
Methods and technologies for high-throughput and

high-content small animal screening

by

Christopher B. Rohde

B.Sc., The University of Manitoba (2002)
M.Sc., The University of Manitoba (2006)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy MASSACHUSETTS INSTITUTE
OF TECHNOCLOGY

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2012 A

@ Massachusetts Institute of Technology 2012. All rights reserved. ARCHIVES

A u th or .................................... .........
Department of Electrical Engineering and Computer Science

January 13, 2012

Certified by........ ...............

Associate Professor
Mehmet Fatih Yanik

of Electrical Engineering
Thesis Supervisor

Accepted by .................................................. L6ie A1 KoIodziej ski

Professor of Electrical Engineering
Chair of the Committee on Graduate Students



Methods and technologies for high-throughput and high-content small
animal screening

by

Christopher B. Rohde

Submitted to the Department of Electrical Engineering and Computer Science
on January 13, 2012, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract

High-throughput and high-content screening (HTS and HCS) of whole animals requires their
immobilization for high-resolution imaging and manipulation. Here we present methods to
enable HTS and HCS of the nematode Caenorhabditis elegans (C. elegans). First we present
microfluidic technologies to rapidly isolate, immobilize, image and manipulate individual
animals. These technologies include 1. a high-speed microfluidic sorter that can isolate
and immobilize C. elegans in a well defined geometry for screening phenotypic features in
physiologically active animals, 2. an integrated chip containing individually addressable
screening-chamber devices for incubation and exposure of individual animals to biochemi-
cal compounds and high-resolution time-lapse imaging of multiple animals and 3. a design
for delivery of compound libraries in standard multiwell plates to microfluidic devices and
also for rapid dispensing of screened animals into multiwell plates. We then present an
improved immobilization method that restrains animals with sufficient stability to perform
femtosecond laser microsurgery and multiphoton imaging, without any apparent effects on
animal health. We subsequently screen the contents of a small-molecule library for factors
affecting neural regeneration following femtosecond laser microsurgery of C. elegans using
these technologies. This screen identifies the kinase inhibitor staurosporine as a strong in-
hibitor of neural regeneration, and does so in a concentration and neuronal cell type-specific
manner. Finally, we present a simple device for immobilizing C. elegans inside standard
microtiter plates that is compatible with existing HTS systems. The device consists of an
array of metal pins connected to individually-controlled thermoelectric coolers. 'We use this
to perform femtosecond laser microsurgery on C. elegans in microtiter plates and to analyze
the regeneration dynamics over time. This analysis shows that neurons tend regenerate in
single short bursts that occur stochastically within the first two days post-surgery.

Thesis Supervisor: Mehmet Fatih Yanik
Title: Associate Professor of Electrical Engineering
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Chapter 1

Introductiont

1.1 High-throughput and high-content screening and the use

of C. elegans

The increase in potential molecular targets for pathway analysis and therapeutic appli-

cations, brought about by efforts such as the human genome project, has made high-

throughput screening (HTS) crucial to both basic research and the biotech industry [2].

Investigations and discoveries made using high-throughput assays include determining the

role of genes involved in Drosophila cell growth and viability [3], identification of inhibitors

of cancer stem cells [4], and identification of compounds to promote neural outgrowth [5].

In the pharmaceutical industry, HTS is the main component of lead discovery [2]. The

throughput of these methods has evolved to the point where more than 100,000 assays per

day are achievable.

HTS typically employs fluorescence-based detection because of its versatility and sen-

sitivity, and the use of fluorescence-based detection also open the door to high-content

screening (HCS). For cell-based screens, HCS typically means the use of methods to ex-

amine the spatial and temporal properties of cellular components such as genes, proteins

and organelles [6]. HCS assays have been used in a wide range of investigations such as

the search for regulators of stem cell fate via various morphological properties [7], identifi-

cation of drug targets using yeast [8] and to determine cytotoxicity of nanoparticles [9]. A

survey of research groups employing HCS found that oncology groups showed the greatest

tPortions of this chapter are adapted from the material found in [1].



interest, with neurology, in vivo toxicology and immunology groups also expressing strong

interest [10]. HCS interest is high in all areas of the pharmaceutical industry [10] and use

was predicted to grow in every category other than therapeutic areas. The same survey

showed that signaling pathway analysis and multiplexed assays were seen as the most rel-

evant applications for HCS. The combination of HTS and HCS technologies can enable

highly complex screens. These technologies were recently used together to profile all 21,000

protein-coding genes of the human genome for their effects on cell division, migration, and

survival [11].

HTS and HCS are almost exclusively performed in vitro, however thorough study of

many biological phenomena, including as development, organogenesis, regeneration, and

aging, requires the use of animal models. The use of multicellular organisms also facilitates

identification of off-target or toxic effects. The size and complexity of the instrumentation

used to study large vertebrate animal models prohibits their use in high-throughput assays

for rapid identification of new genes and drug targets. Because of this, researchers turn to

simpler organisms, and the advantages of using small invertebrate animals as model sys-

tems for human disease have become increasingly apparent. The nematode Caenorhabditis

elegans (C. elegans) is a powerful model organism due to a number of useful properties

including its small size, optical transparency, rapid developmental cycle and the availability

of a wide array of species-specific genetic techniques. Additionally, the small size and simple

physiology of C. elegans make it suitable for culture in 96- and 384-well plates. Since nema-

todes can be cultured and screened in liquid, many techniques currently used for screening

cells can be adapted for C. elegans. Because C. elegans is optically transparent, it also per-

mits visualization of internal organs. However, since the first studies on C. elegans in the

early 1960s, little has changed in how scientists manipulate this tiny organism by manually

picking, sorting, and transferring individual animals. The reliance on manual techniques

means that large-scale forward- and reverse-genetic screens can take several months to years

to complete. The high-throughput techniques that exist in C. elegans require assays to be

significantly simplified in order to be even partially automated.



1.2 Background information

Many of the properties (Summarized in Table 1.1) that make C. elegans a useful model

organism also make it amenable to manipulation via flow cytometery and in microfluidic

devices. This section outlines previous developments in microfluidic devices for behavioral

experiments using C. elegans as well as flow cytometry methods for HTS of nematodes. In

addition, several optical techniques for imaging and manipulating C. elegans are described.

Table 1.1: Physical features of C. elegans

Length

Number of genes

Maturation

Lifespan

Hermaphrodite

Male

Embryo

100 Mbp

20,000

3 days

2-3 weeks

959

1,031

300 in first week

~50 pm

250-700 pm

1 mm

302

1.2.1 Micofluidic technologies for C. elegans studies

C. elegans shows remarkable sensitivity to its environment, and obtaining meaningful data

often requires strict control over the experimental conditions. Because of C. elegans' small

size, this level of control can be exerted in precisely defined structures created through

microfabrication techniques. Additionally, the ability of C. elegans to grow in liquid allows

the use of microfluidic technologies for manipulating both the animals and their environ-

ment. These microfluidic devices are most often made from the flexible transparent polymer

Genome

Life Cycle

Cells

Progeny

Size

Larva

Adult

Neurons



poly(dimethylsiloxane) (PDMS) [12,13]. See Appendix B for more information on microflu-

idic device fabrication.

One of the earliest devices for controlling C. elegans' microenvironment was demon-

strated by Gray et al. [14] to study oxygen-related behaviors. Using microfabrication meth-

ods, the authors constructed a PDMS device with a 200-pm-tall rectangular chamber with

dimensions 3.3 cm x 1.5 cm. Holes were punched into the four corners of the chamber

to allow for intake and outflow of air and nitrogen. By placing the intake/outflow of air

on one side and intake/outflow of nitrogen on the other, the authors created an oxygen

gradient across the long axis of the device. The device was placed over an agar surface

and the behavior of wild-type and mutant animals was observed. Wild-type animals were

observed to avoid low oxygen regions below 2% as well as high oxygen regions above 12%.

tax-2 and tax-4, which encode the two subunits of the 3',5'-cyclic guanosine monophosphate

(cGMP)-gated sensory transduction channel, and gcy-35, which encodes a cGMP homolog,

mutant animals were found to be defective in hyperoxia avoidance. The small size of the

main chamber allowed for control of the animals' environment that would be difficult to

achieve through other means.

Another novel approach by Qin and Wheeler [15] used microfabricated mazes to study

the behavior of worms both individually and in groups. Microfabrication methods were

used to mold PDMS with simple T-shaped and more complex branching U-shaped channels.

These were placed on agar plates and used to observe the exploratory behavior of groups

of animals with and without food. When a drop of the anesthetic NaN3 was placed at the

exit of the mazes, groups of animals could be run through the mazes and their destinations

could be measured by recording the number of paralyzed worms at the exits over time. This

allowed the authors to assess the exploratory behavior, and they showed that the wild-type

animals exhibited significantly more exploratory behavior than the dopamine-deficient cat-

2 mutants. Additionally, exogenous dopamine made both types of animals more likely to

explore the maze. Finally, to test associative learning associated with reward in individuals,

the authors used a T-shaped maze with a reward at one end. By repositioning the maze

after each trial, they could test if the worms would reach their destination faster in future

attempts. Both wild-type and cat-2 mutant animals reached the destination faster with

subsequent trials; however, when the reward was removed the cat-2 mutants were less likely

than the wild-type animals to "remember" where the reward was located.



In the laboratory C. elegans is typically cultured on agar plates, but in the wild it

is most found commonly in soil, compost, or decaying leaf or fruit [16]. Agar plates are

significantly different from the worm's natural environment and this may affect observations

of animal behavior. To represent C. elegans' natural environment more closely, Lockery et

al. [17] created microfabricated PDMS devices consisting of a 1 cm x 1 cm x 50 pm

array of small cylindrical posts bonded to glass in order to mimic moist soil. Due to the

precision achievable by microlithographic techniques, the authors were able to vary the

size and spacing of the posts easily. Whereas the motion of the animals in the artificial

soil device exhibited the same principal characteristics of the motion of crawling on agar,

the constraints on motion caused by the posts likely better mimicked the complexity of C.

elegans' natural environment. The use of microfluidics also facilitated precise environmental

modification, which the authors demonstrated by modifying the NaCl concentration of

the main chamber rapidly and immediately observing the effect on locomotion. Tracking

animals through such a rapid media exchange would not be possible in a larger environment.

To further study crawling behavior, the authors also created a PDMS microfluidic device

that consisted of sinusoidal channels of varying wavelengths. These devices allowed the

researchers to manipulate the oscillating body motion of the crawling animals; this technique

can be used in investigations of the biophysical and neuronal mechanisms of locomotion and

proprioception while also simplifying tracking of behavioral responses.

A similar investigation of C. elegans locomotion by Park et al. [18] studied swimming be-

havior. The authors used microfabrication to make molds that then were used to create posts

for restricting movement of worms, but, unlike researchers conducting other investigations,

the authors cast agar using the molds and left the devices unsealed. This simplified device

fabrication and the loading and unloading of animals from the device. Interestingly, when

microstructures with post spacings of 425-475 pm were used, animals moved much more

rapidly and efficiently, reaching speeds greater than 10-fold those reached in unstructured

environments. This behavior was not observed in mutants deficient in mechanosensation,

suggesting a greater importance of touch-feedback in locomotory behavior than previously

thought.

C. elegans locomotion was also studied by Chronis et al. [19], who used a tapering

channel to trap C. elegans, but not to restrain it completely. Once the worm entered

the channel, it was unable to escape, but the channel was wide enough for the animal



to generate the sinusoidal movement patterns used in locomotion. By using transgenic

animals expressing G-CaMP (a genetically encoded calcium sensor) specifically in the AVA

interneurons, the authors were able to correlate neuronal activity with specific body motion

patterns.

In the same work, the authors also introduced a novel "olfactory chip" for stimulation of

the chemosensory neurons and detection of the neuronal activity by calcium imaging [19].

Investigating neural activity in response to stimuli in C. elegans is particularly challenging

as C. elegans is highly mobile. The olfactory chip held the worm in a tapered channel

which restrained its motion but exposed its head to another microchannel. Four inlets then

were used to switch between stimuli that flowed past the animal's nose. The authors were

able to successfully measure calcium transients in the ASH sensory neurons in response to

a hyperosmotic stimulus. The same device was used by Chalasani et al. [20] to characterize

the C. elegans AWC olfactory neurons and their downstream interneurons. The authors

expressed G-CaMP in C. elegans under cell-specific promoters, which allowed monitoring of

the response of the these neurons to the addition and removal of odorants. This enabled the

correlation of the processing of odorants with specific neural activity and the subsequent

behavioral responses. A fully automated form of this technology was reported recently by

Chokshi et al. [21], who noted significant differences in the calcium images between young

and old animals.

To cultivate and observe C. elegans for use in space, Kim et al. [22] developed an

automatic compact disk system with minimal size and weight. Their device used capillary

forces to control fluid flow in one direction (toward the center of the disk) and centrifugal

forces to pump liquid in the opposite direction (toward the edge of the disk). The use

of centrifugal force in this device also enabled it to be used for studying the effects of

increased gravity on C. elegans. Two versions of the device were created: one from PDMS

and one from polycarbonate. The PDMS version consisted of multiple polymer layers

clamped between two acrylic plates. One layer contained the cultivation chambers, a loading

chamber, and the microfluidic connections. The other layer contained the flow lines to

enable waste removal from the cultivation chambers. The authors demonstrated successful

breeding of three generations of C. elegans inside the device.



1.2.2 Macro-scale flow cytometry based methods

Behavioral studies are valuable, but they often are limited in either throughput or informa-

tion content. For performing HTS and HCS using C. elegans a different class of techniques

is required. The methods described below enable manipulation of C. elegans by using their

ability to survive in liquid, which allows the use of fluidics to transport animals rapidly.

Flow-cytometry techniques such as fluorescence-activated cell sorting (FACS) [23] are

used frequently in modern biology and medicine for detection of marker expresion levels

in cells for high-throughput counting and sorting purposes. The COPAS" Biosort [24]

is a commercially-available flow cytometer that has adapted FACS technology to sort C.

elegans. Because C. elegans has a tapered cylindrical shape, is of small size, and can survive

in liquid, the animals are well-suited to such flow-based techniques. The fluidic lines of the

Biosort are larger than those of a standard flow cytometer and can accommodate objects as

large as 150-200 pm. While the worms are flowing at high speeds, the scattered light and

fluorescence intensity levels from whole worms are measured. On the basis of the measured

signals, animals exiting the system can be sorted between two possible output areas using

a jet of air. The first area will contain the animals being sorted for and can be either a

multiwell plate (containing 24, 96 or 384 wells) or a bulk container. The second area will

contain a receptacle for the remaining animals, which can be recovered if desired. Each

animal that flows through the system is measured for its size and optical density, as well

as its green (500-520 nm), yellow (535-555 nm) and red (600-620 nm) fluorescence emission

signals. The throughput achievable using flow-cytometry techniques is very high, reaching

rates up to 100 animals per second.

Flow cytometers such as the COPAS system measure only one-dimensional (iD) flu-

orescence profiles of the animals as they flow by the optical detection area. Nonetheless,

this can be quite useful, as Doisidou et al. [25] demonstrated by a forward genetic screen

for mutations affecting dopamine cell fate. C. elegans possesses eight dopaminergic neu-

rons among its 959 cells, so sensitive measurements are required to detect mutants with a

reduced number of these neurons. The authors used a broadly expressed red fluorescent

protein (RFP) background to control for changes in fluorescence expression of the green flu-

orescent protein (GFP)-labeled dopamine neurons. By sorting based on the ratio of green

to red fluorescence, the authors isolated mutants with reduced neuronal GFP expression.



These mutants included those with reduced GFP expression in some or all of the dopamine

neurons and, most interestingly, those with a reduced number of dopaminergic neurons.

Mapping of the mutations of the latter category revealed new genes affecting dopamine cell

fate.

The large-bore fluidics of the COPAS Biosort are required for analyzing mature animals,

but earlier stages of C. elegans are small enough to be compatible with standard FACS

machines. Stoeckius et al. [26] used conventional FACS to collect tens of thousands of

precisely staged C. elegans embryos. Typically, isolation of embryos from groups of gravid

adults yields a wide range of embryo stages, ranging from single-cell embryos to nearly

hatched larvae, and manual collection of precisely-staged C. elegans embryos severely limits

the amount of embryos collected. To isolate a large number of single-cell-stage embryos,

the authors used a strain that expressed GFP in developing oocytes and in one-cell-stage

embryos, but that rapidly lost fluorescence beyond the single-cell stage. Sorting mixed-

stage embryos obtained from gravid adults yielded a sample containing a 70% one-cell-stage

embryos. Because embryonic cell division progresses rapidly, the authors were unable to

enrich this population further without methanol fixation of the embryos. However, fixation

enabled sorting of a 60,000 one-cell stage embryos with > 98% purity. In addition to one-cell

embryos, the authors examined two- to four-cell-stage embryos (by selecting for cells with

reduced fluorescence expression), older embryos (by selecting for cells with no fluorescence

expression), post-gastrulation embryos (by allowing isolated embryos to develop for 3h at

20 C), and a population of mixed-stage embryos. From these six sample types the authors

sequenced small RNA (sRNA) samples to study sRNAs in early embryogenesis. Among their

findings were that most microRNAs (miRNAs) are expressed in the one-cell-stage embryo,

suggesting maternal deposition of the miRNAs. They also showed that the miRNAs from

the miR-35 cluster are most likely specific to the early embryo.

In addition, the use of conventional FACS to sort early larval stage worms was demon-

strated by Fernandez et al. [27]. By making minor and reversible modifications to a com-

mercial FACS machine the authors were able to collect a nearly 100% pure population of

first-larval-stage (LI) mel-28 [28] homozygous worms from a mixed population using two

passes through the machine. A mutation in mel-28, which is required for nuclear envelope

integrity and chromosome segregation, was kept over a balancer chromosome containing a

GFP marker and a recessive lethal allele. Thus, sorting for GFP-negative animals, enabled



a population homozygous for mel-28 to be obtained. The authors used these animals to

perform an RNAi-based synthetic interaction screen on the genes from chromosome 1 and

identified several genes that interact with mel-28. Collecting a large number of these an-

imals would be challenging by other means, because homozygous mel-28 mutations cause

embryonic lethality in the progeny.

1.2.3 Optical techniques for imaging and manipulating C. elegans

Methods for manipulation and immobilization of C. elegans can enable the use of many

precise optical techniques in a rapid and repeatable fashion. In this section, C. elegans

techniques that are compatible with the methods described in the subsequent chapters of

this work are outlined.

Free-space imaging techniques

Phase/interference contrast and epifluorescence microscopy are used commonly by C. ele-

gans laboratories for both low- and high-resolution imaging. In addition to allowing rapid

high-resolution imaging, techniques that enable stable immobilization of animals permit the

use of additional imaging methods that allow precise measurements to be performed, such

as those outlined in this section.

Laser scanning confocal [29] and two-photon [30] microscopies allow 3D imaging of fluo-

rescently labeled features with very high resolution and minimal out-of-plane fluorescence.

However scanning techniques require the worms to be stably immobilized in order to scan

the animal and reconstruct 3D images. Filippidis et al. [31] demonstrated the use of two-

photon imaging in C. elegans combined with another nonlinear optical technique, second

harmonic generation. By combining the two methods, the authors simultaneously mapped

neurons (using two-photon excitation fluorescence) and musculature (using second-harmonic

generation) in the C. elegans pharynx. These imaging modalities later were combined with

third-harmonic generation to enable 3D imaging of organs [32] and to monitor neural de-

generation [33].

Fluorescence-based techniques require that animals be labeled either chemically or ge-

netically. For monitoring certain biological processes fluorescent labeling can be incon-

venient or may interfere with normal behavior. Coherent anti-Stokes Raman scattering

(CARS) microscopy [34] allows specific, label-free in vivo imaging through detection of



the characteristic vibrational spectrum of certain molecular bonds. Hellerer et al. used

CARS microscopy to monitor the effect of environmental conditions of mutations affect-

ing metabolic pathways on lipid storage [35]. A more recent investigation examined lipid

metabolism in C. elegans using a combination of CARS, two-photon excited fluorescence,

and confocal Raman spectral analysis [36]. Like two-photon microscopy, CARS is also a

scanning technique that requires immobilization of worms for high-resolution imaging. Cou-

pled with a method for rapid and repeatable worm immobilization, CARS microscopy can

accelerate in vivo investigations of lipid storage significantly.

Optogenetics techniques

The use of calcium imaging and microfluidics to image the activity of specific neurons is

discussed in Section 1.2.1. In addition to measurement of neuronal activity, control of

neural activity in C. elegans can be achieved through the use of optogenetic methods.

Optogenetics [37] is an emerging field that uses genetic targeting of light-activated channels

and enzymes to manipulate neural activity in vivo precisely and rapidly. Channelrhodopsin-

2 (ChR2) [38], a single-component light-activated cation channel from algae, can be used

to optically excite neurons [39,40]. The light-driven chloride pumping halorhodopsins [41]

(Halo) can serve as the complement to ChR2, enabling optical inhibition of neurons [42,43].

Microfluidic techniques have been combined with optogenetics for rapid investigation of

neural circuits in C. elegans [44].

Lensless imaging of C. elegans

Microfluidic technologies and similar methods can be advantageous also owing to the small

size and low cost of the resulting devices. However, nearly all of these devices are designed

to operate on expensive and bulky compound microscopes, reducing these benefits. Several

methods integrate on-chip imaging systems into devices for C. elegans screening. The

first system to provide integrated imaging capabilities was the microfludic shadow imaging

system by Lange et al. [45]. This device was designed to enable culture and imaging of

C. elegans to study the effects of spaceflight (here as part of a satellite payload) on C.

elegans behavior. The significant size, weight, and power restrictions of a satellite payload

preclude the use of standard microscopes, so the authors designed a 500 pm-tall transparent

microchamber that was illuminated from the top using a light-emitting diode (LED). Such



illumination casts a shadow of the worms onto a complementary metal-oxide-semiconductor

(CMOS) chip below the chamber, allowing acquisition of still images and movies of the

worms' behavior. The 3.2 mm x 2.5 mm oval-shaped culture chamber in which the worms

resided was milled from polycarbonate, a gas-permeable membrane was bonded to the top

of the polycarbonate and optically clear polyester film was bonded to the bottom. Animals

to be imaged were loaded via a syringe, and the animals were kept inside the chamber using

Teflon stop pins at the chamber inlets.

The system designed by Lange et al. [45] was created to monitor the behavior of whole

organisms and was not designed to image cellular or subcellular-level features. Tradition-

ally, imaging these features requires an expensive objective lens housed inside a compound

microscope. Without a lens, imaged features are limited by the sensor size of the detector,

which is typically > 5 im. Optofluidics [46], the fusion of microfluidics and optics, offers

a partial solution to this problem. Optofluidic microscopy (OFM) is a lensless method to

image beyond the sensor-size limit, enabling on-chip high-resolution imaging in microfluidic

channels [47]. In OFM, nematodes are flown through a narrow channel in a PDMS chip

that is bonded to an opaque metal film into which an array of submicrometer holes have

been etched. The film can be fabricated directly onto the detector array, and the holes

are arranged to form a diagonal line across the channel. Each hole is designed to match

to an individual pixel on the detector, so that line scans captured as the object flows past

the array can be used to reconstruct a 2D image of the animal. Because the holes form

a diagonal line, the spacing between imaged points across the channel can be adjusted by

changing the angle of the line. This means that the 2D resolution limit of the system is

limited only by the size of the elements in the hole array (and the detector speed). To prop-

erly unskew the image captured through the hole array, the flow velocity must be known.

This is calculated using the duration between the time when the object being imaged passes

an isolated aperture at one end of the array and the time when it passes the hole in the

array with the same y-coordinate. If the object is rotating as it passes the detector array,

it cannot be properly unskewed. Rotating objects can be detected, however, by comparing

the line scans between the two apertures used to calculate flow velocity.

An early demonstration of OFM used a microscope to relay the signal from the hole array

to the detector [47], whereas a later demonstration of the technique fabricated the array

directly on a CMOS sensor with a 9.9-pm pixel size [48]. The latter demonstration used two



sets of hole arrays to improve measurements of velocity and detection of object rotation.

This technique was capable of capturing images of similar quality to those captured by

a conventional microscope with a 20x objective lens; however, both demonstrations used

fixed worms for imaging, and despite high theoretical imaging speed, the highest throughput

observed was approximately five worms per minute. The same group recently demonstrated

a version of the optofluidic microscope capable of imaging in color, which they used to image

LacZ-stained fixed Li animals [49].

A significantly faster lensless method was demonstrated by Isikman et al. who used

incoherent lensless in-line holography [50] to image C. elegans at a resolution similar to that

of a 10x objective lens over an area of > 24 mm in less than one second [51]. Monochromatic,

spatially-incoherent light was passed through a small aperture 50-100 pm in diameter to

image animals. The aperture sat 5-10 cm above the transparent sample plane that contained

the animals, which was, in turn, situated 1-2 cm above a detector. This resulted in light

with a 500-1000-pm coherence diameter at the sample, and the scattering of the incident

waves by the individual animals was recorded. Because the individual animals were smaller

than the coherence diameter, they were effectively illuminated by the incident wave, and

digital reconstruction techniques [52, 53] were used to restore the phase information lost

during recording. The system worked with various wavelengths of incident light, and thus

by combining images captured through different monochromatic sources, color images could

be acquired. Isikman et al. [50] used this method to obtain monochromatic images of animals

captured between two cover slips, and color images of Ponceau-S-red-stained animals. A

significant limitation of lensless imaging techniques is that they can only acquire 2D images,

whereas many C. elegans studies require 3D microscopy.

Image analysis of C. elegans

Techniques enabling rapid imaging and manipulation of C. elegans encounter a bottleneck

in the rate at which data can be acquired and/or analyzed. Image processing can enable

partial or complete automation of data gathering and processing, significantly augment-

ing the utility of some of the techniques described so far. In addition to the methods for

analyzing still images of C. elegans described below, there are several algorithms for behav-

ioral analysis. These have been reviewed recently [54] and are not covered extensively here.

However, many of the techniques for motility analysis previously developed were designed



for a particular animal environment (e.g., agar pads, fluidics, or microfluidic devices), and

may be difficult to adapt to other environments. Recently, a framework to estimate an

environmental model from a single image was demonstrated by Sznitman et al. [55]. This

platform, based on a Mixture of Gaussians model, permitted analysis of behavior across

a range of environments. To better understand neural mechanisms of behavior, Faumont

and Lockery demonstrated the use of a two-objective system to simultaneously monitor

neuronal activity (by using a calcium-sensitive fluorescent reporter at high magnification)

and behavior (by imaging a large field of view at low magnification) [56]. Ben Arous et

al. [57] also constructed a two-objective system incorporating feedback to control a motor-

ized stage that allowed long-term automatic tracking of single worms within the field of

view of a low-magnification objective lens for calcium imaging.

There are similarly several techniques for analyzing static images or image stacks of C.

elegans to segment and analyze individual animals automatically; however, when C. elegans

is anesthetized on agarose pads for imaging, the worms are oriented and curved randomly.

Similarly, whereas we use pressure differentials and compressive membranes to align an-

imals linearly, many microfluidic techniques leave animals unoriented. This significantly

complicates the comparison of worms, which would be simpler if all the animals were in a

linear orientation. Additionally, if the animals could be straightened, less image data would

need to be stored (the bounding box for straightened images of worms is, on average 80%

smaller [58]); this benefit becomes significant for large-scale image-based screens. Recently,

a "worm-straightening" image-processing algorithm that operates effectively on both 2D

and 3D images was developed [58]. The algorithm calculates the worm "backbone", a 1-

pixel line that passes from the tail to the head through the center of the worm (in 2D or

3D). Once the backbone has been determined, the planes orthogonal to the backbone are

found. These planes are then rotated and restacked along a linear backbone to create the

straightened worm image.

An additional challenge is faced when imaging multiple nematodes, because the animals

may cluster together. This significantly complicates identification of individual animals

if they overlap. To overcome this, Wahlby et al. [59] developed an algorithm to extract

individual animals from clusters. To identify the individual animals, the authors used a

probabilistic shape model to represent the variability in a worm's body orientation. They

began by using a learning methodology and a training set of individual animals to determine



the space of possible worm positions and their likelihood. The authors assumed that any

detected object with a size greater than 1.5 times the mean worm size is a cluster, and,

by calculating the pruned skeleton of the worm cluster and cutting it at the branch points,

the authors obtained an undirected graph that represented possible arrangements of worms

that could result in the observed clusters. The training enabled the algorithm to select

the most probable arrangement of worms that would produce the cluster, allowing reliable

worm segmentation.

Body straightening and segmentation algorithms enable simplified or automated image

acquisition, and can also facilitate comparison of animals. However, further techniques

are necessary to analyze detailed phenotypes. For this purpose, Orlov et al. [60] devel-

oped pattern-recognition methods to assess the relative age of C. elegans automatically.

Differential interference contrast (DIC) images of the terminal bulb of the pharynx and

fluorescence images of the body wall muscles were used to train a network using supervised

machine learning. The prediction of age for individual worms was not very high, but the

mean prediction for groups of worms was very accurate using this technique. The same

group used pattern recognition of DIC images of the pharynx in age-grouped animals to

show that there is a distinct stepwise transition between morphologies in aging [61]. They

then studied the effect of neurotransmission mutations on the rate of these transitions.

The authors also were able to identify mid-life morphological states that could accurately

predict future decline. C. elegans is a powerful model for studying aging, and automated

pattern-recognition methods in combination with techniques enabling high-throughput and

high-content imaging can significantly enhance investigations in this area.

One of the most interesting properties of C. elegans is its well-characterized and stereo-

typical development and anatomy. Its cell lineage has been completely mapped [62,63], as

has the wiring of its neuronal network [64]. Although the C. elegans cell lineage has long

been known, the exact 3D positions of the -1,000 C. elegans cells during development were

previously undocumented. Long et al. [65] have endeavored to create a 3D digital atlas of

C. elegans' cells during the Li stage. Previous work had examined cell lineage tracing in

the dividing C. elegans embryo up to the 350-cell stage [66], and this later was extended

to enable spatiotemporal characterization of gene expression on a per-cell basis [67]. In the

embryo cells can be identified by tracking them as they divided, but in a further developed

animal, all nuclei must be identified without using temporal or lineage information.



To create such an atlas of cells Long et al. [65] used DAPI staining to label the nuclei of

all 558 cells at the Li stage and GFP to label the 81 body-wall muscle cells (plus 1 depressor

cell). The authors then captured images using a confocal microscope with a 63x oil lens.

Imaged animals were straightened automatically using the technique described above, and

a segmentation algorithm was used to determine the cell locations. These results were

manually validated, corrected, and annotated using a system previously developed by the

same group [68] and existing cell annotation information. Finally, the image stacks were

mapped into the same canonical space to enable comparison. Of the 558 Li cells, 357 could

be segmented reliably and annotated and thus were included in the 3D atlas. The nuclei that

could not be well characterized were located mainly in the cell-dense region of the head, and

higher-resolution imaging methods could possibly overcome this difficulty. By expressing

mCherry under specific promoters, the atlas was used to determine the expression levels of

different proteins with single-cell resolution. This way, the authors were able to analyze the

expression patterns of 93 different proteins in 363 cells of Li-stage nematodes [69].

Laser microsurgery in C. elegans

Ultraviolet (UV) laser ablation of individual cells in C. elegans anesthetized on agarose

pads is a well-established technique in nematode research [70, 71], which allows study of

a variety of processes, including the roles of individual neurons in neuronal networks and

the interplay of cell-cell interactions on cell fate. However, out-of-focus absorption of UV

light can cause uncharacterized collateral damage. The use of ultrafast near-infrared laser

techniques enables highly localized ablation of subcellular features such as single axons with

minimal collateral damage. Tissue is normally highly transparent to photons with low-

energy near-infrared wavelengths. However, when such photons are focused both in space

(via objective lens) and in time (via use of femtosecond short pulses), multiple photons

can have sufficient energy to be absorbed simultaneously and generate quasi-free electrons.

Appendix A describes in detail the construction of a system to perform these experiments.

In 2004, the use of fenitosecond laser microsurgery in the study of axonal regeneration in

C. elegans was demonstrated [72, 73), and this method was later was adapted by several

groups [74-78]. The neurites of motor neurons were cut in vivo using low-energy infrared

laser pulses with ultrashort durations (10-40 nJ per 200 fs short pulse) delivered at a rate of

1 kHz [72, 73]. Full neurite regrowth, along with recovery of locomotive response following



touch stimulus, was observable 24 h post surgery.



Chapter 2

Microfluidic Technologies for C.

elegans screeningt

Abstract

We report a suite of key microfluidic devices for complex high-throughput whole-animal

genetic and drug screens. We demonstrate a high-speed microfluidic sorter that can isolate

and immobilize Caenorhabditis elegans in a well defined geometry for screening phenotypic

features at subcellular resolution in physiologically active animals. We show an integrated

chip containing individually addressable screening-chamber devices for incubation and expo-

sure of individual animals to biochemical compounds and high-resolution time-lapse imaging

of many animals on a single chip without the need for anesthesia. Finally, we describe a

design for delivery of compound libraries in standard multiwell plates to microfluidic devices

and also for rapid dispensing of screened animals into multiwell plates.

Key words: Caenorhabditis elegans, femtosecond laser microsurgery, microfluidics, immo-

bilization and time-lapse imaging, mutagenesis, RNAi and drug screening.

tThis chapter is an adaptation of the material found in [79]. C.B.R., and F.Z. contributed
equally to this work; M.F.Y. designed research; C.B.R., F.Z., R.G.-R., and M.A. performed
research; and M.F.Y. wrote the paper.



2.1 Motivation

Since the first studies on C. elegans in the early 1960s, little has changed in how scientists

manipulate this tiny organism by manually picking, sorting, and transferring individual ani-

mals. The reliance on manual techniques means that large-scale forward- and reverse-genetic

screens can take several months to years to complete. The high-throughput techniques that

exist in C. elegans require assays to be significantly simplified in order to be even partially

automated, due to the high motility of wild type nematodes. Imaging at the cellular level

and optical manipulations such as precise laser axotomy require orientation and immobiliza-

tion of animals. Traditional immobilization methods, such as the anesthetics sodium azide

(NaN3 ), levamisole and tricaine/tetrimisole, have significant and/or uncharacterized effects

on nematode physiology, which may affect the regeneration process [80]. In addition, anes-

thetics need several minutes to take effect, and are thus incompatible with high-throughput

screening. Other techniques that can be used to reversibly immobilize C. elegans include

cooling [81] and exposure to CO 2 [82], however these techniques are not frequently used.

Many of the properties that make C. elegans a versatile and widely-studied model or-

ganism also make it amenable to manipulation in microfluidic channels. A number of novel

microfluidic devices to study C. elegans have been published for performing specific exper-

iments in C. elegans, including mazes for studying learning [15], devices for the generation

of oxygen gradients [14], optofluidic imaging platforms [47,48], automated cultivation sys-

tems [22] and a shadow imaging system for studying animals in space [45].

This chapter and the next describe the development of a versatile platform which, unlike

the devices mentioned above, is designed to perform general purpose experiments on C.

elegans. This device can be used to perform forward genetic, reverse genetic, and chemical

screens on C. elegans. Manipulation of animals is enabled by multiple layers of flexible

polymers [12] that are bonded together thermally in an oven. This method allows the

creation of small microfluidic valves [83] for directing fluid flow. To do this this, two layers

are used, with a thin control layer below a thicker flow layer. This creates a thin membrane

(10-15 pm) that separates overlapping channels between these two layers. The control layer

contains single-ended channels, and when these channels are pressurized the membrane

separating the overlapping regions expands into the flow channels. If the flow channels are

rounded then the flow channel can be completely blocked by the membrane, allowing simple



and rapid fluidic control. A detailed protocol for fabricating a multi-layered microfluidic

device similar to that of Chapter 3 is found in Appendix B.

2.2 Microfluidic sorter

Sorters enable rapid selection of organisms with phenotypes of interest for a variety of assays,

including genetic and drug screens, and also for reducing phenotypic variability in large-

scale assays. Existing small-animal sorters, such as the BIOSORT/COPAS machine, use a

flow-through technique similar to the fluorescence-activated cell sorter (FACS) technology.

These systems can capture and analyze only one-dimensional intensity profiles of the animals

being sorted, and as a result, three-dimensional cellular and subcellular features cannot be

resolved [84]. The animal sorter shown in Figure 2-1 was created to address this problem

and to achieve on-chip integration. Animals enter the chip through the inlet channel and

can be continuously recirculated. A single worm is captured in an immobilization chamber

via suction by a microchannel held at a low pressure. The use of a single suction channel

eliminates the problem of simultaneously capturing multiple animals. While the captured

animal is held in the immobilization chamber, all of the other animals in the chamber

are removed by flushing with media from a side channel. This step ensures that only a

single animal is isolated even when the concentration of worms is high. The animals that

are flushed in this design could be recirculated for screening if needed. Next, valves are

closed to isolate the chamber containing the single worm from the rest of the chip. The

captured worm is then released from the single suction channel and recaptured by an array

of suction channels (the channel array) to restrain it in a straight position. At this stage,

the worm can be imaged through the transparent glass substrate by using high-resolution

optics for phenotype analysis (Figure 2-2). The chip is designed to allow both morphological

details and fluorescence markers to be detected with white-light and epifluorescence imaging

(Figure 2-2). After image acquisition and processing, the captured worm can be released

and directed to the appropriate collection channels according to its phenotype.

The microfluidic chips have flow and control layers and are permanently bonded onto

glass substrates to allow optical access. Flow layers are made by casting a room-temperature-

vulcanizing dimethylsiloxane polymer (RTV615; GE Silicones, Wilton, CT) by using a mold

consisting of a patterned layer of positive photoresist (SIPR-7123; Shin-Etsu, Tokyo, Japan)



on a silicon wafer. Flow layer channels are 250-500 pm wide and 80-110 pm high. The chan-

nels are rounded by reflowing the developed photoresist at 150 'C. In the current design, the

flow layer is made from a mold with a single photoresist layer that defines suction channels

that are 40 pm high and 50 pm wide after reflow, which allows capturing of adult worms.

To capture juvenile worms, a two-layer photoresist mold could be used to make smaller suc-

tion channels (see Chapter 3). Control layers are made by casting from a mold consisting

of a patterned layer of negative photoresist (SU-8 2075; MicroChem, Newton, MA) on a

silicon wafer. Control channels are 70-80 pm high, and the membrane that separates the

two layers is 10-20 pm thick. Polydimethylsiloxane chips cost significantly less than current

flow-through animal-screening machines and can be easily incorporated into a variety of

microscopy systems.

The speed of the sorter depends on the actuation speed of the valves, the concentration of

animals at the input, the flow speed of the worms, and the image acquisition and processing

times. The technique of immobilizing worms by lowering the pressure in a microchannel

is fast because the actuation speed of the valves is < 30 ms. Because of the continuous

recirculation at the input, animals can be flowed at high concentration without clogging the

chip. The speed of image acquisition and recognition of subcellular features is fundamentally

limited by the fluorescence signal-to-noise ratio and the complexity of the features being

recognized. The entire worm can be imaged in a single frame by using a low magnification,

high N.A. objective lens.

2.3 Additional microfluidic technologies

2.3.1 Small-animal incubation chip

Time-lapse imaging is important for a variety of assays, including drug and genetic screens.

Currently, high-throughput time-lapse studies on small animals are done in multiwell plates

by automated fluorescence microplate readers [851. Because the animals swim inside the

wells, only average fluorescence is obtained from each well, and cellular and subcellular

details cannot be imaged. Although anesthesia can be used to immobilize the animals, they

cannot be kept under anesthesia for more than a few hours, and they cannot be anesthetized

frequently. Furthermore, the effect of anesthesia on many biological processes remains un-

characterized. Another limitation of current multiwell plates is the loss of animals that



occurs during media exchange. The microfluidic-chamber device shown in Figure 2-3a ad-

dresses these problems, enabling worm incubation and continuous imaging at subcellular

resolution. Sorted worms can be delivered to the chambers by opening valves via multi-

plexed control lines [83]. The fabrication of the channels and valves is done as described

in Section 2.2. To ensure that the chamber structure is not affected by the reflow process,

two types of photoresist are used to make the mold for the flow layer. The chambers are

first fabricated by using a 100-pm-thick layer of SU8-2075 (which does not reflow), and

then the valve-controlled flow channnels are fabricated on the same wafer by using a 100-

pm-thick layer of SIPR-7123. The pressure in the control lines is switched on and off with

external electronically controlled valves (Numatics, Highland, MI). Because the number

of control lines required to independently address n incubation chambers scales only with

log(n) [83], microchamber chips based on this design can be readily scaled for large-scale

screening applications. Because of the millimeter scale of the microchambers, hundreds of

microchambers could be integrated on a single chip. Each incubation chamber contains

posts arranged in an arc. To image animals, a flow is used to push the animals toward the

posts (Figure 2-3b and 2-3c). This flow restrains the animals for imaging. The circular

arrangement of the posts reduces the size of the chambers and also positions the animals

in a well defined geometry to reduce the complexity and processing time of image recogni-

tion algorithms. The medium in the chambers can be exchanged through the microfluidic

channels for complex screening strategies. Thus, precisely timed exposures to biochemicals

(e.g., drugs/RNAi) can be performed.

2.3.2 Microfluidic multiwell plate interface chip

Interfacing microfluidics to existing large-scale RNAi and drug libraries in standard mul-

tiwell plates represents a significant challenge. It is impractical to deliver compounds to

thousands of microchambers on a single chip through thousands of external fluidic connec-

tors. The microfluidic interface device (Figure 2-4) is designed to connect these microfluidic

chambers to large-scale multiwell-format libraries, simplifying the delivery of existing large-

scale RNAi and drug libraries. Minute amounts of individual compounds from standard

multiwell plates can be routed to the incubation chambers, and the connection lines can be

automatically washed between samplings. The device consists of an array of aspiration tips

that can be lowered into the wells of microwell plates. The chip is designed to allow minute



amounts of library compounds to be collected from the wells by suction, routed through

multiplexed flow lines one at a time, and delivered to the single output of the device. The

output of the interface chip can then be connected to the microfluidic chamber device for

sequential delivery of compounds to each microchamber. This device, when run in reverse,

also functions as a multiplexed animal dispenser.

2.4 Discussion

Combining the devices described in different configurations can enable a wide variety of as-

says. Figure 2-5 shows a setup to perform large-scale RNAi and drug screens with time-lapse

imaging by combining our sorter, integrated microchambers, and multiwell plate interface

chips. Although C. elegans is self-fertilizing and has perhaps the lowest phenotypic vari-

ability among multicellular model organisms [85], variations among assayed animals are still

present, reducing the robustness of current large-scale screens. Sorting technology can be

used to select animals with similar phenotypes (such as fluorescent marker expression levels)

before large-scale assays to significantly reduce initial phenotypic variations [85,86]. Feature

extraction algorithms can be run on animals immobilized in the sorter or the incubation

chambers to screen thousands of animals on a single chip.

Because the sorter and microchambers are designed to immobilize and release animals

repeatedly in < 100 ms, the on-chip screening technology introduced here will allow high-

throughput whole-animal assays at subcellular resolution and with time-lapse imaging in

physiologically active animals. Arranging these devices in different configurations can enable

a wide variety of assays. Mutagenesis screens could be performed by using the microfluidic

sorter in combination with the microfluidic dispenser to dispense sorted animals at high

speeds into the wells of multiwell plates (Figure 2-5a). Large-scale RNAi and drug screens

with time-lapse imaging could be performed by combining the sorter, integrated microcham-

bers, and multiwell plate interface chips as shown in Figure 2-5b. Although C. elegans is

self-fertilizing and has perhaps the lowest phenotypic variability among multicellular model

organisms [85], variations among assayed animals are still present, reducing the robustness

of current large-scale screens. Sorting technology can be used to select animals with sim-

ilar phenotypes (such as fluorescent marker expression levels) before large-scale assays to

significantly reduce initial phenotypic variations (Figure 2-5b) [85,86].
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0

0

circulator wash suction waste

1(clean) 0 1 0 0 1 0

2 (capture) 1 0 1 0 1 0

3 (wash) 0 1 1 0 1 0

4 (immobilize) 0 0 0 1 0 0

5 (collect) 0 1 0 0 1/0 0/1

Figure 2-1: First generation sorter steps. The sorter consists of control channels and valves
that direct the flow of worms in the flow channels in different directions. The valves are
labeled with the letters A-F in the layout, and the actuation order of valves is listed in the
table. A value of 1 represents an open valve, and a value of 0 represents a closed valve. The
steps taken to sort each worm are as follows: step 1 (clean), the immobilization chamber
is cleaned; step 2 (capture), a worm is captured in the chamber by suction via the top
channel while the lower channel array is inactive; step 3 (wash), the chamber is washed to
flush any other worms in the chamber (blue line) toward the waste or the circulator; step 4
(isolate), the chamber is isolated from all of the channels; step 5 (immobilize), the worm is
released from the top suction channel and is restrained by the channel array and the image
acquisition and processing are performed; step 6 (collect), the worm is either collected or
directed to the waste, depending on its phenotype.



AVM

ALML
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Figure 2-2: Immobilization and subcellular imaging using first generation worm sorter. (a)
Image of the on-chip sorter described in Figure 2-1. (scale bar: 500 pm). (b) A single worm
is shown trapped by multiple suction channels. A combined white-light and fluorescence
image is taken by a cooled CCD camera with 6.45 pm pixels and a 100-ms exposure time
through a 10x magnification, 0.45 N.A. objective lens (Nikon). From bottom to top, GFP-
expressing PLM, PLV, and ALM touch neurons and their processes are clearly visible. (scale
bar: 10 pm.) (c) The mechanosensory neurons PLML/R and ALML/R (L, left; R, right)
are shown. AVM and PVM extend processes along the anterior and posterior half of the
worm and contribute to mechanosensation in these regions. The cell bodies are shown as
black dots. PVM, posterior ventral mechanosensory; ALM, anterior lateral mechanosensory;
AVM, anterior ventral mechanosensory.
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Figure 2-3: Multiplexed microfluidic incubation. (a) Device layout illustrating flow and
control lines. (b) Illustration of individual chamber addressing. (c) Semi-circular post
arrangement allows animal immobilization and imaging. (d) High-resolution image taken
through glass substrate (scale bars a-b: 500 prm, c: 100 pm, d: 25 pm).

Control Layer
Membrane
Flow Layer
Suction/Dispense

Multi-well Plate

Figure 2-4: Design for delivery of compounds from standard multiwell plates to microfluidic
devices. A microfluidic chip loads compounds from multiwell plates to flow channels by
aspiration. The flow lines are multiplexed [83] to direct one compound at a time to a single
serial output. The direction of flow in the channels is controlled by microfluidic valves.
The flow lines are flushed with a wash buffer after loading each compound to prevent
cross-contamination. The single serial output of this device can easily be connected to the
microchamber screening chip (Figure 2-3) for compound delivery. Each microchamber chip
is also multiplexed [83] to sort and deliver compounds to individual chambers (Figure 2-3).



multi-well

RNAi/drug library

Figure 2-5: Screening Strategies. (a) High-speed phenotype screens can be performed by
cascading the microfluidic sorter with the multiwell dispenser. (b) Large-scale RNAi/drug
screens can be performed by delivering standard multiwell plate libraries to the microfluidic
screening chambers via the multiwell interface chips.
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Chapter 3

Improved C. elegans

immobilization technologyt

Abstract

Techniques for stable, rapid and repeatable small-animal immobilization are necessary

for high-throughput in vivo genetic/drug screens using cellular and sub-cellular features in

multi-cellular organisms. We demonstrate a method for non-invasive and high-throughput

on-chip immobilization of physiologically active C. elegans without the use of anesthesia

or cooling, but with comparable stability. We show observation and manipulation of sub-

cellular features in immobilized animals using two-photon microscopy and femtosecond laser

microsurgery.

Key words: Caenorhabditis elegans, microfluidics, femtosecond laser microsurgery, immo-

bilization and time-lapse imaging.

3.1 Motivation

The devices described in the previous chapter are capable of immobilizing animals suffi-

ciently for high-resolution imaging, and targeting individual axons for surgery is possible,

t This chapter is an adaptation of the material found in [87]. Author contributions: C.B.R.
and M.F.Y. designed the devices. C.B.R. and F.Z. fabricated the devices. C.B.R. and F.Z.
performed the experiments. C.B.R. and M.F.Y. wrote the paper.



however the animals are still capable of some movement in their head and tail. This chapter

describes an improved immobilization method utilizing an additional microfluidic layer (the

compression layer) above the channel array (Figure 3-la) which enables more rapid and sta-

ble immobilization. A thin (15-25 pm) membrane separates this channel and the chamber

below, and when this layer is pressurized, the membrane expands downwards (Figure 3-1b

and 3-2d). The membrane flexes on top of the captured animals, wrapping around them

and forming a tight seal. This seal completely constrains their motion in a linear orien-

tation. Although the animals are constrained by the PDMS membrane from the top and

bottom, they still have access to liquid media via the multiple aspiration channels on the

side. This technique achieves stability comparable to that of deep anesthesia and affects

neither the lifespan of the animals nor their brood size, and does not induce hypoxia. This

method can immobilize animals in fractions of a second, and can be readily integrated with

the microfluidic systems described in the previous chapter.

Figure 3-1: Illustration of the improved immobilization method. Once a single animal is
captured and linearly oriented (a), a channel above it (in the compression layer) is pressur-
ized pushing a thin membrane downwards (b). This membrane wraps around the animal
significantly increasing immobilization stability for imaging and surgery. Precise laser tar-
geting of sub-cellular features is achieved using a femtosecond laser tightly focused inside
the C. elegans by a high numerical aperture objective.

3.2 Device fabrication

These improved devices consist of three PDMS layers, each fabricated from a separate

master mold. To fabricate the flow layer, a master mold with two photoresist layers was



Figure 3-2: Isolation (a-b), immobilization (c-d) and imaging (e) of an individual animal. (e)
shows a close-up combination bright-field and fluorescent image of an immobilized animal
illustrating gfp-labeled mechanosensory axons (scale bar a-d: 250 pm, e: 20 pm).

used. The fabrication began by first spin coating and patterning a 15 pm-thick layer of SU8-

2025 negative photoresist (Microchem) to define the channel array. Next, a 100 pm-thick

layer of SIPR-7123 positive photoresist (Micro-Si) was spin coated and patterned to create

the remaining parts of the flow layer mold. The compression and control layer molds were

created from 65 pm- and 75 pm-thick layers of SU8-2050 (Microchem), respectively. From

these molds RTV-615 PDMS (GE Silicones) is cast, deposited either by pouring (for the

compression layer) or spinning (for the control and flow layers). Following this the layers

were cured for 1 hour at 80 'C, and then bonded together thermally for 36 hours. A more

detailed protocol for PDMS device fabrication of a simplified device is outline in Appendix

B.



3.3 Characterization

3.3.1 Immobilization stability

To determine the effectiveness of our microfluidic immobilization technique both quantita-

tive and qualitative analysis of the displacement of immobilized animals were performed.

Figure 3-3a illustrates an animal's motion at three different time points following immobi-

lization. Images of the anterior ventral mechanosensory (AVM) cell body and its axon were

taken 5 s apart, pseudo-colored red (first time point), green and blue (final time point),

and then superimposed. White regions indicate areas overlapping in all three time points.

As seen in Figure 3-3a, the degree of movement for an animal immobilized in our device is

small, even at 50 x magnification. To quantify the effectiveness of our microfluidic immo-

bilization versus chemical anesthesia, the cell bodies of touch neurons labeled with green

fluorescent protein (GFP) were tracked using a software algorithm.

C. elegans has six touch neuron receptors, with three cells detecting anterior touch, lo-

cated in the anterior mid-body (AVM, and the left and right anterior lateral mechanosensory

(ALML and ALMR)), and three cells detecting posterior touch, one located in the posterior

ventral mid-body (posterior ventral mechanosensory (PVM) and two in the tail (left and

right posterior lateral mechanosensory (PLML and PLMR)). To track the movement of all

cell bodies, movies were captured at 50x magnification of SK4005 animals immobilized ei-

ther by the anesthetic sodium azide (NaN3 ) at concentrations 10 mM or by our microfluidic

device. 10 mM NaN3 was the highest anesthetic concentration that allowed recovery of the

animals. The SK4005 strains express GFP under the mec4 promoter, which is expressed in

the six touch neurons of C. elegans. At 50x magnification, 1-3 cell bodies were randomly

selected and were visible in the movies. The fluorescence intensity in the movies was first

thresholded to identify locations of high GFP expression, corresponding to the cell bodies.

An algorithm next identified all connected regions and removed those too small to be cell

bodies, then calculated the centroids of the remaining objects. The centroids were overlaid

onto the original movies to ensure the cell bodies were properly identified. The results

of tracking these cell bodies are shown in Figure 3-3b, which shows the histogram of the

frame-to-frame displacement of the tracked centroids, and Figure 3-3c, which shows their

mean drift over time. The movement of the immobilized animals is quite small, and is

comparable to their motion even when deeply anesthetized. Despite being completely re-



strained externally, the animals can still have small internal movements, especially around

the pharynx. However, such internal activity does not cause significant displacement of

the neurons imaged, and high-resolution two-photon images near the pharynx were easily

acquired.
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Figure 3-3: Quantitative and qualitative measurements of microfluidic immobilization. (a)

Positional stability of a sub-cellular feature during microfluidic immobilization. Three im-

ages of the anterior ventral mechnosensory (AVM) neuron, its axon, and the PVM axon are

taken at 5 s apart. These images are then colored red (earliest), green, and blue (latest) and

overlaid on top of each other, such that the white regions indicate the overlap between all

three images (scale bar 20 pm). Inset shows close-up of outlined area. (b)(c) Comparison

of cell body movement during microfluidic immobilization versus deep anesthetic immobi-

lization using 10 mM NaN3 . The centroids of the touch neuron cell bodies are tracked using

a computer algorithm that analyzes data from movies taken at 20-30 Hz with 50x magni-

fication. 12 microfluidically-immobilized animals and 9 anesthetized animals were tracked.

(b) Histogram showing average displacement of cell bodies between frames divided by the

time between frames. (c) Line plot showing mean drift of cell bodies over time.

3.3.2 Lifespan quantification

To check whether these devices affect the health of the animals being screened, the lifespans

and brood sizes of 25 animals immobilized animals were tracked. Each animal was immo-

bilized for 1 min using 15 PSI of pressure in the compression layer. Note that the pressure

applied to the animals by the membrane is not the full 15 PSI, due to the resistance of the

membrane to flexing. The immobilized population was compared to a control population

that was not run through the device. Figure 3-4 shows the lifespans of both populations



(maintained at 20 'C). The mean lifespan of the immobilized population was 17.3 days (s.d.

= 5.0 days) and 16.9 days for the control population (s.d. = 4.0 days). The Graphpad

Prism software package was used to perform the log-rank (Mantel-Cox) test. The P-value

is 0.8947, which suggests there is no statistically significant difference between the lifespans

of the two populations. Both populations also produced normal brood sizes, and were free

of axonal blebbing.
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Figure 3-4: Lifespans of microfluidically-immobilized and control populations. The immo-
bilized population consisted of 25 worms that were immobilized for one minute each, and
the control population consisted of 23 worms that were not run through the device. Both
populations were monitored once a day for dead animals, and surviving animals were trans-
ferred to a fresh plate. An animal was scored as dead if it did not respond to prodding with
a platinum worm pick. The mean lifespan of the immobilized population was 17.3 days (s.d.
5.0 days), and the mean lifespan of the control population was 16.9 days (s.d. 4.0 days).

3.4 On-chip laser microsurgery and two-photon microscopy

The high immobilization stability achieved in these devices enables the use of a num-

ber of key optical techniques. To illustrate this we have chosen two methods that re-

quire repeatable, highly stable immobilization: multi-photon microscopy and femtosecond-

laser nanosurgery. Multi-photon microscopy, including two-photon excitation fluorescence

(TPEF) [30], is an important application that requires a very high degree of stabilization.

Multi-photon microscopy is inherently non-linear, and thus has the ability to perform op-



tical sectioning with negligible out-of-plane absorption and emission. This dramatically

reduces photobleaching and phototoxicity [31], which is especially significant in assays that

require animals to be imaged at multiple time points. The advantages of multi-photon mi-

croscopy are offset by the requirement for live animals to be anesthetized, due to the long

duration needed to capture an image. Our immobilization method can be used to success-

fully acquire two-photon images of non-anesthetized live animals using devices bonded to

175 pm-thin glass slide. The middle image of Figure 3-5 shows a volume reconstructions of

a pmec4::gfp animal, obtained by a two-photon microscope scanning at 0.2 frames/s using a

40 x /0.8 NA water-immersion objective. In this configuration, imaging a 120 pm x 120 pm

x 30 pm volume required roughly two minutes of stable immobilization. Such non-invasive

imaging of non-anesthetized animals can allow investigation of cellular processes sensitive

to anesthesia, such as neural degeneration, regeneration and embryogenesis.

Femtosecond-laser micro/nanosurgery enables precision ablation of sub-cellular pro-

cesses with minimal collateral damage [88]. This technique has been previously used study

axonal regeneration in C. elegans [72, 73], which enables the use of a geneticaly amenable

whole-animal model for screening factors affecting neural degeneration and regeneration.

However, manually preparing an animal for surgery, imaging and recovering it afterwards

are fairly laborious tasks. Furthermore, the effects of long-term anesthesia on these pro-

cesses are not known. Using our immobilization technique, we can immobilize animals and

perform femtosecond-laser nanosurgery repeatably, rapidly and precisely. The rightmost

image of Figure 3-5 shows an SK4005 (pmec4::gfp) animal whose AVM axon has been cut.

Our on-chip femtosecond-laser nanosurgery technique is a powerful tool for the discovery of

potential drugs and genetic factors affecting neural degeneration and regeneration.

3.5 Discussion

Microfluidic immobilization using a compression layer is a rapid and highly repeatable tech-

nique for immobilizing small animals for imaging and manipulation of sub-cellular processes

without anesthesia. The stability of this technique is comparable to that of deep anesthesia.

It affects neither the lifespan nor brood size of the animals, and it does not induce hypoxia.

This on-chip method can enable high-throughput screening of cellular and sub-cellular phe-

notypes in whole animals, as well as the use of precise techniques such as femtosecond-laser



Figure 3-5: Microfluidic immobilization enables several key applications in live, un-anesthetized
animals. (a) Successful axotomy of AVM process. 20 nJ femtosecond pulses were delivered
using a MaiTai@ Ti:Sapphire laser (Spectra-Physics) at a rate of 80 MHz to successfully cut
the axons. Arrow indicates the focus of the laser and the axotomized region. (b), (c) Vol-
ume reconstruction of images captured using two-photon microscopy. (b) Head of mec4::gfp
animal. (c) Posterior midbody of mec4::gfp animal and posterior ventral mechanosensory
neuron (PVM). The left and right anterior lateral mechanosensory (ALML and ALMR) and
AVM processes are clearly visible, as are the nerve ring branches that extend into multiple
imaging planes (all scale bars 20 pm).

microsurgery and multi-photon microscopy on physiologically active animals. The next

chapter discusses the use a microfluidic device based on this immobilization technique to

perform a chemical screen for factors affecting neural regeneration.



Chapter 4

In vivo small-molecule screen for

factors modulating neural

regenerationt

Abstract

Discovery of molecular mechanisms and chemical compounds that enhance neuronal

regeneration can lead to development of therapeutics to combat central nervous system

injuries and neurodegenerative diseases. By combining high-throughput microfluidics and

femtosecond laser microsurgery, we demonstrate for the first time large-scale in vivo screens

for identification of compounds that affect neurite regeneration. We performed thousands

of microsurgeries at single axon precision in the nematode Caenorhabditis elegans at a

rate of 20 seconds per animal. Following surgeries, we exposed the animals to a hand-

curated library of approximately one hundred small molecules, and identified chemicals

that significantly alter neurite regeneration. In particular, we found that the PKC kinase

inhibitor staurosporine strongly modulates regeneration in a concentration- and neuronal

type-specific manner. Two structurally unrelated PKC inhibitors produce similar effects.

We further show that regeneration is significantly enhanced by the PKC activator prostratin.

TThis chapter is an adaptation of the material found in [89]. Author contributions: C.S.,
C.B.R., C.L.G., and M.F.Y. designed research; C.S., C.B.R., and C.L.G. performed research;
C.S., C.B.R., C.L.G., S.N., S.J.H., and M.F.Y. contributed new reagents/analytic tools; C.S.
analyzed data; and C.S., C.B.R., and M.F.Y. wrote the paper.



Key words: Caenorhabditis elegans, microfluidics, femtosecond laser microsurgery, neural

regeneration, chemical screening, staurosporin, prostratin.

4.1 Motivation

The ability of neurons in the adult mammalian central nervous system to regenerate their

axons after injury is extremely limited, which has been attributed to both extrinsic signals

of the inhibitory glial environment [90 as well as intrinsic neuronal factors [91-93]. The

discovery of cell-permeable small molecules that modulate axon regrowth can potentiate

the development of efficient therapeutic treatments for spinal cord injuries, brain trauma,

stroke, and neurodegenerative diseases. Identification of such molecules can also provide

valuable tools for fundamental investigations of the mechanisms involved in the regeneration

process. Currently, small-molecule screens for neuronal regeneration can only be performed

in simple in vitro cell culture systems. In vitro cell culture screens have already produced

large numbers of chemicals that enhance regeneration and/or affect cellular morphogenesis,

yet many of these hits still remain untested in vivo. Most in vitro studies do not translate

to animal models, and also fail to reveal off-target, toxic, or lethal effects. Thus, a thorough

investigation of neuronal regeneration mechanisms requires in vivo neuronal injury models.

In vivo neuronal regeneration studies have been performed mainly in mice and rats.

However, their long developmental periods, complicated genetics and biology, and expensive

maintenance prevent large-scale studies in these animals. The nematode Caenorhabditis

elegans (C. elegans) is a simple, well-studied, invertebrate model-organism with a fully

mapped neuronal network comprising 302 neurons. Its short developmental cycle, simple

and low-cost laboratory maintenance, and genetic amenability make it an ideal model for

large-scale screens, rapid identification of the molecular targets of screened compounds, and

discovery of novel signaling pathways implicated in regeneration.

Until recently however, the small size of C. elegans (-50 pm in diameter) prevented

its use for investigation of neuronal regeneration mechanisms. We previously demonstrated

femtosecond laser microsurgery as a highly precise and reproducible injury method for

studying axon regrowth in C. elegans [72,73,94]. The non-linear multiphoton absorption of



the incident femtosecond pulse allows subcellular-resolution surgery of nematode neuronal

processes with minimal out-of-plane absorption and collateral damage. Furthermore, due

to the C. elegans stereotypic anatomy and hermaphroditic reproduction, the same neurons

can be repeatedly axotomized at the same distance from the soma in isogenic animal pop-

ulations, significantly enhancing reproducibility of assays. Recent low-throughput studies

have used this technique to investigate how factors, such as animal age, neuronal type,

synaptic branching, and axon guidance signaling, influence regeneration [74, 75]. In addi-

tion to screens on nematodes exhibiting spontaneous neurite breaks due to dysfunction of

-spectrin, this technique has also revealed that axon regrowth depends on the activity of

MAP kinase pathways [76,77].

However, neuronal regeneration in C. elegans is a highly stochastic process requiring

large numbers of animals to be screened. The high motility of wild-type nematodes causes

a significant throughput challenge. Precise laser axotomy and imaging at the cellular level

require orientation and immobilization of animals. Traditional immobilization methods us-

ing anesthetics, such as sodium azide, levamisole and tricaine/tetramisole, have significant

and/or uncharacterized effects on nematode physiology, which may affect the regeneration

process [95]. In addition, anesthetics need several minutes to take effect, and recovery of

nematodes from anesthesia requires exchange of media without losing animals, all of which

are incompatible with high-throughput screening. Other techniques that can be used to re-

versibly immobilize C. elegans include trapping of nematodes in wedge-shaped microchan-

nels [96], cooling [81,97] and exposure to CO 2 [82,98]. Wedge-shaped microchannels have

not been shown to provide immobilization with sufficient stability to perform repeatably

subcellular resolution manipulations, such as femtosecond laser microsurgery, and the phys-

iological effect of exposure to low temperatures and CO 2 remain uncharacterized for many

biological processes. In addition, none of these techniques have been scaled to handle large

numbers of C. elegans for chemical or RNAi screens.

The previous chapter described non-invasive mechanical means to immobilize C. ele-

gans for high-throughput in vivo imaging and femtosecond laser microsurgery. In order

to facilitate large-scale screening of chemical libraries, we also developed a simple mecha-

nism to transfer nematodes from multiwell plates to microfluidic chips for neurosurgery and

imaging. In combination with the software we designed, we can load, image, and perform

femtosecond laser microsurgery within ~20 seconds per animal. We performed chemical



screens using thousands of animals to test a hand-curated library of approximately one

hundred chemicals. We demonstrate that PKC kinases are involved in regeneration of C.

elegans mechanosensory neurons. We also show that prostratin, a PKC activator, signifi-

cantly increased neuronal regeneration.

4.2 Materials and methods

4.2.1 Nematode handling

Nematodes were grown at 15 'C in NGM agar plates, unless otherwise mentioned. Stan-

dard procedures were followed for C. elegans strain maintenance and genetic crosses [99).

Nematode strains used in this study include those given in Table 4.1.

Table 4.1: Strains used in this chapter

Strain Name Genotype

BZ555 egs1 [pdat-1GFP]

CX3553 lin-15B(n765)kyIs104 [pstrIGFP]X

EG1285 lin-15B(n765)oxIs12[p sac4 7GFP]X

MT1522 ced-3(n717)IV

SK4005 zdIs5[pmec- 4 GFP]I

not named zdls5[pnec- 4 GFP]I;ced-3(n717)IV

4.2.2 Chemical treatments

The small molecule library used in the chemical screening was prepared from initial com-

pound stock plates with small molecule concentrations ranging from 5-10 mM. By consec-

utive dilutions in 100% dimethyl sulfoxide (DMSO, Sigma Aldrich) and transfers using the

Cybi@-Well vario 384/35 pl Head, daughter plates were created, heat sealed and stored at

-20 'C, in order to be used on the day of the screening. Compound concentrations in the

daughter plates ranged from 2-4 mM. One day prior to laser microsurgeries, Escherichia coli

(E. coli) OP50 bacteria were inoculated in Luria-Bertani (LB) media and grown overnight.



Subsequently, the E. coli culture was washed with M9 buffer and bacteria were resuspended

in nematode growth media (NGM). For the compound library screens, 55 pl of the NGM

resuspended bacterial culture was added to 0.55 pl of DMSO-dissolved compound library.

After thorough mixing, 50 pl of the compound-containing NGM culture was further diluted,

by adding 50 pl of NGM resuspended bacterial culture, so that the final DMSO concen-

tration was 0.5% and the small molecule concentrations ranged from 10-20 pM. Control

cases contained either 0.5% DMSO or bacterial culture alone. For each library-compound a

total of 10-20 animals were tested. For the kinase effector treatments, axotomized animals

were incubated at 20 'C with 10-100 pM dibutyryl-cAMP, H-89, LY-294,002, PD 98,059,

staurosporine, wortmannin, Y-27632, chelerythrine, Go 6983 or prostratin (Sigma Aldrich)

in liquid NGM cultures supplemented with E. coli OP50 bacteria, and transferred into fresh

cultures every 24 h. For control experiments in treatments with LY-294,002, PD 98,059,

staurosporine, wortmannin, chelerythrine, G6 6983, and prostratin, which were dissolved

in DMSO, liquid NGM was also supplemented with the respective amount of DMSO. Each

experiment was repeated at least three times.

4.2.3 Femtosecond laser microsurgery

Synchronized L4 nematodes were brought into the chip and immobilized. A Mai-Tai@ HP

(Spectra-Physics) femtosecond laser beam with 800 nm wavelength and 80 MHz repetition

rate was delivered to a Nikon Ti microscope. ALM axons were axotomized by pulses with

10 nJ energy for 3.2 is using a 20x objective lens with NA=0.75. For the control kinase

modulator assays, synchronized L3, L4 or young adult nematodes were immobilized in 2%

agarose pads with 0.1-1% 1-phenoxy-2-propanol. Neurites of mechanosensory, GABAergic

and AWB or CEP neurons were axotomized by 7 nJ, 9.5 nJ and 11 nJ energy pulses

respectively for 1.5 ms, with a 780 nm laser beam at 80 MHz repetition rate.

4.2.4 Data collection and analysis

48-120 h following axotomy, animals were imaged at the area of surgery with a Nikon Ti

microscope. The length of the longest regrowing neurite and type of regeneration were

scored using a MATLAB program. The percent regeneration versus the control indicated

the percent difference from the mean value of the control. Statistical analysis was performed

using a two-tailed Student's t-test.



4.3 Preliminary screening

To enable chemical screens, we made several modifications to the microfluidic C. elegans

sorter technology described in the previous chapters (Figure 4-1 a). To incubate large

numbers of animals in chemical libraries, we used multiwell plates, which are compatible

with standard liquid handling technologies. We developed a method to rapidly, reliably, and

repeatedly transport animals to and from standard multiwell plates containing chemicals

into our sorter chips (Figure 4-1b). The multiwell plates are kept at an angle, and a metal

tube is inserted into a well until it reaches near the well bottom. Since the animals settle

near the well bottom, this allows rapid aspiration of animals without fluid being completely

drained out of the wells. The channel array of the microfluidic sorter chip is used to rapidly

load the animals into the main screening chamber (Figure 4-1c, step 1). Multiple animals

are brought into the main chamber, and unwanted elements such as air bubbles or debris

also enter occasionally. To capture an individual animal, the single aspiration port of the

chamber is activated (Figure 4-1c, step 2). The rest of the animals in the chamber are

flown back towards the input (Figure 4-1c, step 3) by brief application of a small pressure

difference from the channel array. During this period, debris and air bubbles (which adhere

more strongly to the chip surfaces) remain in the chamber. Next, by switching an off-

chip valve, a stronger pressure pulse is applied to move debris or bubbles to the waste

output (Figure 4-1c, step 4) while the single aspiration port tightly holds the animal in

the chamber. Subsequently, all on-chip valves surrounding the main chamber are closed,

isolating the single animal. The animal is then released from the single aspiration port,

and aspirated towards the channel array (Figure 4-1c, step 5). This orients the animal

linearly, making it easy to image and perform laser microsurgery. To increase the stability

of immobilization, the channel above the chanber is then pressurized, pushing the thin

immobilization membrane downwards (Figure 4-ia and d). This fully constrains the animal

motion for imaging and surgery. Once the animal is immobilized, the microscope and

camera configuration automatically switches to high-resolution acquisition. We developed

a simple software interface to quickly target the laser to the surgery position at a pre-set

surgery distance from the soma of the neuron. The software requires the user to make

only two mouse clicks to perform the entire surgery operation: The user first clicks on the

soma of the neuron to be axotomized. The software then draws a circle centered on the



soma where the radius of the circle is equal to the set surgery distance. The user next

clicks on the intersection of the circle and the axon, which is the desired surgery location

(Figure 4-le). The software automatically moves the laser target to this surgery position,

and performs the surgery. These enhancements significantly increase the throughput of our

system: Our system can process animals within -20 seconds on average, including off-chip

loading and unloading of animals (Figure 4-1f). This is significantly faster than the time

previously reported for automated ablation of entire cell bodies alone (which requires less

surgical precision) [100].

Using this technology, we screened C. elegans for regenerative effects upon exposure

to a chemical library enriched for compounds that may affect neurite outgrowth in vitro

in mammalian cell cultures [101,102]. The potential targets of the small-molecule library

that we screened included various kinases, cytoskeletal proteins, endocytic vesicle traffick-

ing components, and nuclear processes (Figure 4-3a). Such use of chemicals with a priori

known targets facilitates delineation of molecular mechanisms involved in regeneration. To

test the effects of these compounds on regeneration we axotomized mechanosensory neurons

of C. elegans. These neurons have been used extensively for investigation of neurodegenera-

tion in connection with human diseases [103,104]. They grow long axonal processes devoid

of any lateral branches, enabling highly precise microsurgery and subsequent imaging and

characterization of outgrowing processes. Axotomies were performed on ALM mechanosen-

sory neurons at larval stage 4 (L4) nematodes, approximately 200 pm away from the cell

body. Following microsurgery animals were incubated in the presence of small molecules

at concentrations ranging from 10-20 pM. Neurite regeneration was assessed 72 h post axo-

tomy by measuring the length of the regrowing processes (Figure 4-3b). Figure 4-3a shows a

classification of the library compounds, and the percentage of chemicals in each group that

led to significant regeneration effects (i.e. P < 0.05 in Student's t-test). The compounds

screened, the number of animals treated with each compound, the effects on regeneration,

and the statistical significances are provided in Figure 4-2 and Tables 4.2 and 4.3.

Our preliminary screen identified a number of chemical compounds that significantly

altered axon regeneration (P < 0.05 in Student's t-test). The compound category containing

modulators of protein kinase function, such as staurosporine, wortmannin, LY294,002, H89,

W7, PD 98,059, 50-E12 and dibutyryl-cAMP, exhibited the highest percentage of significant

regeneration effects (Figure 4-1b). This observation, in conjunction with the recent studies



implicating specific kinases in the regeneration of nematode GABAergic and motor neurons

[76, 77] prompted us to further investigate the effects of kinase modulators in C. elegans

neurite regeneration.

4.4 Secondary screening

From our preliminary screen, we identified a number of chemical compounds that signif-

icantly altered axon regeneration (P < 0.05), among which were modulators of protein

kinase activity (Figure 4-3a). This observation, in conjunction with studies implicating

specific MAP kinases in the regeneration of nematode GABAergic motor neurons [76,77],

prompted us to further investigate the effects of kinase modulators in C. elegans neurite

regeneration. We investigated the effects of this compound class on regeneration of PLM

neurons since regrowing ALM neurons pass near or through the dense and complex neu-

ronal circuitry of the nerve ring, and occasionally interact with its components, complicating

analysis and interpretation of the results.

By performing laser axotomy on PLM mechanosensory neurons, we analyzed the effects

of all the commercially available kinase modulators from our initial chemical library, which

included staurosporine, wortmannin, LY294,002, H89, W7, PD 98,059, 50-E12, Y-27632

and dibutyryl-cAMP (Figure 4-3c and Table 4.4). Known targets of these compounds

are shown in Table 4.4. Compounds were tested on late larval stage and young adult

nematodes, at concentrations ranging from 10 to 100 p11M (Figure 4-3c and Table 4.4).

Staurosporine, a non-selective kinase inhibitor with high affinity for protein kinase C (PKC)

[105], exhibited the strongest effects. Staurosporine administered at a concentration of 10

pM caused approximately a three-fold decrease in the regrowth of PLM neurons 48 h after

axotomy, whereas concentrations lower than 5 iM did not exhibit any significant effect

(Figure 4-5). The effect was similar in L4 and young adult animals (44.25 ± 7.47 vs. 112.86

t 9.23 pm, P = 2.89x 10- 7 in L4 animals, 44.15 ± 6.23 vs. 89.32 ± 7.11, P = 3.20x 10- 5 in

young adults) (Figure 4-4). In early larval stages, 0.5% DMSO (solvent for staurosporine)

was toxic; however the few surviving L3 nematodes also exhibited decreased regrowth and

strong morphological abnormalities. Although toxicity of DMSO is a limitation for using

chemical libraries on young larvae, 0.5% DMSO is not toxic to either young adults or older

animals.



Interestingly, the effect of staurosporine administration was specific to the neuronal

type; although it affected PLM touch neurons, it did not alter regeneration of the ALM

touch neurons, D-type GABAergic motor neurons, CEP dopaminergic neurons, or AWB

olfactory neurons (Figure 4-5b). Given that only the posteriorly located PLM neurons

exhibited sensitivity to staurosporine, this differential effect could be attributed to physical

barriers preventing staurosporine from reaching more anterior parts of the C. elegans body.

To investigate this possibility, we took advantage of the GABAergic neurons found along

the nematode body. In contrast with its effect on PLM neurons, staurosporine did not alter

significantly the regrowth of axotomized posterior GABAergic motor neurons, nor did it

cause any difference in the response among GABAergic motor neurons in the posterior-,

anterior- or mid-body of animals (Figure 4-5d). These observations suggest that different

types of neurons have different molecular requirements for regeneration. This is true even for

neurons with highly similar structure and functions, such as ALMs and PLMs, both of which

extend long processes along the nematode body and are required for mechanosensation

(Figure 4-5b and c).

Regenerating neurites in animals treated with staurosporine often exhibited large ter-

minal retraction bulbs and swellings along the axon (Figure 4-5c). Such structures were ob-

served mainly in the axotomized neurites of treated animals, and only rarely in non-treated

animals. Since staurosporine is known to induce apoptosis at high concentrations [106-109],

we investigated whether these swellings are an indication of apoptotic response, and whether

staurosporine's effect on regeneration is related to the activation of apoptotic pathways. Ini-

tiation of apoptosis in C. elegans requires CED-3, a cysteine protease of the interleukin-1

-converting enzyme (ICE) family [106, 110]. In vitro mammalian cell culture assays have

demonstrated the requirement of this family of caspases (ICE / CED-3 protease family)

for the execution of staurosporine-induced apoptotic cell death [110,111]. We tested stau-

rosporine on a ced-3 mutant genetic background and observed no significant difference in

regeneration compared with wild-type animals (Figure 4-6a). In addition, Hoffman imaging

of nematodes from 24 to 120 h after laser axotomy did not show any apoptotic body forma-

tion in staurosporine-treated animals. 5 days after axotoniy, the cell bodies of the injured

neurons still exhibited normal morphology and strongly expressed GFP (Figure 4-6b).

While staurosporine can induce apoptosis at high concentrations, at lower concentrations

it has been shown to inhibit the protein kinases PKC, PKA, PKG, CAMKII and MLCK,



as well as other kinases in a concentration-dependent manner, and to stimulate K-Cl co-

transport in red blood cells [105,112-114]. Since staurosporine's strongest inhibitory effect is

on PKC kinases, and in C. elegans it has been shown to inhibit PKC activity [115], we tested

whether it exerts its effects on regrowing neurites via the inhibition of this particular kinase.

To this end, subsequent to laser microsurgery of PLM neurites, we incubated nematodes in

the presence of the two distinct structural classes of specific PKC inhibitors chelerythrine or

Go 6983 [116,117]. Treatment of axotomized animals with either chelerythrine or G6 6983

at concentrations between 10 and 100 pM also significantly reduced regeneration (70.40 ±

8.20 vs. 123.35 ± 7.86 pm, P = 2.65 x 10-5 for chelerythrine, and 99.83 ± 8.28 vs. 128.65

± 9.10 pm, P = 0.023 for G6 6983) (Figure 4-7). Conversely, the PKC activator prostratin

significantly increased regeneration of PLM neurites (145.25 ± 7.46 vs. 114.68 ± 8.88 pm,

P = 0.01) (Figure 4-7). Treatment with specific inhibitors of other targets of staurosporine

had no effect (Figure 4-8). In combination, the above results strongly suggest that PKC

kinases are involved in the regeneration of C. elegans mechanosensory neurons. Although

we cannot exclude contribution of other pathways to the inhibitory effect of staurosporine,

these pathways likely do not involve PKA signalling (also targeted by staurosporine), since

we did not observe any effect of the PKA-modulators db-cAMP and H-89 on regeneration

(Figure 4-3c and Table 4.4). Four pkc genes have been identified in C. elegans: tpa-1, pkc-1,

pkc-2 and pkc-3, which span the all pkc subfamilies (Figure 4-9a). Genetic inactivation of

the conventional PKCs (pkc-2) inhibited PLM regeneration, however inactivation of the

novel PKCs (pkc-1 and tpa-1) did not significantly affect regeneration (Figure 4-9b).

4.5 Discussion

We demonstrated here, for the first time, the use of laser microsurgery and microfluidic

technologies for in vivo screening of chemicals affecting neuronal regeneration. We de-

veloped a simple and robust technique to load nematodes from and dispense to standard

multiwell plates. This allowed use of standard technologies for incubation of large num-

bers of animals in chemicals while utilizing the manipulation capabilities of our microfluidic

chips. In combination with software we developed, we were able to load, image, and perform

single-axon-precision surgeries within -20 seconds. Screening a chemical library of small

molecules indicated the involvement of specific kinase pathways in neurite regrowth after



injury in C. elegans. We found that the kinase inhibitor staurosporine suppresses regenera-

tion in a neuronal type-specific manner. In addition, we showed that axonal regeneration of

neurons is significantly enhanced after administration of a PKC activator. Our results are

consistent with in vitro studies on goldfish retina explants [118], on adult frog sciatic sensory

axons [119], on post-natal mice retinal ganglion cells [120], and on adult mice sensory gan-

glia [121], wherein the administration of PKC inhibitors following mechanical lesion blocks

neurite outgrowth. This indicates the existence of conserved neuronal regeneration mecha-

nisms between nematodes and vertebrate organisms. However, other in vitro studies have

yielded conflicting data regarding the involvement of PKC kinase in the inhibitory effects

of staurosporine on neuronal regeneration [122,123]. By performing regeneration studies on

whole organisms, we showed for the first time in vivo that staurosporine blocks regeneration

at least partially by inhibiting PKC. We also showed that other kinase inhibitors of P13K,

PKA, MAPKKK, and ROCK did not affect regeneration in a neuron type that is otherwise

strongly affected by staurosporine. However, these kinase inhibitors affect neurite growth

in other experimental models [124-128]. The lack of response to these other types of kinase

inhibitors could be due to the differences among neuronal types, the ineffectiveness of these

chemicals, or the absence of an inhibitory myelin sheath in C. elegans.

Many chemicals have been found to modulate neurite growth in vitro. However, valida-

tion of these effects in vivo and identification of their mechanisms of action have remained

elusive due to the lack of large-scale screening platforms for genetically amenable animal

models. The advantages of C. elegans genetics and our high-throughput screening technol-

ogy should allow in the future discovery of novel molecular pathways required for neuronal

regeneration. Further experiments on higher organisms will show which of these mecha-

nisms are conserved in mammals, and may provide means for pharmaceutical or genetic

interventions to combat human diseases and injuries.
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Figure 4-1: Microfluidic C. elegans manipulation for subcellular laser microsurgery and
chemical library screening. (a) Micrograph of dye-filled microfluidic chip. Red: Control
(valve) layer, yellow: Flow layer, blue: Immobilization layer. Scale bar: 1 mm. (b) Animal
loading from multiwell plates. The multiwell plate is held at a 400 angle and a stainless
steel tube is inserted to the well bottom. (c) Microfluidic C. elegans manipulation steps. 1.
Loading of nematodes. Dust, debris, air bubbles, and bacteria may also enter the chip. 2.
Capture of a single animal by the single aspiration channel. 3. Isolation of a single animal
within the chamber by low-pressure washing of the channels to remove and recycle the
rest of the nematodes. 4. Cleaning of channels by high pressure washing to remove debris
and bubbles. 5. Orientation of the single animal by releasing it from the single aspiration
port and recapturing it by the channel array. 6. Immobilization by pressurizing a thin
membrane (see panel d). 7. Laser microsurgery (see part e). 8. Unloading of the animal
from the chip after surgery. (d) Illustration of the final immobilization process. Once a
single animal is captured and linearly oriented (i), a channel above the main chamber is
pressurized pushing a thin membrane downwards (ii). The membrane wraps around the
animal, significantly increasing immobilization stability for imaging and surgery. Precise
laser targeting of subcellular features is achieved using a femtosecond laser tightly focused
inside the C. elegans body by a high numerical aperture objective lens (see Section 4.2.3).
(e) Software interface to accelerate axon targeting for laser axotomy. A right mouse click
on the cell body is used to identify the portion of the axon a set distance from the soma,
and a left mouse click moves this location to the laser focal point. (f) Average time per
animal for screening steps. Total time per animal is from 3 independent experiments each
with 100 worms.
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Figure 4-2: Preliminary screen of a hand-curated chemical library for effects on regenera-
tion of C. elegans mechanosensory neurons. ALM neurons of L4 animals were axotomized
approximately 200 pm away from the cell body and incubated for 72 h in the presence of
chemical library compounds. Maximum regrowth lengths were measured and the percent
differences to the respective controls were calculated for each experiment. Bars represent
the total mean values from all experiments (*, P < 0.05; **, P < 0.01), error bars denote
s.e.m., and n indicates the total number of animals used in each case.
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Figure 4-3: In vivo chemical screen for small molecules affecting axonal regeneration. (a)

Primary target-categories of the screened compound library. The dashed parts of the pie

chart represent the percentage of compounds in each category affecting regeneration. (b)

Common regeneration phenotypes observed 72 h following axotomy and compound expo-

sure: (i) No axon regrowth, (ii) forward regrowth, (iii) backward regrowth, and (iv) regrowth

with branching. Arrows and asterisks indicate start and end points of regenerated axons

respectively. For regrowth with branching, indicated start and end points are for the longest

regrown branch. Scale bars: 20 pm. (c) Effects of protein kinase modulators in the regener-

ation of PLM neurites after laser axotomy. PLM neurons of L4 nematodes were axotomized

50 pm away from the cell body. Animals were incubated in the presence of kinase modu-

lators for 48 h, and the lengths of the longest regrowing neurites were measured (**, P <

0.01). Error bars denote the s.e.m., and n indicates the total number of animals used in

each case, while the bars show one representative screen with its controls.



Table 4.2: Chemical library of small molecules screened for effects on neuronal regeneration
in C. elegans part 1: Major compound categories. The names of the small molecules used
in our preliminary chemical library screen are listed along with their respective target cate-
gory and molecular structure. Chemical structures are represented by SMILES (Simplified
Molecular Input Line Entry Specification)

Target Name Molecular Structure
Category ______ ____________________________________

YE-i OC(C=Ci )=C(OC)C=Cl/C=N/NC2=NC=NC3=C2C(CCCC4)=C4S3
YF-2 O=C(N/N=C/C1 =CC=COi )C2C(C3=CC=CC=C3)(C4=CC=CC=C4)C2
YF-3 O=C(NCi =CC=CC=CI )NNC2=CC=C(C=C2N)[N+([O-])=O

CO YF-4 O=S(NC(C(C(NCI =CC(CI)=C(CI)C=Ci )=0)=C2)=CC=C2CI)(C3=CC CC=C3)=O
E YF-5 O=S(NCi =C(C=C(Br)C=CI )C(NC(C(C(C2=CC=C(CI)C=C2)=O)=C3)=CC=C3CI)=0)(C4=CC=C(CI)C=C4)=O

0 YF-6 O=C(OCi =C(C2=CC(OC)=C(OC)C=C2)[NH+]=CC=Ci )C3(CC4C5)CC5CC(C4)C3
YF-7 CC(C)(C)C(C=Ci )=CC=Ci CCC2OCC(CN3CCCCC3)02
YF-8 O=C(CCi =CC=CC=Ci )N/N=C/C2=CC=C(C(C=C3CI)=CC=C3C)02

2 YF-9 0=C(N/N=C/C1 =CC=C(C=C1 )C(C)(C)C)COC(O(CI)-C2)-C(CI)C=C2CI
.2 YFi 0 O=C(Ci =CC=NC=Ci )/C=C/C2=CNC3=CC=C(Br)C=C23

(A
4) YF-i1 CICi =C(C=CC=Ci )/C=N/NC2=NC(NCC3=CC=CC=C3)=NC(N4CCOCC4)=N2

> YF-i12 Z1 =CC=CC(/C=N/NC2=NC(N(C3=CC=CC=C3)C4=CC=CC=C4)=NC(N5CCOCC5)=N2)=C1
YF-i13 O=C(N/N=C\C1 =CC=CC=C1 O)C2=C(OC)C=C3C=CC=CC3=C2
YF-14 0=C(Ci=C2C=CC=C1 )C3=C2N=NC(C4=CN=CC=C4)=C3

_____Exo-i COC(0)C1 =CC=CC=C1 NC(=O)C2=CC=C(C=C2)F
H-9 C1=CC2=C(C=CN=C2)C(=Cl)S(=0)(-0)NCCN
Dibutyryl camp CCCC(-0)NC1=NC=NC2=C1N=CN2C3C(C4C(03)COP(=0)(4))OC(=O)CCC

4) Staurosporine CC12C(C(CC(01)N3C4=CC=CC=C4C5=C6C(=C7C8=CC-CC=C8N2C7=C53)CNC6O)NC)OC

LY29002 ClC0CCNlC2=CC(=0)C3=C(O2)C(=CC-C3)C4-CC=CC=C4
Wortmannin CC(=0)OC1CC2(C(CCC2'=O)C3=C1C4(C(OC(=O)C5=COC(=C54)C3=O)COC)C)C

C H89 C1=CC2=C(C=CN=C2)C(=C)S(=0)(=0)NCCNCC=CC3=CC=C(C=C3)Br
PD98059 C0C1-CC=CC(=C1 N)C2=CC(=0)C3=CC=CC=C302

I- W7 Cl=C02=C(C=CC=C2CI)C(=C1)S(=0)(=O)NCCCCCCN
CL 50-E12 Cl (C2-CC=NC=C2)=CNC3=C1C=CC=C3

H-toxin C~C(O)C(C (=O)N2CCC=ONCC()N1 CCCC()3

4 ISA-i Cl =CC=C2(C1 )NNC(=O)C3=CC(=C(-C)C)
) C-Moin 5 C OC=C(C=-C=2CC)/C(=N-C(OC)CCC3[~(O)C3C

Sirtinol CC(NC(C1 =CC=CC=C/N=C/C2=C()C=CC3-CC=CC=C23)-O)C4=CC=CC=C4
Vaiproate CCCC(CCC)C(0)[O-
3-A3 _ 0C1 0C2=C(CCC=C2)C3=CI C4=CC(0)=C(O)C=C403
PRA-3 O=C(O[C@H](CI=CC-CC=C1 )[C@@H](C)N(C)C(CC/C=C/2)=)[C@@13([H)[C@]2(H)O[C@@]4([C@153H])[C@](C(N(CC6

=CC=CC=C6)CC=C4)=0)([HI)N(CC7=CC=C(OC)C=C7)C5=0
ERA-iS5 O=C([C@@I1 ([Hll)[C@](C=C[C@H]2[C@@13([HI)C(OtC@@H](C4=CC=CC=C4)[C@HJ(C)N(C(CCC=C)=O)C)=O)(02)[C@@3

([H])CN 1CC5=CC=C(OC)C=C5)=0)N(CC=C)CC6=CC=CC=C6
PRA-1 6 0=C([C@11 ([H])[C@@](C=CIC1@@H]2[C@]3([H])C(O[C@H](C4=CC=CC=C4)[C@@H](C)N(C(CCC=C)=O)C)=O)(02)[C@13([

Ht)C(N1 CC5=CC=C(OC)C=C5)=-O)N(CC=C)CC6=CC--CC=C6
PRA- 17 0=C([C@@] 1 ([H)C@(C=C[C@H]2[C@1@3([H])C(O[C@H](C4-CC=CC=C4)[C@@H1(C)N(C(CCC=C)=O)C)=0)(02)[C@@]3

([HI)C(NlCC5=CC=C(OC)C=C5)=O)N(CC=C)CC6=CC=CC=C6
C PRA-1 8 0=C(OC@@H(C1 CC=CC=C1)[C@H](C)N(C)C(CC/C=C/2)=0)C@@]3([H)[C@2([H])O[C@@14([C@53[H])C@](C(N(CC6

0 =CC=CC=C6)CC=C4)-0)([HI)N(CC7=CC=C(OC)C=C7)C5=0

4-Cl I C[C@11 2C(CC(0[Si](C)(C(C)(C)C)C)CC2)=CC=C3C CC[C@@14(C)C3CC[C@@14(O)CNCC5=CC=CC=C5
Blebbitatin Cl =CC2=C(C=C 1 )N=C3C(C2=0)(CCN3C4=CC=CC=C4)O

0 N-Wasp 187-i cycdo(LKDFDOFLFDPLQ)2
>% Monastrol CCOC(=0)ClC(NC(=S)NClC2=CC(=CC=C2)O)C

5249269 CCOC(Cl=C(C)NC(NCC2-CCC(0)CC2)=S)=O
5666823 S=C1 NC(C=C(C(OCC)O)C(C2CC=CC(OC)=C2)N1
Nocodazole COC(0O)NC1=NC2=C(N1 )C=C(C=C2)C(0O)C3=CC=CS3
Latrunculin B CClCCC2CC(CC(02)(C3SC(0O)N3))OC(0O)C=C(CCC=Cl)C
Cytochalasin D Ci CC=CC2C(C(=C)C(C3C2(C(CCC(C1=O)(C))OC(0)C)C(0O)NC3CC4CC=CCC4)C)O
4-F5 _ CCCCNC(Cl=CC(OC(C)=0)=C(C#C[Si(C)(C)C)C=C )=0
3-B1 BrCl=C[C@H2C(C3CC-CC=C3)C[C@@H]1IC@@14(C04)C2=0



Table 4.3: Chemical library of small molecules screened for effects on neuronal regeneration
in C. elegans part 2: Minor or unknown compound categories. The names of the small
molecules used in our preliminary chemical library screen are listed along with their re-
spective target category and molecular structure. Chemical structures are represented by
SMILES (Simplified Molecular Input Line Entry Specification)

Target Name Molecular Structure
Category I I I

JY-1 (01 B12) NC1 =CC=C(NCC)CC()=C1 C
JY-2 (02P07) O=C(C(C)(C)O)/C=C/C1=CC=CC=C1
JY-4 (07C15) O=C(NC1=NN(C2=CC=CC=C2)C=C1)C(CI)(CI)CI
JY-6 (14G04) CC1=CC2=C(C=C1)NC3=C2CCCC3NCC4=CC=CC=C4
JY-7 (16A1 7) OC(COC1=CC=C(C=C1)C(C)C)CNC2CC(C)(C)NC(C)(C)C2
JY-8 (16J09) CN1CCN(CC1)C(C=C2)=CC=C2NC3=C(C=CC=C4)C4=NC5=C3C=CC=C5
JY-9 (16L07) O=S1 (CC(CC1)N(C)C(SNC(C=C2)=C(C=C2[N+]([O-])=0)[N+]([0-])=0)=S)=O
JY-10 (27E12) O=C(NC1 =CC=C(C(CI)=C1)Cl)C(C2=CC=CC=C2)(O)C3=CC=CC=C3
JY-1 1 (29K13) O=S(C1 =NC(C=CC=C2)=C2S1)(C(C=C3)=C(CI)C=C3[N+I(10-D=0)=O
JY-12 (29M18) [O-][N+](C(C=C(OC01)C1=C2)=C2C(N3CC4=CC=CC=C4)N(CC3)CC5=CC=CC=C5)=O
JY-13 (29D16) S=C(N)N/N=C(C1=C2C=CC=C1)/C(C2=N3)=NC4=C3C=CC=C4
JY-14 (30110) O=S(C(C=C1)=C=C1Cl)(CCC(C)=0)=0
JY-1 5 (32A1 7) [O-j[N+](C(C=C1)=CC=C1C(OC2=C(CNC(C3=CC=CC=C3)=0)C(C)=C(Ct)C=C2CI)=0)=O
JY-16 (32G06) [O-][N+](C1=C2C=CC=C1)=C(C=C2)/C=C/C3=CC=CC=C3
JY-17 (38J10) O=C1C2=C(CCC1Br)C(C(OCC)=0)=C(NC(CC)=0)S2
JY-18 (42B02) H]C1 (NCCC2=CC=CC=C2)C3=C(CCC1)C(C=C4C5CCCCC5)=C(C=C4)N3
JY-19 (43M01) OC(C=C1)=CC=C1 \C=C/NC2=NC(C3=CC=CC=C3)=CC(C4=CC=CC=C4)=N2
JY-20 (43M06) O=C1 C(C)=CC(N1 CCC2=CNC(C=C3)=C2C=C30CC4=CC=CC=C4)=0
JY-21 (51 K1 2) [O-][N+11=C2C(C=C(NC(C=C3)=CC=C30C)C=C2)=NC14CCCCC4
JY-22 (48B01) C1(N2N=CC=C2)=NC(C3=CC=CC=C3)=CC(C4=CC=CC=C4)=N1
JY-24 (51 E11) CC(NC1 =CC=CC(C2=NC(C3=CC=CC=C3)=NC(C4=CC=CC(NC(C)=0)=C4)=C2)=C1)=O
JY-26 (48106) O=C(CC)OC1(C2=CC=CC=C2)CC(N(C)CC1C)(C)C
JY-27 (51 P15) O=C(CNC1CCCCC1)C2=CC(0)=C(O)C=C2
JY-28 (46K03) O=C(C)OC(CCC1)C2C1NCCC2
JY-29 (51 L02) O=C1 N(C)C(C2=CC=C(NC(C)=0)C3=CC=CC1 =C32)=0
JY-30 (50H04) O=C1 C=C(CC(C)(C)C1)NC2=C(C=CC=C3)C3=CC=C2
JY-42 (28A15) OC(CN(C)CCO)CN 1 C2=CC=C(C)C=C2C3=C1 C=CC(Cl)=C3
JY-43 (31 N07) S=C(S1)N(NC(NC(C=C2)=CC=C2CI)=0)C(C1 (C)C)N(O)C(NC(C=C3)=CC=C3Cl)=O
JY-44 (48B09) [0-][N+}(C(C=C1)=CC=C1 N/N=C/C(C(C)=C2COC(C)=0)=C(C)C=C2C)=O
JY-45 (51J17) O=C(/C=C/C1=CC=CC=C1)NC2=NN=CN2
JY-46 (51G05) O=C(C1=C2C=CC=C1)C(C(OCC)=0)=C(C3=CC=C(CC)C=C3)C2=0
JY-63 (46E7) [0-][N+](C1=C(O)C(/C=N\NC2=NC(NC3=CC=C(C=C3)[N+]([O-

])=0)=NC(OC(C(F)(F)F)C(F)(F)F)=N2)=CC=C1)=0
C-PAF (carbamyl- CCCCCCCCCCCCCCCCOCC(COP(=0)([O-])OC[N+](C)(C)C)OC(=)NC
platelet-activating factor)
29-D16 S=C(N)N/N=C(C1 =C2C=CC=C1)/C(C2=N3)=NC4=C3C=CC=C4
SMIR4 O=C(C1 =CC(C(N(C2=CC=C(C(NC3=CC=C(Br)C=C3)=0)C=C2)C4=0)=0)=C4C=C1)NC5=CC=C(Br

)C=C5
CSA (cyclosporin A) CCC1 C(=0)N(CC(=0)N(C(C(=)NC(C(=0)N(C(C(=0)NC(C(=0)NC(C(=0)N(C(C(=O)N(C(C(=0)N(C

(C(=0)N(C(C(=0)N1)C(C(C)CC=CC)O)C)C(C)C)C)CC(C)C)C)CC(C)C)C)C)C)CC(C)C)C)C(C)C)CC(
C)C)C)C

FK-506 CC1 CC(C2C(CC(C(02)(C(=0)C(=O)N3CCCCC3C(=0)OC(C(C(CC(=0)C(C=C(C1)C)CC=C)O)C)C(
=CC4CCC(C(C4)OC)O)C)O)C)OC)OC

ATRA (all trans-retinoic CC1=C(C(CCC1)(C)C)C=CC(=CC=CC(=CC(=0)O)C)C
acid)
LPA CCCCCCCCC=CCCCCCCCC(=)OCC(COP(=0)(0)0)0 Na]
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Figure 4-4: Effect of staurosporine on regeneration at different developmental stages of C.
elegans. PLM neurons of L4 or young adult zdIs5 nematodes were axotomized 50 pm or
60 pm away from the cell body respectively, and regrowth was scored after 48 h (**, P
< 0.01). Error bars indicate the s.e.m., n indicates the number of animals used in each
case. Nematodes were incubated in the presence of either 0.47% DMSO (control) or 10 pM
staurosporine in 0.47% DMSO, both of which caused significant toxicity and death in L3
or younger stage animals (hence, data is not provided for these stages).
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Table 4.4: Effects of kinase modulators on the regeneration of C. elegans PLM neurons.
Note that at higher concentrations staurosporine also inhibits Myosin light chain kinase
(MLCK), PKA, PKG, and CaMKII, and that Mitogen-activated protein kinase (MAPK)
and MLCK are also inhibited at higher concentrations of Wortmannin.

Small molecule Molecular target Regeneration effect P-value
vs. control (%)

db-cAMP cAMP-dependent pro- -0.388 0.973
tein kinase (PKA)

H-89 PKA -0.680 0.781

LY-294,002 Phosphatidylinositol 3- +1.271 0.894
kinase (P13K)

PD 98,059 MAPKK -30.549 0.765

Staurosporine PKC -60.796 1.623x 10-7

Wortrmannin P13K +7.258 0.606

Y-27632 ROCK -12.790 0.367
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Figure 4-5: Effect of staurosporine on neurite regrowth is dependent on staurosporine con-

centration and neuronal type. (a) PLM neurons of L4 nematodes were axotomized, and

regeneration was measured after 48 h. Staurosporine inhibited regrowth at concentrations
of 5 pM or higher. Toxicity was observed at concentrations higher than 10 pM. (b) Laser

microsurgeries were performed on different neuronal types of young adult nematodes, and

regeneration was measured 48 h later. Staurosporine had a significant effect only in PLM

neurons (**, P < 0.01). (c) Regeneration phenotypes observed 48 h after axotomy of PLM

(i and ii) or ALM (iii and iv) neurons in staurosporine-treated and control animals. Arrows

and asterisks indicate start and end points of regenerated axons respectively. Arrowheads

in (ii) indicate terminal retraction bulb and axonal swellings formed in PLM neurons after

staurosporine treatment. Scale bars: 30 pm. (d) Effect of staurosporine on GABAergic mo-

tor neurons at different parts of the nematode body. GABAergic neurons were axotomized

in L4 animals and regeneration was measured after 48 h. Treatment of nematodes with 10
pM staurosporine did not significantly alter the regrowth of posterior GABAergic neurons

when compared to non-treated animals. The regeneration response was similar among an-

terior, mid-body or posterior GABAergic neurons after exposure to staurosporine. Error

bars in (a), (b) and (d) denote the s.e.m., and n indicates the total number of animals used.
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Figure 4-6: Suppression of neurite regeneration by staurosporine is not due to induction
of apoptosis. (a) PLM neurons of L4 nematodes were axotomized, and animals were incu-
bated for 48 h with or without stauroporine. The apoptosis-defective ced-3(n717) genetic
background affects neither regeneration nor the effect of staurosporine on the regrowth of
PLM neurites after laser surgery. Error bars denote the s.e.m., and n indicates the total
number of animals used. (b) Axotomized L4 nematodes were incubated for 5 days in the
presence of 10 pM staurosporine. We did not observe formation of apoptotic bodies in either
non-treated or in staurosporine-treated animals, as shown in the Hoffman and fluorescence
images. Persistent expression of GFP in both cases indicates that neurons survive and are
functional. Arrows and asterisks indicate start and end points of regenerated axons respec-
tively. The empty arrowhead points to the GFP-expressing cell body of the axotomized
neuron in an animal that was exposed to staurosporine for 5 days. Scale bars: 30 pim.
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Figure 4-7: Enhancement and inhibition of regeneration by structurally different chemical
modulators of PKC activity. (a) PLM neurons of L4 nematodes were axotomized, and
animals were incubated for 48 h in the presence of staurosporine, G5 6983, chelerythrine,
or prostratin. The lengths of the longest regrowing neurites were compared (*, P < 0.05;
**, P < 0.01). Error bars indicate the s.e.m., and n indicates the total number of animals
used. (b) Representative images of regenerating PLM neurites as observed 48 h after laser
microsurgery in non-treated (i), Go 6983- (ii), chelerythrine- (iii), or prostratin-treated
(iv) animals. Arrows and asterisks indicate start and end points of regenerated axons
respectively. Scale bars: 30 jm.
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Figure 4-8: Effect of secondary staurosporine targets on regeneration. Specific inhibition of
the secondary staurosporine targets Ca2+/calmodulin-dependent protein kinase (CaMK-II),
Myosin light-chain kinase (MLCK), Protein Kinase A (PKA) and Protein Kinase G (PKG)
did not affect regrowth of the PLM axons following laser axotomy.
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Figure 4-9: PKC subfamilies in C. elegans and the effects of their genetic inactivation on
neural regeneration. (a) Identified C. elegans PKC genes. (b) Effects of genetic inhibition
on the regrowth of PLM axons following laser microsurgery.
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Chapter 5

Screening via temperature

modulationt

Abstract

High-resolution in vivo time-lapse assays require repeated immobilization and imaging

of whole animals. Here we report a technology for screening Caenorhabditis elegans at

cellular resolution over its entire lifespan inside standard multiwell plates using repeated

immobilization, imaging and optical manipulation. Our system does not use any fluidic or

mechanical components, and can operate for tens of thousands of cycles without failure. It

is also compatible with industrial high-throughput screening platforms and robotics, and it

allows both chemical, and forward- and reverse-genetic screens. We used this technology to

perform subcellular-resolution feintosecond laser microsurgery of single neurons in vivo, and

to image the subsequent regeneration dynamics at subcellular resolution. Our single-neuron

in vivo time-lapse analysis shows that neurite regrowth occurring over short time windows

is significantly greater than that predicted by ensemble averaging over many animals.

Key words: Caenorhabditis elegans, femtosecond laser microsurgery, immobilization, time-

lapse imaging, screening, multiwell plates.

tThis chapter is an adaptation of the material found in [129]. Author contributions:

C.B.R. and M.F.Y. designed experiments and wrote the manuscript; C.B.R. performed the

experiments.



5.1 Motivation

Despite the capabilities of the microfluidic devices we and others have designed, these types

of systems are complex to manufacture, operate, and maintain. Integration of these tech-

niques into existing HTS platforms using multiwell plates for large-scale incubation of C.

elegans has not been demonstrated, and is challenging due to well-known "world-to-chip"

fluidic interface issues [130]. Microfluidic devices for long-term isolation of C. elegans,

similar to the incubation chambers previously shown, have been demonstrated [131], yet

the scalability of these devices for large-scale assays has not yet been shown, due to the

significant overhead required for incubation of large numbers of animals. Although C. el-

egans can be anesthetized in multiwell plates for immobilization and imaging, the effects

of anesthesia are slow and variable, and removal of the anesthetic media without losing

animals is challenging. Additionally, exposure to anesthetics has side effects [80]. Here,

we demonstrate a simple method to rapidly and noninvasively immobilize C. elegans in

standard multiwell plates at multiple time points by modulating the temperature of indi-

vidual wells. This method is compatible with existing instruments, robotics, and protocols

used in high-throughput screening. Furthermore, this system does not use any fluidic or

mechanical components, and can operate for tens of thousands of cycles without failure. It

can perform both chemical, and forward and reverse genetic screens at cellular resolution in

vivo. In total, only a few minutes are needed to immobilize the animals when screening an

entire plate, and animals are immobilized only during for the brief period in which they are

imaged, thus minimizing stress. Using this technology, we study the regeneration dynam-

ics of single neurons in individual animals over time using laser microsurgery in multiwell

plates. Our single-neuron in vivo time-lapse analysis shows that neurite regrowth occurring

over short time windows is greater than that predicted by ensemble averaging over many

animals.

5.2 Materials and methods

5.2.1 Device construction and operation

Individual cooling elements consist of a 6.6x6.6-mm TEC (NL1011T-OAC, Marlow In-

dustries) and aluminium and coppers pins cut from 1/4" square rod. The aluminium pin is



attached to the cooled surface of the TEC and the copper pin is attached to the opposite side

of the TEC using a thermal adhesive (Arctic Alumina, Arctic Silver). A 1/4" thick copper

backplane with 1/4" square holes cut into it is used to array the cooling elements and provide

additional heat dissipation. The individual TECs are powered by a DC power supply set to

1.1 V (CS13005X III, Circuit Specialists), which draws a current of -0.6 A per active TEC.

The entire device is placed in a 96-well plate with thin glass bottom (MGB096-1-2-LG-L,

Matrical) so that wells can be imaged by a standard inverted epi-fluorescence microscope

(Eclipse Ti-U, Nikon). Anti-fog drops (FogTech) are used to prevent condensation on the

underside of the glass during cooling.

5.2.2 Well temperature measurements

Fine wire thermocouples (5TC-TT-T-40-36, Omega) were immersed into multiwell plates

at various positions. Wells were filled with 150 ll of liquid nematode growth medium

(NGM) and cooled using the described cooling technology. Thermocouple measurements

were recorded using a temperature logger (HH147U, Omega).

5.2.3 Nematode handling

Nematodes were grown at 15 'C in NGM agar plates, unless otherwise stated. Stan-

dard procedures were followed for C. elegans maintenance [99]. Nematode strains used in

this study included SD1726: Is [phis-72GFP;punc-54H1::mCherry;ppha-4mCherry], SK4005:

zdls5[pmec-4GFP]I and CX3553: lin-15B(n765)ky Is104[pstr-1GFP]X. The first strain was

a gift from the laboratory of Stuart Kim and the latter strains were obtained from the

Caenorhaditis Genetics Center. Age synchronizations were performed by transferring -25

gravid adults to a fresh NGM agar plate and allowing them to lay eggs for 6 h at 20 'C.

Following egg laying, the adults were removed and the plates were maintained at 15 'C for

the animals to grow normally. Animals were loaded into the individual wells using a pick.

5.2.4 Lifespan analysis

Two populations of animals were incubated in 96-well plates, with six animals and 150 Il of

liquid NGM supplemented with OP50 per well. The first population was cooled for 5 min

every hour over a 24-h period and was maintained at room temperature for the remaining

time. The control population was not cooled and was maintained at room temperature.



Subsequently, both populations were transferred to agar plates with OP50 feeding bacteria

in order to recover. Animals were observed once per day to assess mortality, and transferred

to new plates when needed.

5.2.5 Measurement of immobilization and image acquisition times

Animals were incubated in 96-well plates with one animal per well in 100 pl of liquid NGM

supplemented with OP50. The time required to immobilize and capture an image of an

animal were recorded. The time reported for positioning/focusing includes the time required

to move the position stage from well to well, locate an animal using a x2/0.1 NA objective

lens, switch to a x20/0.75 NA objective lens and focus on the animal. The majority of this

time was spent automatically centring the animal within the field of view and subsequent

focusing. The time reported for imaging includes the time required to capture the image

with 750-ms exposure, save it to the disk and switch back to the x 2 objective lens. For the

first well of the plate, an additional time is required for the cooling to halt the movement of

the animals because the first well does not benefit from the pipelined cooling (see Section

5.3.1). A Photometrics CoolSNAP HQ2 camera was used to acquire images. The field of

view of this camera was 4.66x3.355 mm, using the x2 objective lens.

5.2.6 Laser surgery

The optical path was set up as described in Appendix A. To perform femtosecond laser

microsurgery, a Mai-Tai HP (Spectra-Physics) femtosecond laser beam with 800-nm wave-

length and 80-MHz repetition rate was delivered to the specimen by means of an inverted

microscope (Eclipse Ti-U, Nikon). ALM and AWB axons were axotomized by pulses with 7

nJ energy for 1.5 ms, using a x20/0.75 NA objective lens. For laser surgery on glass slides,

synchronized nematodes were immobilized on 2% agarose pads using a drop of 10 mM

NaN3 . Measurements of axon regeneration were recorded and analyzed using a MATLAB

program.

5.2.7 Effects of immobilization methods on regeneration

We performed surgery both on animals anaesthetized on agar pads, and on animals immo-

bilized using in-well cooling. We cut one ALM axon per animal, 50 pm from the soma,

using the laser parameters described above. Following surgery, we split the animals that



were axotomized under anaesthesia into two populations, both maintained at 20 'C. One

population recovered on agar plates whereas the other population recovered in a 96-well

plate with six animals per well in 150 pl of liquid NGM supplemented with OP50. The

animals that were axotomized using in-well cooling were maintained in a 96-well plate with

six animals per well in 150 pl of liquid NGM supplemented with OP50. Regeneration length

was measured either 24 or 48 h following injury.

5.2.8 Effects of repeated immobilization on regeneration

Surgeries were performed on young-adult animals 50 pm from the ALM soma or 30 pm from

the AWB soma. Animals were immobilized by cooling in 96-well plates with six animals per

well in 100 pl of liquid NGM supplemented with OP50. Following surgery, both populations

recovered at 20 'C in well plates, and one population was also cooled for 5 min per well

every 6 h using the device. Regeneration length was measured 48 h post surgery.

5.2.9 Multitime-point imaging and analysis

Surgeries were performed on young adult animals 50 lm from the ALM soma. Animals

were incubated in 96-well plates with 100 pl of liquid NGM supplemented with OP50 per

well at 20 0C. The animals were immobilized by in-well cooling and imaged at multiple time

points (4, 8, 12, 18, 24, 30, 36, 42 and 48 h post surgery). Regeneration length at 6 h was

calculated by averaging data at 4 h and 8 h. Growth rates from 6-42 h were calculated

from the regrowth length using a centre difference method and the 48-h growth rate was

calculated using a backwards difference method. The centroids of the time windows were

calculated as

T = viti

where vi is growth rate data from the time points ti that make up the time window.

5.2.10 Statistical analysis

Comparisons of regeneration lengths were performed using a two-tailed Student's t-test.

Lifespan analysis was performed with the Logrank (Mantel-Cox) test using the GraphPad

Prism software package.



5.3 Fabrication, operation, and results

5.3.1 In-well cooling apparatus and its operation

It is well known that cooling reduces the motion of C. elegans [81]. Our device consists of

an array of individually addressable cooling elements that rapidly decrease the temperature

of wells. Each individual cooling element consists of a small square thermoelectric cooler

(TEC) bonded to an aluminum pin (which is inserted into the well) and a copper pin (which

is used to dissipate heat; Figure 5-1a). The copper pins of the individual cooling elements are

slotted into a copper backplane that is passively cooled, and the individual pins are inserted

into the wells (Figure 5-1b). This design is easily scalable to different well numbers and

dimensions. Independent control of well temperatures allows much faster screening of wells

by pipelining: While animals in one well are being imaged using inverted epi-fluorescence

microscopy, the neighboring wells that have yet to be imaged can be gradually cooled to

immobilize the animals in preparation for subsequent imaging and optical manipulation

(Figure 5-1c). Once the animals within the first well are imaged, the cooling element is

immediately turned off, allowing the animals to return to room temperature while the

already-cooled animals in the next well are imaged. This prevents the animals from being

exposed to low temperatures over the entire duration for which the multiwell plate is imaged.

During the cooling period, the temperature of the wells reaches 3-4 'C, with little cooling of

the adjacent wells (Figure 5-2) and negligible cooling of the wells beyond these. At the centre

of the adjacent wells, the temperature stays above 16 'C (even after prolonged cooling),

which is within the normal temperature range used for C. elegans culture. A temperature

of 3-4 'C was found to be the threshold temperature required to immobilize C. elegans;

higher temperatures did not sufficiently slow the animals' movement. On average, <20 s

(thus -32 min per plate) is required for all steps needed to image animals in the subsequent

wells, including the time required to locate the animal, move the multiwell plate to centre

the animal within the field of view, change objectives for high-resolution imaging, store

images and switch back to a low-magnification objective (Figure 5-3). Following screening,

the pins can be sterilized via heating by running the TEC in reverse (Figure 5-4).
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Figure 5-1: Immobilization of C. elegans in standard multiwell plates. (a) In-well cool-
ing device and its operation. (a) Individual cooling elements consist of an aluminum pin
bonded to a thermoelectric cooler (TEC) with a copper pin bonded to the opposite side to
dissipate heat. (b) Cooling elements can be arrayed to match various well configurations.
(v) Pipelined cooling. Thermoelectrically-cooled pins are inserted into wells containing an-
imals. Once activated, a cooling element reduces the temperature of the well, immobilizing
the animal(s) within that well. Immobilized animals are imaged or optically manipulated
using inverted epi-fluoresence microscopy. Concurrently, neighboring wells are cooled such
that the animals to be subsequently imaged are immobilized in advance.

5.3.2 Stable immobilization and imaging in multiwell plates

During the low-temperature period, cellular-resolution fluorescence images of entire animals

can be acquired (Figure 5-5a). Figure 5-5b shows an animal before and after cooling and

highlights the drastic improvement in image resolution. In addition to L4-stage and adult

animals, this system can successfully immobilize early-larval stage animals (Figure 5-6).

The reliability and reusability of this technology is very high because it does not use any

moving parts or microfluidic components. Cycling a cooling element continuously for 25,000

cycles (1 min on, 30 s off) had no impact on the cooling performance (Figure 5-7). This is

equal to the number of cycles the system would perform if plates were imaged continuously

at a rate of one plate per hour for 2.7 years.

5.3.3 In-well cooling does not affect animal health

We recorded several measurements to assess how our technique influences animal physiol-

ogy under frequent immobilization conditions. The difference between the lifespan of the

repeatedly cooled animals (cooled for 5 min every hour for 24 h) and the lifespan of the

control group (Figure 5-8) was nonsignificant (Logrank test; P = 0.61). Similarly, repeated

cooling did not affect the morphology of the animals nor their progeny count.
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Figure 5-2: Temporal and spatial dependency of the temperature inside the well being
cooled (near the sides and corners), in an orthogonally adjacent well (near the wall adjacent
to the well being cooled, near the adjacent-well centre and near the side of adjacent well
that is furthest from the well being cooled) and in a diagonally adjacent well (near the
corner closest to the well being cooled). Thermoelectric cooling was started at t=0 s (first
dashed line) and stopped at t=280 s (second dashed line). See Methods for measurement
technique.

Frequent cooling for time-lapse imaging also did not affect neurite regeneration, which

is a highly dynamic process: Our technique enables the use of subcellular-resolution optical

manipulation methods in multiwell plates, such as femtosecond laser microsurgery in mul-

tiwell plates. Precise targeting of axons by a laser for microsurgery becomes possible when

the animals are immobilized by cooling (Figure 5-9a). Following surgery, axons regenerate

(Figure 5-9b) as we previously showed in the first observation of axonal regeneration in

C. elegans [72, 73]. We first determined whether cooling affects regeneration by examin-

ing three different surgery conditions in young-adult animals. We performed surgery both

on anesthetized animals on glass slides, and on animals immobilized using in-well cooling.

After surgery, the animals axotomized under anesthesia were split into two populations,

one population recovered on agar plates, and the other population recovered in a 96-well

plate with liquid culture in the wells. Regeneration was observed 24 and 48 h following in-

jury, and no significant difference was found between the regeneration observed in animals

immobilized by in-well cooling and those immobilized by anesthesia (Figure 5-10a). We

also examined whether frequent immobilizations following femtosecond laser microsurgery

affect regeneration: There was no significant difference (Student's t-test P = 0.52) in the

regeneration observed 48 h post-surgery between a population that was cooled for 5 min
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Figure 5-3: Effects of pipelining on time required for C. elegans immobilization and imaging
inside a well plate with single animal per well, including time required to change objectives,
move the stage, and store the image data. Error bars show STD.

every 6 h and a control population that was not cooled but was maintained under otherwise

identical conditions (Figure 5-10b). Repeated cooling similarly did not affect the regener-

ation of the olfactory amphid wing 'B' (AWB) neurons in the head (Student's t-test; P =

0.33; Figure 5-10b).

5.3.4 Multi-time-point analysis of neural regeneration

Following surgery, we examined the axonal regeneration dynamics by frequently immobiliz-

ing and imaging several animals (Figure 5-11 and Figure 5-12a) over a 48-h time window.

Analysis of single neurons showed that the majority of regeneration (75+5.5%) occurs within

a short 18-h window (Figure 5-12b). In the absence of repeated single animal immobiliza-

tion and imaging, only statistical averages can be obtained from end-point measurements

on many animals. Such averaging (red dashed line in Figure 5-12a and b) underemphasizes

the growth that occurs after the first 24 hours post axotomy, obscuring that the period of

largest growth in some instances can occur later (Figure 5-12c). Use of the average regen-

eration rate also incorrectly predicts a significantly smaller amount of regrowth during any

18-h window (58 versus 75%, Student's t-test; P = 0.008).
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Figure 5-4: Pin sterilization via thermoelectric heating. Following insertion of the cooling
into a well containing 150 pL of liquid NGM medium supplemented with OP50, the end of
the pin was pressed into an agar plate. The TEC was then run as a heater by biasing it
at 2.5 V opposite to its normal (cooling) configuration. At this voltage, the temperature
at the end of the pin was approximately 120 'C. After being heated for 10 min, the TEC
was deactivated and after waiting 1 min the pin was pressed into another agar plate. Both
plates were incubated for 3 days at 37 *C and observed every 24 h.

5.4 Discussion

Performing screens entirely within multiwell plates confers several significant benefits. Be-

cause multiwell plates are commonly used, there already exists a wealth of equipment,

robotics and protocols for screening in this format. As a result, our technology can expand

the use of existing HTS systems to perform high-content multicellular organism screens at

subcellular resolution. High-speed precise liquid handling equipment can be used to rapidly

dispense precise volumes of screening compounds, and multiwell plates also simplify isola-

tion of animals for multitime-point tracking of single animals throughout the experiments.

Screening C. elegans entirely within multiwell plates also eliminates the complexity, cost and

unreliability associated with microfluidics, as well as the "world-to-chip" fluidic interface

issues for large-scale incubation of animals. Our cooling apparatus could could be manip-

ulated with high-throughput robotics, and also does not require any fluidic components;

thus, it is not susceptible to clogging or loss of animals. No side effects on animal lifespan,

neurite regrowth, progeny count or animal morphology are observed even after frequent

immobilization and imaging of animals at multiple time points. Each well of a 96-well plate

has sufficient volume of media to ensure that C. elegans is healthy over its entire lifespan,

and 96-well plates were previously used to enable large-scale screening of C. elegans from



Figure 5-5: Subcellular resolution imaging of C. elegans immobilized in standard multiwell
plates. (a) Multi-channel fluorescence image of an animal immobilized using in-well cooling.
Green: his-72, red: unc-54 & pha-4. Scale bar: 30 pm. (b) Fluorescence image of an
animal before and after cooling. (Left) Before cooling, the animal is moving too rapidly for
visualization at 10 frames/sec. (Right) Following cooler activation, the animal's movement
slows drastically allowing high-resolution imaging. Insets show fluorescence intensity across
the section of the animal indicated by the dotted lines in each image. Cooling pin is visible
on the right side of both images. Scale bar: 250 pm.

Figure 5-6: Immobilization of early-larval stage C. elegans. L1-L3 animals are immobilized
with sufficient stability to image cellular features. Green: his-72, red: unc-54 & pha-4.
Scale bar: 40 pam.
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Figure 5-7: Device lifespan. A single cooling element was repeatedly cycled for 60 s on, 30
s off a total of 25000 times (i.e. 625 h or ~26 d). After the indicated number of cycles a
well with 100 Ipl of water was cooled for 280 seconds and the temperature during cooling
was recorded.

Li stage until death to identify chemicals that extend lifespan [132]. As C. elegans can

produce significant numbers of progeny inside the wells, fluorodeoxyuridine is commonly

used to induce sterility while still allowing animals to develop normally [132-134]. Absence

of progeny simplifies tracking of animals throughout their entire lifespan, and reduces both

the amount of feeding bacteria required and the buildup of waste inside the wells.

Subcellular-resolution forward- and reverse-genetic assays, as well as chemical assays,

are possible in high-throughput-compatible multiwell plate formats using our technology.

Animals can be dispensed into multiwell plates either by flow sorters [24], or by manual or

automated liquid dispensers. Our device subsequently allows immobilization of animals in

the individual wells for imaging at multiple time points. Forward genetic screens can be

performed if mutagenized animals are dispensed into the wells. Reverse-genetic screens or

chemical screens can be performed if the animals are incubated in wells containing either

chemicals or dsRNA-expressing bacteria. The pins can be sterilized either by commercial

pin washers or via heating by running the TEC in reverse (Figure 5-4). There are also

a number of powerful image processing algorithms that, combined with our technology,

can further enhance the ability to perform high-throughput and high-content screens on

C. elegans. Using a low-magnification objective, an entire well can be imaged and the
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Figure 5-8: Effects on C. elegans lifespan after cooling for 5 min every hour. There was no
significant difference between the lifespans of the cooled (blue dashed line) and control (red
solid line) populations (icooled = 15.2, tcontrol = 14.3 days, Logrank test; P = 0.61).

location of individual animals can be determined automatically [59]. Higher resolution

images of individual animals can be automatically straightened in 3D [58], which simplifies

animal comparison and results in smaller file sizes. Automated cell-lineage tracing [66],

three-dimensional nuclei segmentation [135], and cell-body ablation [100] have all been

demonstrated for C. elegans. Our work enables the use of these advanced image processing

techniques in a HTS-compatible format.

C. elegans is a useful model for studying neuronal regeneration as its stereotypic anatomy

and hermaphroditic reproduction allow repeated studies of the same type of neural injuries

in isogenic animal populations, tignificantly enhancing the reproducibility of assays. Pre-

vious studies combining laser microsurgery and C. elegans have identified how several fac-

tors, including animal age, neuronal type, synaptic branching and axon guidance signalling,

influence regeneration [74-76]. Laser microsurgery screens, as well as screens using nema-

todes exhibiting spontaneous neurite breaks due to dysfunction of #-spectrin, have also

revealed that axon regrowth depends on the activity of MAP kinase pathways [76-78]. In

the previous chapter we demonstrated the use of microfluidics in combination with femtosec-

ond laser microsurgery to perform chemical screens on neural regeneration in C. elegans.

This screen identified a role for protein kinase C in the regeneration of the posterior lat-
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Figure 5-9: In vivo femtosecond laser microsurgery in multiwell plates. (a) Localized abla-
tion and regeneration of anterior lateral mechanosensory (ALM) axon in mec-4::GFP ani-
mal. Arrow (- -+) indicates point of surgery. (b) Regeneration 48 h after surgery. Triangle
(A) indicates starting point of regeneration, asterisk (*) indicates end of maximum-length
branch 48 h post surgery. Scale bars: 20 pm.
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Figure 5-10: Effects of cooling on regeneration following In vivo femtosecond laser micro-
surgery in multiwell plates. (a) Effect of immobilization method and recovery conditions
on regeneration following axotomy. Graph shows length of the longest regenerating branch
from the cut point following axotomy of ALM neurons in young-adult animals. There is
no significant difference between the cooled (black bar) population and the anesthetized
control groups (gray bar for recovery in liquid, white bar for recovery on agar) either 24 h
(Student's t-test; P = 0.91, 0.18 for the animals that recovered in liquid or on agar, respec-
tively) or 48 h (P = 0.88, 0.82, respectively) post-surgery. The total number of animals in
each experiment is indicated on the bar. (b) Effect of multiple immobilizations (every 6 h
for 48 h) on regeneration of ALM and AWB neurons. There is no statistically significant
difference between the regeneration measured in the cooled (black bars) and control (white
bars) populations (Student's t-test; P = 0.52 and P = 0.33, respectively). The total number
of animals in each experiment is indicated on the bar.



Figure 5-11: Time-lapse fluorescence imaging of neuronal regeneration in multiwell plates.
Scale bar: 15 im.

eral mechanosensory (PLM) neurons following surgery and showed that the small molecule

prostratin enhances regeneration. Our new in-well cooling technology can drastically scale

up these investigations on neural degeneration and regeneration by using a format entirely

compatible with existing HTS systems. In addition, time-lapse analysis can yield significant

insight into many physiological processes that cannot be gained through end-point assays,

as we illustrated here for neuronal regeneration following injury. Similarly, using our sys-

tem to image and screen time-resolved expression patterns of many genes using fluorescent

reporters such as elt-3::GFP, ugt-9::GFP, and col-144::GFP [136] can facilitate the study of

the aging process under variety of dietary, genetic, and environmental conditions.
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Figure 5-12: Analysis of neuronal regeneration dynamics. (a) Representative curves of
calculated growth rate of regenerating branch versus time. Each solid colored line shows a
measurement of the regrowth of a single neurite in an animal. Dashed red line shows mean
growth rate averaged over n = 15 animals. (b) Percentage of total regeneration occurring
over a moving time window. Solid blue line shows the percentage of 48-h regeneration versus
the time window calculated from multitime-point measurements on individual animals (n =

15). Dashed red line shows the same calculation using the average growth rate measurements

(red line in Figure 5-12a), and black dotted line shows the case if regeneration rate were
constant. (c) Distribution of the center of the 18-h window in which most of the regeneration
occurs. All error bars SEM.
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Appendix A

Construction of the femtosecond

laser microsurgery systemt

Abstract

Femtosecond laser microsurgery is a powerful method for studying cellular function,

neural circuits, neuronal injury and neuronal regeneration because of its capability to se-

lectively ablate sub-micron targets in vitro and in vivo with minimal damage to the sur-

rounding tissue. Here, we present a step-by-step protocol for constructing a femtosecond

laser microsurgery setup for use with a widely available compound fluorescence microscope.

The protocol begins with the assembly and alignment of beam-conditioning optics at the

output of a femtosecond laser. Then a dichroic mount is assembled and installed to direct

the laser beam into the objective lens of a standard inverted microscope. Finally, the laser

is focused on the image plane of the microscope to allow simultaneous surgery and fluores-

cence imaging. We illustrate the use of this setup by presenting axotomy in Caenorhabditis

elegans as an example. This protocol can be completed in 2 d.

Key words: femtosecond laser microsurgery, Caenorhabditis elegans

YThis chapter is an adaptation of the material found in [94). Author contributions: C.L.G.
and C.B.R. developed the laser axotomy techniques described in this protocol. M.A.S. and
J.D.S. developed the beam expander structure. M.A., C.B.R. and C.L.G. developed the other
elements of the system. M.A.S. developed the laser alignment technique. J.D.S., C.L.G. and
C.P.-M. wrote the manuscript, and M.A. and M.F.Y. commented on the manuscript at all
stages.



A.1 Introduction

Here we detail a procedure to add a femtosecond laser microsurgery capability to a standard

fluorescence microscope using commercially available components. The femtosecond laser

microsurgery system (Figure A-1 and corresponding component descriptions in Table A.1)

is designed to take up minimal space while allowing access to facilitate easy and repro-

ducible alignment. The design provides flexibility in the choice of objectives, filter cubes,

laser wavelengths and laser-pulse repetition rates while requiring no modification of the

fluorescence microscope. The protocol begins with the installation of major components

including the optical table, the microscope and the laser. Next, beam-conditioning optics

(optical isolator, electro-optic modulator (EOM), Glan-Thompson polarizer and half-wave

plate) are assembled and mounted. The construction and installation of a dichroic mounting

adapter, an assembly that brings the laser beam in line with the optical axis of the objec-

tive, is then described. The protocol then details the installation of a periscope to raise the

beam from the table to the microscope input port and a laser beam expander to resize the

beam to fill the back aperture of the objective. The protocol concludes with step-by-step

instructions for axotomy in C. elegans, which is included as an example application of the

system. Adapting the system for other microsurgical applications, such as those mentioned

above, involves modifications only to the standard sample preparation steps [137-142] and

use of different objective lenses [88]. For example, although an air objective lens with a nu-

merical aperture (NA) of 0.75 is sufficient for axonal ablation in C. elegans, for axotomy in

zebrafish larvae, researchers have used water-immersion objective lenses with 0.8 or higher

NAs [143]. For ablation of cytoskeletal filaments of cells in vivo, oil-inimersion objective

lenses with higher NAs of 1.4 are used [142]. In addition, different laser-pulse repetition

rates have been used in the literature [74, 88, 142], where the lower pulse repetition rates

yield reduced heat accumulation in specimen [88], and therefore less collateral damage. The

high speed EOM and the high pulse-repetition rate laser used in this protocol provide the

ability to choose any pulse repetition rate ranging from sub-KHz to 80 MHz, thus providing

sufficient flexibility.

The system described here does not include a two-photon imaging capability. However,



Table A.1: Component list for the optical system layout of Figure A-1.

Component Description

A Femtosecond laser
B Optical isolator
C Half-wave plate
D Glan-Thompson polarizer
E Electro-optic modulator (optional)
F Safety shutter and beam block
G Kinematically mounted mirror
H 01" Iris
I Periscope
J 01" Lens Li on z-adjustable stage
K Two 01" irises
L 02" Lens L2
M Beam expander
N Dichroic mounting adapter
0 20x 0.75 Numerical aperture (NA) objective
P Epifluorescence filter turret

Q Lower half of microscope body
R Camera

this capability can be easily added by replacing the top periscope mirror with scanning

mirrors and by adding a photomultiplier tube to one of the camera ports of the microscope

[144]. To adapt the laser system for simultaneous use by multiple microscopes simply

requires the addition of a beam splitter, EOM, periscope, beam expander and dichroic

mounting adapter for each additional microscope. If necessary, a regenerative amplifier or

a higher-power laser can be used to ensure that sufficient power is delivered to each setup.

A.2 Materials

A.2.1 Reagents

9 Experimental animals1 . Although transgenic strains of cells/animals expressing fluo-

rescent reporter proteins are not required for successful surgery, they do ease in the

identification and targeting procedures. (C. elegans: the SK4005 strain can be used

for visualization and axotomy of GFP-expressing mechanosensory neurons.)

Caution: All animal experiments must comply with the relevant institutional and national animal care

guidelines.



* Cover glass (0.175 mm x 25 mm x 50 mm)

" Microscope cover slides (1 mm x 25 mm x 50 mm)

" Agarose gel 1.5%

" Sodium azide 10 mM

A.2.2 Equipment

General equipment

o Femtosecond laser (Spectra Physics Mai Tai HP Ti:Sapphire, tunable-wavelength

Class IV laser). More cost-effective femtosecond lasers with a fixed wavelength can also

be used including: Polarynox femtosecond fiber lasers, Del Mar Photonics Ti:Sapphire

custom made kit, model TISSA100 and HighQLaser FemtoTrain, model IC-1045-3000.

Minimum recommended pulse energy is ~20 nJ (i.e., average power 1.6 W for a laser

with 80 MHz pulse repetition rate)

" Laser warning sign and safety equipment which meet requirements set by institutional

as well as local and national safety standards. Laser goggles with minimal safety rating

of OD7+ are recommended (Diode/Nd:YAG 42F goggle, Kentek, cat. no. KGG-42F)

" Optical table with sufficient surface area (1) (3.0 m x 1.5 m) and set of four air-

damped legs (Newport, cat. nos. RS-4000-510-12 and 1-2000-413.5, respectively)

" Inverted fluorescence microscope system (1) (Nikon Eclipse TI or similar model,

Nikon) including a 70-mm stage-up kit to provide sufficient clearance for the rear-

entry of the laser beam and a stage plate capable of holding a standard glass slide

" Image acquisition software (1) (NIS-Elements 2.0) and compatible computer.

" High-resolution CCD camera (1) (Photometrics Coolsnap HQ2)

" RMS-threaded IR and VIS alignment disk (400-640 nm and 800-1700 nm) (1) (Thor-

labs, cat. no. RMSIR)

" RMS 45 to CFI 60 objective adapter (1) (Nikon, cat. no. MXA20750)

" IR card (1) (Newport, model no. F-IRC4)



* Infrared viewer (1) (Newport, cat. no. IRV1-2000)

* Optical power meter and detector (1) (Newport, part nos. 1918-C and 818P-010-12,

respectively)

* 01/2" Post (2") (1) (Thorlabs, cat. no. TR2)

* 01/2" Post holder (2") (1) (Thorlabs, cat. no. PH2-ST)

* Standard base (1) (Thorlabs, cat. no. BA2)

* Function generator with single-pulse generation capability 2 (1) (BK Precision, model

no. 4030)

* Oscilloscope (Tektronix, TDS2024)

* 3/8" corded drill driver (1) (RIDGID, model# R70002)

* Drill set (Ryobi, model# AR2074)

* 1/4"-20 cap and set screws and #8-32 cap and screws (ThorLabs, cat. nos. HW-KIT2

and HW-KIT3, respectively)

Laser setup

" Optical isolator (1) (Conoptics, cat. no. 712TGG)

" Half-wave plate for 600-1050 inm high power applications (1) (Thorlabs, cat. no.

AHWP05M-950)

e High-precision rotation mount for 01" Optics (1) (Thorlabs, cat. no. PRM1)

* Glan-Thompson polarizer with 600-1050 nm anti-reflection coating (1) (Thorlabs, cat.

no. GL10-B)

" Polarizing prism mount (1) (Thorlabs, cat. no. SM1PM10)

" Kinematic mount for thin 01" Optics (1) (Thorlabs, cat. no. KM100T)

2Critical: If another model or device is used, ensure that the function generator, or any source in general
driving the high-voltage (HV) amplifier, is capable of driving the input load of the high voltage amplifier.
For example, if the input impedance of the HV amplifier is 50 Q and the maximum input voltage is 1 V, the
function generator must be able to supply at least 20 mA to have access to the full input range.
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* EOM (1) and requisite HV amplifier (Conoptics, cat. no. 350-160 EOM with ampli-

fier) 3

* Optical isolator mount (1) (Conoptics, model M102, modified to hold the isolator)

* EOM mount-labjack (1) (Conoptics, model M102) (optional, see Steps 10-12)

* Safety shutter (1) (Electro-Optical Products SH-10 Interlock safety shutter with silver

coated mirror, for NIR and DSH-10-110 V controller)

* Beam block (includes TR3 post) (7) (Thorlabs, cat. no. LB1)

* 2" High universal post holder (for use with beam blocks) (7) (Thorlabs, cat. no.

UPH2)

* 01/2" post (2") (3) (Thorlabs, cat. no. TR2)

* 01/2" post holder (2") (3) (Thorlabs, cat. no. PH2-ST)

* Standard base (3) (Thorlabs, cat. no. BA2)

* 50-Q BNC cables of sufficient length (2) to connect the function generator to the

oscilloscope and to the HV amplifier (or high-speed shutter controller if that option

is used). T-joint BNC-cable connector (http://Cablesnmore.com, cat. nos. N23713

and X15305, respectively)

Dichroic mounting adapter

* IR dichroic mirror (1) (Chroma, cat. no. 670dcspxr)

* Nikon adapter plate ('dust cover') (70 mm stage-up kit, Nikon)

" 01" (1") pedestal pillar post (1) (Thorlabs, cat. no RS1P)

* Compact kinematic mount (1) (Thorlabs, cat. no KMS)

* BA1 Standard base (1) (Thorlabs, cat. no. BA1)

3Caution: The cables connecting EOM to the HV amplifier carry high voltage. Only the appropriately

rated cables from the EOM manufacturer should be used. (Optional, see Steps 10-12) A high-speed mechan-

ical shutter capable of providing a 2.2 ms pulse can be substituted for the EOM; however, the EOM enables

the added benefit of two-photon excitation targeting (see Step 93).
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* Dichroic cube holder (1) (large aluminum filter cube, Nikon)

* High-performance epoxy (1) (Loctite Fixmaster, Loctite, part no. L08FA12920)

* #8-32 screw x 1/4" with low-profile head (1) (McMaster-Carr, cat. no. 91770A190)

Periscope and beam expander

* 40 mm focal length, 01", NIR achromatic doublet lens (1) (Thorlabs, cat. no. AC254-

040) (dependent on back aperture of objective lens; see Step 43)

* 200 mm focal length, 02", NIR achromatic doublet lens (1) (Thorlabs, cat. no.

AC508-200) (dependent on back aperture of objective lens; see Step 43)

e Single-axis position stage with micrometer (1) (Newport, cat. no. 460P-X)

* 01.5" post clamp adapter plate (1) (Thorlabs, cat. no. C1520)

e 14" tall 01.5" mounting post (3) (Thorlabs, cat. no. P14)

e 01.5" post mounting clamp (4) (Thorlabs, cat. no. C1501)

* Right-angle kinematic cage mount (2) (Thorlabs, cat. no. KCB1)

* 01" gold mirror (3) (Thorlabs, cat. no. PF10-03-MO1)

* 12" optical rail (1) (Thorlabs, cat. no. RLA1200)

9 02" lens mount (1) (Thorlabs, cat. no. LMR2)

* 01" optics, translating lens mount (1) (Thorlabs, cat. no. LM1XY)

e 01" iris (4) (Thorlabs, cat. no. ID25)

* Rail carrier (4) (Thorlabs, cat. no. RC1)

* 01/2" post (2") (7) (Thorlabs, cat. no. TR2)

* 01/2" post holder (2") (6) (Thorlabs, cat. no. PH2-ST)

* Standard base (5) (Thorlabs, cat. no. BA2)

* Ultra-stable kinematic 01" mirror mount (1) (Thorlabs, cat. no KS1)



Microscope optics

" High-NA objective lens for laser surgery (1). NA greater than 0.7 recommended.

Examples: Mag: 20x, NA: 0.75, air lens (Nikon, cat. no. MRD00200). For work in

C. elegans and Danio rerio axotomy, a 20 x, NA: 0.75 objective provides a suitable

balance between field of view and NA for rapid and reliable axotomy. If a different

objective is used, the focal lengths of lenses Li and L2 may need to be altered as

discussed in Step 43 of the protocol below.

" Fluorescence filter cube for use with the fluorescent reporter protein expressed by the

organism (1) (For GFP, Nikon HQ:F, Nikon)

" Optical notch filter at the laser wavelength (1) (Thorlabs, cat. no. FES0700)

" Standard square cage plate, SMI threaded inner bore (1) (Thorlabs, cat. no. CPO2)

" Epi and bright-field shutters (1) (Sutter, cat. no. LB-SC and IQ25-SA)

A.3 A note on laser safety

Before initiating the protocol, ensure that the appropriate 'Laser in Use' safety signs are

installed at the proper locations. In addition, the laser warning system as well as the laser

system itself must comply with the relevant institutional, local and national laser safety

guidelines. It is important to observe good laser safety practice, including not wearing re-

flective items such as jewelry and wristwatches when working near the laser. Do not look

through the microscope eyepieces when the laser is on and when either the internal laser

shutter or the safety shutter is open. Use beam blocks to safely terminate the laser beam

while aligning. The laser should be shuttered while inserting components into the beam

path. When installing a component into the beam path, use the IR card and/or IR viewer

to visualize the location of the beam. Close either the internal laser shutter or the safety

shutter (depending on the component location) and then place the component in the path.

Following this, open the shutter and view the location of the beam in relation to the compo-

nent being aligned. Close the necessary shutter and make more adjustments. If necessary,

repeat this on/view-off/adjust cycle multiple times to obtain satisfactory alignment.



A.4 Procedure4

A.4.1 Setting up the optical table, laser, power meter, microscope and

optical isolator

Timing: 6 h

1. Install the optical table (this should be done by the manufacturer).

2. Install the femtosecond laser system such that the beam is aligned down the center of

the optical table (this should be done by the manufacturer).

3. Install the microscope body and supporting equipment at least 1.5 m from the output

of the laser to allow sufficient room for the beam-conditioning optics (installation of

the microscope should be done by the manufacturer).

4. Attach the optical power detector to the power meter. Mount the detector on one of

the 01/2" posts and insert the post into a 01/2" post holder mounted on a standard

base (BA2) for easy insertion and positioning of the detector in the beam path. Turn

on the attenuator in front of the optical power detector to avoid damage (see manu-

facturer's manual for details). The optical power meter should be brought to zero to

calibrate it for ambient radiation5 .

5. Turn on the laser, leaving the internal shutter closed and allow it to warm up. Set

the laser wavelength to 800 nm.

6. Set the output power of the laser to a low yet stable level (-150 mW) and ensure that

the laser is not pulsing. This state of the laser is used for aligning optical components

6in steps below

7. Install the optical isolator7 (Component B in Figure A-1) with its mounting hard-

4Important note: These steps are time independent and may be stopped and started when
necessary; however, it is imperative that the laser is either properly shuttered or turned off
when not in use.

5Caution: It is critical both for user and equipment safety that the power meter is accurately calibrated.
6Caution: Do not allow the output power of the laser to exceed 200 mW.
7 Caution: The optical isolator contains a powerful magnet that can attract metallic tools such as

screwdrivers during installation, thus causing damage. It is also imperative that sufficient beam block
assemblies, composed of one beam block with post (LB1) and one 2" high universal post holder, are placed
around the isolator to absorb any beams reflected from the crystal surfaces of the isolator as shown in
Figure A-1 by the dashed orange lines. The placement and number of beam blocks is dependent to the
alignment of the optical isolator.



ware in front of the laser to eliminate back reflections (follow the instructions of the

manufacturer for alignment). The optical isolator prevents reflection back into the

femtosecond laser, which can result in instabilities in the output power and disrupt

mode-locking.

A.4.2 Installing the equipment to control the laser power

Timing: 2 h

8. Install the half-wave plate (Component C in Figure A-1) using the high precision

rotation mount, one 01/2" post, one 01/2" post holder and a standard base (BA2)

at the output of the optical isolator. Rotate the half-wave plate mount to the 0

position.

9. Install the Glan-Thompson polarizer (Component D in Figure A-1) using the polariz-

ing prism mount, the kinematic mount for thin 01" optics, one 01/2" post, one 01/2"

post holder and a standard base (BA2). Place a beam block assembly to absorb the

rejected beam.

10. Install the EOM (Component E in Figure A-1) (or high-speed shutter; see equipment

list), and place a beam block assembly to absorb the rejected beam. Follow the

installation instructions of the manufacturer 8

11. Install the HV amplifier (if using EOM), but do not turn it on. Connect the HV

amplifier to the EOM using the included HV-rated cables9.

12. Use a T-joint connector and two 50- BNC cables to connect the output of the function

generator both to the input port of the HV amplifier (or high-speed shutter controller)

and also to the input of the oscilloscope. To visualize single electrical pulses on the

oscilloscope screen, set the oscilloscope to trigger and hold on the rising edge at 0.5 V.

Consult the oscilloscope manufacturer's manual for detailed operation instructions.

13. Set the function generator to produce a square pulse with a 2.2 ms duration and 1.0

V amplitude (or the voltage required by the high-speed shutter control). Consult the

8Caution: When aligning the EOM, 200 mW or less average laser power must be used to avoid damage.
9Caution: The HV-rated cables look similar to standard low-voltage-rated BNC cables. Using improp-

erly rated cables increases the risk of electrocution and may damage equipment.



function generator manufacturer's manual for detailed operation instructions.

14. Mount the safety shutter using one 01/2" post, one 01/2" post holder and a standard

base (BA2) as well as a beam block assembly to serve as a rejected beam dump

(Components F in Figure A-1). Using the IR card and IR viewer, adjust the position

of the safety shutter and the beam block such that the beam is not clipped when the

safety shutter is open and the beam is reflected into the center of the beam block

when the safety shutter is closed.

15. Close both the internal laser shutter and the safety shutter.

16. Turn the laser to its maximum emission power and ensure that it is pulsing. For the

Mai Tai HP laser the expected maximum emission power is approximately 3.0 watts

at 800 nm.

17. Place the optical power detector at the output of the EOM. Turn on the HV amplifier.

Open the internal laser shutter and adjust the position of the detector to maximize

the power displayed on the meter.

18. Adjust the bias voltage of the HV amplifier until the measured power reaches its

minimum.

19. Turn off the HV supply.

20. Rotate the half-wave plate (Component C in Figure A-1) until the power measured

is appropriate for surgery: for axotomy in C. elegans, 1.2 W is sufficient when using

a 20 x objective lens with NA=0.75 and a 2.2 ms exposure time. For higher NA

objectves or longer exposure times, lower power levels are sufficient [88].

21. Turn on the HV amplifier and record the value on the power meter. This is the

minimum amount of transmitted laser power. The ratio of the power set in Step 20

to this value gives the contrast ratio of the laser power at the sample. A ratio of at

least 50 is desirable.

22. Close the internal laser shutter.

23. Remove the power detector from the beam path.



A.4.3 Assembly of the dichroic mounting adapter

Timing: 1 h and a 24-h pause

24. The dichroic mounting adapter, shown in detail in Figure A-2, is composed of the

dichroic mirror, the Nikon adapter plate from the 70 mm stage-up kit for a Nikon

Eclipse TI, one 01" (1") pedestal pillar post, one compact kinematic mount, one

standard base (BA1), one dichroic cube holder. The dichroic mounting adapter directs

the laser beam into the objective lens without interfering with the normal optical paths

of the microscope.

25. Mount the dichroic mirror in the dichroic cube holder.

26. Glue the dichroic cube holder to the standard base (BA1) using two-part epoxy fol-

lowing the diagram in Figure A-2.

27. Glue the compact kinematic mount to the standard base using two-part epoxy follow-

ing the diagram in Figure A-2".

28. Attach the pedestal pillar post to the compact kinematic mount using one #8-32 x

1/4" set screw.

29. Hold the dichroic cube holder so that the dichroic mirror is centered above the large

hole in the Nikon adapter plate. Use a marker to draw a circle on the Nikon adapter

plate around the bottom of the pedestal pillar post.

30. Using a hand-held power drill, make a 0.25" hole in the Nikon adapter plate at the

center of the marked circle as shown in Figure A-2.

31. Use a low-profile #8-32 x 1/4" screw to attach the pedestal post to the dust cover

through the hole drilled in Step 30.

32. Attach the completed dichroic mounting adapter (Component N in Figure A-1) to the

top of the microscope's fluorescent filter turret (Component P in Figure A-1) using

the screws and hardware included in the 70-mm stage-up kit.

l 0Critical step: Ensure that the coated side of the dichroic mirror is facing the laser.
"Critical step: To ensure that the components are glued properly, place the assembly upside-down on

a flat surface overnight while the epoxy cures.



A.4.4 Assembly of the periscope

Timing: 1 h

33. Construct a periscope (Component I in Figure A-1) using one 01.5" mounting post,

one BA2 standard base, two right-angle kinematic cage mounts, two 01" gold mirrors

and two 01.5" post mounting clamps. Place the periscope assembly on the optical

table as shown in Figure A-1 so that it will be able to direct the beam into the laser

entry port of the microscope.

34. Install a 01" gold mirror in the ultra-stable kinematic 01" mirror mount.

35. Repeat Step 6 to lower the laser output power.

36. Turn off the HV amplifier.

37. Mount the ultra-stable kinematic 01" mirror mount using a one 01/2" post, one

01/2" post holder and a standard base (BA2) (Component G in Figure A-1) on the

optical table. Open the internal laser shutter and the safety shutter. Coarsely align

the kinematic mirror to center the laser on the periscope's lower mirror. Close the

safety shutter and secure the kinematic mirror to the optical table.

38. Place a 01" iris at the input of the periscope (Component H in Figure A-1). This iris

will ease the process of realignment when needed.

39. Coarsely align the periscope to direct the laser horizontally into the back port of the

microscope.

40. Adjust the angle of the lower periscope mirror to center the laser on the upper

periscope mirror.

41. It may be necessary to repeat Steps 37-40 several times iteratively to obtain a satis-

factory alignment.

42. Close both the safety shutter and the internal laser shutter.

A.4.5 Assembly of the laser beam expander

Timing: 1 h



43. Determine the focal lengths of lenses Li and L2 needed to fill the back aperture of the

objective used for axotomy. In this protocol, the laser beam diameter of 3 mm must

be expanded to fill the 15-mm-in-diameter back aperture of the objective lens, and

therefore the beam must be expanded fivefold. The amount of expansion is determined

by the ratio of the focal length of lens L2 to that of lens Li, which in this protocol is

200 mm/40 mm=5. The distance between the lenses is the sum of their focal lengths

fi and f2 as shown in Figure A-3, which in this protocol is 40 mm + 200 mm=240

mm.

44. Construct the beam expander following the diagram in Figure A-4 using two 01.5"

mounting posts, two standard bases (BA2), two 01.5" post mounting clamps, one

12" optical rail, three rail carriers, one single-axis position stage with micrometer, one

01" translating lens mount, one 02" lens mount and four 01/2" post holders.

45. Place the beam expander on the optical table next to the microscope as shown in

Figure A-1. Positioning of the beam expander optics close to the microscope in this

manner provides two benefits: first, it allows for a single person to (re)align the setup,

thus facilitating quick troubleshooting. Second, it reduces the amount of real estate

on the optical table consumed by the optics and supporting hardware.

46. Use a bubble level to ensure the 12" optical rail is level. The rail carriers slide onto the

optical rail and are hand-tightened with the included screws. The single-axis position

stage with micrometer is mounted using cap screws.

47. Space the outer 01/2" post holders by a distance equal to fi + f2. The distance

between these two 01/2" post holders is finely adjusted below in the protocol.

48. Lower the laser power as in Step 6.

49. Completely close the iris closest to the objective. Close the remaining two irises

leaving an aperture of approximately 5 mm.

50. With the aid of the IR viewer and IR card, adjust both the height and the angle of

the upper periscope mirror until the laser beam passes through the two open irises.

51. Open all three irises.



52. Center the beam on the dichroic mirror by adjusting only the height of the upper

periscope mirror and the position of the periscope assembly on the optical table. If

the periscope assembly is displaced, repeat Steps 37-40 to recenter the beam on the

lower periscope mirror.

53. Close all three irises leaving an aperture of approximately 5 mm. Adjust the height

of the 12" optical rail until the laser passes through all three irises. Use a bubble level

to ensure the 12" optical rail is level.

54. Close both the safety shutter and the internal laser shutter.

A.4.6 Coarse alignment of the laser

Timing: 30 min

55. Construct the IR alignment tool by drilling12 a 1/8" diameter hole through the center

of the RMS-threaded IR alignment disk and then insert the modified IR alignment

disk into an RMS 45 to CFI 60 objective adapter.

56. Thread the completed IR alignment tool into the microscope nosepiece.

57. Place a cover glass on the stage plate to act as a reflecting surface for laser alignment.

58. Lower the laser power for alignment as in Step 6.

59. Tilt the condenser arm away from the stage to facilitate viewing of the IR alignment

tool.

60. Open the internal laser shutter and the safety shutter.

61. Using the IR viewer, observe13 the top of the IR alignment tool as shown in Figure A-5.

62. If the laser is not passing through the center hole then a glowing dot will appear on the

surface of the IR alignment tool as shown in Figure A-5a. Use the compact kinematic

mount of the dichroic mounting adapter to center the laser on the IR alignment tool.

1 2 Caution: The alignment disk is built from brittle plastic so drilling must be done with care.
1 3 Caution: Do not hold the IR viewer directly in the beam path as this could result in damage to the

IR viewer.



63. If the laser beam is not normal to the cover glass two spots will appear on the surface

of the IR alignment tool as shown in Figure A-5b: a glowing ring around the center

hole (the 'transmitted beam spot') and a spot off to the side (the 'reflected beam

spot').

64. Note the location of the reflected beam spot.

65. Adjust the angle of the upper periscope mirror to move the transmitted beam spot

approximately half the distance towards the initial location of the reflected beam spot

(from the previous step). In doing this, the reflected beam spot will itself move and

may disappear, as the transmitted beam is no longer passing through to the center

hole.

66. Adjust the angle of the dichroic mirror using the compact kinematic mount of the

dichroic mounting adapter to bring the transmitted beam spot back to the center hole.

The reflected beam spot should move back towards the center hole at approximately

twice the rate as the transmitted beam spot, and they will meet in the middle as

shown in Figure A-5c.

67. Close the safety shutter. Insert L2 making sure that the curved surface of the lens

faces away from the objective.

68. Open the safety shutter. Using the IR viewer, observe the IR alignment tool and

center the transmitted beam spot by adjusting the position and pitch of L2.

69. Close the safety shutter. Insert Li making sure that the curved surface of the lens

faces L2.

70. Open the safety shutter. Using the IR viewer, observe the IR alignment tool and center

the transmitted beam spot by adjusting the position and pitch of Li using both the

01/2" post and the 01" translating lens mount. Note that the transmitted beam spot

will be larger and diffuse after inserting Li as shown in Figure A-5d. Ensure that the

beam is not clipped (i.e., the transmitted beam spot should be a full, symmetric and

circular disk on the IR alignment tool).? TROUBLESHOOTING.

71. Close the safety shutter and internal laser shutter.
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A.4.7 Fine alignment of the laser and image focal planes

Timing: 1 h.

72. Insert the objective to be used for surgery. Make sure that no filter cube is in the

active slot of the epifluorescence filter turret. Turn on the HV amplifier and adjust

the half-wave plate as discussed in Steps 17-21.

73. Close the internal laser shutter and the safety shutter.

74. Draw lines on a clean cover glass using a non-water-based permanent marker (e.g.,

Sharpie)14 . Place the cover glass on the stage plate.

75. Turn on the camera and image acquisition software.

76. Open the internal laser shutter and the safety shutter.

77. Locate the image of the laser in the preview window of the image acquisition soft-

ware. Center the beam in the preview window by adjusting the angle of the dichroic

mirror using the compact kinematic mount of the dichroic mounting adapter.? TROU-

BLESHOOTING.

78. Mark the position of the laser on the computer monitor with a piece of tape15 .

79. Close the internal laser shutter and the safety shutter.

80. Insert the laser notch filter into a 30 mm-standard square cage plate.

81. Place the laser notch filter between the dichroic mirror and the microscope epifluo-

rescence filter turret.

82. Tilt the condenser arm to its original upright position. Turn on the bright field source,

adjust the exposure of the camera and focus on the edge of a marker line. Move the

stage to position the edge of a marker line under the piece of tape on the computer

monitor.

14Critical step: Use only a single pass with the marker, as a thick coating will not allow the laser to
produce thin cuts.

1 5Critical step: Do not move the image acquisition software preview window after marking the beam
location.
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83. Open the safety shutter. Depending on the locations of Li and L2 set in Steps 68-

70 the region of marker underneath the tape will be ablated to varying degrees of

sharpness, symmetry and size. While staying focused on the edge of the marker line,

adjust the position of Li along the optical rail using the micrometer to adjust the

focus of the laser beam to increase the sharpness of the ablation. In addition, adjust

Li using its translating mount axes to further improve the shape of the ablation.?

TROUBLESHOOTING.

84. Characterize the laser alignment by using the single-pulse button on the function

generator to generate spots and compare the result to the image in Figure A-6. When

the system is properly aligned, the cutting patterns shown in Figure A-6 should be ~3

im wide and the firing patterns should be ~9 pm across. Note that these values have

been found to be suitable for axotomy in C. elegans using a 20x, NA: 0.75 objective.

85. Close the safety shutter and the internal laser shutter.

A.4.8 In vivo laser axotomy on C. elegans16

Timing: 25 min

86. Prepare the microscope for fluorescence imaging and remove the laser notch filter (1

min).

87. Turn on the HV amplifier and adjust the half-wave plate as discussed in Steps 17-21

(3 min).

88. Open the internal laser shutter and the safety shutter (2 min).

89. Locate the image of the laser in the preview window of the image acquisition software

and adjust the piece of tape on the monitor if necessary (2 min).

90. Close the safety shutter and return the laser notch filter to its position above the

microscope filter turret (2 min).

1 6 A note on timing: These steps are strongly time dependent and must be completed within

2 h once the anesthetic has been administered to ensure minimal toxic effects (C. elegans).

The rapid development cycle of the animals may influence the biological process under study,
so care should be taken to ensure that the animal is in the proper developmental stage.
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91. Immobilize an animal on a cover glass using standard procedures [145]. Place the

cover glass on the stage plate. Ensure that the animal is as close to the cover glass as

possible (5 min).

92. Using fluorescence imaging, locate the animal and move the stage to bring the axon

or cell to be ablated directly under the piece of tape. Bring the target axon or cell

into focus (< 30 s).

93. Open the safety shutter and adjust the focus to achieve two-photon fluorescence of

the target axon, indicative of proper focusing. Adjust stage position and focus if

necessary (< 30 s).

94. Press the single-pulse button on the function generator to ablate the target axon or

cell. Immediately close the safety shutter to avoid damaging the organism/cell (< 10

s).? TROUBLESHOOTING.

95. Recover the animal using standard procedures [145] (5 min).

96. At the end of the experiment, close the safety shutter and internal laser shutter. Turn

off the laser and the fluorescence and bright field sources (3 min).

A.5 Timing

A.6 Troubleshooting

Troubleshooting advice can be found in Table A.3.
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Table A.2: Time required for assembly of femtosecond laser system.

Steps Description Time Required

1-7 Setting up the optical table, 6 h
laser, power meter, micro-
scope and optical isolator

8-23 Installing the equipment to 2 h
control the laser power

24-32 Assembly of the dichroic 1 h + 24 h pause
mounting adapter

33-42 Assembly of the periscope 1 h

43-54 Assembly of the laser beam 1 h
expander

55-71 Coarse alignment of the laser 30 min

72-85 Fine alignment of the laser 1 h
and image focal planes

86-96 In vivo laser axotony on C. 25 min
elegans

Table A.3: Troubleshooting table.

Step Problem Possible reason Solution

16 Laser is not pulsing Optical isolator is not Check optical isolator manual

functioning properly, al- and ensure the component is

lowing back reflections aligned correctly

into the laser

Continued on Next Page...
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Table A.3 - Continued

Step Problem Possible reason Solution

Laser power is set too Check the power output of the

low laser

21 Power ratio at electro- EOM is misaligned or Realign and/or consult manu-

optic modulator (EOM) damaged facturer

is insufficient

Bias voltage for high- Repeat Step 18

voltage (HV) amplifier

is incorrect

53 The laser beam will not The 12" optical rail is Carefully rotate the entire

pass through all three not parallel to the beam beam expander structure to

irises path bring the 12" optical rail par-

allel to the beam path

62 Cannot find laser spot Dichroic mirror is Adjust the rotation of the

on the infrared (IR) severely misaligned 01" pedestal post holding

alignment tool dichroic and/or compact kine-

natic mount on the adapter

plate and realign

Continued on Next Page...
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Table A.3 - Continued

Step Problem Possible reason Solution

65, 66 Transmitted beam spot The beam is being Adjust the position and/or ro-

disappears as it is clipped tation of the 01" pedestal pil-

moved lar post; if insufficient, re-

align the periscope, beam ex-

pander and dichroic mounting

adapter

68 The beam spot cannot The laser beam is not Adjust the beam expander

be properly centered us- passing through the hardware, in particular the

ing only L2 center of L2 height of the 12" optical rail

from the table

70 Expanded beam shape Clipping of the beam Check alignment using IR

is asymmetric or irreg- and/or poor orientation viewer and IR card and cor-

ular in shape of the lenses rect the misaligned conipo-

nents

77 Cannot find laser in pre-

view window

Beam may not be falling

on the CCD of the cam-

era

Filter cube may be

in the active slot of

the epifluorescence fil-

ter turret and may be

blocking the laser beam

Rotate the camera in its

mount if the sensitive area is

particularly small

Remove the filter cube

Continued on Next Page...
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Table A.3 - Continued

Step Problem Possible reason Solution

83 Cannot obtain sharp Imaging and laser plane Find both planes of focus;

cuts on the permanent of focus are mismatched if the laser plane of focus

marker is below the imaging plane,

move Li closer to L2 with the

micrometer; if laser focus is

above, move lenses apart

Laser is not pulsing Change the settings of the

laser to pulsing mode or go to

troubleshooting of Step 16

84 Firing pattern is asym- Clipping of laser beam

metric or large

Misalignment of lenses

Laser is not focused on

the image plane

Power level is too high

Trace the beam path using

the IR card to determine the

point of clipping and correct

the misalignment

Realign the lenses

Adjust the position of Li

along the 12" optical rail us-

ing the micrometer

Verify the high-power level us-

ing Steps 17-21

Continued on Next Page...
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Table A.3 - Continued

Step Problem Possible reason Solution

Laser is not centered on Redo Steps 63-71 to correctly

or overfilling the back align the incoming beam on

aperture of the objec- the back aperture of the ob-

tive lens jective

The position of cuts Non-normal incidence Redo Steps 62-66 to correctly

shifts when focusing of laser beam onto the orient the incoming beam

back aperture of the

objective

89 Laser spot has moved The alignment of com- Check alignment using IR

significantly since last ponents have changed viewer and IR card and cor-

usage rect the misaligned compo-

nents

94 Failure to successfully

ablate the target

Laser is not focused on

the image plane

Energy of the laser is

too low

Repeat Steps 72-85

Check maximum power of the

beam using power detector at

the output of the EOM; see

Step 17

Continued on Next Page...

108



Table A.3 - Continued

Step Problem Possible reason Solution

Target is too deep in the

tissue for efficient cut-

ting; excessive scatter-

ing

Reorient the sample

Numerical aperture Use objectives with higher NA

(NA) of the objective is

too low

Laser is not pulsing

Significant laser pulse

dispersion

Specimen is damaged at

low power, even when

not firing

Minimum transmitted

power is too high

Change the settings of the

laser to pulsing mode or go to

troubleshooting of Step 16

Analyze the entire beam

path for portions which may

be causing significant dis-

persion and adjust/replace

components with ones suited

for high-speed near infrared

(NIR) lasers

Check/correct EOM bias volt-

age and the rotational angle of

the half-wave plate
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A.7 Anticipated results

A.7.1 Characterization of the femtosecond laser surgery system

The setup described in this protocol produces a circular laser spot with a full-width at

half-maximum (FWHM) of 1.7 im at the focal plane (see Figure A-7). An objective with

a higher NA can be used to generate a smaller laser spot size at the expense of the working

distance and/or the field of view. Using the components described in this protocol, the

total power loss between the output of the EOM and the sample is 47.5%.

A.7.2 Axotomy of C. elegans mechanosensory neurons

With a 20x (NA=0.75) objective, we use a 1.20 W (measured at the output of the EOM,

which corresponds to 0.63 watts at the sample), 2.2 ms-long laser pulse train to carry out

axotomy on C. elegans zdIs5 strain (GFP-labeled mechanosensory neurons) (see Figure A-

8). Although low-magnification objective lenses have smaller NAs, they allow simultaneous

visualization of the cell body and large portions of the axons, enabling surgery of the axons

at precisely measured distances from the soma.

Lower laser power and shorter pulse trains can be used; however, the reproducibility

of surgery decreases at lower powers in part because of increased sensitivity to laser focus

[88]. In addition, it becomes difficult to distinguish photodamage from photobleaching.

Photobleaching is often followed by spontaneous recovery of fluorescence in the axon at

the site of injury within a few minutes, whereas photodamage leads to permanent non-

fluorescent regions. The threshold power levels for photobleaching versus photodamage

can be characterized using dye-filling techniques [72, 73]. Conversely, higher laser powers

and/or longer pulse trains often result in extensive scarring, causing widespread injury to

the animal [73,88,146].

Upon ablation, we often briefly observe fluorescent protein leaking from the axon termi-

nals and diffusing into the surrounding area. The brightness of the axon terminals decreases

initially, and recovers within several minutes, leaving a non-fluorescent region at the site

of surgery. Within several minutes both the proximal and distal axon terminals retract by

several microns (arrow 2 in Figure A-8b). Within a few hours, the proximal axon terminal

starts regrowing (arrow 3 in Figure A-8b) [73]. The regrowing proximal axon terminal may

also fuse with the distal axon terminal [73].
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Figure A-2: An exploded view of the dichroic mounting adapter. (a-b) (a) The dichroic
mounting adapter is composed of a metal filter cube, which contains an infrared (IR) dichroic
mirror (b). (c) The filter cube is attached to a BA1 standard base using glue. (d) The
opposite face of the BA1 standard base attaches to a two-axis compact kinematic mount
also using glue. (e) The compact kinematic mount is attached to a 01" (1") pedestal pillar
post with a #8-32 x 1/4" set screw. (f) The assembly comprising components a-e mounts
to a Nikon adapter plate from a 70 mm stage-up kit so that the dichroic mirror sits in the
beam path. (g-h) (g) This is accomplished by drilling a hole and using a #8-32 x 1/4"
screw (h) to position the dichroic mirror over the opening in the adapter plate. (i) The
entire assembly is affixed to the microscope using screws included in the 70 mm stage-up
kit. Figure A-1 shows the location of the dichroic mounting adapter on the microscope.
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Figure A-3: Optical path for simultaneous epifluorescence imaging and laser axotomy. The
femtosecond laser, indicated by the red line, passes through beam conditioning optics before
being directed up by the near infrared (NIR) dichroic mirror into the back aperture of the
objective lens. The epifluorescence excitation, indicated by the blue line, is simultaneously
directed into the back aperture of the objective lens by the filter cube. The fluorescence
emission, indicated by the green line, passes through multiple filters and is captured by the
camera.
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Figure A-4: An exploded view of the beam expander. Lenses Li and L2 (a and b, re-
spectively) sit in their mounts that are attached to 01/2" posts. Two 01" irises (c) are
also attached to 01/2" posts. All four posts sit securely in 01/2" post holders (d), one
of which is attached to a single-axis stage (e) with rotatable micrometer and 01.5" post
clamp adapter plate (f), whereas the remaining three are attached to rail carriers (g). These
four assemblies firmly attach to the 12" optical rail (h) which is mounted to the two 01.5"
posts by two 01.5" post mounting clamps (i). The entire assembly is mounted using BA2
standard bases.

115



Figure A-5: Use of the infrared (IR) alignment tool. The IR alignment tool is composed

of an RMS IR-aligning disk and an RMS 45 to CFI 60 objective adapter. (a) Without

lenses Li and L2, the transmitted beam is directed to the center of the dichroic mirror,
thus resulting in a glowing spot on the field of the disk. (b) Adjusting the dichroic mirror

causes the transmitted beam to pass through the center hole and an additional spot caused

by the reflection of the beam from the cover glass appears on the field of the disk. The

reflected spot is caused by the non-normal incidence of the transmitted beam on the cover

glass. Moving the transmitted spot half-way towards the initial location of the reflected

spot by adjusting the upper periscope mirror and then moving the transmitted spot back

to the center hole by adjusting the angle of the dichroic mirror, achieves normal incidence

of the beam on the cover glass. (c) Normal incidence is indicated by both reflected and

transmitted beams passing through the center. (d) Inserting both lenses Li and L2 into

the beam path (Steps 68-70), results in a large, symmetric circular illumination on the IR

alignment tool.
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Figure A-6: Ablated patterns in permanent marker on cover glass under different alignment
conditions. (a,b) When the image plane is focused on the boundary of the marked and
unmarked glass surfaces, and when the system is properly aligned, the resulting cutting
pattern is narrow and symmetric (a), whereas the firing pattern is relatively small and also
symmetric (b). If the beam is clipped and/or lenses Li and L2 are misaligned, the cutting
pattern is wider in one direction than the orthogonal direction (c). In addition, the firing
pattern becomes asymmetric. If the laser is out of focus, the cutting pattern is blurred and
the firing pattern is larger (d). Scale bar: 50 pm.
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Figure A-7: Point spread function of the laser at the focal plane. The system described in

this protocol generates a circular laser spot at the sample with a full width at half-maximum

of 1.7 jim.
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Figure A-8: Femtosecond laser microsurgery. (a) A highly localized region (arrow) of a
Caenorhabditis elegans mechanosensory neuron is ablated using the system described in
this protocol. (b) Following surgery at point 1, the ablated process first retracts to point 2
and then regenerates to point 3. Scale bar: 10 grm.
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Appendix B

Construction of simplified devices

for microfluidic immobilization of

physiologically active C. eleganst

Abstract

We present a procedure for building and operating a microfluidic device for mechanical

immobilization of Caenorhabditis elegans in its physiologically active state. The system

can be used for in vivo imaging of cellular processes such as neuronal regeneration, intra-

cellular Ca2+ signaling, cell division and migration, as well as for laser microsurgery and

multiphoton microscopy. The system consists of a transparent, two-layer silicone device,

in which C. elegans is first linearly oriented, and then its motion is completely restrained

by pressurizing a thin flexible membrane against the animal, and without using potentially

harmful anesthetics, gases, or cooling procedures. The system can be installed on any

microscope and operated by only one syringe and one external valve making it accessible

to most laboratories. The devices can be fabricated and assembled with external fluidic

tThis chapter is an adaptation of the material found in [147]. Author contributions: C.B.R.

and F.Z. developed and characterized the microfluidic immobilization procedure. C.L.G. en-

gineered the immobilization technique for manual operation, developed troubleshooting tech-

niques and wrote the paper. C.L.G. and C.B.R. developed the other elements of the system.

M.F.Y. supervised the project at all stages.
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connectors within 3 d.

Key words: Caenorhabditis elegans, microfluidics, femtosecond laser microsurgery, immo-

bilization and time-lapse imaging.

B.1 Introduction

The nematode Caenorhabditis elegans (C. elegans) is an extensively studied multi-cellular

model organism, mainly due to its small size, optical transparency, rapid development, and

amenable genetics. Many assays and manipulations on C. elegans require reversible im-

mobilization of the animals. The most common and broadly used immobilization methods

anesthetize nematodes on agarose pads with water-soluble chemicals [145]. However, anes-

thesia may affect the physiology of the animal [80] as well as cellular processes such as cell

division, neurite growth, and calcium signaling. Cooling [81] and anesthesia by CO 2 [82]

have also been used, although the physiological effects of these methods remain uncharac-

terized for many biological processes. Therefore, there is significant need for non-invasive

and reversible immobilization techniques that enable imaging and manipulation of cellular

processes at subcellular resolution.

The physiology of C. elegans and its ability to be cultured in liquid make it highly

amenable to manipulation in microfluidic devices, and this procedure details the fabrication

of such a device. The technique presented here also aligns animals in a linear orientation,

simplifying cell tracking, image processing and comparisons between animals. In addition,

this device allows the animals to be loaded and unloaded rapidly, and to be recovered quickly

and reliably. The devices can immobilize animals at different ages during development by

simply adjusting the pressure levels to accommodate animal sizes from L4 larval stage to

fully-grown adult. For smaller animals, the dimensions of the device must be scaled down.

Suggestions for this are given in the Experimental design section.

The system presented in this chapter can be installed on any inverted microscope and

can be operated by only one syringe and one external valve, making it accessible to most

laboratories. The animal to be immobilized is first loaded into the device (Figure B-1),

which is composed of two PDMS (polydimethylsiloxane) layers i.e. flow layer and com-

pression layer. These PDMS layers are bonded to each other, and the combined layers
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are bonded to a dish with a cover glass bottom. The animal is transported within the flow

layer, which contains a narrow channel array that allows fluid to pass while not letting the

animals flow through. Thus, the animal is linearly oriented by the flow through the chan-

nel array. The compression layer contains a channel above the thin membrane that

separates the two layers [148]. When the pressure in the compression layer is raised, the

immobilization membrane expands into the flow layer, wrapping around the animal

and completely restraining its movement. The animal can then be imaged and optically

manipulated through the cover glass at the bottom of the chip via an inverted microscope.

Afterwards, the pressure in the compression layer can be released, and the animal can

be pushed out of the chip by reversing the flow through the channel array.

aiI b1 

Figure B-1: Microfluidic chip for mechanical immobilization of C. elegans. (a) Diagram of
the chip with numbered arrows showing C. elegans manipulation steps. 1: Loading of a
nematode from the input/output port-B into the flow layer (yellow) and its restraint by
a narrow channel array. 2: The animal is immobilized by pressurizing the compression
layer (blue) via port-A, causing the immobilization membrane to flex into the flow
layer (yellow). 3: Release and unloading from the chip. (b) Cross-section of the chip
showing the immobilization method when (i) the compression layer (blue) is not pressur-
ized, allowing the animal to be positioned and (ii) the compression layer is pressurized,
restraining the animal's motion within the flow layer (yellow) enabling laser microsurgery
through the cover glass.
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B.1.1 Comparison with other methods

Alternative microfluidic methods for immobilizing C. elegans include flowing animals into

narrow channels [96], cooling [97], and CO 2 [98]. The use of narrow channels to laterally

trap animals has not been shown to provide sufficient immobilization stability for repeat-

able imaging at cellular resolution. Cooling affects dynamic cellular processes and the

effects of CO 2 remain unknown. Guo et al. [95 also adapted a similar immobilization

technique employing a membrane but three-dimensional imaging of cellular processes was

not shown. The method described in this protocol allows immobilization of whole animals

with subcellular-level stability, and three-dimensional two-photon images can be acquired

even at slow acquisition rates [87]. The stability of the presented technique is due to the

extensive optimization in thicknesses, flexibilities, and roundness of the channels and the

membrane [87]. A simple immobilization technique employing agarose and polystyrene

spheres [149] is also available. However, rapid and reliable recovery of animals without

loss is challenging and the animals are also held in random orientations, complicating cell

tracking and image analysis. Additionally, motility of physiologically-active animals was not

quantified for applications requiring high immobilization stability such as three-dimensional

confocal and two-photon imaging.

B.1.2 Experimental design

The procedure begins with the fabrication of mold-C (which is used to mold the aforemen-

tioned compression layer) and mold-F (which is used to mold the flow layer) by patterning

silicon wafers with photoresists using optical masks (Figure B-3) along with tools and ma-

terials available in most university cleanrooms (Figure B-2a). Following photolithography,

a thin layer of PDMS is spun onto mold-F (to form the flow layer (yellow) in Figure B-la,

and B-2b) and a thick layer of PDMS is poured onto the mold-C (to form the compres-

sion layer in Figure B-la (blue), and B-2b). These PDMS layers are partially cured in

an oven. The compression layer is peeled from mold-C and a hole is punched into the

compression layer to provide fluidic access to the channels in that layer (Figure B-2c).

The compression and flow layers are then aligned and bonded to each other by further

thermal curing (Figure B-2c). Once these layers have bonded and then peeled from mold-

F, two holes are then punched to access the channels in the flow layer (Figure B-2d).
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The layers are then plasma bonded to a cover glass and thermally cured overnight (Fig-

ure B-2d). Finally, steel pins and tubing interface the completed chip to a manual valve for

pressurizing the compression layer and to a syringe for loading and unloading animals

(Figure B-2e). The steps involving photoresist patterning, PDMS, and plasma bonding

include time dependent sequences as detailed in the Timing section.

a b c d e

. 1.

Flow La

Wafer mold PDMS molding Hole punching and Hole punching and Interfacing to chip
fabrication thermal bonding plasma bonding

Figure B-2: Procedure overview. (a) Photolithography techniques are used to generate
photoresist patterns on silicon wafers creating mold-C and mold-F. (b) Structures are
then molded into PDMS layers using the wafer molds by pouring a thick layer onto mold-
C and spin-coating a thin layer onto mold-F followed by curing in oven. (c) The PDMS
layer is peeled from mold-C and a hole is punched to access the compression layer. This
layer is then aligned onto the PDMS layer on mold-F. The PDMS layers are then baked in
an oven overnight forming a strong thermal bond. (d) The combined PDMS layers are then
peeled from mold-F and two holes are punched to access the flow layer. The combined
PDMS structure is then plasma bonded to a dish with a cover glass bottom and baked
overnight. Finally, the chip is interfaced with steel pins and connected with tubing to a
syringe and a manual valve.

Three optical masks (either negative or positive) will be used to make the molds by

optically patterning a thin layer of a light-sensitive polymer (i.e. photoresist) that is spin

coated onto a silicon wafer as shown in Figure B-4a-c:

1. Negative masks flow-1 (red) and compress-1 (blue) will be used to pattern negative

photoresist (i.e. the areas of photoresist exposed to UV light through the optical

masks will be cross-linked. The regions that are not cross-linked will be dissolved

during the photoresist development step). The negative masks should be transparent

in the areas where the photoresist will remain on the wafer surface forming the mold.

2. Positive mask flow-2 (green) will be used to pattern positive photoresist (i.e. the

regions of photoresist exposed to UV light will be chemically broken and dissolved
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Figure B-3: Layout showing the masks used to fabricate the compression and flow layers of
the chip. (a) Mask compress-1 (blue) is for the 65 pm thin compression layer. Mask
flow-2 (green) is for the 100 pm thick region of the flow layer where the animals flow.
Mask flow-1 (red) is for the 10 pm thin region comprising the channel array within the
flow layer. (b) Expanded view of the mask regions showing the overlap of Mask flow-1
and Mask flow-2 to form the channel array.

during the photoresist development step). The positive mask should be dark (opaque)

in the areas where the photoresist will remain on the wafer surface forming the mold.

Both negative and posititive photoresists will be used to form structures with square

edges (flow-1) and rounded edges (flow-2), respectively, on the same wafer mold. Negative

resist retains the square edges during the reflow process while the positive resist becomes

rounded. The flow-2 photoresist layer (comprising the regions of the flow layer where

C. elegans is transported) is too thick to be reliably coated in a single step using SIPR-

7123 photoresist. To create this thick layer (Steps 18-22), two separate layers of 50 pm

will be spin-coated to achieve the desired thickness of 100 pm. Reflowing the positive

flow-2 photoresist layer improves the immobilization stability achieved by these devices.

Additionally, rounded channels allow incorporation of microfluidic valves [148] to integrate

fluidic control directly into the device [79,87], as in Chapters 2-4.
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a Compress-1

Mold-C

b Flow-1

Flow Laer

C Flow-2

Mold-F

Figure B-4: Fabrication of photoresist molds and PDMS layers. The patterning of mold-C
(a) and mold-F (b-d). Molding (e-f) and bonding (g) of the PDMS layers. Bonding of the
released PDMS layer to glass (h-i). Actuation of the immobilization membrane when
pressurized (j). These illustrations are referenced throughout the fabrication procedure.

The masks for photolithography can be ordered from various companies including Fine-

line Imaging (Colorado Springs, CO, USA), Micro Lithography Services Ltd (UK), and

Advanced Reproductions (Andover, MA, USA). To place a mask order, send the company

the AutoCAD file containing the mask patterns. Specify in your order whether each mask

is negative or positive.

Once the PDMS layers are molded, they will be thermally bonded together since plasma

bonding forms a less reliable bond. This is due to the variability of the plasma treatment

process (unless automated) and high sensitivity to particulates and surface defects. Addi-

tionally, alignment of PDMS layers is critical for the compression layer to function properly.

Prior to thermal bonding the PDMS layers are pressed together and can be aligned multiple

times under a stereo microscope to achieve perfect alignment before the layers are baked

to thermally bond them together. Such alignment is more challenging using the plasma
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Table B.1: PDMS device fabrication tolerances of Figure B-4.

Compression Layer Flow Layer Thick- Immobilization
Thickness ness Membrane Thick-

ness

~6 mm thickness ~120 pm ~15-20 pm

< 6 mm will not < 120 pm will re- < 15 pm will cause fab-
provide the mechani- sult in an extremely rication failure.
cal stability to support thin membrane struc-
the steel pins inserted ture that will likely
to interface with tygon tear apart or stretch
tubing. during fabrication.

> 6 mm, will not allow > 120 pm will result in > 20 pm will require
hole-puncher to punch a membrane that will high pressures for
through the device be too thick for proper immobilization which

immobilization. may injure the animals
and/or delaminate the
PDMS layers.

bonding technique.

We recommend the following design rules for scaling down the chip to accommodate

animals in the L1-L3 larval stages:

1. The flow-1 layer thickness and spacing in the channel array should be scaled to 1/5

of the animal width.

2. The flow-2 layer thickness should be scaled to 1/2 the animal width.

3. The thin PDMS layer spin-coated on mold-F should be scaled such that the im-

mobilization membrane thickness remains the same for robustness and fabrication

reliability.

4. The compress-1 layer thickness should remain the same.

5. The thick PDMS layer formed on mold-C should remain the same thickness to provide

rigidity to support interfacing with steel pins and tubing.

For those looking for more information on soft lithography techniques, a recent protocol by

Qin et al. [13] also gives a general overview. However, unlike the protocol presented here,
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Qin et al. does not discuss fabrication of devices with multiple PDMS layers.

B.2 Materials

B.2.1 Reagents

" Experimental animals (C. elegans)1 . The cellular process to be visualized should

be labeled with a fluorescent dye or reporter protein for imaging. The animals can

be cultured on and transferred from either agar plates or liquid [145]. For imaging

mechanosensory neurons for femtosecond laser microsurgery, the SK4005 strain (which

expresses GFP in the touch neurons) can be used.

" C. elegans M9 buffer solution [145]

B.2.2 Equipment

General equipment

" Inverted fluorescence microscope (1) (Nikon Eclipse TI or similar model) including a

stage plate capable of holding a standard 50 mm dish with cover glass bottom

" Image acquisition software (1) (NIS-Elements 2.0) and compatible computer

* High resolution CCD camera (1) (Photometrics Coolsnap HQ2)

" Powder-free gloves (VWR)

" Microscope ruler (1) (Ted Pella Inc., Cat. No. 6085)

Master Mold Fabrication

" Silicon wafers (2) with 4" diameter (University Wafer Corp.)

" Photomasks. The procedure for ordering a photomask is detailed in the Experimental

Design section

Caution: All animal experiments must comply with the relevant institutional and national animal care

guidelines.
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" Alignment and UV exposure tool 2 . This is expensive equipment and is typically

shared by multiple laboratories at the microfabrication facilities available at most

universities. (Lamp power rating 200 mW/cm2 ). UV exposure time is dependent

upon source intensity. Adjust exposure time to accommodate differences in source

intensity if not using the recommended source.

* Spinner with vacuum chuck (1) (Headway Research Corp.)

" Negative Photoresist 3 SU-8 2075 (Microchem Corp.)

" Negative Photoresist SU-8 2025 (Microchem Corp.)

" Negative photoresist developer, PM acetate (propylene glycol monomethyl ether ac-

etate) (Eastman)

" Isopropyl alcohol (IPA) (VWR, Cat. No. BDH1133-1LP)

" Positive Photoresist SPIR-7123 (Micro-Si Corp.)

" Positive photoresist developer AZ440 (AZ Photoresists Group of Hoechst Celanese

Corp.)

" HMDS (Hexamethyldisilazane) 4 (SPI-Chem Corp.)

" F13-TCS (Tridecafluoro-1,1,2,2-Tetrahydrooctyl)-1-Trichlorosilane 5 (United Chemi-

cal Technologies, Cat. No. T2492-KG)

* Hotplates set to 65 'C, 95 'C and 140 'C with temperature ramp capability (2) (PMC,

Cat. No. Dataplate 730)

" Petri dish (4) 150 x 15 mm (Falcon, Cat. No. 35-1058)

* Glass Pasteur pipette and rubber bulb (1) (VWR, Cat. Nos.14673-010, 56310-002)

" Cotton Swabs (VWR, Cat. No. 10806-005)

* Eyedropper bulb, 5 ml (2) (VWR, Cat. No. 56335-022)

2Caution: Use protective eyewear for UV light.
3 Caution: Photoresists and developers are toxic chemicals. Proper protective equipment should be worn

according to the institutional regulations.
4 Caution: HMDS is toxic, corrosive, and highly flammable.
5 Caution: F13-TCS is toxic and corrosive.
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PDMS Device Fabrication

" PDMS RTV615A base, RTV615B curing agent (GE Silicones)

e Vacuum desiccator (2) 230 mm (Bel-Art, Cat. No. 420250000) connected to a vacuum

line

" Chemical fume hood

" Oven set to 80 'C (1) (Yamato, Cat. No. DX-400)

" PDMS mixer/degasser machine (1) (Thinky Corp., Cat. No. ARE-250) (optional)

" Plastic mixing cups (2) (Thinky Corp., match to ARE-250 mixer) (optional)

" Hole-punchers with 0.75 mm (1) and 0.5 mm (1) diameters and cutting mat (1) (Ted

Pella Inc., Cat. Nos. 15071, 15072, 15097)

" Plasma chamber (1) (Harrick, Cat. No. PDC-001) and its vacuum pump (Leybold

vacuum products inc., Cat. No. Trivac D2.5E)

* Clear adhesive tape (2) (Scotch brand, 3M)

* Glass slide (1) 75 x 50 x 1 mm (Fisher Scientific, Cat. No. 12-550C)

" Aluminum foil (Reynolds Wrap)

" Lint-free fabrication wipes (VWR, Cat. No. HP-9310-4828)

" Laboratory scale (1) (Ohaus, Cat. No. sp202)

" Dish with cover glass bottom, 50 mm OD x 7 mm High, Glass Area: 40 mm diameter

(Ted Pella Inc., Cat. No. 14026-20) or (Electron Microscopy Sciences, Cat. No.

70674-52)

Off-chip system

* Tygon Tubing (VWR, 1/16" ID x 1/8" OD x 50 ft length)

e Pressure Gauge (1) 1/8" NPT 30" (Noshok, Cat. No. 15-100)

" Pressure regulator (1) (Minuteman Controls, Cat. No. R-800-300-W/K)
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" Right-angle threaded tee (1), nylon, 1/8" NPT(F) x 1/8" NPT(F) x 1/8" NPT(M)

(Cole Parmer, Cat. No. C-06349-20)

" Female luer to 1/8" NPT (2) (Cole Parmer, Cat. No. C-31200-60)

" Male luer to 200 series barb (3) (Value Plastics, Cat. No. MTLL230-1)

e Male luer plug (3) (Value Plastics, Cat. No. LP4-1)

" Dispensing-needle-tips (3) (McMaster-Carr Corp., 23 gauge, 0.5" long, type 304, ID

0.017", OD 0.025")

e Tygon tubing (VWR, 0.02" ID, 0.06" OD, 50 ft, 0.02" wall)

" Steel pins for chip-to-tube interface (New England Small Tube Corp., 0.025" OD x

0.017" ID, 0.500" length, s/s tube, type 304, cut, deburred, passivated)

" Manual 3-way valve (1): Stopcock with 2 female luer connections and male lock (Cole

Parmer, Cat. No. C-30600-02)

e Syringe (1) 3 ml luer-lok tip (BD, Cat. No. REF 309585)

* Teflon thread tape, 1.3 cm x 7.6 m (VWR, Cat. No. 60490-100)

Microscope Optics (suggested)

e High numerical aperture (NA) objective lens (1) for high-resolution imaging and laser

microsurgery. NA greater than 0.7 recommended. Example: Mag: 20x, NA: 0.75, air

lens (Nikon, Cat. No. MRD00200)

" Fluorescence filter cube for use with the fluorescent reporter protein expressed by the

organism (1) (For GFP, Nikon, HQ:F)

" Optical notch filter at the laser wavelength (1) (Thorlabs, Cat. No. FES0700)

" Standard square cage plate, SMI threaded inner bore (1) (Thorlabs, Cat. No. CP02)

e Epi and brightfield shutters (1) (Sutter, Cat. Nos. LB-SC and IQ25-SA)

132



B.3 Procedure

B.3.1 Fabrication of the molds.

Timing: These steps are time dependent and should be completed within 4 hours followed

by baking overnight to reflow the positive photoresist.

Fabrication of mold-C for the compress-1 layer with 65 pm thickness (Figure B-

4a)

1. Dehydrate a silicon wafer by placing it on the hotplate at 135 'C for 10 min. Allow

the wafer to cool for 2 min before proceeding to next step.

2. Center the wafer on the spinner chuck and apply vacuum. Spin wafer at 1000 rpm and

place 2 ml of HMDS onto the spinning water using an eyedropper bulb and continue

spinning for 10 s.

3. Coat a 65 pm layer of SU-8 2075 negative photoresist onto the wafer (Figure B-4a).

Center the wafer on the spinner chuck, and turn on the spinner-chuck vacuum to hold

the wafer. Pour sufficient photoresist onto the wafer to cover a 5 cm circle. Turn on

the spinner at 500 rpm for 5 s, ramp the spin rate from 500 to 3500 rpm in 5 s, and

then spin for 30 s at 3500 rpm.

4. Place aluminum foil on top of the hotplate. Bake the wafer for 3 min at 65 'C followed

by 8 min at 95 'C to make the photoresist more rigid for mask alignment and UV

exposure.

5. Edge bead removal 6 : Center the wafer on the spinner chuck and apply vacuum. Dip

cotton-tipped swab into PM acetate (developer) and apply gently but firmly to the

edge of wafer while spinning at 50 rpm to remove the excess material from the edge

of wafer.

6. UV light exposure: Load the compress-1 mask into the mask aligner, and place the

wafer on the base of alignment tool. Position the compress-1 mask on the wafer to

pattern the negative photoresist. Ensure that the mask is flat against the photoresist.

6Caution: If the edges are raised due to the edge bead, the mask will not make proper contact with the

photoresist resulting in a misaligned pattern.
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Remove UV block. Expose to UV light for 40 s7 when using the recommended 200

mW/cm 2 source. Reinsert UV block.

7. Bake the wafer on the hotplates for 1.5 min at 65 'C followed by 6.5 min at 95 'C.

Allow the wafer to cool for 5 min.

8. Center the wafer on the spinner chuck and apply vacuum. Develop the negative

photoresist by applying PM acetate onto the spinning wafer using an eyedropper at

500 rpm, followed by rinsing with IPA at 1000 rpm, and drying with nitrogen air gun.

Ensure that the pattern is fully developed.

9. Cover the wafer with a petri dish or place in wafer carrier to protect from dust.

Fabrication of mold-F for the flow layer (see Figure B-4b-d) containing two

layers fabricated sequentially (flow-1 and flow-2)

10. Repeat Steps 1 and 2 to pre-treat a new wafer.

11. Coat a 10 pm thick layer of SU-8 2025 negative photoresist onto the wafer. Center

the wafer on the chuck and turn on the vacuum. Set the spinner to start at 500 rpm.

Pour 8 sufficient photoresist onto the wafer to cover a 5 cm circle. Turn on the spinner

at 500 rpm for 5 s, ramp from 500 to 4000 rpm in 5 sec, then allow wafer to spin for

30 s at 4000 rpm.

12. Bake the wafer on the hotplates for 1 min at 65 'C followed by 5 min at 95 'C to

make the photoresist more rigid for mask alignment during UV exposure.

13. Remove the edge bead as in Step 5.

14. UV exposure: Load the flow-1 mask (red) into the mask aligner and place the wafer

on the base of the alignment tool. Position the flow-1 mask on the wafer to pattern

the negative resist. Ensure that the mask is flat against the photoresist. Remove

7 Critical step: UV exposure time is dependent upon source intensity. Adjust exposure time to accom-
modate differences in source intensity if not using the recommended source.

8 Critical step: Remain close to the surface while pouring the photoresist to prevent bubbles from
forming that may result in fabrication failure.
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UV block. Expose to UV light for 40 s 9 when using the recommended 200 mW/cm2

source. Reinsert UV block.

15. Bake the wafer on the hotplates for 1 min at 65 'C followed by 5 min at 95 'C.

16. Develop the negative photoresist with PM acetate as in Step 8.

17. Bake the wafer at 140 'C for 10 min. Allow the wafer to cool for 5 min before

proceeding to the next step10.

18. Center the wafer on the spinner chuck and apply vacuum. Coat the first 50 pm thick

layer onto the wafer: Center the wafer on the spinner chuck and set speed to 600 rpm.

Pour sufficient positive photoresist (SIPR-7123) onto the wafer to cover a 5 cm circle.

Spin at 600 rpm for 100 s

19. Bake the wafer on the hotplates while ramping the temperature12 from 40 'C to 100

'C at a rate of 36 'C/hr (10 min).

20. Bake the wafer on a hotplate at 140 'C for 10 min1 .

21. Center the wafer on the spinner chuck and apply vacuum. Remove the edge bead with

IPA while using the same method as in Step 5.

22. By repeating Steps 18 through 21, coat an additional 50 pm thick layer of photoresist

onto the wafer to achieve a total of 100 pm thick coating. 14

23. UV light exposure: Load the flow-2 mask (green) into the mask aligner and place

the wafer on the base of the alignment tool. Position the flow-2 mask on the wafer.

9Critical step: UV exposure time is dependent upon source intensity. Adjust exposure time to accom-

modate differences in source intensity if not using the recommended source.

ioCritical step: If the wafer is not cooled before proceeding to the next step, bubbles will form in the

photoresist causing fabrication failure.
"Critical step: The flow-2 photoresist layer (comprising the regions of the flow layer where C. elegans

is transported) is too thick to be coated in a single step. This is the first of two separate layers of 50 pm

that will be spin-coated to achieve the desired thickness of 100 pm.
1 2Critical step: The temperature ramping is key to ensure thorough and even hardening of the thick

layer.
"Critical step: Allow the wafer to cool for 10 min before proceeding to the next step. If wafer and

photoresist are not cooled before proceeding to the next step, air bubbles will form due to the heat in the

newly poured photoresist, causing fabrication failure.
14Critical step: The flow-2 photoresist layer (comprising the regions of the flow layer where C. elegans

is transported) is too thick to be coated in a single step. This is the second of two separate layers of 50 pm

that will be spin-coated to achieve the desired thickness of 100 pm.
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Ensure that the photoresist pattern of flow-1 layer on the wafer is properly aligned

with the flow-2 mask using the fiducial crosses. Ensure that the mask is flat against

the photoresist. Remove UV block. Expose to UV light for 4.5 min15 when using the

recommended 200 mW/cm2 source. Reinsert UV block.

24. Develop the positive photoresist 16 : Place in beaker with AZ440 developer for 30 min.

Swirl the beaker gently to allow fresh developer to reach the photoresist.

25. Reflow1 7 the flow-2 layer by ramping the temperature from 20 'C to 150 'C at

rate of 10 'C / h using a hotplate. This process can take place overnight.? TROU-

BLESHOOTING.

B.3.2 Fabrication of the PDMS devices.

Timing: These steps are time dependent due to the critical and sensitive thermal bonding

of PDMS layers. A batch of devices can be made within 2 h followed curing overnight.

Cleaning and pre-treatment of mold-C and mold-F

26. Use dry nitrogen gun to remove any dust particles from mold-C and mold-F (Fig-

ure B-5a). Place wafers in petri dishes to protect them from dust particles when not

in use.? TROUBLESHOOTING.

27. Place wafer in vacuum desiccators beside a folded aluminum foil reservoir with a 5 cm

diameter and 1.5 cm raised edges. Put two drops of F13-TCS ((Tridecafluoro-1,1,2,2-

Tetrahydrooctyl)-1-Trichlorosilane) 18,19 on the aluminum foil using a glass Pasteur

pipette with a rubber bulb. Remove the rubber bulb from the pipette and leave the

pipette in the desiccator. Close the desiccator and turn on vacuum for 3 min.

1 5Critical step: UV exposure time is dependent upon source intensity. Adjust exposure time to accom-
modate differences in source intensity if not using the recommended source.

16Critical step: If the photoresist is overdeveloped, features will not have the correct dimensions. This
will result in immobilization failure. See Figure B-6a showing the device cross-section.

1 7Critical step: The reflow process rounds the edges of the photoresist (Figure B-4d) and results in
proper roundness of the immobilization membrane, which is necessary for stable immobilization.

18Critical step: F13-TCS is used on the newly fabricated molds and can be used at least 20 times before
this F13-TCS coating step should be repeated.

19Caution: F13-TCS is toxic and corrosive. This step should be done with the desiccator placed inside
a chemical hood. Use a separate desiccator in later PDMS fabrication steps to avoid cross contamination.
Latex gloves should be worn when dispensing F13-TCS and discarded after use.
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Figure B-5: Images of PDMS fabrication, hole-punching, plasma bonding, and interfacing
with steel pins and tubing as detailed in Steps 26-60. The corresponding step is labeled in
each image.

Compression Layer
Compress-1

Thermal Bond -) Membrane

Flow Layer
Flow-2

Plasma Bond -4

Figure B-6: Cross-section of the microfluidic device showing the immobilization region.
The device is vertically cut along the line from port-B to port-C. The thermally bonded
compression layer and flow layer are visible. The PDMS channel array is molded
from the flow-1 layer with 10 pm thickness. A 15-20 pm thin PDMS membrane is formed
between the compress-1 and flow-2 layers. This device would later be plasma bonded to
a cover glass. The fabrication tolerances are listed in Table B.1. Scale bar: 50 pm.
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Molding of the PDMS layers (see Figure B-4e-h and B-5b-m)

28. Prepare 5:1 ratio PDMS by combining 50 g of RTV615A base with 10 g of RTV615B

curing agent into a mixing cup labeled "C" indicating that the PDMS is for con-

structing the compression layer.

29. Prepare 20:1 ratio PDMS by combining 15 g of RTV615A base with 0.75 g of RTV615B

curing agent into a mixing cup labeled "F" indicating that the PDMS is for con-

structing the flow layer.

30. Mix the contents of the mixing cup-C using the recommended mixer/degasser ma-

chine (Thinky Corp. Cat. No. ARE-250) or by stirring manually as a more cost-

effective method.

(a) Weigh the mixing cup-C and holder. Place mixing cup-C in mixer/degasser

machine (Thinky Corp. Cat. No. ARE-250) and set for 2 min of mixing followed

by 3 min of degassing at 2000 rpm (or 400 G) at room temperature (20 - 25 C).

Set the weight counterbalance and start mixer.

(b) Stir the contents of mixing cup-C using a plastic stirring stick for 3 min while

scraping the sides of the container to ensure all contents are integrated. Degas

mixing cup-C for 60 min in a vacuum desiccator and remove any bubbles using

a paper clip.

31. Repeat the Step 30 to mix and degas mixing cup-F.

32. Wrap the bottom of the mold-C with aluminum foil, sealing firmly around the edges

of the wafer with the foil. Curl up the remaining foil providing a 1 cm high reservoir

for pouring PDMS onto the wafer (Figure B-5b).

33. Pour the contents of mixing cup-C onto mold-C (Figure B-3e and B-5b). Ensure

that the mixing cup is close to the wafer surface to prevent unwanted bubbles from

being trapped in the poured PDMS (Figure B-5b).

34. Place mold-C in the desiccator for 10 min under vacuum to remove air from PDMS

(Figure B-5c).

35. Coating of 120 pm layer (Figure B-3f) of 20:1 ratio PDMS onto mold-F: Center

mold-F on the vacuum chuck, turn on the spinner-chuck vacuum, and set spin speed
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to 710 rpm (Figure B-5d). Pour20 the contents of mixing cup-F onto the center of

mold-F in a 5 cm circle (Figure B-5e). Spin for 60 s.

36. Remove bubbles from the PDMS on mold-C. Carefully vent the desiccator and re-

move the lid. Use a paperclip to move the remaining bubbles on the surface of the

PDMS to the edge of the wafer. Ensure that there are no bubbles on the wafer surface

(Figure B-5f).? TROUBLESHOOTING.

37. Bake both mold-C (Figure B-4e) and mold-F (Figure B-4f) in an oven for 30 min

at 80 'C to provide rigidity to the PDMS layers (Figure B-5g).

Thermal Bonding of PDMS compression and flow layers: (see Figure B-4e-h

and B-5b-m)

38. Remove mold-C (Figure B-4e) and mold-F (Figure B-4f) from the 80 'C oven and

allow both to cool for 10 min. Touch the PDMS surface of each wafer at the edge to

verify that the surface is relatively sticky for adhesion and not completely rigid from

over-curing to enable strong thermal bond.? TROUBLESHOOTING.

39. Use a razor blade to trim the foil from the edge of mold-C (Figure B-5 h) and peel

the foil from the backside of the wafer (Figure B-5i). Carefully and slowly peel the

PDMS layer from the wafer surface21 (Figure B-5j-k) and place it on a piece of clean

foil with molded side down.

40. Use the razor blade to cut out the device components from the PDMS compression

layer. Cut around the outermost box surrounding each device (Figure B-51).

41. Place device components cut from compression layer on the hole-punching mat

with the molded feature side of PDMS facing up. Use scotch tape to remove any

debris that may be on the PDMS surface. Punch the access point (labeled "A" in

Figure B-3a) to the compression layer starting from the molded side using the 0.5

mm hole-puncher. Ensure that the hole-puncher is sharp and free of debris. Press

firmly and punch through the PDMS until contacting the mat (Figure B-5m). Then

2 0 CRITICAL STEP: Avoid introducing bubbles by keeping the mixing cup close to the wafer surface

while pouring.2 1Critical step: Avoid touching the molded surface of the layer by handling only from the sides of the

layer since any residue from gloves can interfere with thermal bonding in subsequent steps.
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lift up the device and depress the plunger to eject the PDMS. Repeat for each device.?

TROUBLESHOOTING.

42. Inspect each device component thoroughly under stereo microscope. Press tape firmly

on the molded side of PDMS to remove any debris that can result in device failure

(Figure B-10b).? TROUBLESHOOTING.

43. Clean the top surface of PDMS layer on mold-F using scotch tape. Ensure that the

device is free of residues from accidental finger prints.

44. Using a stereo microscope, align the PDMS device components from compression

layer over the PDMS device components in flow layer. Ensure that the molded side

of the compression layer is aligned to the fiducial crosses (Figure B-3). Press firmly

on top to remove any air bubbles trapped between the two layers (Figure B-4g and

B-5n).

45. Bake the combined compression and flow layers by placing them in the 80 'C oven

overnight to achieve thermal bond (Figure B-4g).

46. Gently peel the combined PDMS layers from the wafer surface (Figure B-4h). Begin

by rolling the edge of the thin flow layer (Figure B-5o) to the base of the thick

compression layer and lift up both layers up together 22 (Figure B-5p). Use a razor

blade to trim the edges around the combined PDMS layers (Figure B-5q).

(a) If this is the first time that the molds were used to fabricate a PDMS device,

proceed to Step 47 (PDMS device characterization) in order to ensure that the

molds are properly fabricated.

(b) If the mold fabrication has already been characterized, proceed to Step 49.

B.3.3 Characterization of the PDMS device fabrication

TIMING: These steps are not time dependent and should take about 20 min to complete.

47. Cut a cross-section of the PDMS device vertically along port-B and port-C using

a razor blade (as in the cross-section shown in Figure B-4h). Place the cross-section

onto a microscope slide to measure the thickness of each layer (Figure B-6).

2 2 Critical step: The thin PDMS layer may stretch or tear if it is not lifted at the same time with the
thick layer.
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48. Record an image of the cross section. Measure the dimensions of each layer and

membrane thicknesses with the aid of a standard microscope ruler (Figure B-6).

B.3.4 Hole-punching and plasma bonding of the device to cover glass

TIMING: These steps are not time dependent and should take about 20 min to complete

followed by baking overnight.

49. Punch two holes (labeled "B" and "C" in Figure B-3a) to create port-B and port-C

(Figure B-3a) for off-chip access to the flow layer as in Step 41, but using the 0.75 mm

hole-puncher rather than the 0.5 mm hole-puncher used in Step 41 (Figure B-5m).

50. Wrap a double-width glass slide (1 mm x 50 mm x 75 mm) with transparent adhesive

tape to form a support base23 (Figure B-5q).

51. Place lint-free fab wipes on the table to provide a padded surface (Figure B-5s).24

52. Inspect the PDMS device and the dish (with cover glass bottom) for particles and use

clear adhesive tape to remove debris.

53. Place the PDMS device and the dish (with cover glass bottom) onto the support base

(created in Step 50) inside the plasma chamber 25 with the molded side of the flow

layer facing up and the raised edge of the cover glass dish also facing up (Figure B-5q).

54. Turn on the vacuum for 2 min. Turn on the plasma source and slightly lower the

vacuum in the plasma chamber until the purple glow in the chamber turns light pink

in color (Figure B-5r) and continue plasma exposure for 1 min.

55. Turn off the plasma source followed by the vacuum pump. Gently vent the cham-

ber to release the vacuum and avoid disturbing the items in the chamber. Remove

the treated samples from the chamber using the support base without touching the

treated surfaces that are to be bonded together.

2 3Critical step: This tape will also protect the surface of these glass slides from plasma treatment in

Steps 53-55, and prevent the PDMS device or dish from bonding to them. Ensure that the glass surface is

completely covered with tape.
2 4Critical step: This padded surface will protect the delicate cover glass bottom of the dish during the

bonding process in Step 56 and when inserting steel pins in Step 60.
2 5Critical step: The dish and PDMS device should not be in contact with each other inside the plasma

chamber.
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56. Place the dish with cover glass bottom (with the raised edge facing up) on top of the

fab wipes (from Step 51) to provide cushioning. Immediately place the device with

the molded side of the flow layer facing down and center it on the dish. Press firmly

but gently on the device to remove air bubbles but avoid cracking the cover glass

(Figure B-5s). Continue pressing for 20 s to ensure good contact between the PDMS

channel array and cover glass.

57. Inspect the completed device (Figure B-4i) under a stereo microscope to ensure that

the device is bonded to the cover glass with no air bubbles trapped between the

PDMS layers. Air bubbles may disrupt the fluidic channels or the channel array

(Figure B-7).? TROUBLESHOOTING.

Figure B-7: Comparison of failed and successful fabrication of channel array. (a) The
immobilization membrane is too thin and has collapsed/sagged (*). The membrane
has bonded either to the cover glass below during plasma bonding or to the compression
layer above during thermal bonding. The boxed region shows the pillars of the channel
array that did not plasma bond properly to the glass. Scale bar is 100 Pm. (b) Magnified
image of the boxed area in (a) that shows the region (between the dashed white lines)
where the pillars did not properly bond to the cover glass. (c) Proper bonding when the
immobilization membrane not pressurized. (d) Proper bonding when pressurized. Scale
bar: 25 pm.

58. Bake the device in the 80 'C oven for 24 h to complete thermal bonding.
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B.3.5 Assembly and connection of off-chip components (Figure B-8)

TIMING: These steps are not time dependent and should take about 20 min to complete.

12

13 14

10 14

T

Figure B-8: Microfluidic device integrated with off-chip components. (a) Components for
manual chip operation include the syringe (attached to port-B for loading the animal or
port-C for unloading the animal) and manual valve-A (attached to port-A for pressur-
izing the compression layer). The large plastic tubing is labeled '8' in both (a) and (b)
showing the connection between panels. (b) Construction of the air pressure regulator and
gauge using connectors and Teflon thread tape. The 'flow arrow' indicates the direction
of the flow from the pressure source to the chip. (c) Placement of an animal in the M9
buffer of the dispensing-needle-tip of port-A using an eyelash glued to a toothpick. The
numerically labeled components are listed in Table B.2.

59. Assemble the pressure gauge and regulator (Figure B-8b). Use Teflon thread tape

to ensure an air-tight seal around screw connections. Connect the tubing from the

regulator to the air pressure supply.

60. Insert a dispensing-needle-tip into a 15 cm piece of tygon tubing and insert a steel

pin into the opposite end of the tygon. Gently insert the steel pin into the PDMS

hole to access port-A (Figure B-5t and B-8a). Avoid tearing the PDMS to prevent
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Table B.2: List of components for the microfluidic system in Figure B-8

Component

1
2
3
4

5
6
7
8
9
10
11
12
13

14
15

Description

Syringe
Dispensing-needle-tip, 23 gauge
Tygon tubing
Steel pin
Microfluidic device
Manual 3-way valve: Stopcock with luer connections
Male luer lock to barb connector
Large flexible plastic tubing
Screw to female luer lock connector
Teflon thread tape
Right-angle threaded tee
Pressure gauge
Pressure regulator
Pressure source
Toothpick with glued eyelash

creation of unwanted particles. Repeat for both port-B and port-C.26

61. Connect one of the 3-way manual valve-A ports to the pressurized air from the

regulator and the gauge (Figure B-8a). Leave one of the ports open to atmospheric

pressure. Connect one of the ports to the dispensing-needle-tip (which should be

connected to port-A via tygon tubing). Ensure that the arrow on the regulator is

pointing towards the manual valve-A directing flow into the chip.

B.3.6 Manual operation (Figure B-9)

TIMING: These steps are not time dependent and should take about 20 min for initial

priming and optimization of the immobilization pressure. Once in place the system can

immobilize animals at a rate of 1 min per animal.

Prime the device to remove air bubbles before operation

62. Disconnect the tubing and steel pin from device port-A. Completely fill the 15 cm long

inlet tube with deionized water (using a syringe) and reconnect the tube to the device

2 6Critical step: The dish should be placed on a flat surface padded with lint-free fab wipes when inserting
the steel pins to avoid cracking the delicate cover glass.
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Port-A Valve is in OFF position Valve is in ON position, Valve is in OFF position
________________________applying 15-20 psi ______________

Port-B Low pressure applied by syringe to Syringe is detached Syringe is detached. Nematode is
position nematode dispensed onto agar pad

Port-C Syringe is detached Syringe is detached Low pressure applied by syringe

Figure B-9: Manual operation of the microfluidic device. The table indicates the state
of each port during operation. (a) Loading of the animal from syringe as in Step 65. (b)
Immobilization of the animal in linear orientation as in Step 66. (c) Unloading of the animal
to agar plate as in Step 68.

port-A. Set the pressure regulator to -3 psi. Turn on the manual valve-A connected

to port-A to pressurize the layer with low pressure. Slowly increase the pressure

regulator to -15 psi and wait 10-15 min for the air bubbles to permeate into the

surrounding PDMS to fill the compression layer with water. Turn the valve-A such

that the input to port-A is set to atmospheric pressure. ? TROUBLESHOOTING.

63. Aspirate M9 buffer solution into the syringe. Fill the flow layer using low pres-

sure from the M9-filled syringe attached to port-B by gently removing any trapped

bubbles.

64. Use a worm pick to transfer a single animal from either liquid or an agar plate into a

small volume of M9 in the dispensing-needle-tip connected to port-B (Figure B-8c).

Hold the M9 filled syringe with tip facing downward and connect it to the dispensing-

needle-tip of port-B (Figure B-8a). Gently flick the syringe to remove any air bubbles

that may be trapped.
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65. Pressurize the syringe connected to port-B to gently flow liquid through the channel

array in order to position the animal in a linear orientation along the channel array

(Figure B-9a). ? TROUBLESHOOTING.

66. Pressurize the compression layer by turning manual valve-A to the pressurized

source (Figure B-8b and B-9b). Optimize the immobilization pressure by adjusting

the pressure regulator to account for differences in animal size and/or fabrication

parameters.? TROUBLESHOOTING.

67. Place the chip on the inverted microscope. Perform the desired imaging and optical

manipulations such as fluorescence, confocal and two-photon imaging, laser micro-

surgery, calcium imaging, or photo-stimulation.

68. Remove the dispensing-needle-tip of port-B from the tygon tubing and direct the end

of tubing onto an agar pad or reservoir to dispense the animal. Turn valve-A to at-

mospheric pressure in order to release the pressure in the compression layer. Attach

the syringe to the dispensing-needle-tip of port-C. Gently pressurize the syringe in

port-C to flow the animal out of the device through port-B. Replace the dispensing-

needle-tip to the tygon tubing in port-A (Figure B-9c). ? TROUBLESHOOTING.

69. Repeat Steps 65 through 68 to immobilize additional animals.

70. To store the device, flush the microfluidic channels with deionized water and place

male luer caps on each of the three dispensing-needle-tips. Cover the device with

petri-dish to avoid dust particles.

B.4 Timing

The timing of the steps for fabrication and assembly of the nicrofluidic devices described

in this chapter are shown in Table B.3.

B.5 Troubleshooting

Troubleshooting advice is provided in Table B.4.

146



Table B.3: Time required for fabrication and

Steps Description

1-25 Fabrication of wafer molds

26-46 Fabrication of PDMS devices

47-48 Characterization of the
PDMS devices

49-58 Hole-punching and plasma
bonding

59-61 Assembly and connection of
off-chip components

62-70 Manual Operation

assembly of microfluidic devices.

Time Required

4 h + baking overnight

2 h + baking overnight

20 min

20 min + baking
overnight

20 min

1 min per animal + 20
min initial priming and
optimization

Table B.4: Troubleshooting table.

Step Problem Possible reason Solution

25 The photoresist on Ramping of tempera- Ensure that the cover on hot-

wafer is not rounded ture is not uniform. plate allows adequate heat

after reflow. transfer. Try a new hotplate.

Photoresist has expired Use new photoresist.

or has been overexposed

to air/light.

Continued on Next Page...
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Table B.4 - Continued

Step Problem Possible reason Solution

26 Particles on wafer can- PDMS and dust parti- Do not use tape to avoid dam-

not be removed with ni- cles adhered to the pho- aging photoresist structures.

trogen gun. toresist on wafer sur- Pour a layer of PDMS over

face. the wafer, bake for 1 h, and

peel off to remove dust parti-

cles as described in Steps 28-

39 for mold-C.

36 Bubbles trapped in wet Air was trapped while Use the rounded edge of a pa-

PDMS near the wafer pouring PDMS. per clip to drag the bubble

surface. to dislodge it. Do not touch

wafer surface or photoresist

structures.

38 Surface of PDMS lay- PDMS is thermally Ensure that the oven temper-

ers is too rigid and not overcured. ature and bake time are cor-

sticky enough for bond- rect. Otherwise, reduce the

ing. bake time by 5 min in Step 37.

Otherwise, try new oven.

38 Surface of PDMS layers

is too soft and is not

able to provide mechan-

ical support for bonding

of layers.

Continued on Next Page...

Surface is thermally un-

dercured.

After checking temperature as

suggested above, increase the

bake time by 5 min in Step 37.
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Table B.4 - Continued

Step Problem Possible reason Solution

41 Failure in punching

holes into PDMS.

Particle generation

tearing of PDMS

cause of dullness

punching tip.

by

be-

of

Replace with new hole-

puncher.

PDMS is too rigid.

Metal tip retracts in

plastic shaft.

PDMS layer is too thick

to completely punch

through.

Check PDMS curing proce-

dure and base/curing agent

ratios.

Replace with a new hole-

puncher.

Decrease amount of PDMS

used to reduce thickness.

42 PDMS particulates Particulates during Wipe down bench surfaces

cause chip failure. fabrication or hole- and use fresh aluminum foil

punching block sections after each sequence of fabrica-

of the device (see tion step. Use additional tape

Figure B-9b). to clean PDMS surfaces.

57 Delamination of PDMS

thermal bond.

Over-curing of PDMS

layers prior to thermal

bonding reduces adhe-

sion properties.

Check oven temperature. Re-

duce the initial curing time in

Step 37 to 25 min.

Continued on Next Page...
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Table B.4 - Continued

Step Problem Possible reason Solution

Residue from gloves or Avoid touching PDMS sur-

external source. faces that are to be bonded

together. Ensure that sur-

face of benches are clean.

Change gloves after handling

wet PDMS.

57 Channel array is dis- The PDMS flow layer Check oven temperature and

torted (Figure B-8). was not properly cured curing time.

before peeling from

mold-F.

Wafer surface was not See Troubleshooting Step 26.

free of debris before

spinning PDMS.

57 Immobilization

membrane is col-

lapsed/stuck (Figure B-

8).

Membrane has bonded

to the PDMS compres-

sion layer.

Use a syringe attached at

port-A to slowly and gently

pressurize the channel to sep-

arate the membrane. Be care-

ful to avoid stretching or tear-

ing the membrane to prevent

device failure.

Continued on Next Page...
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Table B.4 - Continued

Step Problem Possible reason Solution

Membrane is bonded to Plug port-C with male luer

the cover glass. cap and gently pressurize

port-B to slowly lift the

membrane; additionally, a

second syringe can be at-

tached to port-A to apply a

vacuum.

Membrane is too thin PDMS flow layer may be too

or has torn or stretched thin or photoresist on mold-

preventing operation. F may be too tall. Refer to

Figure B-4 for device charac-

terization.

57 Failure of plasma bond- Surfaces are not clean.

ing (Figure B-8).

Cover glass is cracked.

Clean the PDMS surface with

tape and avoid touching the

surfaces.

Increase the amount of fab

wipes for padding on the table

in Step 51 and use less force

when pressing on the device in

Step 56.

Continued on Next Page...
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Table B.4 - Continued

Step Problem Possible reason Solution

Plasma chamber is not Air filters on the vacuum line

clean. may not be working properly.

Check filters and have plasma

chamber cleaned.

62 Failure in filling of Air leak in the system.

compression layer

from port-A with

water.

Water leak at the steel

pin connector to port-

A of the chip.

Air bubbles in the tygon

tubing can prevent fluid

flow even at high pres-

sures.

Use a syringe to drip wa-

ter around potential leaks and

check for bubbling. Use ap-

propriate Teflon thread tape

to seal leaks.

The punched hole may be

torn or not sealing properly.

Reseal around the pin and

tubing by applying wet 20:1

PDMS and by baking for 1

hour. Leave the pin and tub-

ing in place to prevent sealing

of the hole.

Detach the tubing and use a

syringe to prime with deion-

ized water.

Continued on Next Page...
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Table B.4 - Continued

Step Problem Possible reason Solution

65 Sufficient flow cannot

be achieved.

Blockage of external flu-

idic lines due to pos-

sible pinched tubing or

dried M9 buffer. Block-

age is often hidden in

steel connector tubes.

Blockage inside the chip

or in the channel array

(Figure B-9)

Disconnect each line sepa-

rately and check for continuity

from pressure source. Flush

lines with fresh M9/deionized

water using syringe.

Use a syringe filled with M9 to

apply gentle pulses to dislodge

the debris. Do not apply high

pressures to avoid damaging

the device. Bleach the chip

using the protocol in Table

B.5.

66 Cannot achieve suffi-

cient immobilization.

Debris is blocking com-

pression layer from

compressing uniformly.

15 psi is not sufficient to

immobilize the animal

20 psi is not sufficient to

immobilize the animal.

See Troubleshooting Step 65

to remove debris.

Slowly increase pressure to 20

psi.

The tubing is blocked. See

Troubleshooting Step 65.

Continued on Next Page...
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Table B.4 - Continued

Step Problem Possible reason Solution

The fabrication is not within

the tolerance in Figure B-4 &

Table 1.

Table B.5: Bleaching Protocol (adapted from Lee et al. [150])

Step Bleaching procedure for removal of biological material

1 Remove all of the pins and tubing from the microfluidic device.
2 Prepare a 2% bleach solution in deionized water. (1 ml Bleach

50 ml DI water)
3 Use a syringe to gently inject the 2% bleach solution into each

port-B and port-C of the device thoroughly filling the entire de-
vice. Deliver gentle pulses to dislodge debris. Avoid high pressures
to prevent damaging the device.

4 Soak the device for 4 to 12 h to break down the biological material.
Soak time is dependent upon the level of contamination.

5 Use the syringe to gently inject additional 2% bleach solution.
Gently force the loosened debris out of the chip without delami-
nating thermally bonded layers

6 Use a separate syringe filled with deionized water to thoroughly
rinse the device to remove all of the bleaching solution.

7 Flush the chip with M9 buffer solution and reconnect the ports of
the chip.

B.6 Anticipated results

This protocol results in a fully functional microfluidic system capable of studying dynamic

cellular processes at subcellular resolution in physiologically active C. elegans. The im-

mobilization stability achievable is comparable to that induced by strong anesthetics such
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as NaN3 (See Chapter 3) and is sufficient for tasks such as two-photon imaging [87] and

femtosecond laser microsurgery [87]. Once fabricated, the device can be operated by one

single syringe and one manual valve.
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a

Figure B-10: Device contamination by debris and PDMS particulates. (a) Micrograph of
an animal immobilized against the channel array. The build-up of debris, which occurs
after thousands of cycles, is indicated by the arrow within the channel array. Such
contamination can be removed by following the bleaching procedure described in Table B.5.
Scale bar is 15 pm. (b) Large PDMS debris caused during PDMS hole-punching. Scale bar:
100 pm.

156



Bibliography

[1] Yanik, M. F., Rohde, C. B. & Pardo-Martin, C. Technologies for micromanipulating,

imaging, and phenotyping small invertebrates and vertebrates. Annual Review of

Biomedical Engineering 13, 185-217 (2011).

[2] Hertzberg, R. P. & Pope, A. J. High-throughput screening: new technology for the

21st century. Current Opinion in Chemical Biology 4, 445-51 (2000).

[3] Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila

cells. Science 303, 832-5 (2004).

[4] Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-

throughput screening. Cell 138, 645-59 (2009).

[5] Wong, J. W. J., Brastianos, H. C., Andersen, R. J. & O'Connor, T. P. A high-

throughput screen to identify novel compounds to promote neurite outgrowth. Journal

of Neuroscience Methods 169, 34-42 (2008).

[6] Giuliano, K. A., Haskins, J. R. & Taylor, D. L. Advances in high content screening

for drug discovery. Assay and Drug Development Technologies 1, 565 77 (2003).

[7] Barbaric, I. et al. Novel regulators of stem cell fates identified by a multivariate

phenotype screen of small compounds on human embryonic stem cell colonies. Stem

Cell Research 5, 104-19 (2010).

[8] Ohnuki, S., Oka, S., Nogami, S. & Ohya, Y. High-content, image-based screening for

drug targets in yeast. PLoS One 5, e10177 (2010).

[9] Jan, E. et al. High-content screening as a universal tool for fingerprinting of cytotox-

icity of nanoparticles. ACS Nano 2, 928-38 (2008).

157



[10] Comley, J. High content screening: emerging importance of novel reagents/probes

and pathway analysis. Drug Discovery World 6, 31-53 (2005).

[11] Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse mi-

croscopy reveals cell division genes. Nature 464, 721-7 (2010).

[12] Xia, Y. & Whitesides, G. M. Soft lithography. Annual Review of Materials Science

28, 153-184 (1998).

[13] Qin, D., Xia, Y. & Whitesides, G. M. Soft lithography for micro- and nanoscale

patterning. Nature Protocols 5, 491-502 (2010).

[14] Gray, J. M. et al. Oxygen sensation and social feeding mediated by a C. elegans

guanylate cyclase homologue. Nature 430, 317-22 (2004).

[15] Qin, J. & Wheeler, A. R. Maze exploration and learning in C. elegans. Lab on a Chip

7, 186-92 (2007).

[16] Barriere, A. & Fdlix, M.-A. High local genetic diversity and low outcrossing rate in

Caenorhabditis elegans natural populations. Current Biology 15, 1176-84 (2005).

[17] Lockery, S. R. et al. Artificial dirt: microfluidic substrates for nematode neurobiology

and behavior. Journal of Neurophysiology 99, 3136-43 (2008).

[18] Park, S. et al. Enhanced Caenorhabditis elegans locomotion in a structured microflu-

idic environment. PLoS One 3, e2550 (2008).

[19] Chronis, N., Zimmer, M. & Bargmann, C. I. Microfluidics for in vivo imaging of

neuronal and behavioral activity in Caenorhabditis elegans. Nature Methods 4, 727-

31 (2007).

[20] Chalasani, S. H. et al. Dissecting a circuit for olfactory behaviour in Caenorhabditis

elegans. Nature 450, 63-70 (2007).

[21] Chokshi, T. V., Bazopoulou, D. & Chronis, N. An automated microfluidic platform

for calcium imaging of chemosensory neurons in Caenorhabditis elegans. Lab on a

Chip 10, 2758-63 (2010).

158



[22] Kim, N., Dempsey, C. M., Zoval, J. V., Sze, J.-Y. & Madou, M. J. Automated

microfluidic compact disc (CD) cultivation system of Caenorhabditis elegans. Sensors

and Actuators B: Chemical 122, 511-518 (2007).

[23] Bonner, W. A., Hulett, H. R., Sweet, R. G. & Herzenberg, L. A. Fluorescence activated

cell sorting. The Review of Scientific Instruments 43, 404-9 (1972).

[24] Pulak, R. Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS

flow-sorting system. Methods in Molecular Biology 351, 275-86 (2006).

[25] Doitsidou, M., Flames, N., Lee, A. C., Boyanov, A. & Hobert, 0. Automated screening

for mutants affecting dopaminergic-neuron specification in C. elegans. Nature Methods

5, 869-72 (2008).

[26] Stoeckius, M. et al. Large-scale sorting of C. elegans embryos reveals the dynamics

of small RNA expression. Nature Methods 6, 745-51 (2009).

[27] Fernandez, A. G., Mis, E. K., Bargmann, B. 0. R., Birnbaum, K. D. & Piano, F.

Automated sorting of live C. elegans using laFACS. Nature Methods 7, 417-8 (2010).

[28] Fernandez, A. G. & Piano, F. MEL-28 is downstream of the Ran cycle and is required

for nuclear-envelope function and chromatin maintenance. Current Biology 16, 1757-

63 (2006).

[29] Pawley, J. B. Handbook of Biological Confocal Microscopy (Springer, 1995).

[30] Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence

microscopy. Science 248, 73-6 (1990).

[31] Filippidis, G. et al. Imaging of Caenorhabditis elegans neurons by second-harmonic

generation and two-photon excitation fluorescence. Journal of Biomedical Optics 10,

024015-8 (2005).

[32] Gualda, E. J. et al. In vivo imaging of cellular structures in Caenorhabditis elegans

by combined TPEF, SHG and THG microscopy. Journal of Microscopy 229, 141-50

(2008).

[33] Filippidis, G. et al. In vivo imaging of cell morphology and cellular processes in

Caenorhabditis elegans, using non-linear phenomena. Micron 40, 876-80 (2009).

159



[34] Cheng, J.-X. & Xie, X. S. Coherent Anti-Stokes Raman Scattering Microscopy: In-

strumentation, Theory, and Applications. The Journal of Physical Chemistry B 108,

827-840 (2004).

[35] Hellerer, T. et al. Monitoring of lipid storage in Caenorhabditis elegans using coher-

ent anti-Stokes Raman scattering (CARS) microscopy. Proceedings of the National

Academy of Sciences of the United States of America 104, 14658-63 (2007).

[36] Le, T. T., Duren, H. M., Slipchenko, M. N., Hu, C.-D. & Cheng, J.-X. Label-free

quantitative analysis of lipid metabolism in living Caenorhabditis elegans. Journal of

Lipid Research 51, 672-7 (2010).

[37] Deisseroth, K. et al. Next-generation optical technologies for illuminating genetically

targeted brain circuits. The Journal of Neuroscience 26, 10380-6 (2006).

[38] Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane

channel. Proceedings of the National Academy of Sciences of the United States of

America 100, 13940-5 (2003).

[39] Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-

timescale, genetically targeted optical control of neural activity. Nature Neuroscience

8, 1263-8 (2005).

[40] Zhang, F., Wang, L.-P., Boyden, E. S. & Deisseroth, K. Channelrhodopsin-2 and

optical control of excitable cells. Nature Methods 3, 785-92 (2006).

[41] Kolbe, M. Structure of the Light-Driven Chloride Pump Halorhodopsin at 1.8 A

Resolution. Science 288, 1390-1396 (2000).

[42] Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446,

633-9 (2007).

[43] Han, X. & Boyden, E. S. Multiple-color optical activation, silencing, and desynchro-

nization of neural activity, with single-spike temporal resolution. PLoS One 2, e299

(2007).

160



[44] Stirman, J. N., Brauner, M., Gottschalk, A. & Lu, H. High-throughput study of

synaptic transmission at the neuromuscular junction enabled by optogenetics and

microfluidics. Journal of Neuroscience Methods 191, 90-3 (2010).

[45] Lange, D., Storment, C. W., Conley, C. A. & Kovacs, G. T. A. A microfluidic

shadow imaging system for the study of the nematode Caenorhabditis elegans in

space. Sensors and Actuators B: Chemical 107, 904-914 (2005).

[46] Psaltis, D., Quake, S. R. & Yang, C. Developing optofluidic technology through the

fusion of microfluidics and optics. Nature 442, 381-6 (2006).

[47] Heng, X. et al. Optofluidic microscopy-a method for implementing a high resolution

optical microscope on a chip. Lab on a Chip 6, 1274-6 (2006).

[48] Cui, X. et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhab-

ditis elegans and cell imaging. Proceedings of the National Academy of Sciences of

the United States of America 105, 10670-5 (2008).

[49] Pang, S. et al. Implementation of a color-capable optofluidic microscope on a RGB

CMOS color sensor chip substrate. Lab on a Chip 10, 411-4 (2010).

[50] Isikman, S., Seo, S., Sencan, I., Erlinger, A. & Ozcan, A. Lensfree cell holography on

a chip: From holographic cell signatures to microscopic reconstruction. In 2009 IEEE

LEOS Annual Meeting Conference Proceedings, 404-405 (IEEE, 2009).

[51] Isikman, S. 0. et al. Color and monochrome lensless on-chip imaging of Caenorhab-

ditis elegans over a wide field-of-view. Lab on a Chip 10, 1109-12 (2010).

[52] Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform.

Optics Letters 3, 27 (1978).

[53] Koren, G., Polack, F. & Joyeux, D. Iterative algorithms for twin-image elimination

in in-line holography using finite-support constraints. Journal of the Optical Society

of America A 10, 423 (1993).

[54] Buckingham, S. D. & Sattelle, D. B. Strategies for automated analysis of C. elegans

locomotion. Invertebrate Neuroscience 8, 121-31 (2008).



[55] Sznitman, R., Gupta, M., Hager, G. D., Arratia, P. E. & Sznitman, J. Multi-

environment model estimation for motility analysis of Caenorhabditis elegans. PLoS

One 5, e11631 (2010).

[56] Faumont, S. & Lockery, S. R. The awake behaving worm: simultaneous imaging

of neuronal activity and behavior in intact animals at millimeter scale. Journal of

Neurophysiology 95, 1976-81 (2006).

[57] Ben Arous, J., Tanizawa, Y., Rabinowitch, I., Chatenay, D. & Schafer, W. R. Auto-

mated imaging of neuronal activity in freely behaving Caenorhabditis elegans. Journal

of Neuroscience Methods 187, 229-34 (2010).

[58] Peng, H., Long, F., Liu, X., Kim, S. K. & Myers, E. W. Straightening Caenorhabditis

elegans images. Bioinformatics 24, 234-42 (2008).

[59] Wahlby, C. et al. Resolving clustered worms via probabilistic shape models. In 2010

IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 552-

555 (IEEE, 2010).

[60] Orlov, N., Johnston, J., Macura, T., Wolkow, C. & Goldberg, I. Pattern Recognition

Approaches to Compute Image Similarities: Application to Age Related Morpholog-

ical Change. In 3rd IEEE International Symposium on Biomedical Imaging: Macro

to Nano, 2006., 1152-1155 (IEEE, 2006).

[61] Johnston, J., Iser, W. B., Chow, D. K., Goldberg, I. G. & Wolkow, C. A. Quantitative

image analysis reveals distinct structural transitions during aging in Caenorhabditis

elegans tissues. PLoS One 3, e2821 (2008).

[62] Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode,

Caenorhabditis elegans. Developmental Biology 56, 110-56 (1977).

[63] Kimble, J. & Hirsh, D. The postembryonic cell lineages of the hermaphrodite and

male gonads in Caenorhabditis elegans. Developmental Biology 70, 396-417 (1979).

[64] White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The Structure of the

Nervous System of the Nematode Caenorhabditis elegans. Royal Society of London

Philosophical Transactions Series B 314, 1-340 (1986).

162



[65] Long, F., Peng, H., Liu, X., Kim, S. K. & Myers, E. A 3D digital atlas of C. elegans

and its application to single-cell analyses. Nature Methods 6, 667-72 (2009).

[66] Bao, Z. et al. Automated cell lineage tracing in Caenorhabditis elegans. Proceedings

of the National Academy of Sciences of the United States of America 103, 2707-12

(2006).

[67] Murray, J. I. et al. Automated analysis of embryonic gene expression with cellular

resolution in C. elegans. Nature Methods 5, 703-9 (2008).

[68] Peng, H., Long, F. & Myers, E. W. VANO: a volume-object image annotation system.

Bioinformatics 25, 695-7 (2009).

[69] Liu, X. et al. Analysis of cell fate from single-cell gene expression profiles in C. elegans.

Cell 139, 623-33 (2009).

[70] Sulston, J. & White, J. Regulation and cell autonomy during postembryonic devel-

opment of Caenorhabditis elegans. Developmental Biology 78, 577-597 (1980).

[71] Kimble, J. E. & White, J. G. On the control of germ cell development in Caenorhab-

ditis elegans. Developmental Biology 81, 208-19 (1981).

[72] Yanik, M. F. et al. Neurosurgery: functional regeneration after laser axotomy. Nature

432, 822 (2004).

[73] Yanik, M. F. et al. Nerve regeneration in Caenorhabditis elegans after femtosecond

laser axotomy. IEEE Journal of Selected Topics in Quantum Electronics 12, 1283-

1291 (2006).

[74] Wu, Z. et al. Caenorhabditis elegans neuronal regeneration is influenced by life stage,

ephrin signaling, and synaptic branching. Proceedings of the National Academy of

Sciences of the United States of America 104, 15132-7 (2007).

[75] Gabel, C. V. et al. Distinct cellular and molecular mechanisms mediate initial axon

development and adult-stage axon regeneration in C. elegans. Development 135,

1129-36 (2008).

[76] Hammarlund, M., Nix, P., Hauth, L., Jorgensen, E. M. & Bastiani, M. J. Axon

regeneration requires a conserved MAP kinase pathway. Science 323, 802-6 (2009).

163



[77] Yan, D., Wu, Z., Chisholm, A. D. & Jin, Y. The DLK-1 kinase promotes mRNA

stability and local translation in C. elegans synapses and axon regeneration. Cell

138, 1005-18 (2009).

[78] Ghosh-Roy, A., Wu, Z., Goncharov, A., Jin, Y. & Chisholm, A. D. Calcium and

cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-

1 kinase. The Journal of Neuroscience 30, 3175-83 (2010).

[79] Rohde, C. B., Zeng, F., Gonzalez-Rubio, R., Angel, M. & Yanik, M. F. Microfluidic

system for on-chip high-throughput whole-animal sorting and screening at subcellular

resolution. Proceedings of the National Academy of Sciences of the United States of

America 104, 13891-5 (2007).

[80] Massie, M. R., Lapoczka, E. M., Boggs, K. D., Stine, K. E. & White, G. E. Exposure

to the metabolic inhibitor sodium azide induces stress protein expression and thermo-

tolerance in the nematode Caenorhabditis elegans. Cell Stress & Chaperones 8, 1-7

(2003).

[81] Podbilewicz, B. & Gruenbaum, Y. Live Imaging of Caenorhabditis elegans: Prepa-

ration of Samples. Cold Spring Harbor Protocols 2006, pdb.prot4601-pdb.prot4601

(2006).

[82] Lewbart, G. A. & Bodri, M. S. Nematodes. In Invertebrate Medicine (Blackwell

Publishing, 2006).

[83] Melin, J. & Quake, S. R. Microfluidic large-scale integration: the evolution of de-

sign rules for biological automation. Annual Review of Biophysics and Biomolecular

Structure 36, 213-31 (2007).

[84] Dupuy, D. et al. Genome-scale analysis of in vivo spatiotemporal promoter activity

in Caenorhabditis elegans. Nature Biotechnology 25, 663-8 (2007).

[85] Kaletta, T., Butler, L., Bogaert, T., Carroll, P. M. & FitzGerald, K. J. Model organ-

isms in drug discovery (John Wiley and Sons, 2003).

[86] Zhang, J.-H. A Simple Statistical Parameter for Use in Evaluation and Validation

of High Throughput Screening Assays. Journal of Biomolecular Screening 4, 67-73

(1999).

164



[87] Zeng, F., Rohde, C. B. & Yanik, M. F. Sub-cellular precision on-chip small-animal

immobilization, multi-photon imaging and femtosecond-laser manipulation. Lab on a

Chip 8, 653-6 (2008).

[88] Vogel, A., Noack, J., Hittman, G. & Paltauf, G. Mechanisms of femtosecond laser

nanosurgery of cells and tissues. Applied Physics B 81, 1015-1047 (2005).

[89] Samara, C. et al. High-throughput in vivo femtosecond laser neurosurgery screen

reveals factors modulating regeneration. Proceedings of the National Academy of

Sciences of the United States of America 107, 18342-18347 (2010).

[90 Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nature Reviews. Neuro-

science 5, 146-56 (2004).

[91] Neumann, S. & Woolf, C. Regeneration of dorsal column fibers into and beyond the

lesion site following adult spinal cord injury. Neuron 23, 83-91 (1999).

[92] Park, K. K. et al. Promoting axon regeneration in the adult CNS by modulation of

the PTEN/mTOR pathway. Science 322, 963-6 (2008).

[93] Bhatt, D. H., Otto, S. J., Depoister, B. & Fetcho, J. R. Cyclic AMP-induced repair

of zebrafish spinal circuits. Science 305, 254-8 (2004).

[94] Steinmeyer, J. D. et al. Construction of a femtosecond laser microsurgery system.

Nature Protocols 5, 395-407 (2010).

[95] Guo, S. X. et al. Femtosecond laser nanoaxotomy lab-on-a chip for in vivo nerve

regeneration studies. Nature Methods 5, 531-533 (2008).

[96] Hulme, S. E., Shevkoplyas, S. S., Apfeld, J., Fontana, W. & Whitesides, G. M. A

microfabricated array of clamps for immobilizing and imaging C. elegans. Lab on a

Chip 7, 1515-23 (2007).

[97] Chung, K., Crane, M. M. & Lu, H. Automated on-chip rapid microscopy, phenotyping

and sorting of C. elegans. Nature Methods 5, 637-43 (2008).

[98] Chokshi, T. V., Ben-Yakar, A. & Chronis, N. C02 and compressive immobilization

of C. elegans on-chip. Lab on a Chip 9, 151-7 (2009).

165



[99] Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974).

[100] Chung, K. & Lu, H. Automated high-throughput cell microsurgery on-chip. Lab on

a Chip 9, 2764-2766 (2009).

[101] Haggarty, S. J. et al. Dissecting cellular processes using small molecules: identification

of colchicine-like, taxol-like and other small molecules that perturb mitosis. Chemistry

& Biology 7, 275-286 (2000).

[102] Mayer, T. U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in

a phenotype-based screen. Science 286, 971-4 (1999).

[103] Goodman, M. B. & Schwarz, E. M. Transducing touch in Caenorhabditis elegans.

Annual Review of Physiology 65, 429-52 (2003).

[104] Syntichaki, P. & Tavernarakis, N. The biochemistry of neuronal necrosis: rogue

biology? Nature Reviews. Neuroscience 4, 672-84 (2003).

[105] Ruegg, U. T., Burgess, G. M. & Riiegg, U. T. Staurosporine, K-252 and UCN-

01: potent but nonspecific inhibitors of protein kinases. Trends in Pharmacological

Sciences 10, 218-20 (1989).

[106] Couldwell, W. T. et al. Protein kinase C inhibitors induce apoptosis in human ma-

lignant glioma cell lines. FEBS Letters 345, 43-6 (1994).

[107] Posmantur, R., McGinnis, K., Nadimpalli, R., Gilbertsen, R. B. & Wang, K. K.

Characterization of CPP32-like protease activity following apoptotic challenge in SH-

SY5Y neuroblastoma cells. Journal of Neurochemistry 68, 2328-37 (1997).

[108] Kruman, I., Guo, Q. & Mattson, M. P. Calcium and reactive oxygen species mediate

staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. Journal

of Neuroscience Research 51, 293-308 (1998).

[109 Yue, T. L. et al. Staurosporine-induced apoptosis in cardiomyocytes: A potential role

of caspase-3. Journal of Molecular and Cellular Cardiology 30, 495-507 (1998).

[110] Srinivasan, A. et al. Bcl-2 expression in neural cells blocks activation of ICE/CED-3

family proteases during apoptosis. The Journal of Neuroscience 16, 5654-60 (1996).

166



[111] Jacobsen, M. D., Weil, M. & Raff, M. C. Role of Ced-3/ICE-family proteases in

staurosporine-induced programmed cell death. The Journal of Cell Biology 133,

1041-51 (1996).

[112] Armsby, C. C., Brugnara, C. & Alper, S. L. Cation transport in mouse erythrocytes:

role of K(+)-Cl- cotransport in regulatory volume decrease. The American Journal

of Physiology 268, 894-902 (1995).

[113] Bize, I. & Dunham, P. B. Staurosporine, a protein kinase inhibitor, activates K-Cl

cotransport in LK sheep erythrocytes. The American Journal of Physiology 266,

C759-70 (1994).

[114] Holtzman, E. J. et al. Cloning, characterization, and gene organization of K-Cl co-

transporter from pig and human kidney and C. elegans. The American Journal of

Physiology 275, F550-64 (1998).

[115] Sassa, T. & Miwa, J. Purification and characterization of protein kinase C from the

nematode Caenorhabditis elegans. The Biochemical Journal 282, 219-23 (1992).

[116] Herbert, J. M., Augereau, J. M., Gleye, J. & Maffrand, J. P. Chelerythrine is a potent

and specific inhibitor of protein kinase C. Biochemical and Biophysical Research

Communications 172, 993-9 (1990).

[117] Gschwendt, M., Leibersperger, H., Kittstein, W. & Marks, F. Protein kinase C zeta

and eta in murine epidermis. TPA induces down-regulation of PKC eta but not PKC

zeta. FEBS Letters 307, 151-5 (1992).

[118] Heacock, A. M. & Agranoff, B. W. Protein kinase inhibitors block neurite outgrowth

from explants of goldfish retina. Neurochemical Research 22, 1179-85 (1997).

[119] Ekstr6m, P. A., Bergstrand, H. & Edstr6m, A. Effects of protein kinase inhibitors

on regeneration in vitro of adult frog sciatic sensory axons. Journal of Neuroscience

Research 31, 462-9 (1992).

[120] Wu, D.-Y., Zheng, J.-Q., McDonald, M. A., Chang, B. & Twiss, J. L. PKC isozymes

in the enhanced regrowth of retinal neurites after optic nerve injury. Investigative

Ophthalmology & Visual Science 44, 2783-90 (2003).

167



[121] Wiklund, P. & Ekstr6m, P. A. Protein kinase C inhibition has only a transient growth

arresting effect on in vitro regenerating mouse sensory neurons. Neuroscience Letters

275, 155-8 (1999).

[122] Jian, X., Hidaka, H. & Schmidt, J. T. Kinase requirement for retinal growth cone

motility. Journal of Neurobiology 25, 1310-28 (1994).

[123] Toni, N., Stoppini, L. & Muller, D. Staurosporine but not chelerythrine inhibits

regeneration in hippocampal organotypic cultures. Synapse 27, 199-207 (1997).

[124] Lavie, Y., Dybowski, J. & Agranoff, B. W. Wortmannin blocks goldfish retinal phos-

phatidylinositol 3-kinase and neurite outgrowth. Neurochemical Research 22, 373-378

(1997).

[125] Kimpinski, K. & Mearow, K. Neurite growth promotion by nerve growth factor and

insulin-like growth factor-i in cultured adult sensory neurons: role of phosphoinositide

3-kinase and mitogen activated protein kinase. Journal of Neuroscience Research 63,

486-99 (2001).

[126] Qiu, J. et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron

34, 895-903 (2002).

[127] Dergham, P. et al. Rho signaling pathway targeted to promote spinal cord repair.

The Journal of Neuroscience 22, 6570-6577 (2002).

[128] Sj6green, B., Wiklund, P. & Ekstr6m, P. A. Mitogen activated protein kinase inhibi-

tion by PD98059 blocks nerve growth factor stimulated axonal outgrowth from adult

mouse dorsal root ganglia in vitro. Neuroscience 100, 407-16 (2000).

[129] Rohde, C. B. & Yanik, M. F. Multi-time-point immobilization, subcellular imaging,

and microsurgery of C. elegans in standard multiwell plates. Nature Communications

2, 1-7 (2011).

[130] Liu, J., Hansen, C. & Quake, S. R. Solving the "world-to-chip" interface problem

with a microfluidic matrix. Analytical Chemistry 75, 4718-23 (2003).

[131] Hulme, S. E. et al. Lifespan-on-a-chip: microfluidic chambers for performing lifelong

observation of C. elegans. Lab on a Chip 10, 589-97 (2010).

168



[132] Petrascheck, M., Ye, X. & Buck, L. B. An antidepressant that extends lifespan in

adult Caenorhabditis elegans. Nature 450, 553-6 (2007).

[133] Hosono, R. Sterilization and growth inhibition of caenorhabditis elegans by 5-

fluorodeoxyuridine. Experimental Gerontology 13, 369 - 373 (1978).

[134] Mitchell, D. H., Stiles, J. W., Santelli, J. & Sanadi, D. R. Synchronous growth and

aging of caenorhabditis elegans in the presence of fluorodeoxyuridine. Journal of

Gerontology 34, 28-36 (1979).

[135] Long, F., Peng, H. & Myers, E. Automatic Segmentation of Nuclei in 3D Microscopy

Images of C. Elegans. In 2007 4th IEEE International Symposium on Biomedical

Imaging: From Nano to Macro, 536-539 (IEEE, 2007).

[136] Budovskaya, Y. V. et al. An elt-3/elt-5/elt-6 GATA transcription circuit guides aging

in C. elegans. Cell 134, 291-303 (2008).

[137] Botvinick, E. L., Venugopalan, V., Shah, J. V., Liaw, L. H. & Berns, M. W. Controlled

ablation of microtubules using a picosecond laser. Biophysical Journal 87, 4203-4212

(2004).

[138] Watanabe, W. Feimtosecond laser disruption of subcellular organelles in a living cell.

Optics Express 12, 4203-4213 (2004).

[139] Heisterkamp, A. Pulse energy dependence of subcellular dissection by femtosecond

laser pulses. Optics Express 13, 3690-3696 (2005).

[140] Tirlapur, U. K. & Konig, K. Targeted transfection by femtosecond laser. Nature 418,

290-291 (2002).

[141] Vogel, A. Mechanisms of laser-induced dissection and transport of histologic speci-

mens. Biophysical Journal 93, 4481-4500 (2007).

[142] Shen, N. Ablation of cytoskeletal filaments and mitochondria in live cells using fem-

tosecond laser nanoscissor. Mechanics and Chemistry of Biosystems 2, 17-25 (2005).

[143] O'Brien, G. S. et al. Two-photon axotomy and time-lapse confocal imaging in live

zebrafish embryos. Journal of Visualized Experiments 24 (2009).

169



[144] Frostig, R. D. In Vivo Optical Imaging of Brain Function (Nature Publishing Group,

2002).

[145] Sulston, J. & Hodgkin, J. Methods. In The Nematode C. elegans (Cold Spring Harbor

Laboratory Press, 1998).

[146] Bourgeois, F. & Ben-Yakar, A. Femtosecond laser nanoaxotomy properties and their

effect on nerve regeneration in C. elegans. Optics Express 15, 8521-8531 (2007).

[147] Gilleland, C. L., Rohde, C. B., Zeng, F. & Yanik, M. F. Microfluidic immobilization of

physiologically active Caenorhabditis elegans. Nature Protocols 5, 1888-902 (2010).

[148] Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake, S. R. Monolithic

microfabricated valves and pumps by multilayer soft lithography. Science 288, 113-6

(2000).

[149] Fang-Yen, C., Wasserman, S., Sengupta, P. & Samuel, A. D. Agarose immobilization

of C. elegans. Worm Breeder's Gazette 18 (2009).

[150] Lee, J. N., Park, C. & Whitesides, G. M. Solvent compatibility of

poly(dimethylsiloxane)-based microfluidic devices. Analytical Chemistry 75, 6544-

54 (2003).

170


