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Abstract

Future computer architectures will likely exhibit increased parallelism through the ad-
dition of more processor cores. Architectural trends such as exponentially increasing
parallelism and the possible lack of scalable shared memory motivate the reevaluation
of operating system design. This thesis work takes place in the context of Factored
Operating Systems which leverage distributed system ideas to increase the scalability
of multicore processor operating systems. fos, a Factored Operating System, explores
a new design point for operating systems where traditional low-level operating system
services are fine-grain parallelized while internally only using explicit message passing
for communication. fos factors an operating system first by system service and then
further parallelizes inside of the system service by splitting the service into a fleet of
server processes which communicate via messaging. Constructing parallel low-level
operating system services which only internally use messaging is challenging because
shared resources must be partitioned across servers and the services must provide
scalable performance when met with uneven demand.

To ease the construction of parallel fos system services, this thesis develops the
dPool distributed data structure. The dPool data structure provides concurrent access
to an unordered collection of elements by server processes within a fos fleet. Internal
to a single dPool instance, all communication between different portions of a dPool is
done via messaging. This thesis uses the dPool data structure within the parallel fos
Physical Memory Allocation fleet and demonstrates that it is possible to use a dPool
to manage shared state in a factored operating system's physical page allocator.

This thesis begins by presenting the design of the prototype fos operating system.
In the context of fos system service fleets, this thesis describes the dPool data struc-
ture, its design, different implementations, and interfaces. The dPool data structure
is shown to achieve scalability across even and uneven micro-benchmark workloads.
This thesis shows that common parallel and distributed programming techniques
apply to the creation of dPool and that background threads within a dPool can in-
crease performance. Finally, this thesis evaluates different dPool implementations
and demonstrates that intelligently pushing elements between dPool parts can in-



crease scalability.
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Chapter 1

Introduction

This thesis focuses on techniques and data structures which enable the creation of

scalable operating systems for current and future multicore processors. fos [73, 75] is

a Factored Operating System designed to provide scalable performance on multicore

processors. fos works toward this goal by utilizing distributed system techniques in-

side of an operating system's core functionality. One of the key ways that fos provides

scalability is by forcing the operating system programmer to explicitly think about

and manage communication. It does this by organizing the OS as a set of processes

which only communicate via explicit message passing. While making communication

explicit has advantages such as preventing implicit sharing which can limit scala-

bility, requiring explicit communication can make managing logically shared state,

which may be easy in a shared memory environment, challenging. This thesis ad-

dresses the challenge of managing shared state for one particular shared state usage

pattern, namely a unordered collection of elements. This thesis develops dPool, a

distributed data structure with unordered multiset semantics, which provides a con-

current interface across OS processes to shared state. dPool thereby provides much

of the ease of shared memory programming while internally only utilizing messaging.

dPool's interface is designed such that it can store different sized elements to facilitate

it being used by different fos services. This thesis focuses on the performance and

scalability of dPool being used inside of the fos Physical Memory Allocation service.



1.1 fos

The design of fos is motivated by anticipated future multicore architectures and com-

puter architecture trends. I believe that for the foreseeable future, Moore's law [48]

will continue to afford chip designers more usable transistors for a fixed price. It is

likely that this increasing number of transistors will be turned into additional pro-

cessor cores in a single, tightly coupled computer system. The fos project focuses on

how to construct operating systems for these highly concurrent architectures without

the operating system becoming the performance bottleneck. Because Moore's law

dictates that the number of transistors and processor cores will be increasing at an

exponential rate over time, the fos project focuses on not only on how to construct

an operating system for a fixed large numbers of cores, but how to construct an oper-

ating system which can continue to scale out, thereby providing more OS throughput

as the number of cores grows in future systems.

The era of multicore processors has introduced the challenge and opportunity of

exponentially increasing core count which OSes have not traditionally had to tackle.

The fos work assumes that the traditional approach of monolithic OS design will have

challenges meeting the new scalability demands of exponentially increasing core count.

In the fos project, we have identified several of the problems facing monolithic OS

design on future multicore architectures including: reliance on shared memory locks,

inability to control OS and application working set aliasing in caches, and reliance

on shared memory for implicit communication. In contrast to traditional monolithic

OSes, fos controls its core-to-core communication by using explicit message passing

between different portions of the OS. The choice to use messages in fos is driven

by multiple factors. First, the fos team believes that future multicore processors

will likely not have scalable global coherent shared memory. It is possible that future

multicores will have regions of shared memory, poor performing shared memory, or no

on-chip coherent memory due to the hardware cost. Second, many research multicore

processors have explicit hardware messaging and fos would like to take advantage of

this mechanism. Although this thesis focuses on multicore processors, by having a



message based design, fos has been extended across clusters and clouds of multiple

computers. Finally by using messaging, the fos system developer can be extremely

cognizant of when communication is occurring and program accordingly. Even though

fos holds the systems programmer to a high standard by requiring message passing

to be used for internal communication, fos does not hold the application user to the

same high standard as fos can execute user applications which use multiple threads

and shared memory, provided that the underlying hardware supports shared memory.

In order to increase the available parallelism inside of the operating system, Fac-

tored Operating Systems, such as fos, begin by factoring an operating system by the

service provided. Each of the services provided by the OS is further parallelized into

a fleet of cooperating server processes which collectively provide a single operating

system service. These operating system servers and applications do not share proces-

sor cores and in fact, each server process and application is bound to a different core

in a multicore system to reduce contention on the capacity of a single core's cache.

Applications communicate with system services only via message passing which typi-

cally is hidden from the application through the use of standard libraries. Operating

system servers communicate with other services only through message passing, and

in Factored Operating Systems, a single service which has been parallelized as a fleet

of servers also only internally communicates via message passing.

Like previous microkernel operating systems [59, 46], fos uses message passing to

communicate between different OS services. But, in contrast to many previous micro-

kernel systems, fos parallelizes inside of a single service being provided. This is done

by having each member of a fos service fleet run in a separate user process and not

simply a thread. Also, fos focuses on how to fine-grain parallelize not only high-level

services, but also low-level system services while only relying on message passing for

server to server communication. In order to do this, fos leverages ideas such as lazy

information update, heavy use of caching, and multi-phase commit protocols from

distributed systems and distributed operating systems. Unlike distributed operating

systems and Internet scale distributed systems, fos applies these concepts to low-level

OS management tasks such as parallelizing memory management, process manage-
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Figure 1-1: A high-level illustration of fos servers laid out across a multicore machine.
This figure demonstrates that each OS service consists of several servers which are
assigned to different cores. Each box in the figure represents a processor core in a
multicore processor.

ment, and scheduling. Also, unlike previous systems, the scale of systems and cost of

communication is quite different than distributed operating systems of the past.

fos is an experimental prototype operating system which has been constructed at

MIT to explore the ideas of Factored Operating Systems. It includes a microkernel

which provides messaging primitives and a protected interface to processor state. fos

contains a naming system which enables the messaging system to be load balanced and

for message receivers to be relocated. fos applications utilize a library called libf os

to translate legacy system calls to messages targeting fos system servers. And finally,

fos contains fleets of system servers executing in userspace which implement the core

functionality of an operating system. Figure 1-1 shows a variety of applications and

fos system services executing on a single multicore processor.

This thesis utilizes Factored Operating Systems and fos as the setting and context

for the work. Because fos is new, we spend a portion of this thesis developing the

techniques and designs used in fos to give the reader context for dPool.



1.2 fos Server Construction Challenge

One of the key components of Factored Operating Systems is the fleet, which is a set

of server processes collaborating to provide a single system service. Example system

services which are built using the fleet model include process management, physical

memory management, networking, naming service, and file system service. Fleets are

designed such that each process in a fleet is bound to a particular processor core and

the fleet can dynamically grow and shrink the number of server processes providing a

service in order to react to load in an elastic manner. Applications and other system

services communicate with a fleet only via messaging and fleet members communicate

with each other only via messages.

While the fleet model and messaging-only design has advantages such as making

communication explicit, removing dependency on shared memory, removing depen-

dency on complex lock hierarchies, and reducing OS-application working set cache

aliasing, constructing fine-grain parallel low-level OS servers in such a restricted en-

vironment can be a burden on the systems programmer. The primary challenge for

constructing parallel low-level OS services which only internally communicate with

messaging is the management of shared state. Managing shared state is paramount

as much of the purpose of an operating system is the management of resources and

resource allocation. Unlike OSes which keep shared state in global shared memory

and then simply utilize locks and critical sections to restrict access to state, in a

shared-nothing environment such as fos, the system programmer needs to manage

where to find a particular piece of data, how to keep that data up to date, and, in or-

der to fulfill the scalability requirement of fos, provide scalable access to shared state

as the number of servers in a fleet grows. These challenges to the OS fleet designer

can be summarized more formally as:

" Partitioning of a shared resource across multiple system server processes.

" Providing concurrent scalable access to a shared resource across multiple server

processes under even and uneven loads.



* Maintaining a consistent view of shared state across multiple system server

processes.

In addition to these challenges, an ideal solution for managing shared state would

enable the solution to be applied across multiple fos service fleets. Unfortunately,

many of the previous messaging-only shared state solutions have been designed for

application level programs used in high performance computing (HPC). HPC applica-

tions typically have a complete software stack at their disposal including networking,

MPI implementations, preemptive multithreading, and advanced programming lan-

guages with runtime support, while fos fleets need to solve these problems in the

context of low-level operating system services which cannot rely on any preexisting

infrastructure as fos system servers by definition are implementing system services.

1.3 dPool

This thesis addresses the challenge of shared state in fos system service fleets out-

lined above in Section 1.2, for one particular data structure, an unordered collection

of elements. dPool is a distributed data structure which provides an interface to

an unordered collection of elements. The interface to dPool is through a function

call interface which contains two primary calls, poolAdd(. . .) and poolGet (. . .

poolAdd(.. .) adds elements to the dPool collection and poolGet (. .. ) removes

and returns a random element out of the dPool collection. The dPool data struc-

ture is implemented within a library designed to be used by fos system service fleets.

The elements stored within a dPool instance are stored within the address spaces

of system server processes which share a single dPool instance and do not rely on

external servers or processes to hold state. Elements within a dPool instance can be

distributed among the different server processes which use the instance. Internal to

the dPool data structure, only messaging is used to communicate dPool state between

the server processes which contain dPool state. Some dPool implementations utilize

background idle threads which can rebalance elements between different portions of

a dPool instance.
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Figure 1-2: The Physical Memory Allocation Fleet using a dPool instance to manage
the physical memory free page list. Each Physical Memory Allocation server process
has been split into the dPool library and the service functionality. Different portions
of the dPool communicate with each other via messages. Each Physical Memory
Allocation server process links in the dPool library.

This thesis shows the dPool being used for the allocation of physical pages in the

fos Physical Memory Allocation Server fleet and in the allocation of process identifiers

from a fixed size pool for the Process Management Server fleet. The performance of

dPool is characterized and exhibits good scalability for both even and uneven micro-

benchmark workloads when used inside of the Physical Memory Allocation fleet.

Figure 1-2 shows the dPool being used by the Physical Memory Allocation Server

fleet. This thesis examines the application of parallel and distributed programming

techniques as applied to the dPool library. Different algorithms being used inside

dPool are evaluated and the suitability of adding background threads inside of dPool

is measured.

One important consideration in the design of the dPool library is that it must

fit within the fos infrastructure. One of the key aspects to fitting well with fos

fleets is that the use of dPool not impose programming model requirements on the

fleet designer. To enable use in a wide range of fleet design models, dPool does

not require preemptive threading and can be used by sequential, user-level threaded,

and preemptively threaded fos fleets. Also, because fos fleets elastically change size,



a dPool instance keeps its internal state consistent in the face of the growing or

shrinking the of number of server processes utilizing it. In order to enable shrinking,

the fos server process which is leaving the fleet deconstructs the local dPool. The

local dPool in turn makes sure that any remaining local state is pushed to portions

of the dPool in servers which will continue to run after the fleet resizes.

Because dPool is utilized by low-level OS services, the dPool implementation

cannot rely on high-level primitives such as preemptive multithreading, high-level

languages, advanced messaging libraries like MPI, and sophisticated memory man-

agement. To ease the development of dPool, a remote procedure call (RPC) library

was constructed, along with a user-level cooperative threading model and dispatch

library.

1.4 Thesis Contributions

This thesis makes the following contributions:

" Details the design choices and implementation of a prototype Factored Operat-

ing System, fos.

* Shows that a message passing based, physical page allocator OS service can be

split into two parts:

- dPool

- Main service functionality

" Provides the first implementation and detailed description of the dPool data

structure.

" Describes two fos service fleets using the dPool distributed data structure.

* Shows that parallel and distributed programming techniques can be applied to

the creation of dPool.



" Shows that the use of background idle threads can be used to improve the

performance and scalability of dPool.

" Demonstrates that intelligently pushing elements from portions of a dPool which

contain more elements to those that contain fewer provides better performance

than pulling elements between dPool parts.

1.5 Outline

The rest of this thesis is organized as follows. Chapter 2 presents related work in

this area, focusing on related architectures which motivate this work, previous oper-

ating systems, and finally other distributed data structures and objects. Chapter 3

describes the fos system. We spend significant time on the development of fos be-

cause in order to understand the context of dPool, the fos system needs to be well

understood. Also, this thesis serves as the canonical design reference for much of the

fos work, and much of what is presented in Chapter 3 is otherwise unpublished. Last,

much effort and work of this thesis focused on creating the fos system. Chapter 4

describes the construction of dPool, the infrastructure needed to build dPool, and the

algorithms used by dPool. Chapter 5 describes how the dPool has been integrated

within two fos server fleets. In Chapter 6 we describe how we test the dPool, present

results for different algorithms being used inside of dPool, and discuss how these algo-

rithms compare. Finally, Chapter 7 presents conclusions, lessons learned, and future

directions.
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Chapter 2

Related Work

2.1 Multicore Processors

The work in this thesis is motivated by the advent of multicore and manycore pro-

cessors. If trends continue, we will soon see single chips with 1000's of processor

cores.

2.1.1 Trends

Some trends of current and future multicore processors have influenced the design of

fos. One of those trends, as noted in Howard's Single-Chip Cloud Computer (SCC)

work [39], is that the cost of on-chip cache coherence is expensive and hence the SCC

elected not to use it. A similar insight can be seen in the Raw [72, 68], TILE64 [74],

and IBM Cell [36] designs. The Raw processor is only coherent at the memory

controllers, the original TILE64 design has modest performance on-chip coherence

in order to save area and complexity, and the Cell processor does not have coherent

caches and uses explicit DMA to transfer data between cores.

One of the major questions for future multicore chip and OS designs is whether

on-chip cache coherence can be made to have suitable performance for future large

scale single chip manycore processors. A detailed discussion of coherence protocols

is beyond the scope of this thesis, but there are two main challenges. First, can



the amount of storage needed for bookkeeping coherence protocols be made not to

dominate the on-chip storage? Second, can future coherence protocols provide good

performance for widely shared structures such as those used in a operating system

kernel? fos explores the design space where future multicore chips have non-scalable

shared memory or do not have global coherent shared memory. By removing the

requirement of coherent shared memory, fos allows computer architects to focus their

design efforts on other portions of the hardware design.

A second trend that has influenced the design of fos is that some massively multi-

core processors are integrating on-chip message passing networks. The Raw processor,

the Tilera family of processors, and the Intel SCC all have this feature in common.

2.1.2 Multicore Implementations

There have been several research projects which have designed prototypes of mas-

sively multicore processors. The MIT Raw Processor [72, 68], the Piranha Chip

Multiprocessor [12], and the 80-core Intel-designed Polaris project [70] are examples

of single-chip, research multiprocessors.

More recently, we have seen Intel release a research prototype Single-Chip Cloud

Computer (SCC) [39] which has 48 cores. The SCC has a memory configuration

where all of the cores share physical memory, but memory is not coherent until it has

reached the off-chip DDR-3 memory bank. In this way, it is similar to the memory

system of the Raw microprocessor which also does not support on-chip cache coher-

ence. Also, similar to the Raw microprocessor, all of the cores are connected by a

mesh network to off-chip memory. One interesting feature of the SCC is that it con-

tains on-chip Message Passing Buffers (MPB). MPBs are essentially small distributed

scratch memories that can be kept coherent on-chip through software means. They

are designed to be used as a on-chip message passing primitive.

Chip multiprocessor research has begun to transition from research into com-

mercial realization. One example is the Niagara processor [45] designed by Afara

Websystems and later purchased by Sun Microsystems. The Niagara 1 processor has

eight cores each with four threads and has coherent shared memory. The Niagara



2 [49] has eight cores each with eight threads and the Niagara 3 [57] has 16 cores each

with eight threads. Even commercial x86 processors have begun transitioning to mul-

ticore with the release of 6-core (AMD Opteron 6000 Series) and 10-core (Intel Xeon

E7 Family) true-die (all cores on a single piece of silicon in contrast to multi-chip

modules which have become popular) offerings from AMD and Intel respectively.

Another commercial, massively multicore processor family includes the TILE64,

TILE64Pro, and TILE-Gx processors [74] designed by Tilera Corporation. The TILE

architecture utilizes a mesh topology for connecting 64 processor cores. The TILE

Architecture provides register-mapped, on-chip networks to allow cores to explicitly

communicate via message passing. TILE processors also support shared memory

between all of the cores. The TILE Architecture supports multiple hardware levels

of protection and the ability to construct hardwalls which can block communications

on the on-chip networks.

The research presented in this thesis envisions that future processors will look like

TILE Architecture processors scaled up to 1000's of cores. This work supposes that

future processors will contain on-chip networks, many protection levels, and hardwall

capabilities. The fos operating system will suppose these features integrated with the

industry standard x86 instruction set.

2.2 OSes

There are several classes of systems which have similarities to fos. These can be

roughly grouped into three categories: traditional microkernels, distributed operating

systems, and distributed systems.

2.2.1 Microkernels

A microkernel is a minimal operating system kernel which typically provides no high-

level operating system services in the kernel, but rather provides mechanisms such as

low-level memory management and inter-thread communication which can be utilized

to construct high-level operating system services. High-level operating system services



such as file systems and naming services are typically constructed inside of user-level

servers which utilize the microkernel's provided mechanisms. Mach [2] is an example

of a microkernel. In order to address performance problems, portions of servers were

slowly integrated into the Mach microkernel to minimize microkernel/server context

switching overhead. This led to the Mach microkernel containing more functionality

than was originally envisioned. The L4 [46] kernel is another example of a microkernel

which attempts to optimize away some of the inefficiencies found in Mach and focuses

heavily on performance. Microkernels have also been used in commercial systems.

Most notably, the QNX [37] operating system is a commercial microkernel largely

used for embedded systems.

Mach Multiserver (Mach-US) [59] is a microkernel OS which warrants special

attention. The Mach Multiserver project worked hard to split out the different por-

tions of the UNIX functionality into different servers. This is in contrast to other

Mach implementations which put much of the UNIX functionality into one server for

performance and ease of construction. The first level of factorization of fos is very

similar to how Mach-US attempted to split UNIX services into separate servers. Be-

cause fos is being designed in a processor core rich environment which did not exist

when Mach-US was explored, fos goes one step further and parallelizes within system

services.

fos is designed as a microkernel and extends microkernel design. fos leverages

many of the lessons learned from previous microkernel designs. It is differentiated

from previous microkernels in that instead of simply exploiting parallelism between

servers which provide different functions, this work seeks to distribute and parallelize

within a service for a single OS function. In example, the fos physical memory allo-

cator is split into different processes that communicate via messaging. By splitting

physical memory allocation into separate processes, more physical memory allocation

throughput can be achieved versus having a single server process. This work also ex-

ploits the spatial nature of massively multicore processors. This is done by spatially

distributing servers which provide a common function. This is in contrast to tra-

ditional microkernels which were not spatially aware, as most previous microkernels



were designed for uniprocessor or low core-count systems. By spatially distributing

servers which collaboratively provide a high-level function, applications which use a

given service may only need to communicate with the local server providing the func-

tion and hence can minimize intra-chip communication. Operating systems built on

top of previous microkernels have not tackled the spatial non-uniformity inherent in

massively multicore processors.

The cost of communication on fos compared to previous microkernels can reduced

because fos does not temporally multiplex operating system servers and applications.

Therefore, when an application messages a fos OS server, a context swap does not

occur. This is in contrast to previous microkernels which temporally multiplexed

resources, causing communication from one process on a processor to a different

process on the same processor to require a context swap. Last, fos, is differentiated

from previous microkernels on parallel systems, because the communication costs and

sheer number of cores on a massively multicore processor is different than in previous

parallel systems, thus the optimizations made and trade-offs are quite different.

The Tornado [32] operating system which has been extended into the K42 [4]

operating system is one of the more aggressive attempts at constructing scalable

microkernels. They are differentiated from fos in that they are designed to be run on

SMP and NUMA shared memory machines instead of single-chip massively multicore

machines. Tornado and K42 also suppose future architectures which support efficient

hardware shared memory. fos does not require architectures to support intra-machine

shared memory as communication between fos servers is all via message passing. Also,

the scalability [6] of K42 has been focused on machines with up to 24 processors, which

is a modest number of processors when compared to the fos design target of 1000+

processors.

The Hive [25] operating system utilizes a multicellular kernel architecture. This

means that a multiprocessor is segmented into cells which each contain a set of pro-

cessors. Inside of a cell, the operating system manages the resources inside of the cell

like a traditional OS. Between cells, the operating system shares resources by having

the different cells message and allowing safe memory reads. Hive OS focused heavily



on fault containment and less on high scalability than fos does. Also, the Hive results

are for scalability up to 4 processors. In contrast to fos, Hive utilizes shared memory

between cells as a way to communicate.

Another approach to building scalable operating systems is the approach taken

by Disco [23] and Cellular Disco [34]. Disco and Cellular Disco run off the shelf oper-

ating systems in multiple virtual machines executing on multiprocessor systems. By

dividing a multiprocessor into multiple virtual machines with fewer processors, Disco

and Cellular Disco can leverage the design of pre-existing operating systems. They

also leverage the level of scalability already designed into pre-existing operating sys-

tems. Disco and Cellular Disco also allow for sharing between the virtual machines

in multiple ways. For instance in Cellular Disco, virtual machines can be thought

of as a cluster running on a multiprocessor system. Cellular Disco utilizes cluster

services like a shared network file system and network time servers to present a closer

approximation of a single system image. Various techniques are used in these projects

to allow for sharing between VMs. For instance memory can be shared between VMs

so replicated pages can point at the same page in physical memory. Cellular Disco

segments a multiprocessor into cells and allows for borrowing of resources, such as

memory, between cells. Cellular Disco also provides fast communication mechanisms

which break the virtual machine abstraction to allow two client operating systems to

communicate faster than they could via a virtualized network-like interface. VMWare

has adopted many of the ideas from Disco and Cellular Disco to improve VMWare's

product offerings. One example is VMCI Sockets [71] which is an optimized, com-

munication API which provides fast communication between VMs executing on the

same machine.

Disco and Cellular Disco utilize hierarchical, shared information to attack the

scalability problem much in the same way that fos does. They do so by leveraging

conventional SMP operating systems at the base of the hierarchy. Disco and Cellular

Disco argue leveraging traditional operating systems as an advantage, but this ap-

proach likely does not reach the highest level of scalability as a purpose built scalable

OS such as fos. For example, the rigid cell boundaries of Cellular Disco can limit scal-



ability. Because these systems are just utilizing multiprocessor systems as a cluster,

the qualitative interface of a cluster is restrictive when compared to a single system

image. This is especially prominent with large applications which need to be rewrit-

ten such that the application is segmented into blocks only as large as the largest

virtual machine. In order to create larger systems, an application needs to either be

transformed to a distributed network model, or utilize a VM abstraction-layer violat-

ing interface which allows memory to be shared between VMs. Also, in contrast to

fos, Disco and Cellular Disco focus on parallelizing high level system services such as

the file system, while fos also focuses on fine-grain parallelization of low-level system

services.

2.2.2 Distributed Operating Systems

fos bears much similarity to a distributed operating system, except executing on a

single multicore chip. In fact, much of the inspiration for this work comes from the

ideas developed for distributed operating systems. A distributed operating system is

an operating system which executes across multiple computers or workstations con-

nected by a network. Distributed operating systems provide abstractions which allow

a single user to utilize resources across multiple networked computers or workstations.

The level of integration varies with some distributed operating systems providing a

single system image to the user, while others provide only shared process scheduling

or a shared file system. Examples of distributed operating systems include the V

Distributed System [27], Amoeba [67, 66], Sprite [50], Choices [24], and Clouds [31].

These systems were implemented across clusters of workstation computers connected

by networking hardware. One important aspect of distributed OSes that fos lever-

ages is that both applications communicate with servers and inter-machine OS servers

communicate with each other via messaging.

While fos takes much inspiration from distributed operating systems, some differ-

ences stand out. The prime difference is that the core-to-core communication cost on

a single-chip, massively multicore processor is orders of magnitude smaller than on

distributed systems which utilize Ethernet style hardware to interconnect the nodes.



Single-chip, massively multicore processors have much smaller core-to-core latency

and much higher core-to-core communications bandwidth. fos takes advantage of

this by allowing finer-grain paralelization of system services which typically requires

more communication than coarse-grain parallelization. A second difference that mul-

ticores present relative to clusters of workstations is that on-chip communication is

more reliable than workstation-to-workstation communication over commodity net-

work hardware. fos takes advantage of this by approximating on-chip communication

as being reliable. This removes the latency and complexity of correcting communica-

tion errors.

Single-chip, multicore processors are easier to think of as a single, trusted ad-

ministrative domain than a true distributed system. In many distributed operating

systems, much effort is spent determining whether communications are trusted. This

problem does not disappear in a single-chip multicore, but the on-chip protection

hardware and the fact that the entire system is contained in a single chip simplifies

the trust model considerably.

Also, in contrast to many previous distributed operating systems, fos fine-grain

parallelizes lower level services while previous distributed OSes have focused on coarser

parallelization and higher level system services. For example, previous distributed

OSes have focused on parallelizing high-level services such as file servers. fos takes

this level of fine-grain parallelization one step further by using fine-grain paralleliza-

tion techniques on low-level services such as process management, scheduling, and

memory management. Previous systems such as Amoeba have parallelized resources

such as process management, but the parallelization was done on a per user basis

which is much coarser than the level of parallelization that fos uses. Also, in contrast

to fos, Ameoba utilized threading and shared memory for communication for parallel

system servers when executing on a single computer. fos instead utilizes messaging

for intra-fleet communication.

More recently, work has been done to investigate operating systems for multicore

processors. One example is Corey [20] which focuses on allowing applications to

direct how shared memory data is shared between cores. Corey also investigates



exploiting the spatial nature of multicore processors by dedicating cores to portions

of the application and operating system. This is similar to how fos dedicates cores to

particular OS functions.

A contemporary of the fos project which is tackling many of the same challenges

is the Barrelfish [13] Operating System. Barrelfish is a based around a multikernel

design. Barrelfish defines a multikernel as an operating system kernel which treats

a multiprocessor as a network of independent cores. It moves traditional OS func-

tionality into servers executing as user-level servers. In Barrelfish, each core has

what it terms the monitor process and these processes use state replication and two

phase commit protocols to keep OS state coherent. One difference between fos and

the Barrelfish design is that Barrelfish puts much of the OS functionality into the

monitor process while fos factors OS functionality into service specific fleets which

do not execute on the same core as the application. As per recent discussions with

the Barrelfish group, they are moving more functionality out of the monitor process

and factoring the OS more by function much in the same way that fos factors by

service provided. There are two areas that Barrelfish has excelled when compared

to fos. First, the Barrelfish project has spent more effort optimizing their messaging

system for manycore systems. Second, Barrelfish has explored using a database [53]

to make intelligent decisions about optimizing for different multicore systems where

the diversity and nonuniformities of the system effect the OS greatly. fos is further

along in exploring parallelizing different servers and has also been extended across

clusters and clouds which Barrelfish has yet to be extended.

2.2.3 Distributed Systems

The manner in which fos parallelizes system services into fleets of cooperating servers

is inspired by distributed Internet services. For instance, load balancing is one tech-

nique fos leveraged from clustered webservers. The name server of fos derives in-

spiration from the hierarchical caching in the Internet's DNS system. fos hopes to

leverage other techniques such as those in peer-to-peer and distributed hash tables

such as Bit Torrent [29] and Chord [60]. fos also takes inspiration from distributed



services such as distributed file systems like AFS [52], OceanStore [42] and the Google

File System [33].

While this work leverages techniques which allow distributed Internet servers to

be spatially distributed and provide services at large-scale, there are some differences.

First, instead of being applied to serving webpages or otherwise user services, these

techniques are applied to services which are internal to an OS kernel. Many of these

services have lower latency requirements than are found on the Internet. Second,

the on-chip domain is more reliable than the Internet, therefore there is less overhead

required to deal with errors or network failures. Last, the communication costs within

a chip are orders of magnitude lower than on the Internet.

2.3 Distributed Data Structures

The dPool data structure has much in common with and takes inspiration from pre-

vious parallel object models and parallel container classes. In this section, we will

compare and contrast previous parallel object models with fos's dPool. One of the

main differences between dPool and previous parallel container classes is that dPool

is designed to be used inside of low-level OS services. This has a large impact on the

design of dPool. First, dPool cannot rely on high level constructs such as MPI [35],

preemptive threads, and complex schedulers because dPool itself can be used to imple-

ment some of these low-level features. Also, dPool does not utilize an object-oriented

language because it has been designed to be used by fos fleet servers which are typi-

cally written in straight 'C'. Most of the related parallel objects have been designed

for HPC environments running on a cluster which is quite a different environment

than being used inside of an OS. There have been several projects which have looked

at using parallel objects inside of operating systems, but many of them utilize shared

memory to communicate. Finally, some of the high performance computing data

structures have not been designed around elastic resizing. The lack of resizing in a

HPC environment is largely because machine size is traditionally fixed and assigning

data to machines statically simplifies the design.



2.3.1 Data Structures Designed for Operating Systems

The first related project which we will examine is Clustered Objects [5], which is used

inside of the K42 operating system. Clustered Objects provides a common infrastruc-

ture on which to build distributed objects to be used in the K42 operating system.

The Clustered Object infrastructure is based off of 'C++' and utilizes sophisticated

virtual pointer table manipulation in order to allow different processors to invoke a

CPU-specific Representative given the same reference. Representatives are similar to

dPool's shards. Clustered Objects allows a local Representative to be the interface

to shared data stored in a Clustered Object instance. Clustered Objects provides a

programming model by which a common interface can be used to access a Clustered

Object while local Representatives can be used to implement the functionality and

sharing of data for the object internally. Although Clustered Objects is an interface

and set of libraries that facilitate writing distributed shared data structures, it is not

a complete set of parallel classes. During the implementation of K42, a number of

Clustered Objects have been written with varying degrees of distribution.

Much like dPool, Clustered Objects was designed to be used to implement low-

level, shared data structures inside of operating systems. One of the primary dif-

ferences between Clustered Objects and the fos approach is that Clustered Objects

internally use shared memory to communicate. The different Representatives contain

pointers to a Root structure where they can gain access to other Representatives.

Clustered Objects does not restrict and in fact encourages utilizing shared memory

data when it makes sense. Internally, Clustered Objects do not use message passing

as the K42 project was focused on running on shared memory NUMA machines. In

contrast, dPool shards are in different address spaces and can only communicate via

explicit message passing. Another difference between Clustered Objects and dPool is

that dPool has been designed to be a container class which can store any data type.

While it is possible to build such a Clustered Object, the philosophy of Clustered Ob-

jects was to encapsulate more functionality inside of a single Clustered Object than

to implement simple container classes. Instead, Clustered Objects typically were ap-



plication specific and contained service functionality along with the data structure.

In fos, we put the service functionality in the fleet member and let the data structure

be simply a container. Also, Clustered Objects do not allow background threads to

execute inside of the Clustered Objects while dPool does. dPool's background threads

can be used to balance elements within the dPool data structure off of the critical path

of the computation. Background threads harvest what would otherwise be idle cycles

on the processor. Last, I was not able to find any reference to a Clustered Object

which provided an unordered set (pool) style data structure having been implemented

as a Clustered Object.

Fragmented Objects [47, 55, 22] is a distributed object model which puts frag-

ments of an object in the address space of the application using the object and allows

the fragmented object writer to hide communications between fragments. The frag-

ments communicate via messaging. Fragmented Objects bears much resemblance to

the design of dPool. Fragmented Objects were designed in the context of distributed,

multi-machine, systems and used 'C++' to implement the objects. Fragmented Ob-

jects do not enable background threads to execute inside of the Fragmented Objects,

in contrast to dPool. The Fragmented Objects work focused more on the properties

of such objects than in implementations built using the methodology.

In the SOS project [56], Fragmented Objects were used inside of the SOS operat-

ing system. SOS is an object-oriented operating system which ran on top of UNIX

(SunOS) as a meta-OS. SOS also had a multi-machine, distributed system mode.

SOS used UNIX Domain Sockets for the intra-machine communication and IP for the

inter-machine case to allow the different portions of the OS to communicate. This

is similar to how fos uses its messaging layer to communicate between different fleet

servers. The SOS system was more of a meta-OS than a true OS, as it deferred han-

dling memory management and scheduling to the host OS, SunOS. The SOS project

was more focused on how to construct object-oriented systems than how to optimize

OS services. As such, they did not focus on the parallelization of the Fragmented Ob-

jects used inside. In fact, all of the examples given show centralized implementations

of objects where the local fragment of the object was simply a Remote Procedure



Call (RPC) proxy to the centralized implementation of the object. Another key dif-

ference between dPool and SOS's use of Fragmented Objects is that SOS was focused

on uniprocessor and clusters of uniprocessor systems versus fos's focus on multicore

systems.

Distributed Shared Objects [65, 9] and later extensions [69, 38] were object models

developed at Vrije Universiteit for use in both the construction of OSes and applica-

tions. They were used in concert with the Orca [8] programming language and the

Ameoba distributed operating system. In distributed shared objects, different por-

tions of a shared object communicate via messaging. The structure of dPool is similar

to shared objects in that they both replicate and partition state in the local address

space of users of the distributed objects. In contrast to dPool, Orca and shared ob-

jects were focused on implementations on multi-machine clusters while dPool focuses

on implementing scalable data structures on a multicore processor. One other differ-

ence is that most of the implementations of Orca were based on distributed shared

memory to keep state coherent in a general manner while dPool encapsulates the shar-

ing and partitioning of data within the data structures themselves. This flexibility

allows dPool to have background threads within the data structure implementations

to rebalance the elements held within the data structure.

2.3.2 Data Structures Designed for Applications

The Standard Template Adaptive Parallel Library(STAPL) [63, 62] is a parallel data

structure library which provides a set of scalable, concurrently accessible, container

classes with functionality similar to the C++ Standard Template Library(STL).

STAPL is written on top of the ARMI communication library which enables different

portions of a pContainer to communicate either via shared memory or via a message

passing interface. STAPL is largely designed to be used by large scale application

writers and is hence optimized for the High Performance Computing (HPC) commu-

nity. One very interesting feature of STAPL containers is that they are composable.

This allows one pContainer to be stored inside of another pContainer. STAPL data

structures are adaptable in the manner in which they place and partition elements.



Some STAPL implementations allow the spatial mapping of stored elements to be

changed in response to load. This is similar to how dPool is able to use background

threads to rebalance elements. Because STAPL objects are composable, this limits

optimizations that dPool implementations are able to use.

Unlike dPool, STAPL pContainers are written requiring 'C++' allows STAPL to

take advantage of templates while dPool must use a more dynamic interface for the

size of elements that dPool stores. STAPL data structures are also designed for use

by HPC applications and as such STAPL relies on a feature-rich set of underlying

libraries such as MPI, Pthreads, and a complete standard 'C' library which are not

present inside of an OS kernel. The STAPL heavyweight runtime system contains a

communication library, a scheduler, an executor, and a performance monitor. STAPL

provides a feature-rich set of container classes, and even provides a multiset which

is similar to the dPool but with an expanded interface. The STAPL pMultiSet [64]

still imposes order in the same way that STL MultiSets impose ordering. STAPL is

under continued development and portions of it are contemporary with the fos effort.

In addition to STAPL, there are other parallel container libraries and data struc-

tures for applications which utilize only messaging to communicate internally. Ex-

amples include Topologies [54] and Distributed Shared Abstractions [28] which were

designed to map data structures across structured MIMD machines.

There are many other parallel container libraries which rely solely on shared mem-

ory. Examples of these include Intel's Threaded Building Blocks (TBB) [40], and

POOMA [51]. These libraries have all been designed to supporting application level

programming and not OS programming.

Parallel programming languages such as CHARM++ [41], X1O [26], SplitC [30],

and Titanium [76] typically include parallel arrays and include language primitives

which ease the development of parallel data structures. The design of dPool has taken

the conservative approach of providing a 'C' interface and not utilizing a programming

language designed for parallelism. This primarily has been done because the language

and runtime associated with many of these parallel languages is not appropriate for

use in the context of operating system programming.



2.4 Multisets and Bags

The dPool data structure developed in this thesis implements the interface of a mul-

tiset which is sometimes also known as a bag data structure. Kuchen and Gladitz

provide an overview of parallel bags which have been used inside of functional lan-

guages [43] and the GAMMA programming language is a functional programming

language where multisets are the primary data structure used for all computation [10].

Afek [3] examines a parallel pool data structure being used for producer-consumer

applications. Sundell [61] have recently been investigating concurrent bag data struc-

tures for multicore systems which do not use locks. This work still relies on shared

memory through the use of compare-and-swap instructions unlike the dPool which

only utilizes messaging.

Leiserson and Schardl [44] formalize the bag interface with additional operations

which allow the parallel union and splitting of a bag. They use a bag to implement a

parallel breadth-first search and their experimental results use a shared memory Cilk

model.

2.5 Work Piles and Queues

Work piles are many times implemented with a bag or pool data structure. One

interesting work pile is the parallel pool of ready to be executed instruction sequences

in a dataflow computer architecture [7]. Unlike other programming models, these

threads are independent. Typical dataflow architectures implemented work sharing

and queues to load balance threads across the execution units.

The Cilk programming environment utilizes a parallel work queue for thread

scheduling [19]. In Blumofe and Leiserson's work, they propose utilizing work stealing

instead of a work sharing approach. These approaches keep independent queues per

processor core and either steal work from another queue when a processor's queue is

empty, or in the case of work sharing, will put work on queues of other processors

when new threads are created. In contrast to a generic pool data structure such as



what dPool implements, the Cilk scheduler maintains priorities between the differ-

ent threads in the system as there are order dependencies between the threads in

the scheduler. One interesting result out of the Cilk work is that they found that a

work stealing scheduler is superior to a work sharing scheduler. This is in contrast to

what we find for dPool; that pushing elements between different portions of a dPool,

similar to work sharing, is superior to pulling, similar to work stealing. The contrary

findings may be because the Cilk scheduler has a global ordering that needs to be

maintained, the Cilk scheduler utilizes shared memory to manage the queue, and the

Cilk analysis takes in to account the running time of different threads. The contrary

findings suggests that dPool with a push implementation may not be a good fit for a

Cilk style thread scheduler.



Chapter 3

Structure of fos

Much of the work of this thesis has gone into the identification of the challenges in

constructing operating systems for future architectures, the development of the struc-

ture of a Factored Operating System (fos), and the implementation of a prototype

fos operating system framework. This chapter describes the fos system which is the

context within which dPool has been created.

3.1 Motivation

3.1.1 Architecture

Future multicore chip architecture has motivated the design of fos. In the future, I

believe that we will continue to see increasing numbers of cores on a single piece of

silicon. This is largely being driven by the progression of Moore's Law supplying chip

designers more silicon real estate. Some challenges to this vision are that future chips

may become power limited at some point along this design path or circuit integration

technology may put Moore's Law in peril. fos is designed around the challenge of using

large numbers of cores both for the operating system and allowing applications to use

large numbers of cores. The key goal for the design of fos is to allow a system to run

a large number of applications on a future multicore processor and provide access to

OS system services while not having the OS become the scalability limiter. Therefore



much of fos's design has been motivated by having scalability as the primary design

constraint.

Another important architectural trend which has influenced the design of fos is the

rise of on-chip direct communication networks and the unknown scaling of cache co-

herent shared memory on future multicore processors. Section 2.1 has more discussion

of processor architecture. The rise of on-chip direct networks and the uncertainty of

shared memory has motivated fos to use explicit communication in the form of mes-

sage passing. In fos, we take the extreme view that global cache coherent shared

memory will either be unavailable on future architectures or its performance will be

very low and ultimately limit the scalability of any application or OS which utilizes

it widely. To support this extreme viewpoint, fos only allows applications to connect

to system services via message passing. System servers only communicate with each

other via message passing. Services are internally parallelized, but internally com-

municate via messaging. In effect, fos holds the OS programmer to a high standard

of explicitly thinking about all communication in the hope of leading to ultimately

higher scalability.

3.1.2 Challenges of Scaling Monolithic OSes

This sub-section investigates three main scalability problems with contemporary mono-

lithic OS design: locks, locality aliasing, and reliance on shared memory. Case studies

are utilized to illustrate how these problems appear in a contemporary OS, Linux, on

modern multicore x86_64 hardware.

Shared Memory Locks

Contemporary operating systems which execute on multiprocessor systems have evolved

from uni-processor operating systems. The most simplistic form of this evolution was

the addition of a single big kernel lock which prevents multiple threads from simul-

taneously entering the kernel. Allowing only one thread to execute in the kernel at

a time greatly simplifies the extension of a uni-processor operating system to mul-



tiple processors. By allowing only one thread in the kernel at a time, the invariant

that all kernel data structures will be accessed by only one thread is maintained.

Unfortunately, one large kernel lock, by definition, limits the concurrency achievable

within an OS kernel and hence the scalability. The traditional manner to further scale

operating system performance has been to successively create finer-grain locks thus

reducing the probability that more than one thread is concurrently accessing locked

data. This method attempts to increase the concurrency available in the kernel.

Adding locks into an operating system is time consuming and error prone. Adding

locks can be error prone for several reasons. First, when trying to implement a fine

grain lock where coarse grain locking previously existed, it is common to forget that

a piece of data needs to be protected by a lock. Many times this is caused by simply

not understanding the relationships between data and locks, as most programming

languages, especially those commonly used to write operating systems, do not have

a formal way to express lock and protected data relationships.

The second manner in which locks are error prone is that locks can introduce

circular dependencies and hence cause deadlocks to occur. Many operating systems

introduce lock acquisition hierarchies to guarantee that a circular lock dependence

can never occur, but this introduces significant complexity for the OS programmer.

An unfortunate downside of lock-induced deadlocks is that they can occur in very

rare circumstances which can be difficult to exercise in normal testing.

When the lock granularity finally needs to be adjusted, it is usually not the case

that simply adjusting the lock granularity is enough. For code which has already

been parallelized, it is typically difficult to make code finer grain locked in a vacuum.

Instead, it is typical for entire sub-systems of the operating system to be redesigned

when lock granularity needs to be adjusted.

In previous multiprocessor systems, the speed at which parallelism increased was

slow and sub-system redesign was feasible. In sharp contrast, future multicore proces-

sors will follow an exponential growth rate in the number of cores. The effect of this

is that each new generation of chip will require the granularity of a lock to be halved

in order to maintain performance parity. Thus, this lock granularity change may re-



quire operating system sub-systems to be redesigned with each new chip generation.

Unfortunately for the operating system programmer, it is very difficult to redesign

sub-systems with this speed, as programmer productivity is not scaling with number

of transistors. Hence, we believe that traditional, lock-based operating systems need

to be rethought in light of the multicore era.

Whenever discussing lock granularity, the question arises, what is the correct lock

granularity? If lock granularity is chosen to be too coarse, the scalability on highly

parallel systems may be poor. But, if the lock granularity is too fine, the overhead

of locking and unlocking too often can cause inefficiencies on low core-count systems.

Even if a lock is not being contended, extra atomic operations are utilized to lock and

unlock the memory location associated with a lock when compared to not having a

lock at all. Future operating systems will have to directly attack finding the correct

lock granularity as they will have to span multiple generations of computer chips

which will vary by at least an order of magnitude with respect to core count. Also,

the difference in core count between the high end processor and low end processor of

the same generation may be at least an order of magnitude in the 1000+ core era.

Thus, even within a processor family, the OS designer may not be able to choose an

appropriate lock granularity.

Case Study: Physical Page Allocator In order to investigate how locks scale in

a contemporary operating system, I investigated the scaling aspects of the physical

page allocation routines of Linux. The Linux 2.6.24.7 kernel was utilized on a 16

core Intel quad-socket quad-core system. The test system is a Dell PowerEdge R900

outfitted with four Intel Xeon E7340 CPUs running at 2.40GHz and 16GB of RAM.

The test program attempts to allocate memory as quickly as possible on each core.

This is accomplished by allocating a gigabyte of data and then writing to the first

byte of every page as quickly as possible. By touching the first byte in every page, the

operating system is forced to demand allocate the memory. The number of cores was

varied from 1 to 16 cores. Precision timers and oprof ile were utilized to determine

the runtime and to profile the executing code. Figure 3-1 shows the results of this
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Figure 3-1: Physical memory allocation performance sorted by function. As more
cores are added, more processing time is spent contending for locks.

experiment. The bars show the time taken to complete the test per core. Note that

a fixed amount of work is done per core, thus perfect scaling would be bars all the

same height.

By inspecting the graph, several lessons can be learned. First, as the number of

cores increases, the lock contention begins to dominate the execution time. Beyond

eight processors, the addition of more processors actually slows down the computation

and the system begins to exhibit fold-back. We highlight architectural overhead as

time taken due to the hardware not scaling as more cores are added. The architectural

overhead is believed to be caused by contention in the hardware memory system.

For this benchmark, the Linux kernel already utilizes relatively fine-grain locks.

Each core has list of free pages and a per-core lock on that free list. When the local

list of free pages becomes dry, the page allocation code locks a global, per-NUMA

node list and moves pages from that free list to the per-CPU cache. If the local

per-CPU cache gains too many pages, it pushes pages back to the global, per-NUMA

node free list. The global, per-NUMA node free list is kept as a buddy allocator.

Even with all of these optimizations, the top level per-NUMA node re-balancing

lock ends up being the scalability problem. This code is already quite fine-grain

locked, thus, to make it finer grain locked, some algorithmic rethinking is needed.



While it is not realistic for all of the cores in a 16 core system to allocate memory as

quickly as this test program does, it is realistic that in a 1000+ core system, 16 out

of the 1000 cores would need to allocate a page at the same time thus causing traffic

similar to this test program.

Working Set Aliasing

Operating systems have large instruction and data working sets. Traditional oper-

ating systems time multiplex computation resources. By executing operating system

code and application code on the same physical core, implicitly shared resources such

as caches and TLBs have to accommodate the shared working set of both the appli-

cation and the operating system code and data. This can reduce the hit rate in these

cache structures versus executing the operating system and application on separate

cores. By reducing cache hit rates, the single stream performance of the program will

be reduced. Reduced hit rate is exacerbated by the fact that manycore architectures

typically contain smaller per-core caches than past uniprocessors. If the OS and ap-

plication are communicating often, for instance when passing large portions of data

between the OS and application, positive cache interference can occur also.

Single-stream performance is at a premium with the advent of multicore proces-

sors, as increasing single stream performance by other means may be exceedingly

difficult. It is also likely that some of the working set will be so disjoint that the ap-

plication and operating system can fight for resources, causing anti-locality collisions

in the cache. Anti-locality cache collisions are when two different sets of instructions

pull data into the cache at the same index hence causing the different instruction

streams to destroy temporal locality for data at a conflicting index in the cache. Cur-

rent operating systems also execute different portions of the OS with wildly different

code and data on one physical core. By doing this, intra-OS cache thrash can be

accentuated versus when executing different logical portions of the OS on different

physical cores.

Cache interference also hampers embedded operating systems which offer qual-

ity of service (QOS) or real-time guarantees. The variability introduced by OS-



application cache interference has caused many embedded applications to eliminate

usage of an operating system and elect to use a more bare-metal approach.

Case Study: Cache Interference

In order to evaluate the cache system performance degradation due to executing the

operating system and application code on the same core, I created a cache tool which

allows us to differentiate operating system from application memory references. The

tool is based off of the x86_64 version of QEMU, and captures full system memory ref-

erences differentiated by protection level. Adam Belay and I extended this tool into a

tool based on CoreEMU which we call CacheEMU [16] which can determine the cache

miss rates attributable to the operating system, the application, and interference or

cooperation misses caused by the operating system and application contending for

cache space. This was accomplished by simulating a unified cache, an OS only cache,

and an application only cache for differing cache sizes and configurations.

We conducted a study using CacheEMU to simulate a 64-bit x86 computer exe-

cuting Debian Linux. We chose five common Linux workloads with heavy usage of

OS services. They are as follows:

" Apache: The Apache Web Server, running Apache Bench tests over localhost.

" Find: The Unix search tool, walking the entire filesystem.

" Make: The Unix build tool, compiling the standard library 'fontconfig' (in-

cludes gcc invocations and other scripts).

" Psearchy: A parallel search indexer included with Mosbench [21], indexing the

entire Linux Kernel source tree.

" Zip: The standard compressed archive tool, packing the entire Linux Kernel

source tree into a zip archive.

In the following experiments, an 8-way set associative cache was simulated and

the cache size was varied from 4KB to 16MB. In each test, we compared the number
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Figure 3-2: Cache miss rates for Zip running on Linux vs Cache size. Shows misses
attributable to Application, OS, OS-Application conflict/competition, and misses
that go away due to cache cooperation.

of misses when utilizing a separate OS and application cache versus a cache that is

used by both the application and OS. In general we found that sharing a cache for

small sized caches caused significant cache competition, while cooperation became a

significant factor for larger cache sizes.

Figure 3-2 shows the cache behavior for gzip executing on Linux. Studying these

results, it can be seen that for small cache sizes, the miss rates for the operating system

far surpass the miss rates for the application. Second, for small cache sizes, the miss

rate due to cache interference is sizable. We found that for most of our benchmarks,

misses due to the OS overwhelm that of the application. Figure ?? shows that the

misses caused by the OS overwhelm the misses caused by the application for all cache

sizes, but this may be difficult to see as this figure shows the data plotted on a log

plot. Cache competition/interference was dominant until the cache size reached 1MB

and then cache cooperation between the OS and application took over.

Figure 3-3 shows results for all five test applications. This graph shows the per-
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Figure 3-3: Percentage decrease in cache misses caused by separating the application
and OS into separate caches of the same size versus cache size. Negative values
denotes that performance would be better if sharing a cache.

centage that cache misses decrease when the OS and application use separate caches

of the same size. This has been plotted against cache size. Note that the case where

the OS and application is split apart has twice as much cache as the case when the

OS and application share caches. When the percent decrease is above zero, it indi-

cates that the application and OS would run faster if split onto separate cores. When

negative, it suggests that the OS and application benefit from being scheduled on the

same core. As Figure 3-3 shows, for small cache sizes (4KB-256KB), those typically

found in Li and L2 caches, benefit can be had by not having the OS and application

share caches. For larger sized caches (1MB-16MB), performance would be increased

by sharing a cache of that size. These results indicate that it would make sense to

execute the OS and application on different cores, but share a last level or L3 cache

between the application and OS that services it. Further discussion of this topic can

be found in Belay [16]. The FlexSC [58] work took some inspiration from my original

studies in the fos proposal paper [73] and develops a similar idea of moving the OS

and application onto separate cores in the context of a traditional Linux system.



Reliance on Shared Memory

Contemporary, monolithic operating systems rely on shared memory for communica-

tion. Largely, this is because shared memory is the only means by which a desktop

hardware architecture allows core-to-core communication. The abstraction of a flat,

global, address space is convenient for the programmer to utilize as addresses can be

passed across the machine and any core is capable of accessing the data. It is also

relatively easy to extend a single threaded operating system into a multi-threaded

kernel by using a single global address space. Unfortunately, the usage of a single

global shared memory is an inherently global construct. This global abstraction may

make it challenging for a shared memory operating system to scale to large core count

if the hardware does not support efficient global shared memory.

Many current embedded multicore processors do not support a shared memory

abstraction. Instead cores are connected by ad-hoc communication FIFOs, explicit

communication networks, or by asymmetric shared memory. Current day embedded

multicores are pioneers in the multicore field which future, general-purpose multi-

core processors will extend. Because contemporary operating systems rely on shared

memory for communication, it is not possible to execute them on current and future

embedded multicores which lack full shared memory support. In order to have the

widest applicability, future multicore operating systems should not be reliant on a

shared memory abstraction.

It is also unclear whether cache coherent shared memory will scale to large core

counts. Although the most promising hardware shared memory technique with re-

spect to scalability has been directory based cache coherence, hardware directory

based cache coherence has found difficulties providing high-performance, cache co-

herent shared memory above about 100 cores. The alternative is to use message

passing, which is a more explicit point-to-point communication mechanism.

Besides scalability problems, modern operating system's reliance on shared mem-

ory can cause subtle data races. If used incorrectly, global shared memory easily

allows the introduction of data races which can be difficult to detect at test time.



3.1.3 fos's Response to Scalability Challenges

In the above sections, we identified these three challenges of scaling monolithic oper-

ating systems to future multicore processors:

e Shared Memory Locks

* OS-Application Working Set Aliasing

e Reliance on Shared Memory

fos addresses each of these scalability limiters. To address the problems in find-

ing the correct lock granularity and the composability challenges of complex lock

hierarchies, fos does not use shared memory locks inside of system servers.

To address working set conflicts of executing the OS and application or different

portions of an OS on the same core, fos dedicates cores to OS system servers and

applications. Also, fos factors the OS by operating system function, therefore different

portions of the OS which have non-overlapping working sets also execute on different

cores. Applications communicate with OS servers via message passing. Also OS

servers communicate with other OS servers also via message passing.

Finally fos breaks the OS's reliance on shared memory. fos achieves this by only

internally using message passing to communicate between different OS system servers.

fos does support applications that use shared memory as a way to broaden the range

of applications that fos can execute, but internally fos system servers do not use

shared memory.

3.2 fos Design

fos has been designed to allow an operating system to scale up and use large numbers

of cores in a multicore system. In order to enable this goal, fos is built around the

following design principles:

e OS is factored into function-specific services.



- Applications communicate with services via message passing.

" Each function-specific service is built as a fleet of cooperating processes

- Server processes in a fleet collaborate to provide a single OS service and

communicate only via message passing.

- Server processes in a fleet are spatially distributed across cores in a multi-

core processor.

- Server processes are bound to a core.

- Server processes leverage distributed system techniques.

" Space multiplexing replaces time multiplexing.

- OS runs on distinct cores from applications.

- Working sets are spatially partitioned; OS does not interfere with applica-

tion's cache.

- Scheduling becomes a layout problem, not a time multiplexing problem.

Figure 3-4 shows the high-level architecture of fos. A small microkernel runs

on every core. Operating system services and applications run on distinct cores.

Applications can use shared memory, but OS services communicate only via message

passing. A library layer (libf os) translates traditional system calls into messages

to fos services. A naming service is used to find a message's destination server. The

naming service is maintained by a fleet of naming servers. Finally, fos can run on

top of a hypervisor and seamlessly span multiple machines, thereby providing a single

system image across a cloud computer [75]. The following subsections describe the

architecture of fos.

3.2.1 Microkernel

fos uses a minimal microkernel design. The microkernel only provides: (i) a protected

messaging layer, (ii) a name cache to accelerate messaging delivery, (iii) an applica-

tion programming interface (API) to allow the modification of address spaces and
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thread creation, (iv) rudimentary time multiplexing of cores to allow fos to run in a

core-restricted environment, and (v) an API to allow user-level drivers to access hard-

ware. Other OS functionality, along with applications execute in protected userspace

provided by the microkernel. The fos microkernel is currently derived from the Xen

Minimal OS. This was used as a starting point as fos executes as a Xen paravirtual-

ized guest OS and the Xen Minimal OS contains examples of how to interface with

the Xen hardware.

Access to the privileged functions of the fos microkernel are protected by capabil-

ities. For example, access to the API which allows modification of address spaces and

thread context is restricted to services holding a particular capability. Capabilities

are also used in the messaging API to restrict sending to a mailbox.

3.2.2 Messaging

fos's basic communication mechanism is a messaging interface. The fos messaging

interface is heavily influenced by the architectures it is designed for. Unlike many



previous microkernel designs such as L4 [46] or Mach [2] where messaging was designed

primarily for efficient single core communication, fos messaging has been designed

primarily for multicore systems which has the following implications:

" Sending core is different from the receiving core.

- Message receive is not synchronous with message send.

" Destination core is unique.

- Single receiver gets messages from multiple senders.

" Multicore processor is one shared trust and fault domain.

- Messages are reliable.

- Destinations are protected by keys (capabilities), but no heavy weight

protection or security is needed.

* Messaging provides a reasonable, direct programmer interface.

- Send is atomic once accepted.

- Message ordering is not global, but messages are received in order from

one source process to one destination mailbox. Allows some flexibility

in implementation, while still allowing the programmer to reason about

arrival order.

One of the largest implications of building an OS messaging system for a multicore

system is that the messaging layer is optimized for the case where the sending core

is not the same core as the receiving core. The URPC projects [17] has a similar

constraint and one of the fos messaging implementations takes much inspiration from

URPC. fos dedicates cores to applications and OS servers, therefore messages that

are sent in fos go from one core to a different core. Because the receiving core

and the sending core want to make forward progress and do not want to sync up

to exchange a message, fos's message receive is asynchronous. fos mailboxes are a



certain size and can asynchronously receive messages from a sending core. When

the receiving core is ready to receive the message, it can simply check its mailbox.

The sending process also does not need to wait for the receiving process to receive the

message to make forward progress. This type of messaging is in sharp contrast to L4's

messaging system, which is dependent on synchronous exchange of messages, which

makes sense on a uniprocessor where the send and receive can both be co-scheduled

and the uniprocessor's time is best spent transitioning from the sending process to

the receiving process's context.

The second insight about multicore messaging systems is that for hardware-based

messaging systems or messaging built on top of a memory system which has strong

locality or homing such as the TILEPro64, the destination core is unique. This is in

contrast to messaging systems which were designed for uniprocessor systems, where

messages were simply stored in a unified memory system. For instance in the Mach

Ports messaging system, different processes can receive from a single Port. This works

fine on a system where messaging has no affinity for location, but on multicore ar-

chitectures, moving data to the appropriate destination is important for performance

and possibly correctness in the case of hardware-based messaging networks. There-

fore, the fos messaging system only allows one server to receive from each mailbox.

The messaging system does enable multiple processes to send to one mailbox. Send-

ing a message to a mailbox is a stateless operation from the viewpoint of the sender

and does not require a channel setup step.

There are many different types of messaging systems which work across machines.

In the general sense, network-connected computers use varying encryption based au-

thentication schemes to ensure authentication of communication. Also, TCP is widely

used on top of the unreliable IP packet protocol to ensure reliable delivery of 'mes-

sages. The fos messaging system has been designed primarily to work on a multicore

processor. On a multicore processor, many of the challenges of message authentica-

tion and message reliability are not present. As such, fos messaging provides a reliable

message transport layer and does not require the application writer to worry about

lost packets, socket disconnects, and other challenges of inter-machine messaging sys-



tems. Also, because fos is being designed primarily to execute on one, large multicore

processor, end-to-end encryption of message traffic is not needed because the trust

model is such that message traffic will not be snooped. Last, cryptographic level

authentication is not needed because the fos messaging system owns the messaging

endpoints. fos does use a key to protect sending messages to a mailbox, but this is a

simple key (capability) versus a heavyweight cryptographic hash.

The fos messaging system is designed to provide a reasonable, direct programmer

interface in a multiprocessor, multithreaded environment. In order to support this,

the sending of fos messages either are atomically sent or they signal that a send retry

is needed. Atomically sending a message eases programmer complexity. Also, by

returning quickly, the fos messaging API allows senders to retry sending a message or

switch to different code in the event that a receive mailbox is full. Last, in order to

enable different implementations of fos messaging and to allow multicore hardware to

optimize around delivery order, fos messaging does not maintain a global ordering of

messages. Therefore, there is flexibility around message delivery order when multiple

mailboxes are being used or multiple senders are sending to one mailbox. The fos

mailbox API does preserve the rule that messages sent from one sending process to

one mailbox are received in the order that the messages were sent. While this puts

some restrictions on implementation, it eases the burden on the programmer.

Nomenclature

This sub-section describes some of the nomenclature of the fos messaging system.

The fos messaging system is built'around mailboxes. A mailbox is an endpoint which

any process can create and register with the messaging system to receive messages on.

A mailbox, as the name implies, has storage which allows other processes to deposit

messages into it. A process which creates a mailbox receives a pointer to a mailbox

structure which can be used to receive future messages.

Mailboxes can have one or more textual names associated with them. Section 3.2.3

describes the fos naming system in more detail. The fos messaging API does not use

textual names to identify mailboxes. Instead, it utilizes hashes of the textual names



called mailbox aliases. Other processes which want to send to a mailbox use a mailbox

alias to locate the mailbox. Aliases are used instead of pointers because pointers leak

information about addresses used by one process to other processes and would not

work on non-shared memory systems which fos targets. Also, when compared to

textual strings, aliases are shorter, fixed length, and easier to pass around.

If a mailbox is a temporary or anonymous mailbox, a name does not need to be

registered for the mailbox. Instead a canonical alias can be used to reference the

mailbox. A canonical alias is a generic alias for a mailbox which does not require

explicit mailbox name space reservation.

In order to restrict processes from sending to arbitrary mailboxes, sending to a

mailbox is protected by having a capability to protect the mailbox. A fos mailbox

capability is simply a numeric key which is presented when a process is attempting

to send to a mailbox. If the capability matches a capability which is on the capability

list of the receive mailbox, the sending process is allowed to send the message. A

single mailbox can have multiple capabilities on its capability list, thereby allowing

different senders to have different capabilities for the same mailbox. Also, this en-

ables revocation of a single mailbox capability without revoking all of a mailboxes

capabilities.

Messaging API Overview

This sub-section gives an overview of the fos messaging API. Listing 3.1 shows the

basic API for creating a mailbox. A mailbox is created with f osMailboxCreate ( ... )

and destroyed by fosMailboxDestroy (...). The canonical alias can be retrieved

from the mailbox with fosMailboxGetCanonicalAlias(. . .). And capabilities can

be added to the capability list with fosMailboxCapabilityAdd( ... ). Adding more

aliases to a mailbox and computing aliases is discussed in more detail in Section 3.2.3.

In order to send a message, f osMailboxSend (... ) is used. fosMailboxSend(... )

sends to a mailbox alias which the messaging system understands how to translate to

a receive mailbox. Sends to mailboxes are atomic once sent, but can return a 'retry' or



Listing 3.1: fos Messaging Mailbox Setup API

1 /** Creates a mailbox on the heap with data of size
2 in-buffer-size, registers mailbox with the kernel
3 @param out-mailbox-handle a newly created mailbox
4 @param in-buffer-size size of the data buffer to be created
5 #return error value in the set { FOSMAILBOXSTATUSOK,
6 FOS-MAILBOX-STATUSALLOCATIONERROR,
7 FOSMAILBOXSTATUSKERNELERROR} */
8 FosStatus fosMailboxCreate(FosMailbox ** out-mailboxhandle,
9 FosSize inibuffer-size);

10
11 /** Destroys an existing mailbox, removes it from the kernel
12 and frees resources
13 @param in-mailbox mailbox to be destroyed
14 #return { FOSMAILBOXSTATUSOK,
15 FOSMAILBOXSTATUSKERNELERROR} */
16 FosStatus fosMailboxDestroy(FosMailbox * inout-mailbox);
17
18 /** Retrieve the canonical alias for the passed mailbox by
19 querying the mailbox. The messaging system assigns
20 this name.
21 @param out-mailbox-alias location to deposit the
22 mailbox alias
23 Oparam in-mailbox mailbox to retrieve a canonical alias
24 for
25 #return error value in the set { FOSMAILBOX-STATUS-OK}
26 FosStatus fosMailboxGetCanonicalAlias(
27 FosMailboxAlias * out-mailboxalias,
28 const FosMailbox * in-mailbox);
29
30 /** Adds a previously created mailbox capability to a mailbox
31 @param in-mailbox mailbox that the capability is for
32 @param in-capability capability to be added
33 @param injflags flags for the capability in the set
34 {FOSFLAGNONE,
35 FOSMAILBOXFL AG-CAPABILITY-SINGLEUSE}
36 #return error value in the set {FOSMAILBOXSTATUSOK,
37 FOSMAILBOXSTATUSAL LOCATIONER ROR,
38 FOSMAILBOXSTA TUSGENERA LERROR} */
39 FosStatus fosMailboxCapabilityAdd(FosMailbox * inout-mailbox,
40 FosMailboxCapability in-capability,
41 FosMailboxCapabilityFlags in-flags);



Listing 3.2: fos Messaging Send / Recieve API

1 ** Sends a message to a mailbox alias.
2 Oparam in-alias destination mailbox to send to
3 param in-capability capability which provides
4 authority to write to the destination mailbox
5 @param in-data data to write to mailbox
6 Oparam in-size size of data to write in bytes
7 #return error value in the set { FOSMAILBOXSTATUSOK,
8 FOSMAILBOX-STA TUSPERMISSIONSERR OR,
9 FOSMAILBOX-STATUSRETRYRERROR,

10 FOSMAILBOXSTATUSNOSPA CERR OR,
11 FOSMAILBOXSTATUSINVA LID-A LIAS-ERROR} *
12 FosStatus fosMailboxSend(const FosMailboxAlias * in-alias,
13 FosMailboxCapability in-capability,
14 const void * indata,
15 FosSize in-size);
16
17 ** Receives a message from a local mailbox. Receives are
18 non-blocking and return instantaneously. Returned
19 buffers should be given back to the mailbox with
20 fosMailboxBufferFree quickly.
21 Oparam ouLreceive-handle the location of the received
22 message, this needs to be returned to the mailbox
23 with fosMailboxBufferFree
24 Oparam ouLreceive-size size received
25 Oparam in-mailbox mailbox to receive from
26 Greturn error value in the set { FOSMAILBOXSTATUSOK,
27 FOSMAILBOXSTATUS-A LLOCATIONERROR,
28 FOSMAILBOXSTATUSEMPTYERROR,
29 FOSMAILBOXSTATUSINVALIDMAILBOXERROR}
30 FosStatus fosMailboxReceive (void ** out-receive-handle,
31 FosSize * out-receive-size,
32 FosMailbox * inmailbox);
33
34 /** Returns the buffer to the mailbox
35 @param in-data buffer to free
36 @return error value in the set { FOSMAILBOXSTATUSOK,
37 FOSMAILBOXSTATUSINVA LIDMAILBOXERROR,
38 FOSMAILBOXSTATUS-BADFREEERROR} */
39 FosStatus fosMailboxBufferFree(void * inout-data);



'space not available' error code which may need to be looped over in order to guarantee

blocking send semantics. In order to receive a message, f osMailboxReceive (. . .) is

used. A receive takes a FosMailbox pointer as receive mailboxes can only be accessed

by one process. Receiving from a fos mailbox may return a pointer to the received

message or it can return an error indicating that the mailbox is empty. Finally, after

a receive is completed, the received buffer must be released to the message system

with fosMailboxBufferFree (. . .). A special function is used because some of the

fos messaging implementations use self-managed buffers that do not rely on dynamic

memory allocation.

As can be seen from the messaging API, fos messaging does not provide the from

address for received messages. The messaging API leaves it up to the user of the

messaging system to put a response mailbox alias and capability in the initial request

message, if a message will need a response.

Implementations

There are currently three implementations of fos messaging: microkernel messaging,

shared page messaging, and an inter-machine TCP/IP tunneling implementation.

The first one is a messaging layer which is implemented in the fos microkernel. The

microkernel messaging layer utilizes system calls, validation in the kernel, and data

copies which occur in the kernel to transfer data from one process's address space to

another. This is implemented over x86-64 shared memory.

The second messaging implementation maps shared pages between two processes

which communicate often. This shared page mapping is setup and torn down by the

microkernel. The user-level messaging library works in concert with the microkernel to

determine when it should switch over to setting up a shared page to act as a channel

between two processes. By using a shared page, two processes can communicate

without trapping into the kernel. These shared pages are hidden behind a strictly

messaging interface. Belay details the design of the user-level messaging library in

his Master's Thesis [15]. This work was inspired by URPC [17] and Barrelfish [13].

The last implementation of fos messaging is one which allows fos to be extended



across machines. Each machine runs a fos proxy server. The messaging system uses

either microkernel messaging or the channel-based, shared page messaging system to

communicate with the proxy server. The proxy server then encapsulates the mes-

sage over TCP/IP and sends it to the proxy server on the receive computer. The

receive-side proxy server then delivers the message via kernel messaging or shared

page messaging to the receive process. I implemented the first fos proxy server [75]
and it has since been extended and rewritten by other members of the fos group.

The fos messaging system is currently a hybrid messaging system which automat-

ically chooses between different messaging implementations transparently to the user.

In the future, we see other possible implementations of the fos messaging system on

architectures which have native support for messaging such as the Tilera processor

family, the Intel SCC, or the IBM Cell processor.

3.2.3 Naming

A complementary feature to the fos messaging system is the fos naming system for

mailboxes. The naming system provides a hierarchical namespace for fos mailboxes.

This allows symbolic names to be used for common system servers. The namespace

is populated by processes which register a symbolic name for their mailbox. By using

a symbolic identifier for a mailbox instead of a mailbox address, pointer, or actual

processor location, mailboxes can be dynamically load balanced between servers and

processes can be migrated from one processor to another while keeping mailboxes still

active.

The fos mailbox namespace utilizes a textural string to represent a mailbox name.

For example /sys/f s could be the name for the file system server mailbox. While

conceptually textural names are used by the name system, internally a hash of the

name is passed around when doing name lookups for efficiency. This hash is called a

fos mailbox alias.

The fos mailbox naming system allows multiple mailboxes to be registered with

the same path and alias. This enables the name server to implement a basic level of

load balancing between servers. More advanced load balancing can be done by the



Listing 3.3: fos Alias Computation API
1 /** Computes an alias given an alias name
2 (an alias is a hash of the name)
3 @param out-mailbox-alias location to deposit the result
4 of the alias computation
5 @param in-alias-name name of the alias to compute
6 #return error value in the set { FOS-MAILBOXSTATUS_0K} *
7 FosStatus fosMailboxAliasCompute(
8 FosMailboxAlias * out-mailboxalias,
9 const char * in-alias-name);

fleet. Advanced load balancing may be necessary if requests to a particular server

fleet are stateful and a series of requests needs to all go to a single fleet member.

Originally, the fos naming system was implemented by the microkernel, but has

now been implemented as a distributed fleet of name servers which execute in userspace [14].

Each process contains a name cache to reduce the need to communicate with a name

server. The name cache is integrated with the messaging system to determine the ac-

tual location for a message to be sent to. There is also a name cache in the microkernel

for messages that originate in the microkernel.

Modification of the mailbox namespace is protected by capabilities. In order to

modify a portion of the namespace, a mailbox alias capability must be presented which

allows modification of the namespace below, in a hierarchical directory sense, where

the mailbox alias capability is for. Also, the fos mailbox naming API allows portions

of the namespace to be reserved for future use in order to prevent other processes

from utilizing that namespace. For example, the path /sys is typically reserved by

the system init process and sub-paths under that path are given to servers that

provide system level services.

Naming API Overview

This sub-section gives an overview of the fos mailbox naming API. Listing 3.3 shows

the API for f osMailboxAliasCompute (. . . ) which allows a process to create an alias

from a textural string. This alias can then be passed into a messaging send function.



Listing 3.4: fos Name Registration API

1 ** Registers a direct mapping to point an alias to a mailbox,
2 in order to successfully return, the in-capability must
3 allow for modifying namespace as specified in
4 in-source-alias-name. No capabilities are needed for
5 the destination alias.
6 @param outalias [optional] The computed alias for the input
7 name
8 Oparam out-capability capability returned for the newly
9 created alias

10 Oparam in-destination-alias alias that is being pointed at
11 @param in-sourcealias-name name in the global namespace
12 which is the source of the new alias
13 @param in-parent-capability capability allowing writing to
14 parent namespace pointed at by in-source-alias-name
15 Oparam in-flags flags denoting what type of destination
16 alias exists in the set { FOSMAILBOXFLAGNONE,
17 FOSMAILBOX-FLAG-MULTIPLE, FOSMAILBOXFLAGSTATELESS}
18 Oreturn error value in the set { FOSMAILBOXSTATUSOK,
19 FOSMAILBOX-STATUS-ALL OCATIONERROR,
20 FOSMAILBOXSTATUSPERMISSIONSERR OR,
21 FOSMAILBOXNAMECLASH-ERROR} *
22 FosStatus fosMailboxAliasRegisterDirect(
23 FosMailboxAlias * outalias,
24 FosMailboxAliasCapability * out-capability,
25 FosMailbox * in-destination-mailbox,
26 const char * in-source-alias-name,
27 FosMailboxAliasCapability in-parent-capability,
28 FosMailboxAliasFlags infiags);
29
30 ** Deletes an alias from the global namespace.
31 Oparam in-alias alias to be deleted
32 @param incapability capability allowing deletion of alias
33 Gdreturn error value in the set { FOSMAILBOXSTATUSOK,
34 FOSMAILBOXSTA TUSALL OCA TIONERR OR,
35 FOSMAILBOXSTA TUSPERMISSIONSERR OR,
36 FOSMAILBOXSTATUSINVALIDALIASERROR} *
37 FosStatus fosMailboxAliasUnregisterDirect(
38 FosMailbox * in-dest-mailbox,
39 const FosMailboxAlias * in-sourcealias,
40 FosMailboxAliasCapability in-capability);



Listing 3.5: fos Name Reservation API
1 ** Reserves part of the global namespace, in-source-alias-name
2 must end in '*'. in-capability must provide sufficient
3 privileges.
4 @param out-alias [optional] computed alias for input string
5 @param out-capability capability returned for the newly
6 created claim
7 @param in-namespace-name name in the global namespace which
8 is to be claimed. must end in '*'.
9 @param in-capability capability allowing writing to global

10 namespace pointed at by in-source-alias-name
11 Oparam in-flags flags denoting what type of destination
12 alias exists in the set { FOSMAILBOXFLAGNONE,
13 FOSMAILBOX-FLA GMULTIPLE}
14 #return error value in the set {FOS-MAILBOXSTATUSOK,
15 FOSMAILBOXSTATUS-ALLOCA TIONERROR,
16 FOSMAILBOXSTA TUSPERMISSIONSERR OR,
17 FOSMAILBOX-STATUSNAMECLASHERROR} */
18 FosStatus fosMailboxReserveNamespace(
19 FosMailboxAlias * outalias,
20 FosMailboxAliasCapability * out-capability,
21 const char * innamespace-str,
22 FosMailboxAliasCapability in-parent-capability,
23 FosMailboxAliasFIags in-flags);

Listing 3.4 shows how to register and deregister a name for a fos mailbox via

fosMailboxAliasRegisterDirect(...) and fosMailboxAliasUnregisterDirect(...).

Special attention must be paid to the mailbox alias capabilities used to register in

the namespace. When registering a new portion of the namespace, an input mailbox

alias capability must be given for a shorter path than the name being registered.

Once the name is registered, an output mailbox alias capability is returned for future

longer name creation or removal of the current name from the namespace. The flags

passed to the name creation call denote whether the mailbox can be a one-to-many

or a one-to-one name to mailbox map.

Listing 3.5 describes fosMailboxReserveNamespace(. . .) which allows reserva-

tion of the mailbox namespace without registering a mailbox. It works very similarly

to fosMailboxAliasRegisterDirect(. .. ), but does not take a mailbox parameter.
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Figure 3-5: A fleet of File System Servers (FS) are distributed around a multi-core
processor. A user application messages the nearest file system server which in turn
messages another file system server in the File System fleet to find a file. The file is
not in the second fleet member, therefore the file system server messages the Block
Device driver Server (BDS) which retrieves the bits from disk.

Also, the path registered contains a '*' to denote that it is reserving all of the paths

longer than the passed path.

3.2.4 Fleets

fos factors an OS by the system service being provided. One of its key aspects is that

it further fine-grain parallelizes within an operating system service. It does this by

taking a single operating system service or function and implementing it as a fleet of

server processes.

A fleet is a spatially distributed set of server processes which communicate only

via messaging and cooperate to provide a single operating system service. Each server

in a fleet is bound to a core and services a local set of applications or other system

servers. Fleets are designed to be elastic, meaning that the number of servers in a

fleet can be increased or decreased dynamically. This elasticity is used to meet load

demands on a particular service. Fleet members only communicate with each other

via messaging and only communicate with applications and servers outside of the fleet

utilizing messaging.

Figure 3-5 shows a fleet of File System servers (FS) which are being accessed



by a user application via messaging. As can be seen in the figure, the file system

fleet is spatially distributed on four cores on the example multicore processor. In

the example, the user application messages a spatially close, file system server which

is its local fleet member in order to access a file. The local fleet member is not

responsible for the file that is being accessed but knows how to communicate with

other fleet members. It messages the File System server in the top right corner which

is responsible for that portion of the file space requested. That File System server

does not have the data for the file requested therefore it sends a message to the Block

Device driver Server (BDS), which in turn retrieves the data from disk. The data

then flows back via messaging to the file system fleet and back to the application.

fos server fleets are designed to leverage many of the ideas which have emerged

from distributed and Internet scale systems. For example, fleets are constructed to

make heavy use of caching and data replication to achieve good performance in a

message passing only environment. One of the challenges of fleet design is how to

keep shared state coherent between multiple fleet members that only communicate via

messaging. Unlike true distributed systems, the communications cost on a multicore

can be multiple orders of magnitude lower than inter-machine. Therefore, commu-

nication is not quite as expensive as in the distributed systems case, but reducing

communication through using distributed system methods is still a great way to get

higher scalability.

fos fleets are designed to provide scalable performance. One way fleets can scale in

performance is by elastically changing the number of servers in the fleet in response

to the load on the servers. The ability of mailboxes to be migrated through a level of

name redirection enables a fos fleet to change size without disrupting the consumers

of a fleet's service. Changes in size of a fleet are initiated by the fleet members instead

of an external agent. When expanding a fleet, a current member of the fleet starts

up a new fleet server. The new server contacts the other members either through a

coordinator or through some distributed discovery protocol. After it joins the fleet,

it synchronizes shared state as needed.



Figure 3-6: A 'fread' function call translates into a call into libf os. libfos generates
a message to the file system server.
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Figure 3-7: After the file system server processes the 'read', it sends back a message
with the read data. libfos translates the received message into data which is written
into memory and a return code which is returned to libc and then the application.

3.2.5 libfos

fos attempts to provide a POSIX-like OS interface to enable easy porting of appli-

cations to fos. Because fos is a microkernel OS based solely on messaging, a typical

application cannot make a system call into the kernel in order to receive services from

the OS. Instead of executing a system call, fos user applications send messages to fos

system servers. Because fos has been factored by the OS service being provided, the

messages are sent to differing servers directly when they leave a user application.

The library libf os provides the layer which translates function calls which corre-

spond to traditional POSIX system calls into messages to function-specific servers. I

implemented this translation layer along with ported FreeBSD's standard 'C' library,

'libc', to provide fos with many of the features of legacy operating systems.

Figure 3-6 shows libfos being used to execute a system call. In this example, (1)

the application starts by making a 'f read' function call into the standard 'C' library.

(2) libc then does a 'sys-read' function call into libfos. (3) libfos translates



that function call into a message that it sends to the file system server. As shown

in Figure 3-7, (4) the file system completes the read by hitting in its local file cache.

It calls into libf os to send a response message to the application process. (5) The

messaging library in libf os sends a message to the original application. (6) libf os

on the application core demarshalls the results from the message and writes the read

data into the application memory. libf os then returns the error code to libc. (7)

libc returns the appropriate error code to the application.

3.3 Recommended Fleet Programming Model

fos does not impose one particular design paradigm on the design of fleets, but does

have a set of libraries to ease in the creation of fleets. The library set consists of a

Remote Procedure Call (RPC) library, a cooperative threading library, and a message

dispatch library. These libraries are described in more detail in section 3.3.1. fos also

does not impose requirements that application access to a fleet's members be uniform.

What this means is that fleets can elect to either support a uniform API where any

client can access any fleet member for service or a specialized API where a client either

needs to consistently communicate with one fleet member or the client communicates

with a particular fleet member as directed by the fleet. An example of where a

uniform API makes sense is in a Physical Page Allocation fleet where all pages are

interchangeable and transactions are stateless. In contrast, accessing a network fleet

may need to be stateful because a certain fleet member may contain the state involved

with one ongoing network transaction.

One recommended design for fos fleet servers is to use a request-reply model

utilizing cooperative threads. While a fleet is constructed out of a set of processes,

inside of a single fos fleet member or server, it is recommended that a cooperative

threading programming model is used in order to simplify writing a server while

providing the ability to tolerate latency. By using a cooperative threading model,

the writer of a fleet is able to carefully control where and when a server yields to the

cooperative scheduler. By carefully controlling where the server yields, the fleet writer



does not need to write fully reentrant code. The dispatch library provides condition

variables between cooperative threads in order to protect state across yields.

A typical fos server is structured to service structured requests. When a new fleet

member is created, it registers handlers for different requests that it needs to process.

They typical programming model entails a run-to-completion style of programming

where all of the processing for a single type of operation is written in a straight line

manner. When a new request comes in from an application or other service, the dis-

patch library creates a new thread and executes the previously registered code. This

thread handles the requested transaction, and if it needs to accomplish a long latency

operation, it can elect to yield. If an active thread issues a RPC targeting a different

process, it will implicitly yield. When a yield occurs, the dispatch library searches

for new requests to process or response messages that have been received. The dis-

patch library takes care of waking the thread when the required condition variable

or message response is received. These actions restart the thread. On completion of

the operation, the code associated with the operation will send a message back to the

original requesting process and the thread will be destroyed.

The fos threading model also supports cooperative background threads. These

background threads can be used to rebalance load or do other fleet-wide housekeeping.

The recommended programming model uses several mailboxes as follows:

* New requests from processes outside the fleet

" New requests internal to the fleet

* Remote procedure call requests internal to the fleet

" Responses from internal fleet communication

* Responses from remote procedure calls

The dispatch loop imposes a static ordering on registered mailboxes and the ordering

is important. The list above shows the ordering of mailboxes in increasing prior-

ity. This ordering is important because otherwise starvation and livelock situations



may exist. For instance, if new requests would be given priority over responses, then

assuming that there is a steady stream of new requests, it could starve out the pro-

cessing of response messages. Likewise a similar situation can turn into livelock. If we

assume that one server continually polls a second server to see if a piece of state has

changed. This state will only change when a response is processed, but the mailboxes

have been erroneously prioritized and the constant polling will starve out the message

response that is needed for forward progress.

While prototyping the dPool implementation, the above described behavior was

seen. It did not result in livelock, but made a certain type of RPC traffic take thou-

sands of times longer than it should otherwise have taken. To solve this problem and

to prevent livelock, response mailboxes are given highest priority in the fos threading

and dispatch model.

Another key aspect of creating a working programming model is how to limit the

memory being used by active threads. Because each new request creates a new thread

and those threads may sleep when performing a RPC or blocking operation, some

mechanism must be in place to prevent unlimited memory from being allocated to

hold the thread state. In order to prevent this, the.default programming model stops

processing new requests targeting a server once a fixed number of threads are active.

This will in effect back pressure requests from a particular fos fleet server and prevent

memory in that server from growing in an unbounded manner.

3.3.1 Supporting Infrastructure

In order to ease the creation of dPool implementations and the implementations

of fos servers, a remote procedure call (RPC) library and generator along with a

dispatch library were created. The RPC library handles wrapping function calls from

one address space to another address space in a type-safe manner. The dispatch

library is used along with a cooperative threading library to enable processing of

multiple concurrent outstanding requests from a single process to a single dPool.

Having multiple outstanding requests enables a dPool implementation to send and

receive messages which are needed to rebalance elements, access remote elements while
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Figure 3-8: Server 1 executing a Remote Procedure Call (RPC) on Server 2.

allowing new server requests to be processed, and enable bookkeeping information to

be transferred within a dPool.

RPC

Marshalling data passed over a messaging interface can be a challenge if done in an

ad-hoc manner. To ease this programming challenge, I created a remote procedure

call (RPC) system to make type-safe function calls between two fos servers. This

utility is used within the dPool implementations along with fos servers. The fos

RPC generation utility, stubgen, is written in python and leverages GCC-XML and

the python library pygccxml. The stubgen utility utilizes standard 'C' header files

which have been decorated with RPC specific attributes. GCC-XML is a program

which utilizes the gcc front-end to generate meta-data about a 'C' program. Because

we leverage GCC-XML, we can process any arbitrary 'C' header file with complex

includes, non-RPC functions, inline functions, and complex typedefs. By generating

RPC code from 'C' header files, we do not need to use a separate RPC stub generator

meta-language as is used in many previous RPC generation utilities. Figure 3-8 shows

the basic usage of one fos server making a RPC invocation on another fos server.

Listing 3.6 shows the prototype for a RPC callable function bar. All RPC callable

functions return a type _RPC which provides error codes if there is an allocation

or messaging error anywhere along the path of the remote procedure call. Input

parameters are denoted with a _IN decoration and output parameters are denoted

I - 1



Listing 3.6: Prototype of an example RPC Callable Function (bar.h)
1 #include <rpc/rpc.h>
2 _RPC bar(_IN int a, _IN _COPY int * b,
3 _IN _DEEP(c-ser, cdeser, c-destruct) int * c,
4 _OUT int * d, _OUT _COPY int ** e,
5 _OUT _DEEP(fLser, fideser, f-destruct) int ** f);

with an _OUT. By default, input parameters are passed by value, which are copied

into the request message. Other more complex data-types can be passed as input

parameters by the use of _COPY and _DEEP decorations. For input parameters, _COPY

denotes that a pointer is being passed in and that the pointed to type should be copied

into and sent via the message. -DEEP allows input parameters to be complex types

such as lists or trees. _DEEP takes three function parameters to aid in this, namely a

serialization function, a deserialization function, and a destructor function. Output

parameters allow a similar level of flexibility, except that the values are returned back

by reference. Because values are being returned by reference to a different server's

address space, data must be copied into the result message.

One challenge with output parameters is determining when data should be freed.

Basic output parameters assume that the caller of the RPC presents a pointer to a

location which can be filled in with the result. _OUT _COPY parameters are freed by

the code generated by stubgen on the callee's side and return a pointer to dynamic

memory on the caller side. -OUT -DEEP parameters utilize serialization and deserial-

ization functions similar to input parameters. The destructor function is called on

-OUT _DEEP parameters on the callee side of a RPC.

Figure 3-9 shows the flow of files inputted to and created by the RPC stubgen

tool. The output files can largely be spit into three categories. The first category

are files which are used by the the caller side which package up parameters, send a

request message, wait for a response, and demarshall return values. The second cat-

egory are files shared among the caller and callee side. These are shared serialization

and deserialization routines along with shared definitions for message types that are

transmitted over the messaging channel. Finally, the callee side contains files that



Figure 3-9: Usage flow of the RPC stub generation tool, stubgen

contain functions which receive the initial RPC request, format the parameters, call

the function in question, marshall the return parameters, and send back the response

message.

Listing 3.7 shows the code generated on the caller side of a RPC. Note that two ver-

sions of the RPC code are created, one which uses a default mailbox which prepends

a rpc_ and one which prepends a rpcm_ which allows a mailbox to be passed into the

RPC invocation. The basic flow of the RPC code on the caller side is to construct a

message to send and then to initiate the send which is done in rpc-libSend-bar ( ... ).

After the send, the dispatch library is called to wait for a response containing a token

which was generated during the send. After the response is received, the thread which

has been put to sleep is woken up and rpclibRecvbar(.. .) receives the message

and demarshalls the output parameters.

Listing 3.8 shows the code generated on the callee side of a RPC invocation. The

dispatch function, rpc-dispatch-bar (... ), is registered with the dispatch library

to handle messages which arrive on a RPC mailbox with a statically determined



Listing 3.7: Code Generated on Caller Side
1 _RPC rpcmbar(const FosRemotebox * remote, _IN int _-a,
2 _IN _COPY int * _b _IN _DEEP(.,.,.) int * _c,
3 _OUT int * _d -OUT _COPY int * *e,
4 _OUT _DEEP(.,.,.) int * * _J)
5 {
6 int64_t ret;
7 DispatchToken token;
8
9 ret = rpclibSend-bar(&token, remote, _a b, _c);

10 if (ret < 0) return ret;
11
12 DispatchResponse * response;
13 response = rpcWaitForResponse(token);
14 if (response == NULL) return RPCMESSAGINGERROR;
15
16 ret = rpc-libRecv-bar(response, _d, _e, _f);
17
18 /* call caller side destructors */
19
20 return ret;
21 }



Listing 3.8: Code Generated on Callee Side

1 static void rpc-dispatch-bar(void * message, FosSize limit,
2 DispatchToken token)
3{
4 int64_t rpc-ret;
5
6 /* args*
7 int _a;
8 int * _b;
9 int * -_c;

10 int _d;
11 int* _e;
12 int* _f;
13
14 rpc-ret = rpc-dispatchRecv-bar(message, limit, &_a,
15 &_b, &_c);
16 if (rpc-ret < 0)
17 {
18 rpcDispatchReturnEarlyError(
19 & ((RpcRequestMetadata*) message) - >mreply,
20 token, rpc-ret);
21 return;
22 }
23
24 rpc-ret = bar( _a, _b, _c, &_d, &_e, &_J);
25
26 rpc-ret = rpc-dispatchSend-bar(
27 &((RpcRequest Metadata*)message) - >mreply, token,
28 rpc-ret, &_d, &_e, &_f);
29 if (rpc-ret < 0)
30 {
31 rpcDispatchReturnEarlyError(
32 & ((RpcRequestMetadata*)message) - >mreply,
33 token, rpc-ret);
34 return;

35 }
36
37 /* call destructors *
38 rpc-foo-free-intSTAR_(__b);
39 c-destruct (c);
40 rpc foo-free-intSTAR_(_e);
41 f-destruct(_f);
42 }



message type number. The dispatch loop then dispatches the received message to

rpc-dispatch-bar (...). This function demarshalls the request message into auto

variables which can be passed to the call of the actual function, in this case bar (. .. ).

After the function returns, the return parameters are marshalled into a message and

sent by rpc-dispatchSend-bar( ... ). Last, any dynamic data is freed.

There are several implications to fos RPC using a dispatch library. First, if the

calling application is not using cooperative threads and the dispatch library, the

RPC code does not cause thread switches. Instead, the RPC turns into a completely

blocking operation. If the server is using the cooperative threading library, the server

can process other requests. If the threading library is being used on both sides, RPC

invocations can actually go from one server to another server and then the second

server can make a RPC invocation on the first server and no deadlock occurs. This is

useful and is actually used internally in several of the dPool library implementations.

One downside to using functions which utilize the RPC library is that they may yield

to other threads across a RPC invocation. The application must be aware of this and

protect itself from inadvertent thread swaps across RPC function calls. This is easily

done as the dispatch library has condition variables which yield in case one thread is

in a critical section across a RPC invocation.

3.3.2 Dispatch Library and Threading Model

In order to ease the creation of dPool implementations and the implementations of

high-throughput fos services, we created a user-level threading model and dispatch

library. The threading model is based on cooperative multithreading. This was se-

lected to ease the creation of servers as server writers can elect when the internal

state of a server is safe to yield to another thread. Compared to a preemptive thread-

ing model, this removes the need for server writers to either make all code reentrant

or protect global structures with atomic locks. Notional locks can still be utilized

to prevent threads from interfering in critical sections, but instead of using atomic

operations to accomplish these locks, simple flags accessed by reads and writes suffice.

The fos threading model was designed to enable easy writing of fos servers and li-



braries. The recommended fos server model is to write straight line, run-to-completion

code which handles a complete transaction. The fos dispatch library was written to

centralize much of the common code of managing the dispatch of messages based off

of message types. In order to use the dispatch library, the fos server or library, such

as dPool, registers a mailbox that it wants to receive messages on. Along with the

mailbox, the server or library registers different message types which are contained in

the beginning of messages along with functions to call when a specific type of message

is received. New threads are created when new requests are received by the dispatch

library. For each RPC call, a new thread is created on the callee side. When the

RPC request is completed, the thread is destroyed.

The dispatch library has a token matching system for response messages. This

works by allowing a thread to send a message, yield, and wait for a response. The mes-

sage that is sent includes a token which is used to wake up the thread on completion.

When the response message is received, the token used to find the sleeping thread,

and the thread which previously yielded is woken up where it left off. An example

of this can be seen in the above Listing 3.7, which calls rpcWaitForResponse ( ... )

which ultimately calls dispatchWaitForToken(...) which waits for a token to be

received.

Another feature of the threading model and dispatch library is that it enables

background threads. Background or idle threads are executed when no messages are

available or no currently running threads are able to run. This enables fos servers and

libraries such as dPool to do background bookkeeping. An example of this can be

seen in some dPool implementations which utilize background threads to rebalance

elements held withing the dPool

Introducing a threading library can be good for throughput as it allows servers

and libraries to hide latency and communication with other servers by processing

multiple requests in parallel. Unfortunately, this also introduces some complexity.

As discussed above, one challenge is that programs need to protect themselves from

other threads when using the dispatch library. This is only a problem for data which is

shared between cooperative threads. The threading library has convenient condition



variables to handle this problem and guard structures. The condition variables yield

and put the waiting thread to sleep until the condition variable is released.

The bigger challenges come in the form of preventing too many threads being

created and preventing livelock. The dispatch library starts a new thread for each

new message request which is received by the server, by a RPC invocation, or by

a library such as dPool. With a transaction model, if a thread messages another

server and then yields, it is possible that a large backlog of threads can build up.

In effect, processing new requests is always possible if there are requests pending,

but completing transactions requires response messages to come from other servers

outside of the control of the currently running thread. Also, because the threads are

cooperative, a foreground thread can hog CPU time. To prevent the infinite growth of

storage for new threads, the dispatch library limits the number of threads outstanding

and stops processing new requests. This puts back-pressure on the servers or libraries

trying to request services from the server that is swamped. By waiting for responses

to return, the dispatch library can keep the number of active threads and memory

size in check.

3.4 State of fos

3.4.1 OS Service Fleets

Table 3.1 contains a list of currently implemented fos system service fleets. These

fleets are currently parallelized to differing degrees. We continue to work toward

further fine-grain parallelization of these fleets. Also, some of the fleets are to be

further factored. For instance, the Process Management Server fleet currently handles

process setup along with virtual memory management and basic process scheduling,

which ultimately will be split into separate fleets. We are working to factor this

functionality into three fleets instead of the current one. The implementation of such

a wide set of functionality is due to the hard work of all of the fos team members.



Fleet Name Function Centralized Coarse-Grain Fine-Grain
Parallel Parallel

Block Device driver Interfaces to Block Device X
Cloud Interface Uses SOAP to launch fos VMs X

File System server Read/Write Ext2 File System X
File System server (RO) Read Only Ext2 File System X

Keyboard server Input for Xen mouse and keyboard X
Name Server Maintains fos mailbox names X
Network Stack TCP/IP Network Stack X
Network Device driver Interfaces to Network Device X
Physical Memory Manages physical memory allocation X
Allocation
Process Management Process Startup, Basic Scheduler, X
Server and Virtual Memory Management

Proxy Server Connects messaging across multiple X
machines

Xenbus Server Driver for Xenbus, Xen driver X
initialization

Table 3.1: Status of currently implemented fos fleets.

3.4.2 Applications

Currently fos implements a POSIX-like API for applications and supports multipro-

cessor Pthread applications. This, along with fos's system servers have enabled the

porting of the following applications, all of which currently execute on fos:

" busybox (shell and basic system utilities)

" slide viewer

" lighttpd (web server)

" FFmpeg (video compression / decompression)

" wget (web client)

* SPLASH-2 benchmark suite (shared memory benchmarks)

" Portions of PARSEC benchmark suite

3.4.3 Multi-Machine fos

While fos started out as a project which applied distributed system techniques to

future multicore OS design, many of the ideas are also applicable to extending fos



across multiple machines. The emergence of Infrastructure as a Service (IaaS) cloud

services such as Amazon's Elastic Compute Cloud (EC2) [1] have motivated extending

fos across multiple machines. This aspect of fos is not central to this thesis, but it is

worth describing briefly.

Due to the fact that all fos system service fleets have been designed to only com-

municate via message passing and that applications only communicate with system

servers via messaging, extending fos to run across a cloud was relatively easy. As de-

scribed in Section 3.2.2, the fos messaging system has been extended across multiple

machines via a proxy server model. Each machine in a fos cluster or cloud instance

contains one or more proxy servers. The proxy server proxies messages which are des-

tined for other machines over TCP/IP. I implemented our first proxy server, which

has since been revised by other students. By making messaging transparent, fos can

provide a single system view to an application. One issue that is not currently han-

dled by the fos multi-machine effort is straddling a single, shared memory application

across two machines as distributed shared memory for applications is not a current

goal of this project.

We have also run fos on Amazon's EC2 and have implemented a server which

interfaces with Amazon's web services API for launching new EC2 instances. Because

fos system servers are elastic and programs can be migrated with relative ease, a

running fos instance can grow or shrink the number of servers it is executing on

dynamically. As part of our future work, I think it would be very interesting to

explore how an OS scheduler's design can be modified knowing that it can add or

remove computational resources in the cloud for a monetary cost.

One of the challenges with extending fos across multiple computers is bootstrap-

ping fos and extending the naming fleet to understand multiple machines. Bootstrap-

ping fos involves bringing up enough fos servers, such as networking, network driver,

proxy, and naming, to communicate with another machine. A newly joining computer

contacts the machine which spawned it and notifies the original proxy that it is now

part of the running fos system. After joining, the nameserver must sync up names to

provide a global namespace.



Last, we have not explored whether it is possible to use the same algorithms for

distribution across machines versus inside of machines. I believe that there is a very

interesting research question of whether the same techniques for building scalable

intra-machine fleets work for inter-machine fleets where the communication cost is

much higher.

3.4.4 Missing Functionality

While fos attempts to provide a complete operating system environment, in many

ways it is still a system in development. Many of the system services are not as

parallelized or distributed as we would like them to be. Also, some functionality is

missing. Most notably, fos currently does not have signals. fos is currently lacking

notions of user accounts and user isolation. We would like to make the fos scheduler

more sophisticated. Last, we are currently implementing pipes in fos.

3.5 Challenges

3.5.1 Programming Parallel Distributed Servers

Programming parallel distributed operating system servers is one of the key challenges

in the creation of fos. fos holds the operating system programmer to a high standard

by requiring all communication to be explicit through messaging. Thus, the program-

mer must think not only about what data needs to be accessed, but where that data

is located. Because messaging makes the location of data explicit, the programmer is

forced to actively manage whenever communication is occurring. This requires a high

degree of programmer sophistication and can make programming a serious obstacle.

Libraries, distributed data structures, and common programming models can all aid

in lowering the programming complexity bar.

In fos, the largest challenge to the OS programmer is managing state which needs

to be shared. Resource management is an important task for an OS, and many times

the easiest way to manage a resource is to use a globally shared data structure. For



example, the easiest way to manage the list of active processes is to have a table

or list in memory which contains a structure for each process. Because fos is built

around parallelizing low-level operating system services such as process management,

it needs to tackle such problems. fos avoids using shared memory, therefore it can-

not keep a single large table of active processes. Instead the fos system programmer

must distribute information about processes across different members of the fos pro-

cess management fleet. Keeping data coherent and distributed while still providing

scalable performance to access the shared data is a serious programming challenge.

Another challenge to the fos system programmer is that the scale of and load on

the system can vary widely. fos uses the approach of changing the number of servers

in a fleet dynamically to react to system load. The underlying data structures used

by a fos fleet must be able to handle the elastic growth or contraction of the number

of processes being used. In the growth case, the data structures must distribute state

to newly added servers. In the contraction case, the server must move all data to the

servers which will continue running after the contraction.

3.5.2 Functionality Dependence Cycles

Constructing a microkernel operating system which factors services into different par-

allel fleets introduces many functional dependencies. In addition, because fos heavily

utilizes messaging and naming primitives, even more dependencies are introduced

through the messaging and naming systems. These constraints require the fos pro-

grammer to think carefully about the challenge of breaking dependency cycles in both

services and dependencies on low-level primitives such as messaging. Factorization of

the OS into many different services makes the problem of breaking functionality cycles

worse in fos than in a monolithic OS. In a monolithic OS, all portions of the kernel

are in the same address space and all of the interdependent parts can be co-mingled

without having to break dependency cycles. Also, fos's fine-grain factorization makes

the functionality cycle challenge larger than in many previous microkernel OSes where

much of the functionality is in one server.

One example of this challenge can be seen in the implementation of fos's call to



allocate more memory. The call to fos's libc memory allocation routine, malloc,

ultimately ends up in libfos's implementation of sys-sbrk. Unlike traditional operat-

ing systems which would make a system call to move the system/application break,

in fos, sbrk must message the Process Management Server which in turn messages

the Physical Memory Allocation service. One complication to this path is that fos

messaging itself needs to allocate memory thereby introducing a cycle. For example,

fos messaging may need to allocate memory because it may need to communicate

with the name server when sending a message to look up the destination mailbox.

Also, the implementation of user-space messages utilizes dynamic memory. In order

to break this cycle, the destination mailbox for the Process Management Server is

looked up from the name server using a fixed-size memory buffer. After this and a

few other dynamic memory allocations are done to register a mailbox to receive sbrk

responses, the fos memory allocation system switches over to using a sbrk based

malloc. To further break the dependency on the messaging system, sbrk request and

response messages only utilize microkernel messaging as that is guaranteed not to

allocate memory thereby, breaking the dependency cycle. This is but one example of

the many functionality cycles which needed to be broken in the construction of fos.
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Chapter 4

dPool Design

One of the major challenges of creating fos system service fleets is sharing state

between the different fleet server processes. Because all of the processes in a fos fleet

only communicate via message passing, the fleet programmer in order to effectively

share state needs to partition the data and devise a manner to use messages to keep

the state consistent across server processes. One way to address the challenge is

to factor out the shared state into a distributed data structure which manages all

of the communication to keep the state consistent. A distributed data structure

created in such manner can then be used by different fleets in order to leverage the

work of creating such a library. In this chapter, we introduce the dPool distributed

data structure, a library which provides access to shared state across multiple fleet

processes for one specific shared state use case.

In order to ease sharing of state within a fos system service fleet, this chapter

develops the dPool distributed data structure. The dPool data structure enables

multiple fos fleet processes to share state for the case of an unordered collection of

elements across address spaces. The shared state is encapsulated within the dPool

data structure and the fos system programmer is simply presented a function call

interface to add and remove elements from the dPool. The dPool data structure

internally handles sending and receiving messages to keep the shared collection of

elements synchronized.

One of the goals of the dPool is to provide scalable performance when being



accessed from different server processes within a fleet. This chapter describes the

different techniques that dPool uses to increase scalability which includes the use of

background threads and imprecise information.

dPool has been designed to be used by multiple fos fleets. In order to enable this,

the interface provided is not tailored to storing only one particular data type. Also,

dPool has been designed to integrate with different fos fleet server programming mod-

els including cooperatively threaded, sequential, and preemptively threaded models.

4.1 Semantics of dPool

dPool provides the functionality of an unordered mathematical multiset, also known

as a bag. The interface to the dPool is one of atomically adding or removing elements

from the multiset. There is no requirement that the elements stored in the multiset

are unique and dPool does not combine elements with the same value.

dPool is a repository for storing values. As one of the design goals of dPool is to

provide access to a shared resource across multiple, distinct memory address spaces,

storing elements by reference inside of a dPool makes little sense. Storing physical

addresses or pointers to global shared structures may be a valid use of dPool, but the

pointers would be stored as any other data element within dPool.

dPool is agnostic with respect to the value being stored inside of an element and

provides an untyped and variable size interface to elements that are contained within

a dPool. This untyped and variable size interface provides generality at the expense

of performance. The interface is designed in this manner to allow it to be used by

the 'C' programming language. If dPool were to be used only in languages which

support templating or generics, dPool could be extended to have a type-safe interface

to the objects it contains. Likewise, the internal workings of dPool could be optimized

around compile-time known, fixed size storage.

The interface to dPool is designed around concurrent access to the set of elements

it contains. Multiple fos servers in different address spaces access the dPool through a

local interface to the logically global set of elements that a dPool contains. The dPool
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Figure 4-1: Portions of a dPool labeled. The dPool library links into the server
utilizing it.

interface is designed such that the dPool interface can can have multiple instantiations

of dPools active at the same time.

Introducing some common nomenclature can make different portions of the dPool

system more understandable. We will name a dPool which contains a single shared

set of elements, a dPool instance. A single dPool instance can be accessed from

multiple fos servers. Each of these servers contains a common interface to all dPool

instances, which is described below. Elements contained in a single dPool instance

are contained in the local address space and can be distributed amongst all of the

different servers which utilize a single dPool instance. We name the state contained in

the local fos server which may contain elements from the dPool's set of elements and

other bookkeeping data a shard of a dPool instance. Finally, to describe the interface

local to a specific shard of a dPool instance, we name this a dPool facade. Figure 4-1

shows an example fos server utilizing a dPool with all of its different portions labeled.

One of the key features of dPool is that access to the elements can be concurrent

across facades while preserving atomicity guarantees. Thereby multiple fos servers

utilizing a single dPool instance can concurrently be adding and removing from the

dPool set of elements.

While there are many data structures that provide for ordered or iterable access

to a set of elements, dPool purposely avoids these requirements in order to loosen



the constraints put on dPool implementations. By loosening this constraint, no order

requirement is put on the set of elements and it makes distribution of elements among

the shards easier.

dPool has been designed to be used inside the context of multiple fos system

servers. Some uses of an unordered set in an operating system include free lists and

work lists. Example free lists include the free list of physical memory pages and the

list of free process identifiers. Another example use of a dPool is in a work queue

for a batch scheduler or a work-stealing scheduler like what appears in the Cilk [18]

programming environment.

One possible implementation of a distributed data structure is to hide access to it

behind a messaging interface which requires a message to be sent to a set of dedicated,

centralized or distributed servers for each data structure access. The dPool interface

does not rule out such an implementation, but it has been specifically designed to

enable sizable storage of elements in the local shard. By storing elements in the local

shard, adding and removing elements to a dPool instance can occur with only the cost

of a function call and not the cost of a message send and receive. Also, dPool has been

designed to enable sophisticated rebalancing of elements between different shards of

a dPool instance. The current implementations of dPool handle management of data

elements in a peer-to-peer manner, but it is possible to create shards which are not

used through their local facade and only serve the purpose of increasing the aggregate

storage of a dPool or to aid in balancing elements stored in other shards by lending

another thread of execution.

dPool implementations are the product of much thought into not locking the users

of a dPool library implementation into a single programming model. The dPool im-

plementations discussed below are designed to be used by fos servers which utilize

either a serial or user-level threading model. A simple extension of current dPool

implementations can be made to make them thread-safe such that they could be used

by preemptively multitasked servers. Not requiring preemptive multithreading by the

fos servers which utilize them simplifies the design of the fos server as fos servers do

not need to be reentrant. One of the challenges with not requiring preemptive mul-



Listing 4.1: Initialization for dPool

1 typedef struct
2 {
3 struct pool-private * private-storage;
4 uint64-t object-number;
5 FosRemotebox * mailbox;
6 } Pool;
7
8 /* Creates a new Pool
9*

10 Pool * poolCreateO;
11
12 /* Creates a new Pool Facade
13 master-mailboxrname is the mailbox of a preexisting dPool
14 fleet which we are to join.
15 returns a pointer to a Pool struct *
16 Pool * poolInitFacade (FosRemotebox master-mailbox-name,
17 uint64_t object-number);

tithreading is that a dPool may need to send and receive messages between different

shards without the aid of the server which is using the dPool library. This and other

challenges are discussed below.

The dPool interface has been implemented by a set of different implementations

which each have different properties as are described in Section 4.4. The common

interface allows a fos server to choose and later change the dPool implementation

utilized in order to meet a particular server's needs.

4.2 Interface

This section describes the 'C' language interface to dPool. This interface is the facade

through which fos servers can initialize, access elements, adjust locality, and elastically

resize a dPool.



4.2.1 Initialization

Listing 4.1 presents a source code listing to initialize a dPool. The first server to

initialize a dPool calls poolCreate () to create a new dPool. The initialization of the

dPool on the first server is different than subsequent servers because it must initialize

a mailbox and does not have any other dPool shards to contact. Subsequent servers

initialize the dPool by calling poollnitFacade with a mailbox which was created by

the initialization of the first dPool facade and the instance number which was created.

The mast er-mailbox-name and obj ect-number must be passed out of band relative to

the dPool. It is assumed that fos servers utilizing a dPool will already have some way

of communicating with other servers in the fleet in order to sync up such information.

The object-number parameter is a mechanism to allow multiple dPool instances to

co-exist in the confines of a single 'C' programming language namespace.

On completion of pQolCreate () or poolInitFacade (. . . ) calls, the pool is ready

to use. These functions return a pointer to a newly created dPool (Pool *) object.

4.2.2 Element Access

Listing 4.2 shows the different ways to access elements in a dPool. The interface is

quite simple as to add an element, poolAdd( .. ) is used and to retrieve an element,

poolGet(.. .) is used. Note that poolAdd(...) copies size bytes of the value

pointed to by value into its internal storage. poolGet ( ... ) copies a found value into

a buffer pointed to by f ound-value. If no value is found or the found value is larger

than the size passed to poolGet (. . ), then an error is returned. poolGet (. .)

is guaranteed to return an element of the dPool if any element exists in the dPool.

Also, poolGet ( ... ) is guaranteed to return a unique element to each calling facade

if concurrent access is occurring.

Last, poolSize ( ... ) returns an estimate of the number of elements in a dPool.

An estimate is utilized because it is challenging to provide exact information. Each

dPool shard contains the number of elements that each shard contains and this infor-

mation can be accessed in constant time for the local shard. A global estimate must



Listing 4.2: Element Access for dPool

1 typedef int PoolSize_t;
2
3 /* Inserts an element into an initialized Pool.
4 Returns 0 on success, -1 on error */
5 int poolAdd(Pool * po, int size, void * value);
6
7 /* returns a random pool element.
8 Returns -1 if not found,
9 returns -2 if object to be returned is larger than size

10 returns the size of the value returned.
11 If found object is larger than size, the
12 output is not filled in. */
13 int poolGet(Pool * po, int size, void * found-value);
14
15 /* returns the number of elements in the pool
16 returns -1 on error, 0 on empty, otherwise returns number

17 of elements in pool.
18 To preserve performance, poolSize is not atomic. *

19 PoolSize-t poolSize(Pool * po);

contact the other shards in the system in order to get an accurate count of elements

in the entire dPool instance. While this information is being gathered, concurrent

access to the other shards is proceeding which would cause the exact result to be out

of date. One way to have precise information, is to stop adds and gets from occurring

while the size of the pool is calculated. Another approach would be to use time-stamp

based model where the poolSize(. . .) request would return the size of the dPool

atomically from some time in the past. In order to prevent these complexities and

performance impact, it was decided that this interface would return an estimate to

preserve performance of dPool implementations. Also, for usage models envisioned,

this was the least important interface to the dPool.

4.2.3 Locality

Some dPool implementations can use locality to optimize how dPool shards communi-

cate and balance resources. The basic model is that each server using a dPool would



Listing 4.3: Locality Interface for dPool
1 typedef struct
2{
3 char data [64];
4 } PoolLocation;
5
6 /* returns an opaque location structure *
7 PoolLocation * poolFindLocation(Pool * pool);
8
9 /* set a distance between pool-location.from and

10 pool-location-to with metric.
11 Note that the default distance is 10,000 */
12 void poolSetLocality(Pool * pool,
13 PoolLocation * pool-location-from,
14 PoolLocation * pool-location-to, int metric);

query its local facade to determine its 'location'. Then via out of band means, the

server determines the distance between each pair of servers. Last, the server sets the

distance between any two given dPool facades. The setting of distances can be done

on any dPool facade as they are all internally connected via messaging. The locality

interface is just an optimization hint and does not override guarantees provided by

the element access interface.

Listing 4.3 provides a full listing of dPool's locality interface. The PoolLocation

is specific to a particular implementation of a dPool and should be regarded as an

opaque structure. Last, if a server is migrated, the locality metric can be updated

via a call to poolSetLocality(. .. ).

4.2.4 Elasticity

Elasticity is the ability for a dPool to increase and decrease dynamically the num-

ber of servers using a single dPool instance. In order to expand a running dPool,

poolInitFacade (.. .) is used as described above. In order to reduce the number of

shards in a dPool instance, poolShutdown( ... ) is used as described in Listing 4.4. If

there is more than one facade active in a dPool instance, the shutdown will shutdown

the local facade and push any important state and elements to other facades. If this is



Listing 4.4: Shutdown Interface for dPool

1 /* Shuts down the pool object and flushes
2 any dirty state to other pool shards
3 returns -2 if this server is unable to shutdown.
4 returns -1 if this is the last pool server in a instance
5 to be shut down.
6 returns 0 if local facade shut down successfully. *

7 int poolShutdown(Pool * po);

the last facade being shutdown, a special return code is returned such that the server

can know that this is the last dPool instance and that the remaining elements have

been destroyed.

4.3 Elasticity

One of the important aspects of fos service fleets is that they can grow and shrink

in size. This is done such that they can respond to load. They can also be shrunk

down to use fewer cores which may ultimately save energy or allow reuse of the cores.

Because dPool is designed to be used by fos servers that can elastically change the

number of servers providing a service, dPool must also elastically add and remove

shards from an executing dPool instance. Section 4.2.1 and Section 4.3 describe the

external elasticity interface from the server's perspective. This section describes how

dPool shards join and leave a dPool instance.

dPool implementations do not currently try to optimize for growing or shrinking

the number of dPool shards in a instance. Current dPool implementations use a

master to track the growing or shrinking of a dPool. When a dPool is initialized, the

first dPool shard is used as the master. After that, when a new facade is initialized,

it contacts the master dPool shard to signal that it wants to join the dPool instance.

The master keeps a list mailboxes for all registered dPool shards which it pushes to

the requesting shard along with a new shard number. The master guarantees that

the list sent to the joining shard is complete as it does not allow multiple registration

or removals to happen concurrently. After the new shard has received the list of all



other shards, it messages the other dPool shards so that it is added to their list of

active shards. After it has registered itself with all of the other servers, it internally

marks itself as healthy and begins processing requests.

When a dPool shard is shutdown and leaves a dPool instance, it begins by not

accepting any new add requests from other dPool shards. Next it pushes all of its

current elements to other dPool shards. Currently, it does this by pushing its elements

in a batch round-robin fashion to the other shards.

Now the dPool shard removes itself from all of the other shards' peer lists. It does

this in two phases, first, it removes itself from the peer lists on all of its peer shards.

When the leaving dPool shard is removed from the peer list, it is put on a list of

pending removals. A shard will not start any new transactions to the removed shard,

but there may be outstanding transactions to the shard which must be given a chance

to complete. Therefore, this shard is in effect reference counted while it has pending

transactions in flight to it. The second phase involves sending a second request to

every peer shard. This second request waits for the reference count to reach zero,

frees the memory for the peer list element, and then returns. At this point, the dPool

shard that is leaving the dPool instance is no longer referenced by any other shard

and contains no elements. It is now free to deallocate memory and return.

Currently, fos dPool implementations assume that the master server is the last

server to be removed from a dPool instance. This is because there needs to be some

way of contacting a master mailbox to join a running dPool instance. With modifi-

cations to the API, it could be possible to allow the dPool master to be transferred

to another dPool shard.

dPool was designed for performance of adding and retrieving elements. One prob-

lem with current dPool implementations is that each shard contains a list of each

other shard. This optimizes add and get performance, but slows down adding and

removal of new dPool shards to be a 0(n) time operation. Also, the per shard peer

list of other shards uses 0(n 2) storage.
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4.4 dPool Implementations

In this section, we describe the different dPool implementations and algorithms used

inside of them. This section will be referred to in the results chapter when these

different dPool implementations are used in the context of a physical page server.

4.4.1 Centralized Storage

The most basic implementation of dPool contains a distributed interface, but does not

distribute the storage of elements as the name dPool implies at all. The centralized

storage implementation stores all of the elements contained in a dPool instance in the

first dPool shard created. Subsequent shards simply message the first shard when an

element is requested from them through their respective facades. When an element

is added to a shard which is not the first shard, the first shard is messaged and the

element is placed in the first shard's storage. In effect, all dPool shards which are not

the first shard act as a facade for the first shard and use RPCs over fos messaging to

communicate with the first dPool.

4.4.2 Distributed Storage

One step up in complexity from a centralized storage dPool implementation is one

which allows each shard to contain a local list of elements, such as in the distributed

storage dPool. When an element is added to the dPool, it is added to the local shard's

list. When an element is retrieved from the dPool, if an element is available in the

local shard, it is removed from the head of the local shards list and returned. If there

are no elements available in the local shard's list, the shard will contact the other

shards looking for an element. If no element is found, the local shard returns the

appropriate error code. In order to guarantee fairness when a local shard runs out of

elements, the shard that it first contacts when requesting an element rotates. Each

shard keeps track of the last dPool shard that it contacted last and each time it goes

to start contacting a new shard it rotates to the next shard.
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4.4.3 Distributed Storage Bulk Transfer

One of the problems with the distributed storage dPool implementation described

above is that unless a dPool's shard has elements added locally, a local shard will

never have any elements in its list. Also, if the local list is empty, every request from

a local shard, will kick off a worse case O(s - 1) number of messages in order to

find an element, where s is the number of shards. In order to reduce communication,

the distributed storage bulk transfer dPool implementation functions very similar

to the distributed storage dPool implementation, but pulls multiple elements in one

message. Nominally, when an element is requested from a shard and the shard's local

list is dry, the shard will attempt to pull 50 elements from another shard. If one or

more elements are available when requesting elements from a different shard, up to 50

elements are transferred and the requesting shard stops and returns one of the found

elements. If the other shard contains no elements, the shard which originally requested

an element will go onto the next shard therefore, the worst case communication cost

to find an element is still O(s - 1). While the worst case communication cost has

not changed, the probability that a local shard will need to make a remote request

will have gone down by a factor of 50. Also, this algorithm makes it more likely that

other shards will contain elements thereby reducing the probability that a shard will

contact another shard and that second shard is empty.

4.4.4 Distributed Storage Bulk Transfer with Background

Pull

We expand on the distributed bulk storage algorithm by adding background threads.

dPool is built within a cooperative threading framework so background threads only

operate when there are idle cycles. This is nice because it eases the programming

model as the dPool implementation does not need to guard against preemption. Also,

only truly idle cycles are harvested for background optimization. The distributed

storage bulk transfer with background pull implementation extends the distributed

bulk storage algorithm implementation with the addition of a background thread
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which pulls elements from other shards. In order to rate limit background pulling,

the background pull thread only executes once out of every 100 idle thread scheduling

events. Once it is determined that a pull should occur, the local shard only attempts to

pull elements from other shards when the local list contains fewer than 1024 elements.

The implementation attempts to pull 50 elements at a time from another shard. The

shard which is chosen to be pulled from is rotated amongst all of the other shards in

the system in a round-robin manner. If the shard being pulled from has no elements,

the background thread returns and waits to be rescheduled. This implementation

similarly directly pulls 50 elements from another shard in response to a local request.

4.4.5 Distributed Storage Bulk Transfer with Background

Push

The distributed storage bulk transfer with background push implementation extends

the distributed storage bulk transfer implementation with the addition of a back-

ground thread. In contrast to the background pulling thread discussed above, the

background push thread pushes elements from one dPool shard to other dPool shards

instead of pulling elements. The background thread is only activated every 100 idle

thread scheduling events and like the background pull thread is only scheduled when

the processor is otherwise idle. The background push thread pushes elements only if

the local dPool shard contains more that 20,000 elements. The background thread

pushes 50 elements at a time and pushes them in a round-robin manner to other

shards. This pushing is done indiscriminately of how many elements the other shards

contain. One downside to this approach is that a shard may end up pushing elements

to a different shard which already contains more elements. Also, it is possible for

shards to endlessly push elements between each other thereby increasing the amount

of useless work. One bright side of using a background push thread is that the back-

ground thread only pushes when there is no critical work to be done. Therefore if a

particular dPool shard is busy, it will not be creating extra traffic and pushing away

potentially useful elements.
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4.4.6 Distributed Storage Bulk Transfer with Background

Push and Element Estimation

The distributed storage bulk transfer with background push and element estimation

implementation extends the above background push implementation by adding intel-

ligent decision making about which shards should push to which other shards. This

intelligent decision making works by having each shard keep an estimate of the num-

ber of elements that each other shard contains. This is done through a lazy update

system. The lazy update system is triggered from the background idle thread in

each shard. This update system works by each shard checking whether the number

of elements currently contained in the shard, a constant time operation, is either 500

elements larger or smaller than the last estimate which was sent. If the current, local

pool size is 500 elements different from the last sent estimate, the lazy update thread

notifies the master shard of the number of elements that the shard now contains. The

master shard collects new estimates and periodically broadcasts the estimate updates

to all the other shards. There is an interesting trade-off between how often estimates

should be transferred, what the threshold should be before transfers occur, and the

quality of the information. More up-to-date information requires more messaging

overhead.

Now that each shard has an estimate of how many elements all of the other

shards contain, the background push thread will only push to other shards which

have estimated fewer elements. The implementation only pushes to other shards which

have 2,048 or fewer estimated elements than what the local shard's list contains. This

modification to the algorithm severely limits the number of elements that bounce

back and forth between shards.
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Chapter 5

dPool Service Integration

dPool is designed to be reusable by multiple fos OS services. This chapter describes

two different uses of dPool. The first is inside the Physical Memory Allocation server

fleet where it is used as the primary data structure for keeping track of free physical

pages. It is also used by the Process Management Service fleet where it is used to

dole out unique process identifiers.

5.1 Physical Memory Allocation

In any OS, allocation of physical memory is an important basic system service. The

fos Physical Memory Allocation fleet is used to allocate physical memory pages within

a physically shared address space. fos has been designed to run on future multicore

processors which have a shared global physical address space, multiple shared physical

address spaces, or independent address spaces per core. fos explores how to manage

such architectures while only internally using messaging. The Physical Memory Al-

location fleet is designed to manage physical memory for architectures which have a

shared global physical address space or multiple shared physical address spaces. In

order to manage memory on a system with multiple physical address spaces, multiple,

independent Physical Memory Allocation fleets can be used.

The fos Physical Memory Allocation (PMA) fleet provides a uniform interface for
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Listing 5.1: Library Side Interface to the Physical Memory Allocation Fleet

1 /* returns the physical address that is the start of a page
2 that can be used. Returns 0 if no pages available. *7
3 physaddr physPageAlloc(;
4
5 /* release the page to the physical memory allocation
6 system */
7 void physPageFree(physaddr addr);
8
9 /* frees an array of n pages passed in an array. *

10 void physPageFreeBatch(int naddrs, physaddr * array);

each member of the fleet. The interface is only accessible via messaging and assumes

that the server asking for pages is a trusted entity. Like most fos system services, the

Physical Memory Allocation fleet provides a client library to ease the usage of the

Physical Memory Allocation fleet by other fleets. Listing 5.1 shows the library-side

interface to the Physical Memory Allocation fleet. These library functions are thin

veneers over messages which are sent from the user of the library to the PMA fleet.

One interesting aspect of the library is that it uses the threading model and dispatch

library, if available, or else it simply blocks waiting for message responses. Also, the

library takes advantage of sending multiple, parallel messages to the PMA when the

physPageFreeBatch(.. .) function is called with a sufficiently large enough number

of pages to be freed.

One interface explicitly missing from the interface to the Physical Memory Alloca-

tion fleet is an interface to ask for differing size pages or chunks of memory. As fos is

designed for machines with flat memory spaces (64-bit), there is no need for a buddy

allocator of physical memory as all pages are created equal and are interchangeable.

Currently the Process Management Server is the only server fleet that communi-

cates with the Physical Memory Allocation fleet. The Process Management Server

fleet handles the creation of new processes for which it needs physical memory pages.

It also currently serves the role of managing a process's virtual memory and handles

requests for dynamic memory through a message based sbrk request.

In order to implement the Physical Memory Allocation fleet, the fleet uses a
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Figure 5-1: A User application allocating memory. Messages shown as arrows.

dPool internally to store all of the free pages. The PMA currently uses a single dPool

instance where all the elements are four bytes in size. The PMA stores physical frame

numbers, therefore with 4KB pages, the PMA currently is limited to managing 17TB

of physical memory. To extend this requirement, a simple change can be made to the

page frame number type definition.

When the first PMA server starts up, it executes a protected system call into the

microkernel to get physical pages from the microkernel. After the startup series of

calls, allocation of physical pages is handled by the PMA.

Figure 5-1 shows the basic usage of the Physical Memory Allocation fleet to service

a user application's request for memory. The application starts out by calling malloc

in libc. libc calls sys-sbrk inside of libf os which in turn sends a message to the

Process Management Server fleet. In the future, memory allocation may be broken

out of the Process Management Server fleet into a Virtual Memory Server fleet. The

Process Management Server, then calls into the library-side interface for the PMA

which in turn sends a message to the PMA. The PMA then gets a page out of the

dPool shard. The shard may need to communicate with another shard stored in a
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different PMA server. The dPool returns a frame number or an error code to the

Process Management Server. The Process Management Server then maps the page

into the user process and returns the new memory break (brk) location. The Process

Management Server also requests pages from the PMA when creating or destroying

processes.

The current implementation of the PMA does not take manage multiple Non-

Uniform Memory Access (NUMA) memory nodes. There are several ways to extend

the PMA to allocate memory from different NUMA memory nodes. One way is to

have the PMA fleet utilize a dPool instance per NUMA node. Another way that we

have considered is to allocate pages for the local NUMA node in the dPool shard

closest to the memory controller with that NUMA node. While dPool does rebalance

elements (pages), locality of pages will be preserved to a large extent inside of dPool.

Pages are most likely to be changed to different regions of the chip when the dPool

becomes low on pages which is the same behavior of many other NUMA physical

page allocators.

The PMA does not currently take into account page coloring as the architectures

that we are currently running fos on do not exhibit advantages to page coloring in the

Li or L3 caches. For instance on a Intel Nehalem processor, the Li cache is 8-way set

associativity and are small enough that the maximum size of a cache way is the size

of the smallest page size. The L3 cache is 16-way set associative and shared between

multiple cores therefore making it very challenging to page color. This leaves the

L2 where page coloring could help, but it too is 8-way set associative decreasing the

benefit. Last, by adding page coloring, there is higher overhead in the allocation of a

page.

5.2 Process Identifier Allocation

The Process Management Server manages the creation and destruction of processes.

One important aspect of process creation and destruction is the allocation of process

identifiers (PIDs). A PID allows different system utilities to reference a process by
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a simple numeric. In order for PIDs to be useful, they need to be unique. The fos

Process Management Server (PMS) fleet is a distributed fleet. Because PIDs are

allocated from one global identifier space but the Process Management Server fleet is

distributed, a way to keep PID allocation and deallocation coherent across multiple

Process Management servers is needed. The PMS utilizes a dPool to manage PID

allocation and deallocation.

The use of a dPool being used for PID allocation in this section makes some

assumptions about PIDs. This section assumes that it is advantageous to allocate

PIDs from a fixed set of PIDs. One advantage to this is that this can keep PIDs in

a smaller range than if PID numbers are only used once. Also, by using PIDs from

a fixed set, the size of the PID can be smaller therefore utilizing less storage. For

interactive systems it can be easier to type in PIDs from a smaller fixed size pool

than if they are long random numbers.

The Process Management Server fleet was written by a different author than

the author of dPool and this thesis. dPool was easily integrated into the Process

Management Server fleet and shows a second use of the dPool inside of the context

of fos system service fleets.

The initial Process Management Server creates a dPool instance and then adds

all of the available PIDs to it at startup. Then, as processes are created or destroyed,

PIDs are added or removed from the dPool. All of the servers in the Process Man-

agement Server fleet utilize one dPool instance, therefore guaranteeing that no two

concurrently executing processes are given the same PID. PIDs can be added or re-

moved from the dPool concurrently as each Process Management Server fleet member

can operate on its own dPool shard. The Process Management Server takes advan-

tage of the scalable algorithms and rebalancing of elements that the dPool provides,

thereby reducing the probability that any single shard will run dry of PIDs.

By preloading a dPool with all of the available PIDs, we can see that dPool can

be used for more than a simple free list. Instead, it can be used for atomic allocation

of entries out of a common list. In the current implementation, we load the dPool

with one million PIDs which is the same number of PIDs as standard Linux systems.
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The usage of dPool for PID allocation meets the current needs of the fos PMS

fleet, but there are several extensions which we have been investigating. One is that

it may be desirable for system security reasons to prevent quick reuse of PIDs. One

way to prevent this is to use two dPool instances within the PMS. At the beginning

of time, the first dPool is loaded with all of the PIDs in the system. Allocation then

proceeds by allocating PIDs from the first dPool and when a process terminates, the

PMS inserts the PID into the second dPool. When all of the PIDs from the first dPool

are utilized, all of the PMS fleet members agree to switch the usage of the two dPools.

It now starts allocating out of the second dPool instance and inserting terminated

PIDs into the first and the cycle continues. This use of two dPool instances forces

the PMS to allocate all PIDs before reusing a PID.

Last, the PMS use of dPool utilizes 0(n) memory, where n is the number of PIDs

available. In comparison, the Linux PID allocation mechanism utilizes a bitmap which

uses 0(m) storage, where m is the total maximum number of PIDs in a system. The

constant factors used in Linux are smaller due to using a bitmap versus a list element,

but the asymptotic storage is the same.

I foresee many similar uses of dPool within fos system servers. One example is

the allocation of outbound socket numbers which need to be allocated across many

distributed network stack fleet members. dPool may also be a good fit as a work pile

scheduler. Jobs can be added to the work pile concurrently and they can be removed

concurrently with a dPool.
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Chapter 6

dPool Performance Analysis

This chapter explores the scalability of the dPool data structure. We measure dPool

as integrated into the Physical Memory Allocation server fleet. Different micro-

benchmarks are utilized to determine the best algorithm and the best partitioning of

data to use under differing loads.

6.1 Experimental Setup

The results presented in this chapter are all gathered on the current version of fos

executing on a 48 core (quad socket 12-core) AMD server. The server has four 1.9GHz

AMD Opteron 6168 processors totaling 48 cores and 64GB of RAM. fos runs as a

paravirtualized OS under Xen [11]. The experiments in this section were collected

with fos executing as a DomU under Xen 4.0.1 running with a Linux DomO running

Linux version 2.6.31.13.

In order to stress the dPool used by the Physical Memory Allocation service, a

test harness was created to simulate the traffic of many applications simultaneously

allocating and mapping pages. As part of the test, the test harness client program

requests a 4KB page from a PMA server, maps the page into the test harness's address

space and zeros the contents of the page. At the end of the test, the test harness frees

the pages back to the PMA server. This, in effect, models the actions of the Process

Management Server and a user application requesting pages from it. The results
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Figure 6-1: Primary Test Setup. Multiple test harnesses can connect to a Physical
Memory Allocation server. Multiple Physical Memory Allocation servers use one
dPool instance to manage the list of free pages.

presented below use the test harness along with the Physical Memory Allocation fleet

running inside of a functioning and booted fos system. Figure 6-1 shows a fleet of

PMAs serving multiple test harness clients.

A test harness is used to test the dPool that is integrated inside the Physical

Memory Allocation server to best isolate the scalability of the dPool inside of a

functioning fos system service fleet. By using a test harness, parameters such as

placement of servers, placement of clients, rate of request, and assignment of servers

to clients could all be closely controlled. The test harness is also able to drive traffic

that is more demanding than could otherwise come from a traditional application.

By using a test harness to test dPool scalability, fewer processors were used for the

load generation than if an application and PMS were used to generate load. This has

allowed us to test larger configurations of the dPool before running out of processors

on the test system. Last, by using a test harness, the development of the Process

Management Server fleet and the Physical Memory Allocation fleet utilizing a dPool

could be decoupled. This has been especially useful as the PMS is currently less

fine-grain parallelized than the PMA fleet, and it has been developed by another

student.
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6.2 Workload Description

We use the test harness to drive different distributions of page allocation and mapping

against varying numbers of PMA servers. Each test harness client communicates with

only one PMA server. The test harness clients are distributed amongst the servers. If

the number of clients is less than the number of servers, then not all servers will have

a client communicating with it. If the number of clients is not an integral multiple

of number of servers, they are distributed between the different servers, but some of

the servers will service strictly one more client than other servers.

Unless otherwise noted, all of the free pages in the page pool are initially cen-

tralized on the first PMA server. This is because the PMA has been designed to

elastically grow and shrink the fleet size. Therefore, at the beginning of each test, all

of the free pages in the system are added to the first PMA server and either the other

servers in the fleet need to request pages from the first PMA server or the background

threads rebalance the pages.

In each test, the overall page pool consists of the number of servers times 65,536

pages, which amounts to 256MB of memory per server. For each of the tests below,

the total number of pages allocated is slightly less than the total number of pages in

the system for a given test. This is done such that the PMA server fleet does not run

dry, but we do stress the low page case. The low page case is the most challenging

algorithmically, as it is possible that the dPool contained in a PMA server may need

to contact every other PMA server in the system to find a free page.

We test the dPool used inside of the PMA service with four, primary traffic distri-

butions being driven by test harness clients requesting pages. The first distribution

is that of a uniform distribution. In the uniform distribution, each client requests

an equal number of pages. As discussed above, each client requests slightly less than

their equal share of the pages. For the uniform case, each client requests the number

of servers times 1024 fewer pages than their equal share of pages.

The second distribution is a non-uniform distribution. It is an increasing lin-

ear distribution. We test non-uniform distributions to see how dPool scales when
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Figure 6-2: Number of allocations completed by each client in the non-uniform, tri-
angle distribution with 16 clients and 16 servers.

presented with uneven load. As the client number increases, the number of pages al-

located and mapped increases. The distribution starts out with 20% of the even share

of pages allocated and linearly increases such that the last client uses 180% of the

even share. So as to not allocate all of the pages, each client allocates 256 fewer pages

than the nominal number. This works out to pages = (totalPages/numClients) *

(0.2 + 1.6 - (1.6 * ((numClients - clientNum - 1)/(numClients - 1.0)))) - 256 as

shown in Figure 6-2 for 16 clients and 16 servers. We will refer to this distribution as

the Non-Uniform Triangle distribution.

The third distribution is a non-uniform, bimodal distribution. It alternates with

every other client either allocating 180% of the nominal pages: pages = (totalPages/

numClients) * (1.8) - 256 or 20% of the nominal pages pages = (totalPages/

numClients) * (0.2) - 256. This is shown graphically in Figure 6-3 for 16 clients and

16 servers. We will call this the Non-Uniform Bimodal distribution.

The fourth distribution is a time varying non-uniform distribution. This dis-

tribution begins by running the same distribution as the Non-Uniform Bimodal.

After all of the clients have finished executing the initial bimodal distribution, a

barrier is executed and the clients begin executing a distribution where the clients

which were previously requesting a large number of pages now request few pages
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Figure 6-3: Number of allocations completed by each client in the non-uniform, bi-
modal distribution with 16 clients and 16 servers.

and vice versa. The second phase of this test case reverses the clients from the first

phase with every other client either allocating 20% of the nominal pages pages

(totalPages/numClients) * (0.2) - 256 or 180% of the nominal pages: pages

(totalPages/numClients) * (1.8) - 256. This is shown graphically in Figure 6-4

for 16 clients and 16 servers. We will refer to this distribution as the Non-Uniform

Bimodal Two-Phase distribution.

6.2.1 Testing Methodology

Each test is run on an unloaded computer as described above. The PMA servers

and test harness clients execute on separate cores. We test 1, 2, 4, 8, and 16 servers

and from 1 to 24 clients. Six CPUs are used for other fos system services. Timing

is recorded by utilizing the high-resolution, hardware time stamp counter (TSC). At

the end of a run, the first client waits for all of the other clients to complete, signaled

by a message from every other client. The act of all of the clients contacting the

first client at the end of a run serves as a barrier. After the barrier, the first client

captures the end of run timing. The metric used throughout this results section is

page allocations per million cycles. This is computed by taking the total number of

allocations done on every client and dividing it by the number of cycles the worse
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Figure 6-4: Number of allocations completed by each client in the second phase of
the non-uniform, bimodal two-phase distribution with 16 clients and 16 servers.

case client took to complete. We use allocations per million cycles in order to make

the graphs have non-fractional axes. Figure 6-5 shows an example test configuration

with four servers and eight clients.

The graphs in the following section have many data points per line and multiple

lines per graph, therefore we take a moment to describe the basic graph structure in

the hope of easing graph readability for the reader. Figure 6-6 shows an idealized

example graph similar to those used in the remainder of this results section, which

we will use to describe the structure of the graphs. First, lets begin with the axis.

The vertical axis is the average rate of allocation, mapping, and zeroing of pages per

one million cycles. This is an aggregate rate across all of the clients, and a higher

point is better. In example, if two clients are used and if there is perfect scaling,

the allocations per million cycles will be doubled. The horizontal axis contains the

number of clients being used for a particular test. This is just the number of clients, as

the number of servers servicing those clients is an independent variable. For reference

results, such as Linux, there is no notion of servers, therefore only the number of

clients is varied.

Now we direct attention to the legend of the graph, shown in the bottom center.

The legend shows the number of servers utilized for each test. Each line in the graph
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Figure 6-5: An example configuration with four servers and eight clients. The servers
and clients are numbered S1-S4 and C1-C8.

represents a different number of servers and each data point represents the number

of allocations per millions cycles using a particular number of clients and servers.

The title of the graph contains a short description of the algorithm used and the

distribution of work utilized for the results in the graph.

We briefly look at different scaling trends as plotted on the example graph. The

line with downward-pointing triangles (green) corresponds to two servers. The per-

formance of this configuration shows good scaling, as a function of clients, until

approximately nine clients. With greater than nine clients the performance plateaus.

The line with right-facing triangles (purple) represents a linear-scaling improvement

across all the clients. The slope of the different lines before they plateau is also inter-

esting, as it determines how well the configuration is scaling. A line with a steeper

slope scales better than one with a shallower slope. Finally, we see that the line with

a box marker (yellow) represents reference data being compared against. In this case,

as the legend suggests, the reference is Linux.

For ease of comparison, the graphs in the following section are all graphed with

the same axis. While more detail could be seen if the axis were recalibrated per graph,

we compare many of the charts with each other in the discussion section, and this is
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Figure 6-6: Example Results Graph.

made easier if all of the charts are on the same scale.

6.2.2 Reference Comparison

The rest of this chapter evaluates the scalability of different implementations of dPool.

The test harness simulates applications which are allocating memory as quickly as

possible. As a reference point, for the uniform distribution, a similar workload is

executed on a Linux DomU, executing on the same machine and Xen hypervisor.

The Linux DomU is Linux version 2.6.28. It is difficult to make an apples-to-apples

comparison between two different operating systems due to different code maturity

and different functionality sets. Therefore, we give the performance of Linux only

as a reference and stress that it is only a reference. Much effort went into making

sure that the testing for the fos dPool implementation has similar functionality as

the Linux implementation. The Linux implementation allocates pages by touching

the first byte in a page as quickly as is possible. This causes the Linux kernel to

allocate a physical page, map the page, and zero the page. The test then frees the
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page back to the system. The test times how long it takes to execute on different

numbers of processors, and the aggregate allocations per million cycles is computed.

We only provide the reference point for the uniform distribution as we felt it was

overly challenging to have a fair comparison for the non-uniform allocation cases.
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Figure 6-7: Linux Scalability for Uniform Page Allocation Benchmark.

Figure 6-7 shows the scaling of Linux on the uniform distribution test case. For

one to six processors, the performance scaling of Linux looks quite good and peaks at

436 allocations per million cycles. After that peak, the performance regresses until

it plateaus out around the peak performance. It is interesting to look inside Linux

and see why the performance stops increasing. Linux manages free physical memory

with a centralized buddy allocator. Linux has a buddy allocator per NUMA node in

the system. There are also separate pools for different classes of memory, which are

called zones. On 64-bit x86 Linux, the zones are less important as the purpose of

the zones is to deal with low-memory, high-memory, and DMA memory, but in 64-bit

machines, there is no notion of low or high memory.

Each CPU has a cache of free pages per node. Linux pulls a large number of pages

from the central buddy allocator when a local CPU's cache runs dry. If the CPU cache

119



Centralized vs. Linux, Uniform

1200- Servers
0-0 1

Y-' 2
1000 -A 4

4-48
-- 16

C 800-.2e linux

a 600-

0

o 400o

200

0
5 10 15 20

Clients

Figure 6-8: Centralized Storage dPool tested with a uniform load compared to Linux.

becomes too full, the pages will be released back to the central buddy allocator. The

central buddy allocator has a single lock, named pg_datat->zone->lock protecting

access to it. This lock ultimately limits the performance in this test, as many pages

need to be retrieved from the central buddy allocator. This was discovered by using

oprof ile as is shown in Figure 3-1. While we tested Linux 2.6.28, the physical page

allocation code has not been modified in the newest release of Linux.

6.3 Evaluation of dPool Implementations

The following subsections evaluate the scaling of different dPool algorithms and im-

plementations when being tested with the above workloads.

6.3.1 Centralized Storage

We begin by looking at a dPool implementation which uses centralized storage as

described in Section 4.4.1. In this implementation, only one server is capable of

storing free pages, while the other servers who use the same dPool interface need to
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Figure 6-9: Centralized Storage dPool tested with a non-uniform, triangular load.

contact the first server to request or relinquish a page. Figures 6-8, 6-9, 6-10, and

6-11 show the performance trends for the different test workloads.

As expected, centralizing all allocations onto one core quickly becomes a bot-

tleneck and maxes out at four clients in the uniform case and eight clients in the

non-uniform cases, after which the performance of this approach decreases. The one

server case does the best in all cases. For the test cases which have more than one

server, in order for the test harness to allocate a page, it needs to first communicate

with its local PMA server. If the local server is not the first server, the dPool con-

tained within the local server sends a message to the first server, which contains the

centralized pool storage. This, in effect, increases the communication cost associated

with a page allocation, thereby reducing performance as shown in Figure 6-12. It is

interesting to see is how the doubling of communication cost along with the way that

we benchmark performance affects the results for higher server counts. Clients are

evenly distributed between servers. Therefore, as more servers are added, a larger

fraction of the work is done by servers which have strictly higher communication

costs. For instance, in the one server case, all of the communication goes directly
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Figure 6-10: Centralized Storage dPool tested with a non-uniform, bimodal load.

between the client and server. For the two server case, half of the workload has a

communication cost of one and the other half has a communication cost of two when

normalized. For sixteen servers, 1/16 of the work has a communication cost of one

and 15/16 of the work has a communication cost of two. Therefore, as more servers

are added, a larger percentage of the work done has a strictly higher communication

cost and therefore lower performance. It should be noted that the centralized stor-

age implementation does worse than the reference Linux implementation at all client

numbers.

In figure 6-9, a well-defined, alternating ripple can be seen in the two server case

(green line with downward facing triangle markers). This is because, with an odd

number of clients, one more client maps onto the centralized server, thereby enabling

higher performance.
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with a non-uniform, bimodal two-phase
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Figure 6-12: a) Centralized dPool with one server and two clients. Both clients
directly communicate with a server which can contain elements. b) Centralized dPool
with two servers and two clients. Only the first client can directly communicate with
the server which contains elements in its dPool. The second client must incur higher
communication cost as it needs to communicate with server S-2 which in turn needs
to message server S-1 in order to fulfill any requests for dPool elements.
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Figure 6-13: Distributed Storage dPool tested with a uniform load compared to Linux.

6.3.2 Distributed Storage

This section shows the performance for a dPool that allows pages to be distributed

across multiple servers' storage as described in Section 4.4.2. Figures 6-13, 6-14,

6-15, and 6-16 show the performance trends for the different test workloads.

Like in the centralized storage implementation, the distributed storage case quickly

maxes out on performance. For the uniform case, it maxes out after five clients, while

the non-uniform cases fare slightly better, with the non-uniform, triangle case even

showing some scaling for the multi-server cases. What is interesting to see is that

this algorithm actually demonstrates anti-scalability as more servers are added. This

is due to pages being allocated initially on the first server in the PMA fleet. For

the same reasons described for the centralized case, if the PMA server only pulls one

entry at a time, it reverts to the centralized storage case. If the test case contained

more mid-test freeing and reuse of pages on the same server, we would expect the

distributed algorithm to do much better in the long run. The non-uniform, bimodal

two-phase workload contains some page reuse, but unfortunately still transfers many
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Figure 6-14: Distributed Storage dPool tested with a non-uniform, triangular load.

pages between servers because the distribution reverses which servers are loaded be-

tween the two phases.

It is interesting to note that for higher numbers of servers and low number of

clients, the distributed algorithm actually does worse than the centralized case as

can be seen when comparing Figure 6-8 and Figure 6-13 at the two-client point.

Investigating this anomaly reveals one of the largest differences between these two

strategies. In the distributed storage case, when a server runs out of free pages, it

contacts another server. It does this in a round-robin fashion, while in the centralized

storage case, it contacts the server which is guaranteed to have a page. Therefore,

in the distributed storage case, as the number of servers increases there are more

locations to check for free pages. Because all of the pages start on the first server, in

effect this causes the server to check many other servers which are guaranteed not to

have a page before contacting the first server.
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Figure 6-15: Distributed Storage dPool tested with a non-uniform, bimodal load.
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Figure 6-16: Distributed Storage dPool tested with a non-uniform, bimodal two-phase
load.
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Figure 6-17: Distributed Storage Bulk Transfer dPool tested with a uniform load
compared to Linux.

6.3.3 Distributed Storage Bulk Transfer

Figures 6-17, 6-18, 6-19, and 6-20 show the results for a distributed storage dPool

which transfers up to 50 pages in one message as described in Section 4.4.3. This

strategy has several advantages. First, it reduces the messaging cost to move pages

by a factor of 50. Second, it reduces the probability that a server which is being

contacted by another server contains no free pages, as most servers will have some

level of free pages stored within their dPool.

Looking at the uniform distribution, Figure 6-17, we can see that four or more

servers can provide better performance than the reference Linux implementation.

Also, as more clients are added, the performance trends up, showing that this im-

plementation has some scalability in terms of adding more clients. This graph also

shows that the number of servers begins to become a bottleneck and ultimately limits

scalability, as can be seen with the one, two, and four server cases. Another interest-

ing occurrence is that the 16 server case shows good scalability when adding clients,

but performs worse than the eight server case. When there are fewer than 16 clients,
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Figure 6-18: Distributed Storage Bulk Transfer dPool tested with a non-uniform,
triangular load.

the average communication cost for 16 servers ends up being higher than the eight

server case. This is because, as described above, a server which runs dry of pages

communicates with other servers in a round-robin fashion. If the server being queried

for pages is one of the servers which is not servicing a client, it acts as dead weight.

Although the client-less server gets queried, it will never have pages to share, thereby

increasing the communication cost when compared to the eight server case.

Above 16 clients, the trends are interesting. As can be seen in both the 16 server

and eight server case, performance continues to improve as more clients are added.

In the uniform load case, 16 servers performs slightly worse than the eight server

case. This is largely due to a load imbalance which occurs on the servers. In our test,

one client only communicates with one server in order to preserve communication

locality, as is the philosophy of fos. This causes the load, when there are fewer

servers, to be more evenly distributed. For instance let us compare when there are

20 clients communicating with eight servers versus 20 clients communicating with

16 servers. With 20 clients and eight servers, four of the servers are servicing three
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Figure 6-19: Distributed Storage Bulk Transfer dPool tested with a non-uniform,
bimodal load.

clients and four servers are servicing two clients. For the 16 server case, four of the

servers are servicing two clients and twelve of the servers are servicing one client. So,

if we compare the load of the least loaded server to the maximum loaded server, we

see that in the eight server case, each server has either 3/3 or 2/3 of the maximum

load and the load difference is only 1/3, while in the 16 server case, each server

has either 2/2 or 1/2 of the maximum load. Therefore, the difference in terms of

maximum load is larger with more servers. Not only is the load difference greater,

but also, the variation across servers. For instance, in the eight server case, 4 out of 8

servers are lightly loaded, while in the 16 server case, 12 out of 16 servers are lightly

loaded. This impacts performance because we measure the time taken by the least

performing client/server pair. If we were to distribute requests from clients to servers

more evenly, we should expect some of this small performance gap to be reclaimed,

but that goes against the locality philosophy of fos.
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Figure 6-20: Distributed Storage Bulk Transfer dPool tested with a non-uniform,
bimodal two-phase load.
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Figure 6-21: Distributed Storage Bulk Transfer with Background Pull dPool tested
with a uniform load compared to Linux.

6.3.4 Distributed Storage Bulk Transfer with Background

Pull

Figures 6-21, 6-22, 6-23, and 6-24 show the results when we add a thread which

pulls elements between dPool shards in the background. When comparing this to the

previous case, there is little to no performance improvement and the results look very

similar. This is not too surprising, as a pull protocol requires the loaded server to

request free elements. Also, preemptive pulling does not decrease the number of page

pull requests. It even makes matters worse when the number of clients is less than

the number of servers, as it will horde pages by pulling pages into servers which will

never be directly contacted by a client and allocated from.
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Figure 6-22: Distributed Storage Bulk Transfer with Background Pull dPool tested
with a non-uniform, triangular load.
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Figure 6-23: Distributed Storage Bulk Transfer with Background Pull dPool tested
with a non-uniform, bimodal load.
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Figure 6-24: Distributed Storage Bulk Transfer with Background Pull dPool tested
with a non-uniform, bimodal two-phase load.
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Figure 6-25: Distributed Storage Bulk Transfer with Background Push dPool tested
with a uniform load compared to Linux.

6.3.5 Distributed Storage Bulk Transfer with Background

Push

In this section we replace background threads which pull elements with background

threads that push elements from dPool shards which have many elements to other

shards. Figures 6-25, 6-26, 6-27, and 6-28 show the results for the bulk transfer

with background push algorithm described in Section 4.4.5. A similar trend appears

as in the previous graphs where the PMA fleet is able to increase performance by

adding more clients. Also, in general, the one, two, and four server cases show signs

of plateauing performance, indicating that they ultimately will limit performance.

The eight and 16 server trends continue to increase in performance as more clients

are added, up to the maximum number of tested clients.

Overall performance is better than the previous algorithms across all workloads.

The background push is effective at distributing pages between all of the different

dPool shards. This is especially useful at the beginning of a test where all of the
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Figure 6-26: Distributed Storage Bulk Transfer with Background Push dPool tested
with a non-uniform, triangular load.

pages begin on the first server.

Load imbalance continues to haunt the 16 server case when compared with the

eight server case for large numbers of clients. This causes a new phenomenon for low

number of servers. Because the total number of pages in the page pool are fixed and

limited, the push algorithm actually pushes pages to dPool shards with no clients

attached. Therefore these servers accumulate pages until they ultimately reach the

push threshold where they will start pushing elements to other servers. Because the

push threshold is relatively high, a good number of pages are taken away from the

larger pool and stored in the non-useful, clientless, servers.

One interesting feature to note about this algorithm is that it indiscriminately

pushes pages. This can cause a page to be transferred multiple times as servers will

push pages to servers which have a copious number of pages. Therefore, we look

toward more intelligent algorithms.
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Figure 6-27: Distributed Storage Bulk Transfer with Background Push dPool tested
with a non-uniform, bimodal load.
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Figure 6-28: Distributed Storage Bulk Transfer with Background Push dPool tested
with a non-uniform, bimodal two-phase load.
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Figure 6-29: Distributed Storage Bulk Transfer with Background Push and Element
Estimation dPool tested with a uniform load compared to Linux.

6.3.6 Distributed Storage Bulk Transfer with Background

Push and Element Estimation

We now explore adding the ability to make intelligent decisions about where to push

spare pages. Because dPool operates in a distributed environment, determining which

dPool shard to push to requires extra messages to be sent and computation to be used.

Therefore, the benefit of better knowledge must outweigh the cost of communicating

estimate information for this approach to increase performance. The algorithm, as

described in Section 4.4.6, uses a background protocol to estimate the number of

elements that each dPool shard contains. Figures 6-29, 6-30, 6-31, and 6-32 show

how well this approach performs on the four workloads.

Looking at the results, we see that for all workloads, the one, two, and four

server cases all plateau after reaching a maximum performance. The four server case

provides better peak performance than the two server case, which is better than the

one server case, thereby showing scalability in the number of servers. The eight and
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Figure 6-30: Distributed Storage Bulk Transfer with Background Push and Element
Estimation dPool tested with a non-uniform, triangular load.

16 server cases show good scalability with the number of clients and continue to scale

beyond the measured number of clients. The slope of the scalability is close to the

slope of and absolute performance of the Linux reference for low numbers of clients.

For two or more servers, the fos implementation achieves greater performance than

the reference implementation.

We now focus on comparing the 16 server and eight server cases. For fewer than

16 clients, the performance of 16 servers is slightly worse than that of eight servers.

We investigated this by enabling other performance metrics in our runs and found

that in the eight server case, no demand requests for pages occur, because the push

mechanism is effective at delivering pages to servers before they are needed, thereby

saving critical path communication cost. In the 16 server case, the push mechanism

pushes pages to servers which do not have any clients attached. Later, when the

test gets into a low page regime, the dPool shard inside of the loaded servers need

to demand request pages from the otherwise idle servers, thereby impacting perfor-

mance. One possible way to solve this is to use fewer servers than clients as the PMA
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Figure 6-31: Distributed Storage Bulk Transfer with Background Push and Element
Estimation dPool tested with a non-uniform, bimodal load.

and dPool can elastically change the number of CPUs being used. Another possible

solution is to vary the threshold below which dPool shards do not push elements. The

threshold could be set to vary with the number of elements held within the global

dPool instance, thereby encouraging idle servers to push elements to servers in need

of elements in the low element case.

Above 16 clients, the performance trends for both eight and 16 servers track closely

together, but the performance for the eight server implementation is slightly better

(less than 5% better). We investigated and found that this performance difference is

for a few reasons. First, the load between servers is more balanced with fewer servers.

Because our performance metric measures the time required by the slowest client, load

balance matters quite a bit. For a fixed number of clients greater than 16 clients, the

percentage difference in load as seen by the servers is greater with more servers. This

is because we statically assign clients in a round-robin fashion to servers. Therefore,

with fewer servers, the clients wrap around the servers more quickly. For instance,

assuming 20 clients and eight servers, four servers will be communicating with two
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Figure 6-32: Distributed Storage Bulk Transfer with Background Push and Element
Estimation dPool tested with a non-uniform, bimodal two-phase load.

clients and four will be communicating with three clients. If this same load is run

with 16 servers, four servers will be servicing two clients and 14 will be servicing one

client. In the eight server case, the load difference is 3/3 vs. 2/3 while in the 16 server

case, the load difference is 2/2 vs. 1/2. Therefore, the load difference as a percentage

is actually larger in the 16 server case. Also, the number and percentage of servers

which are lightly loaded in the 16 server case is quite a bit higher, with 12/16 in the

16 server case versus 4/8 in the eight server case. When we look at the 16 client case,

we see that there is perfect load balancing on both the eight and 16 server case as

16 is evenly divisible by both eight and 16. When the load is perfectly balanced, the

16 server case exhibits better performance than the eight server case across the first

three distributions.

Unfortunately, some portions of the algorithm become more expensive as the

number of servers increases. For instance, searching for a free page is linear with

the number of servers. Also, the estimation calculation has to send a quadratic

number of messages when an update occurs. However, the estimate calculation occurs
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infrequently enough that it does not appear to limit scalability.

Last, in the eight server case, the layout for the clients is slightly better than

the 16 server case as the 16 server case pushes everything slightly farther apart. We

expect that for some larger number of clients, the performance for eight servers will

plateau off and the performance for 16 servers will continue to increase, but we have

not been able to reach that number of clients on our current test computer.

In conclusion, we find that the cost of pushing out updates to estimate the number

of elements that each dPool shard contains has good paybacks and increases the

scalability of the dPool as tested.
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6.3.7 dPool Algorithm Comparison

By looking across the different algorithms presented and tested, we see that with

the better algorithms, it is possible to create a dPool data structure which is able to

provide good scalability in terms of adding clients. Also, the maximum performance

achievable before performance plateaus scales with the number of servers. Several

insights can be gleamed by looking across the results.

First, when comparing Figure 6-17 to Figure 6-8, we can see that adding the

bulk distribution of dPool elements over a distributed storage implementation helps

performance and scalability.

Second, adding a background thread which pulls elements, comparing Figure 6-21

to Figure 6-17, does not improve performance much. In contrast, adding a background

thread which pushes elements from one dPool shard to another does significantly

improve performance and scalability as shown by comparing Figure 6-25 to Figure 6-

17.

Adding the ability for each dPool shard to intelligently make decisions about which

other shards to push elements to significantly improves performance and scalability

when compared to pushing in a round-robin fashion, as shown by comparing Figure 6-

29 to Figure 6-25. This was not completely obvious as there is cost involved in

updating a shard's estimation of the size of the local pool that each other shard

contains. The overhead of updating this information trades off against the quality of

the element count estimation.

One outcome which we were a little bit surprised about is that the better algo-

rithms were better for all of the different workloads. We were expecting that one of

the workloads would favor one of the algorithms over the other and that they would

not be a strict hierarchy.

One nice feature of fos's fleet design and the design of dPool is that the number

of servers and dPool shards can be dynamically adjusted in an elastic manner. This,

in effect, enables the fos system to follow the highest line in the curves presented in

previous figures by adjusting the number of servers for the number of clients and load.
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a b

Figure 6-33: a) Eight servers placed close together with clients placed close together
versus b) servers distributed on processors close to the clients they serve.

For instance, from a systems perspective, it might be best to utilize a lower number

of servers until that number of servers limits performance and only then utilize more

CPUs by switching to a larger number of servers and dPools.

6.3.8 Placement

In order to see if the placement of servers and clients effects performance, we com-

pared a placement which places all of the servers on nearby cores versus placing

the client near the server which services it. Figure 6-33 shows these two placement

configurations. We present the results for the distributed storage bulk transfer with

background push and element estimation implementation, but we have found similar

results for the distributed storage bulk transfer case. The previously presented Fig-

ures 6-29, 6-30, 6-31, and 6-37 show the results when placing the server near the

client it is servicing (option b in Figure 6-33). Figures 6-34, 6-35, and 6-36 show

the same algorithm with a placement which puts all of the servers together and all of

the clients together (option a in Figure 6-33).

When comparing these different placements, we find that placing the server near

the clients which it services provides a small performance improvement over co-

locating servers. This suggests that communication between servers is less impor-

tant than communication between a client and its servicing server. This is not unex-

pected as the algorithms that dPool utilizes work to minimize communication between

servers. For example, they do bulk element transfers and rebalancing of elements off

of the critical computation path. These results also show that the AMD machine that

these results were gathered on does not have uniform communication costs, but that

the non-uniformity is modest.
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Figure 6-34: Distributed Storage Bulk Transfer with Background Push and Element
Estimation dPool with poor placement and tested with a uniform load compared to
Linux.
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Figure 6-35: Distributed Storage Bulk Transfer with Background Push and Element
Estimation dPool with poor placement and tested with a non-uniform, triangular
load.
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Figure 6-36: Distributed Storage Bulk Transfer with Background Push and Element
Estimation dPool with poor placement and tested with a non-uniform, bimodal load.
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Figure 6-37: Distributed Storage Bulk Transfer with Background Push and Element
Estimation dPool with poor placement and tested with a non-uniform, bimodal two-
phase load.

145



146



Chapter 7

Conclusions

Through the process of creating the dPool distributed data structure, we have gained

several insights. The foremost insight is that a message passing based, low-level

OS service, such as the fos Physical Memory Allocation service can be successfully

split into a dPool distributed data structure and the service main functionality while

providing good performance and scalability. In Chapter 6, we showed that dPool

empirically provides scalable performance as the number of clients using the Phys-

ical Memory Allocation server fleet increases across a set even and uneven micro-

benchmark workloads. We also showed that the maximum performance deliverable

by dPool before performance plateaus scales with the number of dPool shards.

In Chapter 4, we described the construction of the dPool and how parallel and

distributed programming techniques can be applied to its construction. We showed

elements being partitioned across multiple dPool shards. We also described dPool

utilizing lazy estimation of the number of elements that each dPool shard contained

as a way to make intelligent decisions while not needing exact information. Finally,

we described how dPools can grow and shrink in size in response to load.

In Chapter 6, we explored different algorithms being used inside of dPool and

uncovered insights. First, dPools benefit from having background threads. As is

shown for both background pulling and background pushing, adding threads that

operate during idle time can effectively rebalance load. Second, we found that pushing

elements in the background to be superior to pulling elements in the background.
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We found that this is because pushing elements occurs on cores which are otherwise

unloaded and these cycles are truly spare. In the pulling case, cores which are already

on the critical path do not have much to gain from pulling preemptively versus simply

pulling when they run out of elements as the communication occupancy is the same.

Empirically, we found that pushing elements from shards which contain large numbers

of elements to shards with fewer is superior to pushing elements indiscriminately. One

interesting insight is that the cost of keeping element list size information consistent

is outweighed by the performance gain of using list size information.

Finally, some other insights include that the placement of fos servers near the

clients they serve is important for performance even on relatively uniform machines

such as the one we tested on. This will likely become more important on future

multicore processors where the communication latencies will become larger and less

uniform. Also, the fleet approach allows the delivered fleet performance to ride the

maximal envelope of performance provided by different numbers of dPool shards and

fos fleet servers.

7.1 Future Directions

In the future, we expect that the fos project will continue to grow and need further

distributed data structures. We believe that the fos project has great promise as an

alternative way to build systems which can scale up to meet the challenge of future

multicore architectures. Some distributed data structures that the fos team believes

are needed include a key-value store, a key value store which has a range based match

function, a priority queue, and a data structure which can broadcast a global scalar.

I would like to explore more uses of dPool inside of fos system services. Another

area that is worth exploring is whether dPool and the current dPool implementations

are a good fit for fos running across multiple machines. fos currently provides the

capability to extend messaging between machines in a single fos instance. It would be

interesting to see if the additional latency involved with messages transiting between

machines limits the scalability of dPool and whether algorithms that work well on a
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single chip will extend well across multiple machines or if other algorithms will need

to be developed.

Last, we are interested in mapping fos and dPool to future architectures which

contain native message passing hardware. By mapping the fos messaging interface to

this hardware, messaging cost can be reduced. It would also be interesting to see how

this different messaging implementation would effect the scalability and performance

of the dPool. One advantage of hardware messaging is that it would remove messaging

load from the memory networks which could be helpful, especially for cases like we

tested in this thesis where memory bandwidth was at a premium.
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