [4] for an
English translation), where he used the terminology of moral expectation.
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own true type, and these estimates restrict the class of possible distributions from

which his true type may be drawn. The better the probabilistic information of the

player, the "smaller" the set Di.

This formalization of uncertainty was also studied by Bewley [5], as a rigorous ex-

pression to Knight's distinction between risk and uncertainty [20]: a random variable

is risky if a distribution is known, while uncertain if the distribution is unknown.

Again invoking Bernoulli's Assumption, when player i sees an outcome W E Q, his

utility is a set {Eo,~D [Ui(0i, W)]}D E29, and, because player i knows that Dj' E _9, he

also knows that Eo,,D* [Ui (0i, W)] is in his "utility set".

As before, while this model is formally "safer" than the Approximate Type Uncer-

tainty model, it can be collapsed to it whenever E8 is "convex"; indeed, in such a case,

we can write "E;~Di[Uj (Oj, w)] = Ui(Eo,~D j[i], w)", and thus {Eo,~Dj [Ui(6, w)] }DiEgi =

{Ui(Ej~D [Oi, W)}DjE_9, so that player i can equivalently take Ki := {Eo,~Di[6;]}Die29

as his approximate type. (See Theorem 7 for the formal statement.)

Hierarchy Type Uncertainty. Why stop at Knightian uncertainty? Note the

pattern:

" Approximate Type Uncertainty _ set of types;

" Bayesian Type Uncertainty = distribution over types;

" Knightian Type Uncertainty = set of distribution over types.

How about a distribution over sets of types? How about a set of distributions over

sets of types? How about a distribution over distributions over sets of distributions

over types?

In the most general case, there is a type uncertainty hierarchy; all the models we

have considered so far are special cases of this hierarchy. More precisely, a player's

knowledge about his own true type O; can be recursively defined as a (rooted) tree in

which each internal node is either a "set node" (indicating that the player type could

be any one of its subtrees) or a "distribution node" (indicating an exact probabilistic

distribution over its subtrees), and the leaves of the tree contain elements from e9

(and are thus the candidates for Os).

Without loss of generality, we can require the set nodes and distribution nodes to
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be at alternating levels in the hierarchy. This is because, if there is a set of sets (i.e.,

a set node all of whose children are also set nodes) or a distribution over distributions

(i.e., a distribution node all of whose children are also distribution nodes), the two

levels of the tree collapse into one. A more sophisticated case is for instance a set

node with two children: a set node and a distribution node. In this case, we can also

absorb the set node subtree into the root.

We are unaware of any reasonable type uncertainty model (suitable for the set-

ting of incomplete information) that cannot be defined within our type uncertainty

hierarchy.

For instance, the Approximate Type Uncertainty model is a depth-1 tree, with

the only internal node (the root) being a set node (see Figure 8-la). The Bayesian

Type Uncertainty model is also a depth-1 tree, but with a distribution node as the

root (see Figure 8-1b). The Knightian Type Uncertainty model is a depth-2 tree,

with its root being a set node and each middle-layer-child being a distribution node

(see Figure 8-1c).

Equivalence. Now we are going to prove that any tree uncertainty model is equiv-

alent to our set-theoretic approximate type model, at least for the setting that the

type space is "convex":

Theorem 7. If the set of functions {Ui(9j, -): Q -+ R}e.e. is convex, then any

Hierarchy Type Uncertainty model is equivalent to the Approximate Type Uncertainty

model.

We deduce that it only suffices to study the approximate type model, which is

simpler to work with anyways!

Proof. Without loss of generality, we assume that the tree is balanced, since we can

always add set nodes with one child, and distribution nodes with one child. We have

also argued that we can assume that the tree has alternating structure: the child of

a set (resp., distribution) node is either a distribution (resp., set) node or a leaf.

As a warm-up, let us first recall the equivalence for the Bayesian Type Uncertainty

model. For player i that knows Di E A (0j), by Bernoulli's Assumption, he is going to
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Ki Di

P1 P2 k

6i,1 6i,2 ... i,k 6i,1 6i,2 ... 6i,k

(a) approximate type (b) Bayesian type

S... Dk)

t (k

P1  P11  P1 /k

OM( .. O(l) 6(k) .. (k)

ij i1l, , 1i1

(c) Knightian type

Figure 8-1: Three basic models of type uncertainty in our hierarchy.

maximize his expected utility Eej~Dj[U (0j, w)]. By the convexity assumption, there

exists some O' such that the function Uj(Oj,-) = Eo;~Dj{Ui(0i,-)], this means it is

equivalent from player i's perspective to have an exact type O = OG, no matter which

outcome is chosen. We call this V; the expected type.

In general, the above proof shows that if the lowest level of the tree is a distribution

node, we can replace such node along with its children (leaves) by the expected type,

reducing the depth of the entire tree by 1. As a consequence, for instance, the Bayesian

Type Uncertainty model in Figure 8-1b collapses to the No Type Uncertainty model;

while the Approximate Bayesian Type Uncertainty model in Figure 8-1c collapses to

the Approximate Type Uncertainty model in Figure 8-la.

Next, we are going to prove that whenever we have a distribution of sets of types,

this collapses into one single set of types. In other words, a depth-2 sub-tree at the

lowest level of the whole tree, if it is a distribution node with children being set nodes,

can be replaced by a set node directly, again reducing the depth of the entire tree by
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Suppose that we have a distribution JCj over {K(1 , , .. .}, while K j is the

actual set with probability p S. Player i knows that, with probability p , his utility is

among the set Kj. By Bernoulli's Assumption, we can compute the expected utility

of player i by taking an arbitrary element from each set KP, and then compute the

weighted average according to p(j). This is again a set:

p 0( E K()}

In sum, if we continue to collapse the bottom two levels of the tree, and combine two

consecutive levels of sets, we will eventually get a depth-1 tree with a single set node.

In other words, we can replace the knowledge of player i with a set of types com-

puted by collapsing his tree; these set of types can be modeled within the Approximate

Type Uncertainty model, concluding the proof of the theorem. U

Remark 8.1. In many problem domains, the convexity of {Ui(o, -): Q -+ R}o ei is

easily satisfied. For instance, in single-good auctions, 02 is player i's valuation to the

good on sale, and

U p O -P, if player i wins with price P

0, if some other player wins

The convexity condition in this case is equivalent to saying that if a player can have

a valuation of both a and b, then his valuation may also be any real number in the

interval [a, b].

According to Theorem 7, if player i knows an exact Bayesian distribution Di for

his true type 64, he can simply imagine that Oi := Eo~,Di[04] is his exact true type.

Therefore if the auction is the second-price auction, biding 0j is a dominant strategy.2

Of course, one can also find less natural utility functions that do not satisfy the

convexity property. For instance Sandholm [30] also considers the Bayesian Type

Uncertainty model for the single-good auction, but with the utility unconventionally

2In our language, this is a very-weakly dominant strategy.
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defined as:

Ui (0j, W):=

0i - P,

2(Oi - P),

0,

if player i wins with price P < Oi

if player i wins with price P > O .

if some other player wins

In this case the convexity is no longer satisfied. And, indeed, for example, in a

second-price auction, if player i has an exact distribution Di = U(0, 1) that is uniform

between 0 and 1, bidding the expectation 0.5 is no longer a dominant strategy for

him.
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Chapter 9

Conclusion

We believe that assuming uncertainty about the players' internal knowledge is manda-

tory if we want to develop a realistic theory of strategic human interaction. Of course

modeling uncertainty via a probability distribution is extremely effective, if we can

lay hands on the true distribution. But often a player may not be able to write down

the knowledge of his valuations in such a precise form. Modeling it in an approximate,

and actually in a purely set theoretic way is certainly safer. But: is it useful? That

is, can we leverage it in mechanism design?

The answer would obviously be no if there is no restriction on such sets, and this is

why we consider 6-approximate valuations for some constant 6 E [0, 1), and study the

performance guarantee as a function of 6. To the best of our knowledge, this is the first

time such tradeoff between player's internal knowledge and mechanism's performance

is studied in literature, and we have provided tight bounds for single-good auctions.

For combinatorial auctions, our impossibility results are very strong but they

should not be interpreted as bad news for mechanism design with approximate types.

Ultimately, they will guide us towards better approaches. For instance, by allowing

players to have external knowledge about other players, one can still guarantee mod-

erate social welfare or revenue benchmark, as observed by the same author [7]. Such

results are actually very encouraging, knowing that truly combinatorial auctions are

truly challenging.

Before this work, almost all set-theoretic (a.k.a. Knightian) analysis of player's
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type uncertainty has been immersed in protected waters of decision theory, which

studies purely from a player's perspective about how he will possibly behave when

he is facing a set of candidate types (or distributions). However, we believe that it is

time to navigate the more open ones of mechanism design, even though players have

such approximate types and do not necessarily know which candidate is better.
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Appendix A

Performance Diagrams

1 2- random assignment
- second price

U3+0.8 our mechanism
o0  

+ -o 0.6

0.4

0.2

0-

0 0.2 0.4 0.6 0.8
approximation quality 5

(a) With n = 2 players, the second-price

mechanism performs worse than randomly

assigning the good for 6 > 0.18.

A random assignment

608 = 0.15 +- second price
+ our mechanism

o 0.6 + +
U- 0 -R ---- --- --

0.4

0.2 --

0
2 3 4 5 6 7 8 9 10

number of players n

(c) With 6 = 0.15, the second-price mecha-

nism always performs better than randomly

assigning the good.

1 random assignment

0.8 4 second price
o our mechanism

-00.6

0.4
aC A-*

0.2

0
0 0.2 0.4 0.6 0.8

approximation quality 6

(b) With n = 4 players, the second-price

mechanism performs worse than randomly

assigning the good for 6 > 0.34.

1

C', 0.8

-6 0.6
C
.2 0.4
0Ca

*0.2

n 8

2 3 4 5 6 7 8 9 10
number of players n

(d) With 6 = 0.3, the second-price mechanis-

m performs worse than randomly assigning

the good for n = 2, 3.

Figure A-1: Performance of our optimal mechanism

In Figure A-1 we compare the social welfare guarantees of:

113
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" randomly assigning the good (E =, see Theorem 1),

* the second-price mechanism (E = (1-)2, see Theorem 2), and
(1-6)24* our optimal mechanism (E = +)2 , see Theorem 3).

In Figure A-ia and Figure A-lb we compare E versus 6, and in Figure A-ic and

Figure A-id we compare e versus n. The green data, our mechanism, is always better

(at times significantly) than the other two mechanisms.

114



Appendix B

Our Optimal Mechanism M(opt

In this section we provide a concise description to our optimal mechanism in Theo-

rem 3a for a single-good auction with n players, valuation bound B and approximation

accuracy 6. We first construct the following allocation function:

Definition B.1. For every 6 E (0, 1), and let D6  (+ - 1 > 0. We define the

function f (): [0, B] [n] -* [0,1] ['] as follows:

" for every z = (Zi,..., zn) E [0, B]] such that zi > Z2 > zn, let n* E

{1, 2,... , n} be the index in [n] (which exists and is unique) such that

Z1 - > Zn > -' * z+ > zn*+1 Zn
n+ Db

Then set

1 n+D. zi(n*+D6)- j=1 z i

(Z) n n*+D 6  ziD 8  
i

0, if i > n*;

" for other z, define f by extending it symmetrically.
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The (code for the) outcome function of our mechanism M(6) is:

Code for outcome function of Mpt

public parameter: 6 E (0, 1)

inputs: vi,. . . , v,, E {0, 1,.. . ,B}

output: (i, P), where i E [n] U {Il} is the winning player and P E RI' is the price profile

pseudocode:

1. Draw r uniformly at random in [0, 1].

2. (Define f(') 0.)

3. If there exists i E [n] such that _E- f('5 (v) < r < fJ'= (v):

- Compute Pi = Vi - ~)z and P= 0 for j f i, and output

(i, P).

4. Otherwise, output (1, (0,... , 0)). (No player is assigned the good.)

We note that our mechanism can be tweaked to make sure that the good is always

assigned to some player. But the proof is more involved than it already is, and we

leave it to a future version of this paper.
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