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Abstract
This thesis presents Dtxn, a fault-tolerant distributed transaction system designed specifi-
cally for building online transaction processing (OLTP) databases. Databases have tradi-
tionally been designed as general purpose data processing tools. By being designed only for
OLTP workloads, Dtxn can be more efficient. It is designed to support very large databases
by partitioning data across a cluster of commodity servers in a data center. Combining mul-
tiple servers together allows systems built with Dtxn to be cost effective, highly available,
scalable, and fault-tolerant.

Dtxn provides three novel features. First, it provides reusable infrastructure for building
a distributed OLTP database out of single machine databases. This allows developers to
take a specialized backend storage engine and use it across multiple machines, without
needing to re-implement the distributed transaction infrastructure. We used Dtxn to build
four different applications: a simple key/value store, a specialized TPC-C implementation,
a main-memory OLTP database, and a traditional disk-based OLTP database.

Second, Dtxn provides a novel concurrency control mechanism called speculative con-
currency control, designed for main memory OLTP workloads that are primarily composed
of transactions with a single round of communication between the application and database.
Speculative concurrency control executes one transaction at a time, with no concurrency
control overhead. In cases where there may be stalls due to network communication,
it speculates future transactions. Our results show that this provides significantly better
throughput than traditional two-phase locking, outperforming it by a factor of two on the
TPC-C benchmark.

Finally, Dtxn supports live migration, allowing part of the data on one server to be
moved to another server while processing transactions. Our experiments show that our
approach has nearly no visible impact on throughput or latency when moving data under
moderate to high loads. It has significantly less impact than the best commercially available
systems when the database is overloaded. The period of time where the throughput is
reduced is less than half as long as failing over to another replica or using virtual machine
migration.

Thesis Supervisor: Samuel Madden
Title: Associate Professor
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Chapter 1

Introduction

Applications that require high throughput access to data are increasingly relying on main
memory, as it provides much better and more predictable performance than magnetic disk.
The decrease in cost provided by Moore’s law and the growth of large data centers means
that it is now cost effective to store significant amounts of data in RAM across a cluster
of computers. Current commodity servers can fit up to 196 GB of RAM in a standard 1U
rack unit, so a single rack of 40 servers can have an aggregate capacity of approximately
7.5 TB. This is more than sufficient for most online transaction processing (OLTP) ap-
plications, such as bank transaction processing, airline reservation systems, e-commerce,
or web applications. The data volume of these applications is relatively modest because
the recommended practice today is to offload historical data to a separate dedicated system.
This allows one system to be optimized for interactive OLTP, while another data warehouse
system is used for online analytical processing (OLAP). Despite these changes, traditional
databases are designed for a wide variety of applications, including both OLTP and OLAP.
As a result, they are very flexible, but also have conservative designs that limit their perfor-
mance.

The traditional approach to managing high performance database workloads has been
to use very large machines. However, these high-end systems are very expensive when
compared to the cost of commodity servers on a per-CPU or per-gigabyte of RAM basis.
Today, it is widely accepted that the most cost effective approach to building big systems
is to combine the resources of a cluster of servers, connected with commodity network-
ing. Large organizations are building huge data centers that host thousands of commodity
servers. Thus, high performance databases must be designed to be distributed across many
servers in a data center to meet the needs of modern applications.

Since interactive OLTP applications are critical for the operation of a business, the
database must be highly available. Running on a cluster of computers provides the oppor-
tunity to use replication and fault isolation to protect against independent failures. How-
ever, replication cannot help when the application needs evolve. Successful systems need
to be able to scale in response to changing load, and applications will change their schema
as they are upgraded. Traditional systems make these changes in a maintenance window
when the database is unavailable. In today’s world, this is unacceptable. To avoid mainte-
nance windows and further improve availability, a database needs to support live migration,
allowing data to be moved between machines while processing transactions. This allows
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the system to be scaled dynamically in response to load, to reconfigure the data distribution,
or to simply take a machine out of service for repairs.

While distributed databases have been well studied, this new environment provides the
opportunity to re-examine old design decisions to adapt to the properties of OLTP work-
loads and clusters of commodity servers. In this thesis, we present Dtxn, a fault-tolerant
distributed transaction system built for distributed databases running OLTP workloads. It
allows backend database developers to build a large database system out of single ma-
chine storage engines, by partitioning and distributing data across many machines. It is
optimized for memory-resident workloads, and can provide significantly better throughput
than traditional transaction processing systems for in-memory storage engines. It provides
the following novel features:

Reusable infrastructure for OLTP databases. Dtxn provides abstractions for building a
distributed database out of single machine databases. It is designed for workloads
that require serializable transactions that each access small amounts of data, which
is an ideal fit for OLTP applications. The database is treated as a black box, so that
Dtxn can be used for different data storage applications. In this thesis, we describe
how it has been applied to four applications with very different workloads.

Speculative concurrency control. This is a new concurrency control technique for main-
memory databases that provides serializability without tracking data accesses at a
fine granularity. It is motivated by the observation that in main-memory databases,
latching and locking consume a large fraction of the CPU [45, 40, 60, 84, 95]. Spec-
ulative concurrency control eliminates most of this overhead, improving throughput
for transaction processing workloads that are mostly composed of transactions that
have a single round of communication with the database. This is a good fit for OLTP
which is mostly composed of simple data accesses (create/read/update/delete), auto-
commit statements, or stored procedures.

Live data migration using a cached-based approach. Dtxn can move data from one ma-
chine to another while transactions are being processed. This improves the avail-
ability of the system by allowing it to be reconfigured without downtime. Existing
approaches copy all the data to be moved before switching over to the destination
machine. This adds additional load to the source machine, which can impact per-
formance significantly. Instead, Dtxn switches to the destination immediately, then
fetches referenced data on demand from the source. We show that this allows load
to be shifted away from the source machine faster than existing techniques, allows
partial migration and repartitioning, and has a minimal visible impact on application
performance.

1.1 Application Requirements
Dtxn is able to provide better performance than existing transaction processing systems
because it is designed for a specific application domain: high throughput online transaction
processing. It attempts to meet the following application requirements:
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Use commodity servers and networks: The most cost effective computing platform to-
day is whatever is mass produced. As a result, commodity servers with provide the
best performance per dollar. Today, that means a system with one or two CPUs, each
with four or six cores (a total of four to twelve cores), anywhere from 36 to 144 GB
of RAM, and one to six disks. These systems are typically interconnected via a single
gigabit Ethernet port. In order to make the most efficient database system possible,
Dtxn is designed to run on commodity servers inside large data centers.

OLTP workloads: Dtxn is designed specifically for online transaction processing (OLTP)
applications. These workloads are composed of short transactions that only contain
a few operations, with no user interaction. Each operation is typically a simple query
or update that accesses a small number of records (less than 100). Updates are an
important part of these workloads. OLTP workloads typically have a number of
pre-defined high-level operations that are performed at high rates. This description
fits most applications that manage interactive user requests such as banking, airline
reservation systems, e-commerce, and web applications.

The opposite of OLTP is online analytical processing (OLAP), which typically in-
volves processing queries that must access large amounts of data. These queries
are frequently not known in advance, and are typically very read intensive with few
updates. These workloads appear in data mining and reporting applications, where
users want to discover interesting information from large data sets.

These two classes of applications are both large and important, but are very different.
Databases have traditionally been designed to support both workloads, and hence
are not optimized for either. However, the current industry practice is to have two
separate database systems, one for the online data, and a second for analytic tasks.
The analytic system is typically loaded with the new data from the OLTP system
either periodically (e.g., at end of each business day), or continuously. This ensures
that the business critical OLTP system is isolated from any analytic tasks, and that
the two systems can be optimized separately. Importantly for Dtxn, this means that a
system designed for only OLTP applications can be used.

High availability: The OLTP systems in most enterprises are critical to the business, as
these are the systems that are required to process each user request, such as each
purchase, every page view, or each financial transaction. If the system handling these
tasks is down, the business loses money. As a result, the system must be highly
available. This means that there should be no single points of failure, and that recov-
ery must be considered carefully. The system should be able to incorporate changes
without downtime, such as scaling by adding or removing machines.

High throughput and low latency: Traditional databases function very well for modest
workloads that can be handled by a single commodity server. Today, a server that
costs $3,000 USD running an open-source database server can easily process a few
thousand transactions per second. However, a single machine database provides no
easy way to scale the system to handle increased application load or data volume.
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Table 1.1: Summary of application requirements and solutions

Requirement Solutions
Commodity servers Scale out via partitioning
OLTP workloads Single round transactions, Small data accesses, Memory

resident, Partitioning
High availability Replication, Partial failure, Live migration
High throughput Memory resident, Speculative concurrency control
Low latency Memory resident, Replication instead of disk logging
Serializability Speculative concurrency control
Reuse Data agnostic

Dtxn is designed for applications that must process more transactions than a single
machine can handle, while keeping latency low for interactive use.

Serializable transactions: Transactions with serializable consistency have proven to be a
very useful abstraction, making it feasible for people to write concurrent programs
without having to think about concurrency. Some systems choose to provide relaxed
consistency models, either by only providing guarantees for single item accesses, or
by eschewing any guarantees at all. However, there are many applications where a
strict correctness guarantee is required (e.g., banking). Perhaps more importantly,
these strong guarantees make the system easier to use, by making it easier to under-
stand what happens when data is accessed and manipulated concurrently. Thus, Dtxn
provides the traditional serializable transaction semantics.

Reusable for different backend storage engines: It has become popular for specialized
storage engines to be built for different applications, as it is possible to obtain better
efficiency or to provide features customized for the application. In order to use these
specialized storage engines in a distributed system, backend developers must imple-
ment data distribution, concurrency control, replication, and live migration. Dtxn
provides these features, allowing backend developers to focus on the aspects of their
system that are novel.

1.2 Solutions
In order to meet the application requirements, Dtxn includes the following features. A
summary showing which requirements lead to which features is shown in Table 1.1

Memory-resident workloads: RAM is the highest performance storage technology avail-
able. In order to provide extremely high throughput and low latency, Dtxn is opti-
mized for database-based applications where the working set fits in main memory.
As argued earlier, this is now feasible for OLTP applications. Dtxn can be used for
databases where most requests require disk accesses, although speculative concur-
rency control should not be used for these applications.
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Single round transactions: In order to avoid networking and distributed coordination
overhead, Dtxn is optimized to execute a transaction with one round of communi-
cation, without round-trips between the database and the client application. This
reduces overhead and introduces many opportunities for optimizations. In OLTP
workloads, many operations are simple data accesses (e.g. single auto-commit SQL
statements), which can trivially be implemented in this efficient, single-round form.
Multi-operation transactions are typically defined in advance as part of the applica-
tion code. As a result, it is possible for them to be written as stored procedures, to be
executed by the database. Thus, it is feasible for most transactions in OLTP work-
loads to be executed in an efficient, single round of communication. However, Dtxn
still supports traditional transactions that involve multiple rounds of communication.

Small data accesses: OLTP transactions typically manipulate small amounts of data, such
as a single purchase order or one user’s bank accounts, and thus Dtxn is designed
for these workloads. As a result, Dtxn processes an entire operation at a time, and
passes complete result sets as single network messages. This will not work well for
applications that must retrieve multiple megabytes of data, as is typical for OLAP
workloads. These workloads need to support streaming results and pipelined pro-
cessing, which is not a good fit for Dtxn.

Replication: The primary technique for providing high availability is to replicate the sys-
tem to protect against independent software and hardware failures. Dtxn can repli-
cate all data across more than one physical machine for this purpose. Replication
also provides data durability, replacing forced writes to stable storage. This provides
lower latency than waiting for magnetic disk writes to complete. However, Dtxn also
provides support for traditional write-ahead disk-based logging, if desired.

Scale out via explicit partitioning: In order to use multiple independent servers, the data
and tasks must be partitioned across them in some way. In examining a variety
of OLTP workloads, we have found that most of them can be partitioned such that
most transactions only need to access a single partition. We assume that the user
has carefully partitioned their application so that this is true. Additionally, Dtxn
is designed so that there are no single bottlenecks for the majority of operations,
allowing the aggregate performance of the system to be increased by adding more
machines.

Fault isolation: Partitioning also improves availability by providing a unit of isolation
and allowing for fault isolation. Dtxn is designed to continue functioning even if
some partitions of the database are unavailable. Any operations that must access the
unavailable partitions will fail, but operations that access the functioning partitions
can continue.

Speculative concurrency control: Previous research has found that traditional lock-based
concurrency control adds significant overhead to transaction processing in main-
memory OLTP database systems. Dtxn has been designed to remove many of the
reasons traditional systems need to execute concurrent transactions, such as waiting
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for disk, or commands from the application. As a result, single round transactions,
such as single data operations (e.g. single SQL statements) or stored procedures can
typically be executed sequentially, with no concurrency control overhead. However,
this causes transactions that span multiple partitions, called multi-partition transac-
tions to stall while waiting for two-phase commit to complete. As a result, Dtxn
provides a low-overhead concurrency control mechanism called speculative concur-
rency control that can exploit the properties of stored procedures.

Live migration: Successful applications must be able to handle growth, and critical ap-
plications must be constantly available. As a result, the database must be capable
of moving data in order to scale out to more machines, while continuing to process
transactions. Dtxn supports live migration, permitting data to be redistributed with-
out stopping. Our live migration system is designed to support partial migration,
which allows an existing partitions to be split or recombined. This not only allows a
system to be scaled, but also allows data to be re-partitioned in case the data access
patterns change.

Data agnostic: In order to be applicable for different types of storage engines, Dtxn can-
not make any assumptions about the structure of the data that is stored in the sys-
tem. Dtxn’s interfaces are chosen to be the minimum required to support replication,
concurrency control and data migration while allowing the storage engine the most
flexibility possible. Dtxn effectively treats the storage engine as a black box.

1.3 Outline
In the next chapter we describe the architecture of the Dtxn system, and the details about
its protocols for distributed transactions and replication. We then describe how this de-
sign has been applied to four different applications. In Chapter 4 we describe Speculative
Concurrency Control, our novel technique optimized for main-memory storage and stored
procedures. Live migration is discussed in Chapter 5. Finally, we summarize the previous
work on distributed transaction processing systems that are similar to Dtxn before present-
ing our conclusions and future work.
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Chapter 2

Dtxn Design

Dtxn is a framework for building distributed storage systems that run on a cluster of com-
puters in a single data center. It supports serializable transactions and replication for fault
tolerance. Systems built with Dtxn can be scaled by adding and removing nodes while
transactions are being processed. Dtxn is designed to be useful for a wide variety of sys-
tems, and so it does not directly provide an implementation for storing and processing data.
Instead, it provides a set of interfaces that can be used to take a single-node storage engine
and make it into a distributed system. We will explain how Dtxn works from the bottom
up, by describing an example application: a simple key/value storage system. To begin, the
backend developer builds a “local” storage engine, which is just a library to store data.

2.1 Local Storage Engines

A local storage engine is some custom code that stores data in some format that is useful for
applications. As an example, a local key/value storage engine can be a library that supports
a few operations on a collection of byte strings: get a key, update a key, and delete a key. If
it stores data in memory, this is trivial to build. It only requires using an appropriate hash
table or binary tree from an existing library. An application can use this engine by calling
the appropriate functions.

In Dtxn, this component is called a storage engine, and is the primitive building block
for a distributed storage system. The backend developer creates a storage engine by im-
plementing the interface shown in Figure 2-1. The interface’s most important function is
executeFragment(), which executes an application-supplied operation and returns the re-
sult. Dtxn knows nothing about the internals of the storage engine. Instead, it treats it as
an opaque state machine, passing operations from the application as byte strings and re-
turning the results of those operations as byte strings. This allows Dtxn to be used for a
wide variety of different storage systems, and makes it possible to send the operations and
results across a network. The storage engine also needs to support operations that can be
undone by recording an undo record. The undo record is an opaque structure returned by
the storage engine that will later either be applied to undo the effects of the operation or
freed if the operation is permanent.

This interface is sufficient to support transactions. In Dtxn, a transaction is composed
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interface StorageEngine:
// Returns the output produced by executing the operation represented by fragment
// If undoRecord is not null, then it must be used to store information so the fragment
// can be undone. In this case, either applyUndoRecord() or freeUndoRecord() will be
// called after the transaction completes.
bytes executeFragment(bytes fragment, UndoRecord undoRecord);

// Applies undoRecord to undo the transaction. Called in LIFO order.
void applyUndoRecord(UndoRecord undoRecord);

// Frees resources associated with undoRecord. Called in FIFO order.
void freeUndoRecord(UndoRecord undoRecord);

Figure 2-1: Pseudocode for the StorageEngine interface

α = get(x)
put(x = 42)

... β = compute(α) ...

put(y = β)
commit()

α = executeFragment(fragment1)

... β = compute(α) ...

executeFragment(fragment2)
freeUndoRecord(...)

Direct key/value store

fragment1

fragment2

Dtxn StorageEngine interface

Figure 2-2: Example key/value store code transformed to use the StorageEngine interface

of multiple operations called fragments. A fragment is an application-supplied operation
encoded as a byte string that will be passed to the storage engine. The storage engine itself
does not need to be aware of transactions, as Dtxn manages concurrency by only executing
one transaction at a time, discussed in detail in Chapter 4. An example of how an applica-
tion transaction using a key/value interface would be translated to use the StorageEngine
interface is shown in Figure 2-2.

This interface is not useful by itself, as it provides no benefits over using the storage
engine directly, and is less convenient. However, it allows Dtxn to implement transactions,
replication, and logging, without needing to understand anything about the operations. This
makes it easier for backend developers to build new storage engines. Most importantly, this
interface allows Dtxn to build a distributed storage system by combining many storage en-
gine instances together. Each storage engine stores a logical subset of the entire system’s
data, called a partition. Each partition is independent, and must be small enough to be
served by a single machine. To make a partition accessible over a network, support trans-
actions and make changes durable, Dtxn embeds a storage engine in a partition server.
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2.2 Partition Servers

The partition server is the process that stores a partition of data by embedding a storage en-
gine. Note that a partition in Dtxn is a logical part of the data stored in the system, while a
partition server is a single process that stores a partition of data. Since Dtxn supports repli-
cation, a partition may actually be stored in multiple servers. A partition server provides
three essential features: network communication, durability, and transactional concurrency
control. To provide network communication, the partition server implements a protocol
for passing fragments to the storage engine. This protocol is essentially an RPC interface
for the storage engine interface shown in Figure 2-1. The partition server contains three
components: the scheduler, the fault-tolerant log, and the storage engine, as shown in Fig-
ure 2-3. It passes requests and responses between these components and the network. The
result is that backend developers only need to provide an implementation of the simple stor-
age engine interface, and Dtxn makes it accessible to network clients, provides transactions
and replicates it across multiple storage engines.

Although applications do not actually communicate directly with a partition server, for
the sake of explaining the system, consider our key/value application that now wishes to
communicate with a storage engine embedded in a partition server. Rather than simply
calling the API directly, it takes the fragment of work it wishes to perform, and puts it in
a generic Fragment message. This message is sent to the partition server, which then uses
the storage engine interface to execute it. This generates results, which are then returned in
a generic FragmentResponse message. The results are then extracted from the response
and returned to the application. If there are multiple applications communicating with a
given partition server, the server will receive and process the fragments in some arbitrary
order.

This is sufficient for simple operations, but when an application wishes to be able to
execute a transaction, more support is required. First, it must be possible to abort a trans-
action, for example if the application decides to abort it for some reason. Second, if a
transaction is composed of multiple fragments of work, then interleaving fragments from
other transactions may not be permitted. The partition server relies on a scheduler to en-
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Application Partition Server

get(source) Fragment: [get(source)]
Scheduler StorageEngine

get(destination)

abort()

executeFragment(...) get(source)
source = $10 000FragmentResponse

Fragment: [get(destination)]
FragmentResponse

executeFragment(...) get(destination)
does not exist

CommitDecision: abort applyUndoRecord(...) ... (nothing to undo) ...

NetworkTime

Figure 2-4: Example message flow for an aborted balance transfer

force serializable consistency. The scheduler is responsible for controlling how fragments
from different transactions are interleaved by implementing the desired concurrency control
scheme. The default scheduler uses speculative concurrency control, but Dtxn provides two
other implementations, as described in detail in Chapter 4. Backend developers can also
provide their own, if they have specialized needs.

In the case of our key/value storage system, consider an application that wishes to per-
form a classic balance transfer. It can do this by reading the source key, decrementing and
writing the new balance, reading the destination key, and incrementing and writing the new
balance. This can be executed as a transaction composed of four fragments (get(source),
get(destination), put(source), put(destination)). Using a transaction ensures that we main-
tain a constant global balance. If at any time the application decides to abort, for example
if the destination account does not exist, it sends an abort message, which causes the ef-
fects to be rolled back by invoking the applyUndoRecord() method of the StorageEngine
interface. A sequence diagram showing this flow of messages between the application, the
partition server, and the storage engine is shown in Figure 2-4. If the transaction wants to
commit, it can either combine the commit message with the last put(), or send it as a sep-
arate message. This example shows a single application communicating with a partition
server. When multiple applications are issuing transactions at the same time, the sched-
uler component is responsible for deciding how fragments from different transactions are
interleaved, which is described in Chapter 4.

The partition server makes data durable by relying on a fault-tolerant log. This is an
abstraction of a traditional write-ahead redo log. When a transaction commits, it must
record a redo log record that can be used to recover the results of the transaction. In Dtxn,
the redo log is a logical log that will always be applied to consistent checkpoints. By
default, the redo record is the sequence of fragments that were executed for the transaction.
This assumes that the operations that were performed are deterministic, meaning that re-
executing them later on a checkpoint or a replica will always produce the same results. If
the execution of the fragments for a given storage engine is not deterministic, a storage
engine can optionally provide its own redo log records.

Before a transaction commits, its redo record is written to the log. After the log indi-
cates that the fragments are durably stored, the transaction is considered to be committed.
The assumption is that in case of failure, the fragments in the log can be re-executed, and
the storage engine will end up in the same state as before the failure. This requires that
storage engine operations are deterministic, which is the same requirement as a traditional
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database redo log. However, they do not need to be idempotent, as the log implementation
will enforce that they are only applied once. This is done by tagging them with sequence
numbers and performing recovery from clean, consistent checkpoints. The default imple-
mentation uses this log to replicate the storage engine across multiple partition servers,
described in Section 2.7. A traditional disk-based implementation and a null implementa-
tion that does nothing are also provided by Dtxn. Again, if the backend developers wish to
use some alternative scheme, they are free to provide their own implementation.

A single partition is useful by itself as a standalone database server that is replicated
for fault-tolerance. However, in order to store large amounts of data and to take advantage
of multiple CPUs and machines, Dtxn provides access to a collection of partitions via the
transaction API.

2.3 Transaction API

Applications that issue transactions to Dtxn are called transaction coordinators. Dtxn’s
transaction API allows applications to execute transactions that access multiple partitions.
At the moment, we will assume that applications know which partitions store the data
that they want to manipulate. The metadata service, described in Section 2.4, relaxes this
restriction. The transaction coordinator library provided by Dtxn manages the distributed
transaction, using the protocols described in Section 2.6. Applications call the transaction
API, which communications with partition servers. A diagram showing the relationship
between applications, the transaction API, and partition servers is shown in Figure 2-5.

Distributed transactions could potentially involve arbitrary data flow between partici-
pants, but Dtxn provides a limited request/response model composed of rounds of commu-
nication. Each round contains a set of fragments, where each fragment is sent to a different
partition. Dtxn distributes the fragments and waits for the responses. After all the responses
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structure Round:
// Globally unique transaction id returned by Coordinator.GetTransactionId().
integer transactionId;

// Maps partition ids to the fragment for that partition.
Map<integer, bytes> fragments;

interface Coordinator:
// Starts or continues executing the transaction with fragments in round.
// Returns a map of (partition id, response) pairs containing the responses.
Map<integer, bytes> Execute(Round round);

// Commits or aborts an active transaction.
// shouldCommit is true if the transaction should commit, false if it should abort.
void Finish(integer transactionId, boolean shouldCommit);

// Returns a globally unique transaction id.
integer GetTransactionId();

Figure 2-6: Simplified pseudocode for the Dtxn transaction API

have been received, they are passed back to the application. The application can then con-
tinue the transaction in any way it chooses. A simplified version of the transaction API is
shown in Figure 2-6, and is described in Section 2.6. Applications create a Round structure
to represent each round. To distinguish between rounds that belong to the same transac-
tion and rounds that start a new transaction, the application must set Round.transactionId
to the value returned by Coordinator.GetTransactionId(). The application adds fragments
to Round.fragments, the submits it for execution using Coordinator.Execute(). It returns
the results from each partition. To commit or abort the transaction, the application calls
Coordinator.Finish().

In the balance transfer example from before, we described using four fragments to ex-
ecute this transaction (get(source), get(destination), put(source), put(destination)). As-
suming the application knows which partitions stores the source and destination accounts,
we could use the transaction API to execute this transaction as four rounds, each one com-
posed of the single fragment from before. However, it would be more efficient to execute
this transaction in two rounds: the first containing both get() operations, to retrieve the
source and destination balances. After the first round, the application can verify that the
two accounts exist and have sufficient balances for the transfer. At this point, it can either
abort the transaction, or can execute a second round containing the two put() requests. Fig-
ure 2-7 shows a visual grouping of these fragments into rounds. Note that if the source
and destination accounts happen to reside on the same partition, the application will need
to combine the get() and put() requests appropriately. In this case, the first round will con-
tain one fragment containing a request to fetch both accounts (get(source, destination)),
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Round 2: P1: get(source) P2: get(destination)

Four round balance transfer Two round balance transfer

Figure 2-7: Four round and two round versions of a balance transfer transaction

and similarly the second round contains one fragment with both updates (put(source=x,
destination=y)).

Limiting transactions to execute in rounds simplifies the implementation significantly,
on both the coordinator and the partition server. Since a transaction can only execute one
round at a time and each partition will only execute one fragment in a round, it naturally
avoids the issue of how to manage concurrency inside a transaction if one participant is
asked to perform two units of work at the same time. The limit of one fragment per par-
tition per round forces applications to combine requests. This is somewhat inconvenient,
as Dtxn could provide a generic “multi-operation” fragment. However, it also encourages
applications to combine multiple requests into a single fragment, which is, in general, more
efficient as it reduces the number of network messages. This is not a significant problem
because most applications create a friendlier interface on top of the Dtxn interface. For ex-
ample, for a key/value store, the programmer interface should be an API that hides the fact
that the keys are divided across partitions. Thus, this complexity is exposed to the backend
developer, but not to applications that use the database.

The request/response model makes it easy for all data to be collected at the coordinator,
which could be a performance bottleneck for some types of operations. To avoid this, it
is possible to use the transaction fragments as metadata to describe how data should be
communicated between participants, then arranging for the participants to communicate
directly. For example, a fragment could tell partition x to send data to partition y, while the
fragment for partition y instructs it to join the data from x with local data, and return the
response. This type of communication has not been required for the applications we have
built, and so Dtxn does not include any support for this pattern.

The primary limitation imposed by the Dtxn round model is that partitions cannot de-
cide to add participants to the distributed transaction, which is permitted by the “tree of
processes” transaction model [62], typically assumed to be used by two-phase commit
protocols and implementations, such as the X/Open XA interface [96]. In this model,
participants in the distributed transaction can be arranged hierarchically in a tree, so that
a processes can act as both a participant and a coordinator by delegating work to other
processes. Instead, in Dtxn, only the coordinator can add or remove participants. A con-
sequence of this is that a partition cannot easily be the coordinator for a transaction, since
it cannot add participants to a transaction. While this does limit some optimization oppor-
tunities, this has not been significant for the transactional applications we have examined.
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This issue is discussed in more detail in Section 3.3, as it was an issue when integrating
Dtxn with VoltDB.

Applications send fragments to partitions, and not directly to individual partition
servers. This abstraction permits Dtxn to replicate partition servers and transparently han-
dle failures. It additionally allows Dtxn the freedom to place partitions wherever it decides
it is appropriate, rather than hard coding the location of individual servers. This is the basis
for Dtxn’s support for migrating data between partitions, described in Chapter 5.

Transaction coordinators must record a two-phase commit log, to make distributed
transactions durable. This means that if a coordinator fails, then the transactions that it
is processing may be aborted. In rare cases, if the coordinator becomes unavailable when
some transactions are in the “prepared” state, then the classic two-phase commit “blocking”
problem occurs, and a transaction will be stuck until the coordinator comes back. Dtxn’s
API supports recovering transactions that are in this state. However, coordinators only ever
communicate with partitions, and not with each other. This means that coordinators can be
added as needed to handle the load, as there is no distributed state to be managed.

While developers using the transaction API must be aware that the Dtxn system in-
volves accessing data across multiple partitions, it still manages some problems. Rather
than addressing requests directly to physical servers, applications issue fragments to log-
ical partitions. This allows Dtxn to manage the server location and handle failover in a
transparent way. The API also implements distributed transactions, which provides seri-
alizable consistency, atomicity, and durability. Finally, it provides some basic partition
membership and metadata support.

Up to now, we have assumed that the application knows all the partitions that exist, and
what data is stored in each partition. Since Dtxn is unaware of the details of the underlying
storage engines, applications must be responsible for determining how to direct a high-
level application operation (e.g. a balance transfer) to the underlying partitions. However,
the transaction API provides information about the available partitions to assist with this.
It provides a list of the unique identifiers for each partition, as well as a small amount of
opaque metadata (current limit of 1 MB) that can be used by the application as it sees fit.
For example, in the key/value storage system, the metadata could store the range of keys
stored in each partition. Then when an operation is requested, the application can consult
this list of key ranges to determine which partition stores the requested key.

The partition metadata is stored in the metadata service, described in the next section.
When a transaction coordinator starts, it must be provided with the addresses for the meta-
data servers. It then contacts one of these servers to obtain a list of the available partitions
and their associated partition metadata. At this time, it also obtains a unique client id
from the metadata server, which permits it to generate unique transaction ids of the form
(client id, sequence number). The coordinator then establishes connections to each parti-
tion server. As part of the RPC protocol used to communicate between each component,
the coordinator will transparently re-establish communication with any partition that fails.
Since partitions are replicated, this may involve switching servers.
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2.4 Metadata Service
The metadata service is a service provided by Dtxn that stores a list of each partition in
the system plus some application-specific data, and is also used to store membership in-
formation for the replication protocol used by partition servers. While the details of the
replication protocol are described in Section 2.7, two critical pieces of information must be
stored: the membership of the replicated group and the identity of the current master. This
information must be managed in a strongly consistent way, as the correctness of the repli-
cation protocol depends on it. Additionally, it must be highly available because if it goes
down, the primary/backup protocol will halt on failure. Thus, this service runs a consensus
algorithm to manage this information. We use Apache Zookeeper [50], an existing service
which provides a consensus algorithm and the primitives we need.

The metadata service stores a list of all partitions, plus a small amount of application-
specific metadata for each partition and a version number. This metadata is available to
applications via the transaction API, and can be used to determine how to route operations
to partitions. For example, it could contain the set of table ranges stored on each partition.
The transaction coordinator sends the metadata version number along with each request to
the partition. The partition server validates that the version number matches the current
version. If it does not match, the transaction coordinator will need to abort the transaction,
refresh the partition metadata and restart the operation.

From a correctness perspective, the partition metadata does not need to be maintained
in a strongly consistent way because each partition stores the authoritative record about
the data that it is responsible for, and the version numbers will ensure that transaction
coordinators and partition servers agree on the metadata used to route queries. This has
the advantage that redistributing data does not involve the metadata service. Thus, the
metadata service really just stores a centralized cached copy, providing a convenient place
for transactions coordinators to access this data for the entire system. Dtxn keeps it up to
date as best as possible, by pushing changes from the partition servers.

In our key/value store example, consider a system that initially is composed of a sin-
gle partition responsible for the entire key space of all possible byte strings, the interval
["", ∞). This partition has id x and version 1. A transaction coordinator starts and reads this
information from the metadata service and caches it. This coordinator executes a number
of transactions on the system. At some point, the system grows, so the partition is split
in half. A new partition y is created, and half the data is moved to it using live migration,
described in Chapter 5. Partition x is now responsible for the interval ["", "n") with ver-
sion 2, and partition y is responsible for ["n", ∞) with version 1. As part of the migration,
the partition servers send their new metadata and version numbers to the metadata service.
When the transaction coordinator starts a transaction to fetch key "next", it sends the re-
quest to partition x with version 1. The partition server will notice that the version number
does not match and reject it. This causes the transaction coordinator to reread the system
metadata from the metadata service. It discovers that partition y is now responsible for the
key "next", so it sends the request there where it is processed correctly.

For some applications the contents of the request itself is sufficient to validate that the
query was sent correctly. This is true for requests that match the attributes used to partition
the data, such as our key/value store example where the partition server can verify that it
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Figure 2-8: Dtxn system with two replicated partitions

is responsible for the keys it is being asked to read or write. However, for more advanced
systems that can fetch data based on attributes that are not used to partition the data, this is
not true. Consider extending the key/value store to be able to search for substrings inside
the value. If the system wants to query for the substring "sub" it must send the query to
all partitions. In the previous example, if the coordinator was out of date and only sent
it to partition x, it might miss values stored on partition y. However, the version number
will detect the case where the coordinator was out of date, causing it to discover the new
partition y.

This metadata service is not involved in processing transactions, so it is not heavily
loaded. It is only accessed when transaction coordinators start and when partition servers
fail. However, it does need to be highly available. If it goes down, new coordinators cannot
start, as they cannot get the list of partitions. Additionally, the replicated partitions can-
not reconfigure their group membership, which means a partition will halt if any partition
server fails when the metadata service is not available. A diagram showing all the processes
in a complete Dtxn system is shown in Figure 2-8.

2.5 Optional Stored Procedure Client Interface
In order to reduce network round-trips and improve performance, Dtxn is optimized for
executing single transaction stored procedures. Applications make a request to execute a
named procedure with a set of arguments. This procedure is composed of arbitrary code
interleaved with data accesses. The applications we have built using Dtxn have all provided
similar application interfaces. Hence, it made sense to provide a generic stored procedure
client interface that could be used for all of them.

The stored procedure interface provides a simpler RPC interface that can be easily
implemented in other programming languages, rather than being required to call the some-
what complex C++ transaction API. It also isolates client applications from the database.
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It permits the stored procedures to be modified without changing the client interface. This
also permits application code to be executed as closely to the data as possible. If the stored
procedure accesses a single partition of data, then this interface provides a mechanism to
execute the stored procedure directly on the partition server hosting the data. For these
reasons, this is the preferred way to build a Dtxn system.

The Dtxn stored procedure interface is composed of a minimal client API that takes
a stored procedure name and arguments. This request is first received by a new process:
the procedure server. The procedure server first consults the stored procedure metadata to
determine if this procedure accesses a single partition. If it only needs data on one partition,
the request is forwarded to that partition to be executed close to the data. Instead, if the
transaction must access multiple partitions, the partition server invokes the stored procedure
provided by the backend developer. The stored procedure then calls the transaction API
as before. At the partition servers, an implementation of the StorageEngine interface is
provided that wraps the application’s actual storage engine. This wrapper allows local
stored procedures to be invoked directly on the partition’s data, or fragments for distributed
transactions to be processed as before. This means the Dtxn system is now composed of
three layers: client applications, transaction coordinators, and partition servers, as shown
in Figure 2-9. The transaction coordinators and partition servers can be considered part of
the Dtxn system, while the client applications are independent of it.

The client application programming interface is shown in Figure 2-10. The client stored
procedure implementation provides connection management and load balancing. Proce-
dure servers register with the metadata service when they start. When the clients start, they
get the list of available transaction coordinators from the metadata servers. This list is pe-
riodically refreshed in order to detect new coordinators. The client then randomly chooses
a coordinator for each request, in order to approximately load-balance requests across all
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interface StoredProcedureClient:
// Calls a stored procedure on the Dtxn system.
// procedure_name is the name of the stored procedure.
// arguments is a list of arguments that can be serialized
// Returns the serialized results of the stored procedure
bytes Invoke(string procedure_name, List<Object> arguments)

Figure 2-10: Client API for Dtxn stored procedures

coordinators. Since the client stored procedure API forces callers to manually manage
naming and serialization, most implementations write a thin user-friendly interface around
this API that makes it look more like a local function call, by serializing and deserializing
native types to and from byte strings.

2.6 Distributed Transaction Protocol
In this section, we describe the protocol used to execute transactions. We defer discussing
concurrency control until Chapter 4. Here, we only consider a system that is processing a
single transaction at a time.

When a transaction begins, Dtxn assumes that it may access any partition with any
number of rounds of communication. We call this a multi-partition transaction. However,
Dtxn is optimized for single partition transactions that access one partition using one round
of communication, like a stored procedure invocation. If the application specifies that a
transaction is a single partition transaction, Dtxn handles it differently from multi-partition
transactions.

2.6.1 Single Partition Transactions
The single fragment in a single partition transaction is forwarded directly to the partition
server responsible for the data. The partition server is responsible for all concurrency
control and durability for this transaction. This ensures that if a workload contains only
single partition transactions, there is no communication between partitions, and thus the
system can scale by adding more machines. The partition server receives a transaction,
executes it from start to finish, logs it using the fault-tolerant log interface and returns
the results. This is very efficient. Execution with concurrent transactions is described in
Chapter 4.

Requests to partition servers are sent as a Fragment message, defined in Figure 2-11.
Single partition transactions send a request with state set to FINISHED_LOCAL_COMMIT.

2.6.2 Multi-Partition Transactions
The coordinator executes multi-partition transactions by sending out the fragments and
collecting the responses for each round. The commit or abort decision is decided using two-
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enumeration FragmentState:
// The transaction may execute more fragments at this partition.
ACTIVE
// The transaction is done and this is the only participating partition. The commit
// is performed locally.
FINISHED_LOCAL_COMMIT
// The transaction is done at this partition, but there may be other participants.
// The partition should prepare for a two-phase commit.
FINISHED_2PC

structure Fragment:
// Globally unique transaction identifier.
integer transactionId
// Application-specific request to be processed as part of the transaction.
bytes request
// State of this partition after the fragment has been executed.
FragmentState state

Figure 2-11: Fragment message definition

phase commit (2PC). In the general case, the state field of the Fragment message is set to
ACTIVE, which indicates that more requests may be made as part of this transaction at this
partition. Applications can optimize the commit protocol by specifying that partitions are
finished as soon as they can determine this information. In this case, some fragments that
specify state = FINISHED_2PC can be sent, even while other partitions are still ACTIVE.
However, after a partition has been set as finished, it is not permitted to receive more work
as part of the transaction. Piggybacking the prepare message along with the request in this
way is the early prepare optimization [88]. If a transaction is finished with a partition, but
has no work for it, it sends a fragment with an empty request field, which only prepares
the transaction.

When a partition receives a prepare request, as indicated by state = FINISHED_2PC,
it prepares to commit. It makes its part of the transaction durable using the fault-tolerant
log before returning the response to the coordinator. We also support the two-phase com-
mit read-only optimization [88]: if the partition was read-only for this transaction, it can
immediately commit the transaction and the coordinator does not need to send the final
commit or abort vote. This allows the partition to begin executing other transactions early,
which reduces contention. It also reduces the number of network messages. However,
this optimization must be applied carefully, as in some circumstances it can cause locking
to violate serializability because locks are released early, violating the two-phase locking
rule. However, it works correctly when used at the very end of a transaction, or with other
concurrency control mechanisms, as discussed in Chapter 4.

When the transaction has finished and the coordinator has prepared and collected all the
votes from each partition, it writes the result to its local log and sends the commit or abort
decision to all partitions. This introduces the classic two-phase commit blocking problem,
where if the coordinator crashes, all prepared partitions must wait for it to come back before
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they can finish the transactions. To solve this, we intend to replicate the coordinator log
using our replication protocol. However, our current prototype does not implement this
feature.

There are two special types of transactions that are worth discussing. The first type
is single-round multi-partition transactions. These transactions access multiple partitions
with a single round of communication, and are known to be finished with all partitions be-
fore the round begins. In this case, the application sends a single batch of fragments with
state = FINISHED_2PC. This is the most efficient kind of multi-partition transaction, as it
involves only two messages to each partition: one for the fragment, and and a final response
for the commit/abort decision. The original H-Store paper called these one-shot transac-
tions, and noted that they appear in many OLTP applications [95]. Speculative concurrency
control can handle these transactions very efficiently, as described in Chapter 4.

The second type is multi-round, single partition transactions. In this case, the transac-
tion involves multiple rounds of communication with a single partition. At the end of the
transaction, the coordinator can recognize that only one partition was accessed. Thus, it
commits the transaction by sending a final fragment with FINISHED_LOCAL_COMMIT.

2.7 Replication Protocol
While Dtxn provides the flexibility for backend developers to select the technique they wish
to use to make transactions durable via the fault-tolerant log interface, most applications
use the provided replication protocol. In this section, we briefly describe the protocol that
we use, and how it interacts with the transaction protocol described in Section 2.6. This
protocol takes a group of processes and ensures that each member sees the same sequence
of messages. We use a primary/backup protocol, where one process is designated the pri-
mary, and all others are backups. The identity of the primary and the backups is stored in
the metadata service. This structure is used in many distributed systems, like Bigtable [21].
A good formal description is provided by the authors of the Niobe protocol [66]. Our ver-
sion is very similar, so our description here is brief and informal. We only briefly describe
failure handling, as it is complex and the failure-free case is much more important for the
performance of a system.

In normal operation, all requests are sent to the primary. The primary orders them in
some arbitrary way (e.g. the order they are received), then forwards them to the backups.
The primary begins processing the request immediately, overlapping the execution with
the replication delay. As soon as the backups receive the request, they return an acknowl-
edgment back to the primary. They do not yet execute the request. After the primary has
received all acknowledgments from the backups, the request is considered to be reliably
stored. The request will only be lost if all replicas crash. At this point, the primary can re-
spond to the client with the results. Backups will execute the request once they receive the
subsequent request, which indicates that the previous request was replicated successfully.
This avoids the backups needing to undo an operation if the primary fails and the operation
is lost. Primaries, on the other hand, may have executed a transaction that was not suc-
cessfully replicated. In this case, they cause themselves to fail and perform recovery. This
protocol replicates a message in a single round of communication.
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We do not discuss failure handling in detail, as it is complicated and the Niobe protocol
paper describes it formally [66]. However, it is possible for replicas to be added to a running
system, or for replicas that have fallen behind to synchronize their state with the current
group. This involves copying a checkpoint from an existing replica then replaying the log
of operations.

The replication protocol is designed so the metadata service is only involved when
changing the replica group membership, or when a failure is detected. The metadata service
only stores the identity of the primary, and the identity of the backups. It does not store any
data. Using a primary/backup protocol with a metadata service like this is a design trade-off
between the types of failures that can be handled, the cost of replication, and complexity.
One alternative would be for partitions to run a consensus protocol directly. However, this
requires a minimum of three replicas, the number of replicas must be odd, and a majority
must be available to process transactions. With a primary/backup protocol, any number of
replicas can be used. Assuming the metadata service is available, the group is available as
long as one replica is functioning. This decreases the cost of replication, compared to a
consensus protocol. However, it relies on the metadata service to be available in order to
handle failures, and so this service must be engineered to be highly available.

An alternative is to add witnesses that are part of the replicated group but are only
used when recovering from a failure [64, 87]. This permits a group to have any number
of “active” replicas, just like a primary/backup protocol. In case of a failure, the witnesses
and active replicas are used to reconfigure the group membership as appropriate. This is
theoretically superior to the master election service approach, since it depends on fewer
processes to be functioning. However, the consensus protocol itself is more complicated,
as it must support witnesses and reconfiguration. We chose the option that is simpler to im-
plement, since these protocols are challenging to get right [20]. This allows us to leverage
the existing consensus protocol implemented in Zookeeper. We leave modifying Dtxn to
use witnesses to future work.

The partition server integrates the replication protocol with Dtxn’s transactions by repli-
cating each partition server log record. Once the log record is replicated, it is considered
durable. For example, when a commit request starts being processed on a partition server,
the partition server records a redo record using the logging interface. When replication
is being used, the logging implementation replicates the redo record, so each backup will
apply and stay synchronized with the primary. Once all replicas acknowledge the message,
the commit completes. Similarly, for distributed transactions, the partition server writes
both a prepare record and the final commit/abort record to the log. Both of these need to be
replicated in order to survive failures.

Our replication protocol only permits one pending request at a time, in order to simplify
the protocol and the failure recovery. Thus, using group commit is critical for getting good
performance. We use a simple policy: when there are no replication requests pending, we
immediately send a single log record as a single replication message, to minimize latency.
While that request is pending, we queue any subsequent log records. When the replication
request has completed, we group together all pending log records and replicate them. This
has been sufficient to ensure that replication message processing is a small fraction of the
CPU time spent processing requests.
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Chapter 3

Applications

We have used Dtxn to build four different database systems. Each of these has differ-
ent properties, highlighting Dtxn’s flexibility. The four systems are a simple in-memory
key/value store, a specialized TPC-C system, a main-memory database system based on
the H-Store design and the VoltDB open source code, and Relational Cloud, a more tradi-
tional disk-based distributed database. In this chapter, we describe these implementations
in detail.

3.1 Key/Value Store

Like many key/value storage systems, our key/value system stores byte string keys along
with a byte string value. Thanks to Dtxn’s support for transactions, we extended this simple
model by adding support for multi-key transactional updates. The database supports a
single operation based on the minitransactions introduced by Sinfonia [3]. An operation
request is composed of a set of key/value pairs to compare, a set of keys to read, and a set of
key/value pairs to write. The operation executes by comparing the current value of all keys
in the compare set with the value provided in the request. If they all match, then the keys
in the read set are read, and the keys in the write set are written. We chose this operation
because it only requires one round of communication with the partitions, but it can be used
to build more complex operations. For example, some keys can be used as locks, or the
compare operation can be used to implement optimistic concurrency control.

In general, a minitransaction operation may need to access every partition in the system.
However, the hope is that most requests will only access a few keys on a single partition.
In order to get better locality, keys are sorted lexicographically and partitioned into ranges.
Dtxn can process operations that access a single partition as efficiently as a key/value store
that does not support transactions. These operations only require a single message to the
partition, and are executed without concurrency control overhead. Operations that access
multiple partitions, on the other hand, require one message to each participating partition to
execute the request, then a final message to each partition with the result of the two-phase
commit. This involves more messages, and some small additional overhead for concurrency
control. Since these minitransactions cannot involve multiple rounds of communication,
this application does not test all the possible types of distributed transactions
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This application relies on Dtxn’s concurrency control mechanisms. It supports specu-
lative concurrency control as well as traditional locking and optimistic concurrency control
techniques. We used this flexibility to compare the performance of these techniques in
Chapter 4. Since minitransactions involve a single round of communication, even in the
general case, this application is ideally suited for speculative concurrency control, so that
is the default choice.

3.2 TPC-C

In order to test an application that has more complex transactional requirements than our
simple key/value store, we created an implementation of the TPC-C transaction process-
ing benchmark [27]. Our implementation began as a single node version [95], and we
distributed it using Dtxn. This implementation is written in C++ and stores all the data
in main-memory data structures that are part of the C++ standard library. Each table and
index is represented as either a binary tree or hash table, as appropriate for the type of
accesses required. All queries are manually implemented in C++. As a result, it has very
high performance, but is difficult to modify.

The TPC-C benchmark models the OLTP workload of an order processing system.
It is comprised of a mix of five transactions with different properties. The data size is
scaled by adding warehouses, which adds a set of related records to the other tables. We
partition the TPC-C database by warehouse [95]. We replicate the items table, which is
read-only, to all partitions. We vertically partition the stock table, and replicate the read-
only columns across all partitions, leaving the columns that are updated in a single partition.
This partitioning means 89% of the transactions access a single partition, and the others are
simple single round multi-partition transactions.

Our implementation tries to be faithful to the specification, but there are two differences.
First, we reorder the operations in the new order transaction to avoid recording an undo
record to handle user aborts. Second, we change how clients generate requests. The TPC-C
specification assigns clients to a specific (warehouse, district) pair, and requires a think time
between requests. Thus, there is a strict relationship between the number of warehouses
and the number of requests per second. In order to vary this, we eliminate the think time
and change the clients to generate requests for an assigned warehouse but a random district.

This application, like the key/value store, only uses single round distributed transac-
tions. However, it has much more complex and expensive operations that involve multiple
index traversals, reads and writes. As a result, each operation involves significantly more
computation in the “application code” than the key value store. Additionally, each trans-
action acquires many locks in a complex order. As a result, the locking and optimistic
concurrency control implementations have significantly different performance. In particu-
lar, there are local and distributed deadlocks when using locks.
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3.3 H-Store/VoltDB
The design of the H-Store database system [95] is being commercialized as VoltDB [100].
This system executes stored procedures written in Java on top of a main-memory storage
engine written in C++. The current VoltDB implementation includes a very simple dis-
tributed transaction protocol. When executing a distributed transaction, it stops processing
transactions on all partitions, executes the distributed transaction, then resumes execution.
As a result, distributed transactions have very poor performance. However, distributed
transactions are also very rare in the applications that are currently using VoltDB. There-
fore, this very simple “blocking” concurrency control scheme is sufficient, as the system
rarely executes distributed transactions.

As part of the research on the H-Store design, we wanted to perform experiments using
the full SQL support provided by VoltDB. However, we needed finer-grained distributed
transactions and support for speculative execution. To do this, we replaced VoltDB’s ex-
isting transaction protocol with Dtxn. Unfortunately, this was not trivial, despite the fact
that Dtxn was designed for systems like VoltDB. One major challenge is that VoltDB is de-
signed assuming that for distributed transactions, the coordinator executing the Java stored
procedure will be one of the partitions that is participating in the transaction. This means
the stored procedure can access data on the local partition without network round trips.
Dtxn, on the other hand, assumes that the distributed transaction coordinator runs on a
different node, and is not a participant in the transaction. This works well if the Java
stored procedure runs on a coordinator node, but now every data access involves a network
round-trip. This will be less efficient for certain types of distributed transactions, where
there are multiple rounds of communication with a single partition, and occasional rounds
of communication with other partitions. Dtxn’s design is somewhat simpler and easier to
implement, but is less efficient in this case.

We were able to work around this limitation by abusing the transaction system to “trans-
fer” coordination to the required partition. The node that first receives the transaction re-
quest starts the transaction with a single fragment, directed to the partition that should be
the coordinator. This partition immediately responds to this fragment with an empty re-
sponse. Once this is completed, the partition can coordinate the transaction as normal.
This adds some additional overhead and delay to beginning a transaction, but was able to
get the system working without any code changes to Dtxn.

In the future, we plan to examine how much this actually matters for this application.
There are two possible solutions. The first is to execute the stored procedure for a dis-
tributed transaction on a coordinator node, making remote accesses for every data item.
This has the advantage that it matches Dtxn’s design, but has the disadvantage that all data
accesses are remote. For applications with a single round of data accesses, this will not mat-
ter. However, if the application involves many rounds of accesses to a “home” partition,
with a few accesses to other partitions, it would significantly reduce network round-trips to
execute the stored procedure on the home partition. The other argument is that distributed
transactions are rare in most Dtxn applications, so again making these transactions faster
will not have a significant impact on overall throughput. Additionally, this problem really
only appears for certain types of distributed transactions, where there is a strong affinity for
a single partition. It is unclear how often these kinds of transactions appear. The second
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alternative is to re-design Dtxn’s mechanism to permit partitions to also coordinate trans-
actions. This will require a significant redesign of the distributed transaction protocol, and
requires careful thought about how it integrates with concurrency control.

While we do not discuss this application further in this thesis, this demonstrates that
Dtxn can be used with complex transactions that involve multiple rounds of communica-
tion.

3.4 Relational Cloud
Our final application used Dtxn to build a traditional distributed disk-based database by
distributing data across single node databases. This was the prototype for our “databases as
a service” research project, Relational Cloud. We used MySQL instances as the individual
storage node. Since MySQL provides durability via write-ahead logging and concurrency
control via locking, the partition server in Relational Cloud does not use many Dtxn com-
ponents. We implement the scheduler interface directly to avoid using Dtxn’s concurrency
control, and typically use the null logging implementation to avoid additional durability
overhead. If replication is used, the replicas replay the update statements in commit order
in a single thread. This is very similar to MySQL’s own replication implementation, al-
though in Dtxn replication is synchronous while typically with MySQL it is asynchronous.

The main components that Relational Cloud uses from Dtxn are a distributed transac-
tion coordinator and the partitioning metadata service. Most importantly, it uses Dtxn’s
support for migrating data between partitions. In particular, the live migration experiments
in Chapter 5 were performed using the Relational Cloud prototype.
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Chapter 4

Speculative Concurrency Control

Databases rely on concurrency control to provide the illusion of sequential execution of
transactions, while actually executing multiple transactions simultaneously. However, re-
searchers have long observed that for main-memory databases, concurrency control is ex-
pensive relative to the cost of processing queries [37, 36, 101, 95]. One study estimated
the cost of concurrency control to be approximately 30-40% of the CPU time, as shown in
Figure 4-1.

Databases execute multiple transactions at a time in order to make use of resources that
would otherwise be idle when a transaction stalls. In a traditional database, there are two
primary sources of stalls: waiting to read data from disk and waiting for the next command
from the application. Both of these can be avoided by storing data in main memory and
executing transactions as stored procedures. In this case, the system can execute a single
transaction from start to finish without any stalls. As a result, no concurrency control is
needed as there is no concurrency: only one transaction executes at a time. This is very
efficient, as the CPU is fully utilized, and thus executing more than one transaction at a
time would not provide any benefit.

Databases also use concurrency to utilize multiple CPUs, by assigning transactions to
different threads. However, recent work shows that this approach does not scale to large
numbers of cores, due to the synchronization required to share data between threads [84].
Instead, Dtxn relies on the database to be divided into a number of partitions, then runs one
thread per partition. This permits the system to use multiple CPUs or multiple independent
computer systems, without any shared data and thus without needing any additional coordi-
nation. If a transaction is composed of a single stored procedure that only accesses data in a
single partition, which we call a single partition transaction, then it can be executed without
stalls. Across the entire system, each partition can independently execute single partition
transactions in the order that they are received. This can fully utilize many CPUs across
many machines, without the overhead of concurrency control. In this chapter, we show that
using this approach is up to two times faster than a lightweight locking implementation.

However, this relies on an application being “perfectly partitionable,” such that each
transaction touches exactly one partition. Many real applications have some transactions
that span multiple partitions. This means that that partitions can no longer execute inde-
pendently, and some form of concurrency control is needed to ensure these multi-partition
transactions execute correctly and make effective use of computing resources.
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Figure 4-1: CPU consumption for TPC-C New Order transactions on Shore [45]

In this chapter, we propose a new form of concurrency control, called Speculative Con-
currency Control, which is designed for these “imperfectly partitionable” applications.
These workloads are composed mostly of single-partition transactions, but also include
some multi-partition transactions that impose network stalls. The goal is to allow a pro-
cessor to do something useful during a network stall, while not significantly hurting the
performance of single-partition transactions.

Most applications we have examined are imperfectly partitionable. For example, the
TPC-C transaction processing benchmark, even when carefully partitioned, is composed
of 89% single-partition transactions. The remaining 11% touch multiple partitions. Other
applications follow similar patterns. They can be carefully partitioned so the common op-
erations access a single partition, but other less common operations still need to access
multiple partitions. Many-to-many relationships cause this kind of partitioning. The re-
lationship can be partitioned so that accessing the relationship in one direction accesses a
single partition. For example, consider users who can belong to multiple groups. If the data
is partitioned by group, then accessing a group and all of its users accesses a single parti-
tion. However, when this is done, accessing the relationship in the other direction will need
to access all partitions. In the users and groups example, if we wish to access all the groups
that a specific user belongs to, we will need to query all partitions. Thus, many-to-many
relationships that are partitioned so the common operations are single-partition accesses
tend to require a small fraction of the workload to access multiple partitions.

In the remainder of this chapter, we describe how Dtxn performs concurrency control
for a naive blocking scheme, speculative concurrency control, and a traditional two-phase
locking approach. Since Dtxn separates concurrency control from the storage engine, we
present experiments comparing the performance of these schemes.
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4.1 Concurrency Control Schemes

4.1.1 Blocking

The simplest scheme for handling multi-partition transactions is to block until they com-
plete. When the partition receives the first fragment of a multi-partition transaction, it is
executed and the results are returned. All other transactions are queued. When subsequent
fragments of the active transaction are received, they are processed in order. The last frag-
ment of the transaction is marked so the the partition server can prepare for two-phase
commit by making the transaction durable (see Section 2.2). Ideally, this last fragment will
include work, so the two-phase commit prepare message is piggybacked along with the last
unit of work. After the transaction is committed or aborted, the queued transactions are
processed. In effect, this system assumes that all transactions conflict, and thus can only
execute one at a time.

One complication is that multi-partition transactions must be executed in the same rela-
tive order on different partitions. If this is not enforced the system will deadlock. Consider
a system with two partitions, P1 and P2. If two coordinators submit transactions A and
B that access both partitions at approximately the same time, then P1 could start A first
and P2 could start B first. The coordinator for A is left waiting for P2’s response and the
coordinator for B is waiting for P1’s response, causing a deadlock. Any traditional dead-
lock resolution strategy could be chosen here. However, in this system deadlocks are very
common because the granularity of the locks is an entire partition, and many transactions
start work on multiple partitions in parallel, causing race conditions. Thus, we chose to
prevent deadlocks by forwarding multi-partition transactions through a designated central
coordinator.

The central coordinator is elected via the metadata service (see Section 2.4). It assigns a
global order to the distributed transactions, and ensures that partitions execute transactions
in this order. Although this is a straightforward approach, the central coordinator can be-
come a bottleneck for multi-partition transactions. We discuss this further in Section 4.1.2.

The blocking concurrency control scheme is efficient if the workload is composed only
of single partition transactions. Figure 4-2 shows a partition executing two single par-
tition transactions. In this case, the transactions are executed back-to-back without any
unused resources. However, multi-partition transactions introduce stalls. Effectively, if a
multi-partition transaction arrives, the partition queues all other transactions until the active
transaction finishes by committing or aborting. The multi-partition transaction must record
an undo record to permit the transaction to be undone if it aborts. Concurrency control will
never cause single partition transactions to abort. Thus, unless the storage engine decides
that the operation must abort (e.g. due to a user abort or constraint violation), undo infor-
mation does not need to be recorded, which improves performance. Pseudocode describing
how each partition server executes transactions is shown in Figure 4-3.

The network stall caused by multi-partition transactions can introduce a performance
bottleneck, even if multi-partition transactions only comprise a small fraction of the work-
load. On our experimental systems, described in Section 4.2, the minimum network round-
trip time between two machines connected to the same gigabit Ethernet switch was mea-
sured using ping to be approximately 40 µs. The average CPU time for a TPC-C trans-
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Figure 4-2: Timeline diagram of a partition executing two single partition transactions

Transaction Fragment Arrives
if no active transactions:

if single partition:
execute fragment without undo record
commit

else:
execute fragment recording undo record

else if fragment continues the active multi-partition transaction:
// another fragment for a transaction with multiple rounds of work
continue transaction with fragment

else:
queue fragment

Commit/Abort Decision Arrives
if abort:

undo aborted transaction
execute queued transactions

Figure 4-3: Blocking pseudocode for the partition server
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Figure 4-4: Blocking concurrency control executing two multi-partition transactions

action in our system is 26 µs. The simplest multi-partition transaction is composed of a
single round of fragments sent to two partitions. In this case, each partition receives two
messages: the transaction fragment and commit. Figure 4-4 shows one partition executing
two single-round multi-partition transactions. In this case, there is a network stall between
when the partition responds with the results (message 5) and the coordinator tells it to com-
mit (message 6). The delay between the response and the commit message must be at least
the network round trip time, which means that in that period the partition could execute
two single-partition transactions. The challenge is to permit the storage engine to do useful
work during this time without reducing the efficiency of single partition transactions.

4.1.2 Speculative Execution

Speculative concurrency control makes use of the network stall by speculating future trans-
actions. More precisely, when the last fragment of a multi-partition transaction has been
executed, the partition must wait to learn if the transaction commits or aborts. In the ma-
jority of cases, it will commit. Thus, we can execute queued transactions while waiting
for two-phase commit to finish. The results of these speculatively executed transactions
cannot be sent outside the database, since if the first transaction aborts, the results of the
speculatively executed transactions may be incorrect. Undo information must be recorded
for speculative transactions, so they can be rolled back if needed. In the typical case, the
first transaction commits and all completed speculatively transactions are also immediately
committed. Thus, speculation hides the latency of two-phase commit by performing useful
work instead of blocking.

Aborts occur for three reasons. First, applications can include explicit “user” aborts.
For example, when performing a balance transfer, the transaction may need to abort if the
source account is overdrawn. In this case, the source account partition may decide to abort
while the destination account partition is prepared to commit. The second source of aborts
are failures of individual partitions. For example, if a distributed transaction involves two
partitions, and one fails, Dtxn allows transaction processing to continue on the remaining
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partition by aborting the incomplete transaction. These failures can be due to hardware
or software, such as a bug in the storage engine or transaction code. The third source is
failures of transaction coordinators. Provided that they have not reached the prepare phase
of two-phase commit, partitions can decide to abort transactions that are managed by failed
coordinators. It is possible to avoid these sources of aborts, which can lead to a system that
strictly orders transactions in advance [98]. However, this means the system cannot tolerate
partial failure or bugs as gracefully as Dtxn.

Speculation produces serializable execution schedules because once a transaction t has
finished all of its reads and writes and is simply waiting to learn if t commits or aborts, we
can be guaranteed that any transaction t∗ which makes use of t’s results on a partition p
will be serialized after t. However, t∗ may have read data that t wrote. Thus, if t aborts, we
must also abort t∗ to avoid exposing t’s dirty (rolled-back) data.

The simplest form of speculation is when the speculatively executed transactions are
single partition transactions, so we consider that case first.

Speculating Single Partition Transactions

Each partition maintains a queue of unexecuted transactions and a queue of uncommitted
transactions. When a transaction arrives, it is unexecuted, so it is placed on the unexecuted
queue. The uncommitted queue is used for multi-partition transactions that are waiting for
two-phase commit, or for speculated transactions. These transactions have been executed,
but are waiting to learn if they can be committed or not. Thus, this queue is needed to allow
them to be undone.

The head of the uncommitted transaction queue is always a non-speculative transaction.
After a partition has executed the last fragment of a multi-partition transaction, it executes
single partition transactions speculatively from the unexecuted queue, adding them to the
end of the uncommitted transaction queue. An undo record is recorded for each transaction,
which is extra overhead for single partition transactions. If the non-speculative transaction
aborts, the uncommitted transactions must be undone in the reverse order (last in first out).
Thus, each transaction is removed from the tail of the uncommitted transaction queue,
undone, then pushed onto the head of the unexecuted transaction queue to be re-executed.
If the non-speculative transaction commits, then the queue of uncommitted transactions
commits. Each transaction is removed from the head of the queue and results are sent.
When the uncommitted queue is empty, the system resumes executing transactions non-
speculatively. For any subsequent single partition transactions that cannot abort, execution
can proceed without the extra overhead of recording undo information.

Note that any time we have a queue of unexecuted transactions, the Dtxn scheduler
can choose any transaction to execute next. This may execute transactions in a different
order than the order that they were received, but this is a valid serializable order, as all
these transactions were issued concurrently, so they can be executed in any order. This
means that many policies could be used to select the next transaction. We have found that
the best policy is to prioritize multi-partition transactions when there is no speculation in
order to start them as soon as possible on all partitions. This avoids stalling other partitions
when one partition has a large backlog of single partition transactions to execute, which
maximizes the throughput for the entire system. When speculating, we choose to speculate
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single partition transactions where possible, since this allows them to be committed as soon
as the multi-partition transaction commits.

As an example of how simple speculation works, consider a two-partition database (P1
and P2) with two integer records, x on P1 and y on P2. Initially, x = 5 and y = 17. Suppose
the system executes three transactions, A, B1, and B2, in order. Transaction A is a multi-
partition transaction that swaps the value of x and y. It executes in two rounds: the first reads
the previous values of x and y, and the second writes the swapped values. Transactions B1
and B2 are single partition transactions on P1 that increment x and return its value.

Both partitions begin by executing the first fragments of transaction A, which read x
and y. P1 and P2 execute the fragments and return the values to the coordinator. Since A
is not finished, partition P1 cannot speculate B1 or B2. If it did, the result for transaction
B1 would be x = 6, which is incorrect for the sequence A, B1, B2. The coordinator for
A eventually sends the final fragments, which write x = 17 on partition P1, and y = 5 on
partition P2. After finishing these fragments, the partitions send their “ready to commit”
acknowledgment to the coordinator, and wait for the decision. Partition P1 can now begin
speculative execution because A is finished. It executes transactions B1 and B2 with undo
records and the results are queued. If transaction A were to abort at this point, both B2 and
B1 would be undone and re-executed. Once P1 receives the commit message for A, it sends
the results for B1 and B2 to the clients and discards their undo records, assuming they have
already completed. The final result is that x = 19 and y = 5, which corresponds to the order
A, B1, B2.

This describes purely local speculation, where speculative results are buffered inside a
partition and not exposed until they are known to be correct. Only single partition trans-
actions and the first fragment of multi-partition transactions can be speculated in this way,
since the results cannot be exposed in case they must be undone. However, we can specu-
late many multi-partition transactions if the coordinator is made aware of the speculation.

Speculating Multi-Partition Transactions

In order to speculate multi-partition transactions, the coordinator must be aware that a result
is speculative. This is required so that coordinators do not return the final commit or abort
result to the application until the speculation has been determined to be correct. Partitions
add a dependency to result messages for speculated multi-partition transactions, indicating
that this result is speculative and depends on a previous transaction committing. The key
part is that this dependency means that the coordinator can make these decisions along
with the partition server, whereas with local speculation the coordinator is unaware that
speculation is happening, as speculation is confined to the partition server. We call this
distributed speculation, as multiple processes in the Dtxn system are involved. Speculated
single partition transactions are still buffered at the partition server until the previous multi-
partition transactions commit. The pseudocode that formalizes the partition server logic for
this scheme is shown in Figure 4-6.

To help explain how this works, consider the previous example where initially x = 5
and y = 17, except now the system executes A, B1, then a new multi-partition transaction
C, which multiplies both x and y by 2, then finally B2. The system executes transaction A as
before, and partition P1 speculates B1. The results for B1 must be buffered locally as before.
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Figure 4-5: Speculative concurrency control executing two multi-partition transactions

Partition P2 speculates its fragment of C, computing y = 10. With local speculation, it must
wait for A to commit before returning this result to the coordinator, since if A aborts, the
result will be incorrect. However, with distributed speculation, partition P2 returns the result
for its fragment of C, with a dependency on A. This informs the coordinator that it must
wait for A to commit before these results are correct. Similarly, partition P1 can speculate
its fragment of C, computing and returning x = 36 with a dependency on A. Partition P1
can also speculate B2, computing x = 37. Again, it cannot result this result.

The coordinator for A and C could receive responses for C before it receives all the re-
sponses for A. The dependency from C on A will prevent it from returning the results to the
application. However, after the coordinator commits A, it will examine all transactions that
depend on it, which in this case is C. Since A committed, the speculative results are correct
and C can commit, so the coordinator immediately sends the commit message for C. This
saves a network round-trip and the time to execute C, improving throughput and decreasing
latency. Figure 4-5 shows a timeline diagram of speculative concurrency control execut-
ing two multi-partition transactions, similar to this case. In the figure, after executing the
first transaction the partition can immediately speculate the second transaction and return
results to the coordinator.

If A had aborted, the coordinator would send an abort message for A to P1 and P2, then
discard the incorrect results it received for C. As before, the abort message would cause
the partitions to undo the transactions on the uncommitted transaction queues. Transaction
A would be aborted, but the other transactions would be placed back on the unexecuted
queue and re-executed. The partitions would then re-execute and resend results for C. The
re-executed results would not be speculative, so the coordinator could handle it normally.

This scheme allows a sequence of multi-partition transactions that are composed of a
single round of fragments to be executed without blocking. We call such transactions sim-
ple multi-partition transactions. Transactions of this form are quite common. For example,
if there is a table that is mostly used for reads, it may be beneficial to replicate it across
all partitions. Reads can then be performed locally, as part of a single partition transac-
tion. Occasional updates of this table execute as a simple multi-partition transaction across
all partitions. Another example is if a table is partitioned on column x, and records are ac-
cessed based on the value of column y. This can be executed by attempting the access on all
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partitions of the table, which is also a simple multi-partition transaction. As a third exam-
ple, all distributed transactions in TPC-C are simple multi-partition transactions [95]. Thus,
distributed speculation extends the types of workloads where speculation is beneficial.

There are a few limitations to speculation. First, speculation can only be used after
executing the last fragment of a transaction. Although it works for transactions that require
multiple rounds, it is less effective. These multi-round transactions require stalls between
fragments, since it is not possible to speculate a transaction in the middle of another one.

Second, distributed speculation can only be used when the transactions come from the
same coordinator. This is necessary so the coordinator is aware of the outcome of the
earlier transactions and can cascade aborts as required. In the current implementation with
a centralized coordinator for multi-partition transactions, this happens naturally. However,
a single coordinator can become a bottleneck, as discussed in Section 4.1.1. If some other
scheme were used to order distributed transactions when using multiple coordinators, each
coordinator must dispatch transactions in batches to take advantage of this optimization.
This requires delaying transactions, and tuning the number of coordinators to match the
workload.

Speculation has the advantage that it does not require locks or read/write set tracking,
and thus requires less overhead than traditional concurrency control. This means that stor-
age engines only need to be capable of undoing transactions, and do not need to be aware
of concurrency control or speculation. Dtxn handles all the logic for speculating, abort-
ing, and re-executing transactions, as necessary. A disadvantage is that it assumes that all
transactions conflict, and therefore occasionally unnecessarily aborts transactions.

Distributed Transaction Ordering

The central coordinator that we employ for both the blocking and speculative concurrency
control schemes seems like it could potentially be a bottleneck. However, this should not
be a problem for most real systems, since the coordinator only needs to handle a fraction
of the messages, and there is a lot of room for optimization.

First, all single partition transactions are sent directly to the partitions, without going
through the central coordinator. For the workloads we have examined, this accounts for
80-90% of transactions. This means the central coordinator only needs to handle a fraction
of the workload. Second, our current implementation is single threaded, and thus only
uses a single core. It currently can handle a maximum of around 10,000 transactions per
second. A multi-threaded version should be able to easily use multiple cores, which should
mean it should be able to handle somewhere around 40,000 to 80,000 transactions per
second, depending on how parallelizable the ordering task turns out to be. At this level, this
means the overall system would be processing somewhere around 800,000 transactions per
second. This is sufficient for all but the very largest database systems.

Third, the central coordinator currently orders and forwards message requests to the
backend partitions. This means that for each transaction, it must handle multiple messages.
An alternative is that transaction coordinators could request timestamps from the central co-
ordinator and handle the distributed transaction itself. This means the central coordinator
would only need to handle one request and response per transaction. Additionally, trans-
action coordinators could batch these requests, so if the application using the transaction
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Transaction Fragment Arrives
if uncommittedQueue.empty():

// no active transactions
if single partition:

execute fragment without undo record
commit

else:
execute fragment recording undo record

else if fragment continues active multi-partition transaction:
// another fragment for a transaction with multiple rounds of work
continue transaction by executing fragment

else:
unexecutedQueue.queue(transaction)

// re-evaluate if we should speculate transactions: an active multi-partition
// transaction could have finished, or a new transaction could have arrived
while uncommittedQueue.tail() is finished locally:

// policy can decide what transaction should be speculated next
transaction = unexecutedQueue.dequeue()
transaction.fragment.results = execute transaction.fragment recording undo record
headTransaction = uncommittedQueue.head()

if transaction.isMultiPartition() and
transaction.coordinator == headTransaction.coordinator:

// multi-partition with the same coordinator: use distributed speculation
transaction.fragment.results.dependency = headTransaction.transactionId
send transaction.fragment.results

uncommitedQueue.queue(transaction)

Commit/Abort Decision Arrives
if abort:

undo and re-queue all speculative transactions
undo aborted transaction

else:
while next speculative transaction is not multi-partition:

// this stops committing transactions at the next multi-partition transaction:
// the coordinator must send a commit message
commit speculative transaction
send results

execute/speculate queued transactions

Figure 4-6: Speculative concurrency control pseudocode for the partition server
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API is multi-threaded, this could reduce the messages to fewer than one per transaction.
Google’s Percolator uses a central coordinator that batches requests in this way for their
distributed snapshot isolation system, and they claim it can handle approximately 2 million
timestamps per second on a single machine [85]. Thus, a Dtxn system using this approach
could handle approximately 10-20 million transactions per second.

Finally, if this is not sufficient, then the transaction ordering task can be truly distributed
by using loosely synchronized clocks [2]. Coordinators starting transactions would stamp
them with the current time, t. Before starting a transaction, partition servers would wait
until their local clocks are at least time t + ε , where ε is set to be greater than the largest
possible clock skew plus one-way network delay. This period allows enough time so that
with high probability, any transaction started at a time less than t will have been received,
and thus will be started before t. In the rare case of an exceptional delay, and a transaction
with timestamp t is received after the partition has started another transaction with a greater
timestamp, it will return an error, causing the transaction to be restarted. This scheme has
the advantage that it is truly distributed. However, it has the disadvantage that transaction
coordinators must “reserve” their order at any partition that may be involved in a transaction
when the transaction begins. Depending on the workload, this may involve extra empty “do
nothing” messages.

Other schemes, such as using vector timestamps to causally order transactions, are also
possible. We leave it to future work to evaluate these alternatives.

4.1.3 Locking
In the locking scheme, transactions acquire read and write locks on data items while ex-
ecuting, and are suspended if they make a conflicting lock request. Transactions must
record undo information in order to rollback in case of deadlock. Locking permits a sin-
gle partition to execute and commit non-conflicting transactions during network stalls for
multi-partition transactions. The locks ensure that the results are equivalent to transaction
execution in some serial order. The disadvantage is that transactions are executed with the
additional overhead of acquiring locks and detecting deadlock.

We avoid this overhead where possible. When our locking system has no active trans-
actions and receives a single partition transaction, the transaction can be executed without
locks and undo information, in the same way as the blocking and speculation schemes. This
works because there are no active transactions that could cause conflicts, and the transaction
is guaranteed to execute to completion before the partition executes any other transaction.
Thus, locks are only acquired when there are active multi-partition transactions.

Our locking scheme follows the strict two phase locking protocol. Since this is guar-
anteed to produce a serializable transaction order, clients send multi-partition transactions
directly to the partitions, without going through the central coordinator. This is more effi-
cient when there are no lock conflicts, as it reduces network latency and eliminates an extra
process from the system. However, it introduces the possibility of distributed deadlock.
Our implementation uses cycle detection to handle local deadlocks, and timeout to handle
distributed deadlock. If a cycle is found, it will prefer to kill single partition transactions to
break the cycle, as that will result in less wasted work.

Since our system is motivated by systems like H-Store [95] and DORA [84], each
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partition runs in single-threaded mode. Therefore, our locking scheme has much lower
overhead than traditional locking schemes that have to latch a centralized lock manager
before manipulating the lock data structures. Our system can simply lock a data item
without having to worry about another thread trying to concurrently lock the same item.
The only type of concurrency we are trying to enable is logical concurrency where a new
transaction can make progress only when the previous transaction is blocked waiting for a
network stall — physical concurrency cannot occur.

When a transaction is finished and ready to commit, the fragments of the transaction are
sent to the backups. This includes any data received from other partitions, so the backups
do not participate in distributed transactions. The backups execute the transactions in the
sequential order received from the primary. This will produce the same result, as we assume
transactions are deterministic. Locks are not acquired while executing the fragments at the
backups, since they are not needed. Unlike typical statement-based replication, applying
transactions sequentially is not a performance bottleneck because the primary is also single
threaded. As with the previous schemes, once the primary has received acknowledgments
from all backups, it considers the transaction to be durable and can return results to the
client.

4.2 Experimental Evaluation

In this section we explore the trade-offs between the above concurrency control schemes
by comparing their performance on some microbenchmarks and a benchmark based on
TPC-C. The microbenchmarks are designed to discover the important differences between
the approaches, and are not necessarily presented as being representative of any particular
application. Our TPC-C benchmark is intended to represent the performance of a more
complete and realistic OLTP application.

Our prototype is written in C++ and runs on Linux. We used six servers with two
Xeon 3.20 GHz CPUs and 2 GB of RAM. The machines are connected to a single gigabit
Ethernet switch. The clients run as multiple threads on a single machine. For each test,
we use 15 seconds of warm-up, followed by 60 seconds of measurement (longer tests did
not yield different results). We measure the number of transactions that are completed by
all clients within the measurement period. Each measurement is repeated three times. We
show only the averages, as the confidence intervals are within a few percent and needlessly
clutter the figures.

For the microbenchmarks, we use our simple key/value store application described in
Section 3.1. The workload has one transaction which reads and updates a set of values. We
use small 3 byte keys and 4 byte values to avoid complications caused by data transfer time.
For the TPC-C benchmarks, we use our custom in-memory execution engine described
in Section 3.2. On each benchmark we compare the three concurrency control schemes
described in Section 4.1.
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Figure 4-7: Microbenchmark throughput without conflicts

4.2.1 Microbenchmark

Our microbenchmark implements a simple mix of single partition and multi-partition trans-
actions, in order to understand the impact of distributed transactions on throughput. We
create a database composed of two partitions, each of which resides on a separate machine.
The partitions each store half the keys. Each client issues a read/write transaction which
reads and writes the value associated with 12 keys. For this test, there is no sharing (i.e.,
potential conflict across clients): each client writes its own set of keys. We experiment with
shared data in the next section. To create a single partition transaction, a clients selects a
partition at random, then accesses 12 keys on that partition. To create a multi-partition
transaction, the keys are divided evenly by accessing 6 keys on each partition. To fully
utilize the CPU on both partitions, we use 40 simultaneous clients. Each client issues one
request, waits for the response, then issues another request.

We vary the fraction of multi-partition transactions and measure the transaction through-
put. The results are shown in Figure 4-7. From the application’s perspective, the multi-
partition and single partition transactions do the same amount of work, so ideally the
throughput should stay constant. However, concurrency control overhead means this is
not the case. The performance for locking is linear in the range between 16% and 100%
multi-partition transactions. The reason is that none of these transactions conflict, so they
can all be executed simultaneously. The slight downward slope is due to the fact that multi-
partition transactions have additional communication overhead, and thus the performance
degrades slightly as their fraction of the workload increases.

The most interesting part of the locking results is between 0% and 16% multi-partition
transactions. As expected, the performance of locking is very close to the other schemes
at 0% multi-partition transactions, due to our optimization where we do not set locks when
there are no multi-partition transactions running. The throughput matches speculation and
blocking at 0%, then decreases rapidly until 16% multi-partition transactions, when there

51



0

5000

10000

15000

20000

25000

30000

0% 20% 40% 60% 80% 100%

T
ra

ns
ac

tio
ns

/s
ec

on
d

Multi-Partition Transactions

Locking 0% conflict
Locking 20% conflict
Locking 60% conflict

Locking 100% conflict
Speculation

Blocking

Figure 4-8: Microbenchmark throughput with conflicts

is usually at least one multi-partition transaction in progress, and therefore nearly all trans-
actions are executed with locks.

The performance of blocking in this microbenchmark degrades steeply, so that it never
outperforms locking on this low-contention workload. The reason is that the advantage of
executing transactions without acquiring locks is outweighed by the idle time caused by
waiting for two-phase commit to complete. Our locking implementation executes many
transactions without locks when there are few multi-partition transactions, so there is no
advantage to blocking. If we force locks to always be acquired, blocking does outperform
locking from 0% to 6% multi-partition transactions.

With fewer than 50% multi-partition transactions, the throughput of speculation par-
allels locking, except with approximately 10% higher throughput. Since this workload is
composed of single-partition and simple multi-partition transactions, the single coordinator
can speculate all of them. This results in concurrent execution, like locking, but without
the overhead of tracking locks. Past 50%, speculation’s performance begins to drop. This
is the point where the central coordinator uses 100% of the CPU and cannot handle more
messages. To scale past this point, we would need to implement distributed transaction
ordering, as described in Section 4.1.2.

For this particular experiment, blocking is always worse than speculation and locking.
Speculation outperforms locking by up to 13%, before the central coordinator becomes a
bottleneck. With the bottleneck of the central coordinator, locking outperforms speculation
by 45%.

4.2.2 Conflicts
The performance of locking depends on conflicts between transactions. When there are no
conflicts, transactions execute concurrently. However, when there are conflicts, there is ad-
ditional overhead to suspend and resume execution. To investigate the impact of conflicts,
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we change the pattern of keys that clients access. When issuing single partition transac-
tions, the first client only issues transactions to the first partition, and the second client only
issues transactions to the second partition, rather than selecting the destination partition
at random. This means the first two clients’ keys on their respective partitions are nearly
always being written. To cause conflicts, the other clients write one of these “conflict” keys
with probability p, or write their own private keys with probability 1− p. Such transactions
will have a very high probability of attempting to update the key at a same time as the first
two clients. Increasing p results in more conflicts. Deadlocks are not possible in this work-
load, allowing us to avoid the performance impact of implementation dependent deadlock
resolution policies.

The results in Figure 4-8 show a single line for speculation and blocking, as their
throughput does not change with the conflict probability. This is because they assume
that all transactions conflict. The performance of locking, on the other hand, degrades as
conflict rate increases. Rather than the nearly straight line as before, with conflicts the
throughput falls off steeply as the percentage of multi-partition transactions increases. This
is because as the conflict rate increases, locking behaves more like blocking. Locking
still outperforms blocking when there are many multi-partition transactions because in this
workload, each transaction only conflicts at one of the partitions, so it still performs some
work concurrently. However, these results do suggest that if conflicts between transactions
are common, the advantage of avoiding concurrency control is larger. In this experiment,
speculation is up to 2.5 times faster than locking.

4.2.3 Aborts
Speculation assumes that transactions will commit. When a transaction is aborted, the
speculatively executed transactions must be undone and re-executed, wasting CPU time. To
understand the effects of re-execution, we select transactions to be aborted at random with
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Figure 4-10: Microbenchmark throughput with two round multi-partition transactions

probability p. When a multi-partition transaction is selected, only one partition will abort
locally. The other partition will be aborted during two-phase commit. Aborted transactions
are somewhat cheaper to execute than normal transactions, since the abort happens at the
beginning of execution. They are identical in all other respects, (e.g., network message
length).

The results for this experiment are shown in Figure 4-9. The cost of an abort is variable,
depending on how many speculatively executed transactions need to be re-executed. Thus,
the 95% confidence intervals are wider for this experiment, but they are still within 5%, so
we omit them for clarity. Since blocking and locking do not have cascading aborts, the abort
rate does not have a significant impact, so we only show the 10% abort probability results.
This has slightly higher throughput than the 0% case, since abort transactions require less
CPU time.

As expected, aborts decrease the throughput of speculative execution, due to the cost
of re-executing transactions. They also increase the number of messages that the central
coordinator handles, causing it to saturate sooner. However, speculation still outperforms
locking for up to 5% aborts, ignoring the limits of the central coordinator. With 10% aborts,
speculation is nearly as bad as blocking, since some transactions are executed many times.
These results suggest that if a transaction has a very high abort probability, it may be better
to limit to the amount of speculation to avoid wasted work.

4.2.4 General Multi-Partition Transactions
When executing a multi-partition transaction that involves multiple rounds of communi-
cation, speculation can only begin when the transaction is known to have completed all
its work at a given partition. This means that there must be a stall between the individual
fragments of transaction. To examine the performance impact of these multi-round transac-
tions, we changed our microbenchmark to issue a multi-partition transaction that requires
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two rounds of communication, instead of the simple multi-partition transaction in the orig-
inal benchmark. The first round of each transaction performs the reads and returns the
results to the coordinator, which then issues the writes as a second round. This performs
the same amount of work as the original benchmark, but has twice as many messages.

The results are shown in Figure 4-10. The blocking throughput follows the same trend
as before, only lower because the two round transactions take nearly twice as much time
as the multi-partition transactions in the original benchmark. Speculation performs only
slightly better, since it can only speculate the first fragment of the next multi-partition
transaction once the previous one has finished. Locking is relatively unaffected by the
additional round of network communication. Even though locking is generally superior for
this workload, speculation does still outperform locking as long as fewer than 4% of the
workload is composed of general multi-partition transactions.

4.2.5 TPC-C

We ran TPC-C with the warehouses divided evenly across two partitions. In this work-
load, the fraction of multi-partition transactions ranges from 5.7% with 20 warehouses to
10.7% with 2 warehouses. The throughput for varying numbers of warehouses are shown
in Figure 4-11. With this workload, blocking and speculation have relatively constant per-
formance as the number of warehouses is increased. The performance is lowest with 2
partitions because the probability of a multi-partition transaction is highest (10.7%, versus
7.2% for 4 warehouses, and 5.7% for 20 warehouses), due to the way TPC-C new order
transaction requests are generated. After 4 warehouses, the performance for blocking and
speculation decrease slightly. This is due to the larger working set size and the correspond-
ing increase in CPU cache and TLB misses. The performance for locking increases as
the number of warehouses is increased because the number of conflicting transactions de-
creases. This is because there are fewer clients per TPC-C warehouse, and nearly every
transaction modifies the warehouse and district records. This workload also has deadlocks,
which leads to overhead due to deadlock detection and distributed deadlock timeouts, de-
creasing the performance for locking. Speculation performs the best of the three schemes
because the workload’s fraction of multi-partition transactions is within the region where it
is the best choice. With 20 warehouses, speculation provides 9.7% higher throughput than
blocking, and 63% higher throughput than locking.

4.2.6 TPC-C Multi-Partition Scaling

In order to examine the impact that multi-partition transactions have on a more complex
workload, we scale the fraction of TPC-C transactions that span multiple partitions. We
execute a workload that is composed of 100% new order transactions on 6 warehouses.
We then adjust the probability that an item in the order comes from a “remote” warehouse,
which is a multi-partition transaction. With TPC-C’s default parameters, this probability is
0.01 (1%), which produces a multi-partition transaction 9.5% of the time. We adjust this
parameter and compute the probability that a transaction is a multi-partition transaction.
The throughput with this workload is shown in Figure 4-12.
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Figure 4-11: TPC-C throughput with varying warehouses

The results for blocking and speculation are very similar to the results for the mi-
crobenchmark in Figure 4-7. In this experiment, the performance for locking degrades very
rapidly. At 0% multi-partition transactions, it runs efficiently without acquiring locks, but
with multi-partition transactions it must acquire locks. The locking overhead is higher for
TPC-C than our microbenchmark for three reasons: more locks are acquired for each trans-
action, the lock manager is more complex, and there are many conflicts. In particular, this
workload exhibits local and distributed deadlocks, hurting throughput significantly. Again,
this shows that conflicts make traditional concurrency control more expensive, increasing
the benefits of simpler schemes.

Examining the output of a sampling profiler while running with a 10% multi-partition
probability shows that 34% of the execution time is spent in the lock implementation. Ap-
proximately 12% of the time is spent managing the lock table, 14% is spent acquiring locks,
and 6% is spent releasing locks. While our locking implementation certainly has room for
optimization, this is similar to what was previously measured for Shore, where 16% of the
CPU instructions could be attributed to locking [45].

4.2.7 Summary
Our results show that the properties of the workload determine the best concurrency control
mechanism. Speculation performs substantially better than locking or blocking for multi-
partition transactions that require only a single round of communication and when a low
percentage of transactions abort. Our low overhead locking technique is best when there
are many transactions with multiple rounds of communication. Table 4.1 shows which
scheme is best, depending on the workload; we imagine that a query executor might record
statistics at runtime and use a model like that presented in Section 4.3 below to make the
best choice.

Optimistic concurrency control (OCC) is another “standard” concurrency control algo-
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Figure 4-12: TPC-C throughput with 100% New Order transactions

Few 
Conflicts

Many 
Conflicts Few Conflicts Many 

Conflicts
Many multi-
partition 
xactions

Speculation Speculation Locking Locking or 
Speculation

Few multi-
partition 
xactions

Speculation Speculation Blocking or 
Locking Blocking

Many multi-
round 
xactions

Locking Locking Locking Locking

Few multi-
round 
xactions

Few Aborts Many Aborts

Table 4.1: Summary of the best concurrency control scheme for different situations. Spec-
ulation is preferred when there are few multi-round (general) transactions and few aborts.
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rithm. It requires tracking each item that is read and written, and aborts transactions during
a validation phase if there were conflicts. Intuitively, we expect the performance for OCC
to be similar to that of locking. This is because, unlike traditional locking implementa-
tions that need complex lock managers and careful latching to avoid problems inherent in
physical concurrency, our locking scheme can be much lighter-weight, since each partition
runs single-threaded (i.e., we only have to worry about the logical concurrency). Hence,
our locking implementation involves little more than keeping track of the read/write sets
of a transaction — which OCC also must do. Consequently, OCC’s primary advantage
over locking is eliminated. We have run some initial results that verify this hypothesis, and
plan to explore the trade-offs between OCC and other concurrency control methods and
our speculation schemes as future work.

4.3 Analytical Model

To improve our understanding of the concurrency control schemes, we analyze the expected
performance for the multi-partition scaling experiment from Section 4.2.1. This model
predicts the performance of the three schemes in terms of just a few parameters (which
would be useful in a query planner, for example), and allows us to explore the sensitivity
to workload characteristics (such as the CPU cost per transaction or the network latency).
To simplify the analysis, we ignore replication.

Consider a database divided into two partitions, P1 and P2. The workload consists of
two transactions. The first is a single partition transaction that accesses only P1 or P2, cho-
sen uniformly at random. The second is a multi-partition transaction that accesses both
partitions. There are no data dependencies, and therefore only a single round of communi-
cation is required. In other words, the coordinator simply sends two fragments out, one to
each partition, waits for the response, then sends the commit or abort decision. Each multi-
partition transaction accesses half as much data in each partition, but the total amount of
data accessed is equal to one single partition transaction. To provide the best case perfor-
mance for locking, none of the transactions conflict. We are interested in the throughput as
the fraction of multi-partition transactions, f , in the workload is increased.

4.3.1 Blocking

We begin by analyzing the blocking scheme. Here, a single partition transaction executes
for tsp seconds on one partition. A multi-partition transaction executes for tmp on both
partitions, including the time to complete the two-phase commit. If there are N transactions
to execute, then there are N f multi-partition transactions and 1

2N(1− f ) single partition
transactions to execute at each partition. The factor of 1

2 arises because the single partition
transactions are distributed evenly between the two partitions. Therefore the time it takes
to execute the transactions and the system throughput are given by the following equations:
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time = N f tmp +
N(1− f )

2
tsp

throughput =
N

time
=

2
2 f tmp +(1− f )tsp

Effectively, the time to execute N transactions is a weighted average between the times
for a pure single partition workload and a pure multi-partition workload. As f increases,
the throughput will decrease from 2

tsp
to 1

tmp
. Since tmp > tsp, the throughput will decrease

rapidly with even a small fraction of multi-partition transactions.

4.3.2 Speculation

We first consider the local speculation scheme described in Section 4.1.2. For speculation,
we need to know the amount of time that each partition is idle during a multi-partition
transaction. If the CPU time consumed by a multi-partition transaction at one partition is
tmpC, then the network stall time is tmpN = tmp− tmpC. Since we can overlap the execution
of the next multi-partition transaction with the stall, the limiting time when executing a
pure multi-partition transaction workload is tmpL = max

(
tmpN , tmpC

)
, and the time that the

CPU is idle is tmpI = max
(
tmpN , tmpC

)
− tmpC.

Assume that the time to speculatively execute a single partition transaction is tspS. Dur-
ing a multi-partition transaction’s idle time, each partition can execute a maximum of tmpI

tspS

single partition transactions. When the system executes N f multi-partition transactions,
each partition executes N(1− f )

2 single partition transactions. Thus, on average each multi-
partition transaction is separated by (1− f )

2 f single partition transactions. Therefore, for each
multi-partition transaction, the number of single partition transactions that each partition
can speculate is given by:

Nhidden = min
(

1− f
2 f

,
tmpI

tspS

)
Therefore, the time to execute N transactions and the resulting throughput are:

time = N f tmpL +(N(1− f )−2N f Nhidden)
tsp

2

throughput =
2

2 f tmpL +((1− f )−2 f Nhidden)tsp

In our specific scenario and system, tmpN > tmpC, so we can simplify the equations:
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Nhidden = min
(

1− f
2 f

,
tmp−2tmpC

tspS

)
throughput =

2
2 f (tmp− tmpC)+((1− f )−2 f Nhidden)tsp

The minimum function produces two different behaviors. If 1− f
2 f ≥

tmpI
tspS

, then the idle
time can be completely utilized. Otherwise, the system does not have enough single parti-
tion transactions to completely hide the network stall, and the throughput will drop rapidly
as f increases past tspS

2tmpI+tspS
.

Speculating Multi-Partition Transactions

This model can be extended to include speculating multi-partition transactions, as de-
scribed in Section 4.1.2. The previous derivation for execution time assumes that one multi-
partition transaction completes every tmpL seconds, which includes the network stall time.
When multi-partition transactions can be speculated, this restriction is removed. Instead,
we must compute the CPU time to execute multi-partition transactions, and speculative and
non-speculative single partition transactions. The previous model computed the number of
speculative single partition transactions per multi-partition transaction, Nhidden. We can
compute the time for multi-partition transactions and speculative single partition transac-
tions as tperiod = tmpC +NhiddentspS. This time replaces tmpL in the previous model, and thus
the throughput becomes:

throughput =
2

2 f tperiod +((1− f )−2 f Nhidden)tsp

4.3.3 Locking

Since the workload is composed of non-conflicting transactions, locking has no stall time.
However, we must account for the overhead of tracking locks. We define l to be the fraction
of additional time that a transaction takes to execute when locking is enabled. Since locking
always requires undo records, we use tspS to account for the single partition execution
time. Furthermore, the overhead of two-phase commit must be added, so for multi-partition
transactions we use tmpC. The time to execute N transactions, and the resulting throughput
are given by:

time = N f ltmpC +
N(1− f )

2
ltspS

throughput =
N

time
=

2
2 f ltmpC +(1− f )ltspS
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Figure 4-13: Model throughput compared to measured throughput without replication

Variable Measured Description
tsp 64 µs Time to execute a single partition transaction non-

speculatively.
tspS 73 µs Time to execute a single partition transaction speculatively.
tmp 211 µs Time to execute a multi-partition transaction, including re-

solving the two-phase commit.
tmpC 55 µs CPU time used to execute a multi-partition transaction.
tmpN 40 µs Network stall time while executing a multi-partition transac-

tion.
l 13.2% Locking overhead. Fraction of additional execution time.

Table 4.2: Analytical model variables

4.3.4 Experimental Validation
We measured the model parameters for our implementation. The values are shown in Ta-
ble 4.2. Figure 4-13 shows the analytical model using these parameters, along with the
measured throughput for our system without replication. As can be observed, the two are
a relatively close match. This suggests that the model is a reasonable approximation for
the behavior of the real system. These results also show that speculating multi-partition
transactions leads to a substantial improvement when they comprise a large fraction of the
workload.
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Chapter 5

Live Migration

Large database systems must be able to adapt to changing workload demands, such as in-
creases in load that can be caused by sudden spikes in popularity or by slow, steady growth.
Distributed systems running in large data centers can, in theory, add and remove resources
dynamically, as needs change. However, it is difficult to elastically scale databases. Tra-
ditionally, it requires upgrading hardware or moving data during maintenance windows,
taking the database out of service. This downtime is unacceptable in today’s world where
services are expected to be continuously available.

Providing elasticity for stateless applications like web servers is straightforward, but is
much harder for stateful applications like databases. This is because large quantities of data
must be moved, or migrated, from one machine to another. This transfer of data can incur
significant load on the source machine and take significant time. Worse, this additional
load is incurred exactly when the source needs to offload work. Anecdotally, providing this
kind of efficient migration is both important and difficult in current systems. For example,
in October 2010, Foursquare (a social, location-based application) experienced 11-hours
of downtime due to skew in data growth followed by an attempted migration of part of the
data to a new node [34].

The key requirements for elasticity in a data storage system are:

• Low-overhead, to facilitate movement of data off of highly loaded servers in response
to load spikes without increasing load on the source, and

• Partial migration, in order to move just a portion of the data to another server, allow-
ing the data distribution to be re-optimized on the fly, and to split a single machine’s
work across multiple machines.

Unfortunately, existing approaches to database migration do not meet these require-
ments. Replication-based solutions, where a replica of the databases is created from a
dirty copy of the data and the transaction log, followed by a failover from the master to
this new replica, impose significant extra load on the source node as data is copied off of
it. Virtual machine (VM) migration can efficiently migrate entire VMs (which may host
databases) [65, 24], but requires expensive shared storage. Neither of these approaches
allow partial migration, since data must be moved at the granularity of an entire database
or machine. Recently proposed academic solutions, such as Zephyr [31] also impose sig-
nificant load on the source and do not readily support partial migration. We discuss the
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differences between our work and these systems in more detail in Section 6.6 and in our
experimental evaluation (Section 5.5).

In this chapter, we describe Dtxn’s live migration support, and a novel migration tech-
nique we call Wildebeest1. Because moving data requires close integration with the storage
engine, Dtxn only handles updating the metadata and redirecting clients when appropriate.
The actual data transfer must be handled by the storage engine. We used Dtxn’s migration
support to implement two existing techniques (stop and copy and replica failover, described
in detail in Section 5.5), as well as Wildebeest.

Wildebeest itself is a novel migration technique designed to elastically migrate a data-
base from one server to another while incurring minimal additional load on the source.
Like the rest of Dtxn, it is designed specifically for OLTP and web applications, and thus
is optimized for workloads composed of large numbers of small transactions. Wildebeest’s
key idea is to use a logical (tuple-id based) “copy on demand” policy, where data is migrated
only when it is needed. Immediately after migration is initiated, new transactions are sent
to the migration destination, even though it has not yet received any data from the source.
The destination then sends requests to the source for only the logical data ranges it needs
to answer the query and adds them to its copy of the state.

This kind of fine-grained data movement requires tight integration with the database.
Thus, in this chapter, we discuss our implementation of migration for a single applica-
tion: the Relational Cloud SQL database built with Dtxn, described in Section 3.4. Our
prototype is built using MySQL as the storage engine, and Dtxn to manage partitions and
distributed transactions. It is designed for workloads where the working set fits in memory.
While our implementation of Wildebeest is tuned for use with traditional disk-based SQL
databases, we believe that its design is applicable to any transactional OLTP system. The
only requirement is that transactions only access “small” amounts of data, such as under a
megabyte. The rest of this chapter discusses Wildebeest specifically.

The key features of Wildebeest include:

• Transactionally consistent migration of all or part of a database that immediately
reduces load on the source database when migration is initiated.

• Logical copying. Our approach moves parts of the database by copying data at a
logical level. This enables repartitioning a single database across multiple machines
as needed, rather than being forced to move data based on the physical data layout
(e.g., the existing clustered indices or partitions), as existing approaches do.

• Efficiency. Our approach effectively turns local database reads into remote reads for
missing data and local database writes. If not done carefully, when using a tradi-
tional disk-based storage engine, this could have a disastrous effect on transaction
throughput during migration. We add a main-memory cache that allows us to avoid
synchronous disk writes as data is migrated and a pre-fetching strategy to reduce the
number of remote reads that are required.

1Wildebeest, also known as gnu, are large mammals that live on the African plains, noted for their migra-
tory habits.
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• Fault tolerance. If a crash occurs during migration, some new data may be on the
destination, while old state may still be on the source. We introduce a recovery
protocol that ensures that migration is able to restart despite such crashes.

Our experimental results (Section 5.5) show that Wildebeest has less visible perfor-
mance impact than existing techniques. Most importantly, when using it to scale from one
to two machines, Wildebeest improves the system throughput 7× faster than the next best
technique, taking 4 seconds while virtual machine migration takes 28 seconds. This is de-
spite the fact that the VM approach uses shared disk, so it does not perform any disk I/O,
while Wildebeest writes the data to disk on the destination machine. In low load situations,
our system has a small visible impact at the moment migration is triggered, but can resume
processing within less than one second, while virtual machine migration has significantly
longer visible pauses, and replica failover increases request latency while the data is being
migrated (over two minutes in our experiments).

5.1 Migration Procedure
Wildebeest migration involves moving data between any two partitions. Moving data is a
primitive operation that supports many kinds of data migration, such as splitting an existing
partition into two pieces, recombining two partitions into one, or rebalancing two partitions.
Thus, it is a flexible tool that can be used in multiple ways to make changes to a running
system.

Migration begins when the application indicates that migration should occur from the
source partition to the destination. Wildebeest first quiesces the source, allowing outstand-
ing transactions to finish. It then begins sending new transactions to the destination. Ini-
tially the destination has no data, so to answer queries it uses query rewriting to fetch ranges
of data it needs from the source. As it copies data, the destination keeps a map that tells it
which tuples have already been copied. Inserts are performed on the destination; updates
and deletes require more care to ensure they are properly applied while some of the data
resides on both the source and the destination.

In the remainder of this section, we discuss these steps in more detail, deferring the
technical details of query rewriting, recovery, and performance optimizations to the fol-
lowing sections. Migration is a four-step process, as shown in Figure 5-1.

1. Phase 1 – Prepare the destination: When migration is initiated, a SETUP message
is sent to the destination. The new partition is created on the destination host, initial-
izing the tables and indices specified by the schema. The destination migration agent
then sends the source the PREPARE message, but does not begin fetching any data.
At this point, the destination will accept new transactions for this partition, but will
queue them until it receives the SWITCH message from the source. During this phase,
all queries to the partition are processed at the source (e.g., Q1 in Figure 5-1).

2. Phase 2 – Drain the source: When the source receives the PREPARE message it stops
accepting new transactions. It informs routers that attempt to initiate new transactions
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Figure 5-1: Sequence diagram of migration.

that the partition has moved to the destination. Routers receiving this message for-
ward new transactions to the destination (e.g., Q2 in Figure 5-1). During this time,
transactions that were already active are allowed to finish execution on the source.
This phase will last until all active transactions have completed. Since Dtxn and
Wildebeest are designed for OLTP and web applications that are composed of short
transactions with a small number of statements, this will be a very short period of
time, typically a few hundred milliseconds at most. During this time, transactions
are queued at destination and will thus observe higher latency.

3. Phase 3 – Destination fetching: When all active transactions at the source have
completed, the source notifies the destination by sending it the SWITCH message.
When this is received, the destination begins executing client requests. For each
query, the destination determines what data a query will access. If that data has
not already been fetched, it retrieves the data from the source and inserts it into
the local database. For high performance, data is inserted into main-memory and
written lazily in the background, as described in Section 5.4.2. The destination finally
executes the user’s query locally. We describe a how the destination determines if it
can answer a query in Section 5.2.1 and precisely what queries are issued to the
source in Section 5.2.2.

All tuples must eventually be fetched from the source to the destination and written
to disk in order to complete the migration. To accomplish this, a background task is
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started at the destination which periodically fetches “missing” tuples from the source
and another that durably writes tuples from the main memory table. Running this
background task at a high rate will cause migration to complete more quickly, but
will introduce more load on both servers. The disadvantage of migration taking a
long time is that there is a higher probability of the partition being unavailable, as
the partition will be down if either the source or the destination is inaccessible. By
default we choose to run perform these background fetches slowly, as this provides
the best runtime performance, with the cost of needing the source to remain up for
longer. The administrator can request a more aggressive migration if this migration
period must be minimized, such as when the source server must be immediately taken
offline for maintenance.

4. Phase 4 – Cleanup: Finally, once all tuples have been copied to the destination
and have been durably written to disk, the destination informs the source that the
migration is complete with the END message. At this point, the source can “drop”
the partition, reclaiming disk space. The destination then resumes normal query
processing, without involving the source.

Our approach copies the data tuples on an as-needed basis from the source to the desti-
nation. All indexes are rebuilt on the destination host. This is more costly than a physical
copy in some ways, as the destination repeats work that the primary has already performed.
However, it provides two benefits. First, it reduces the amount of work on the source server,
which we assume is overloaded, as we initially copy only the referenced data. This is ap-
proximately the same load that it would have served without migration. The extra work of
rebuilding indexes occurs on the destination, which should have excess capacity. Secondly,
it enables partial migration.

Partial migration is difficult with physical copy approaches, as we now discuss. We
consider two physical-level partial-copy approaches: copy the entire partition then delete
the portion of the data that has not migrated, or copy part of the primary clustered index.
The “delete after copy” approach must copy significant data which will just be thrown
away. It must also rebalance the primary index and perform many “random” secondary
index deletes, which is effectively the same as rebuilding the index. The partial physical
copy approach can work if the table is being partitioning by the primary clustered index
key, and will likely be more efficient for that index. However, the primary index still needs
to be rebalanced, and this approach will need to rebuild the secondary indexes. Thus,
while a physical copy may be faster when moving an entire partition, a logical copy gives
Wildebeest more flexibility in a partial-move situation.

The recoverability and fault-tolerance characteristics of this migration are discussed in
Section 5.3.

5.2 Migration Techniques
In this section, we describe the details of our basic migration strategy. We begin by talking
about queries, and then generalize to updates later. When a new query Q is received at
the destination node, the migration agent parses it and checks whether the data it needs to
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answer the query has already been migrated. If some of the data is missing, the migration
agent generates a query Q′ (a rewriting of Q) that when executed on the source node will
fetch the data required to process the query. The result is inserted locally at the destina-
tion. At this point, Q can be executed locally. For this process to work, we introduce two
additional software components: a range-tracker, and a rewriting engine, which we discuss
next.

5.2.1 Range Tracking and Query Analysis

To avoid redundantly fetching data from the source, the migration agent on the destination
must carefully track which data has been moved from the source to the destination. For
the tables we are migrating, the migration agent maintains a list of the ranges of tuples
that have already been moved—we call this a range set. This allows the query analysis
component to compare the tables and predicates in the WHERE clause of a query Q with
what is available locally2.

The analysis we perform is conservative, in the sense that it may sometimes falsely
conclude that the data needed to answer a query Q is not available on the destination when
it is, but it will never incorrectly decide all data is available when it is not. The basic
approach is to test to see if predicates used in a query Q are contained in the set of ranges
of cached values. While this query containment problem is in general hard [19], we are able
to make it tractable via several heuristics covering the common query types in OLTP/web
workloads. Complex input queries for which we cannot prove containment are handled
conservatively, by fetching more data than is needed. In the worst case, this may lead to
us retrieving all the input tables mentioned by the query before executing it. This ensures
correctness at the price of performance. When inserting the data in the destination database
we rely on the existence of primary keys in the data to avoid duplicates.

Due to storage overheads, maintaining range sets for each column in each migrated
table is impractical. However, queries with predicates only on unindexed columns require
a full table scan even when not migrating. This observation allows us to only maintain
range sets for indexed columns, which, in the case of OLTP/web workloads, are typically
predicated in every query.

Initially, each range set is empty. As tuples are fetched from the source via a predicate
on a specific index, ranges are added to the corresponding range set at the destination.
Ranges may be singletons if the index was accessed using an equality (e.g. id = 0 maps to
[0, 0]), finite for bounded ranges (e.g. 0≤ id ≤ 7 maps to [0, 7]), or infinite for unbounded
ranges (e.g. 0≤ id maps to [0, ∞)). In our implementation, we store the ranges in a binary
tree, which can efficiently determine if a specific key or range of keys are contained in the
range set. If ranges are countable (e.g., integers), then adjacent ranges can be combined
to reduce the storage requirements. For uncountable ranges (e.g. string or multiple integer
keys), ranges can only be combined by explicit range queries on the source.

2Simply storing the data in the local database is not sufficient because it can not differentiate between a
tuple that does not exist and a tuple that has not been migrated. If we assumed that a tuple needs to be fetched
from the source every time it is missing locally, the destination would end up repeating many queries for
tuples that do not exist.
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Each time a tuple is migrated, entries are added to the range sets for all indexes with
unique keys, no matter what index was used to retrieve the tuple. This is correct because
there is only a single possible tuple matching each key, so we can be certain we have
fetched all possible tuples matching that value. For indices with non-unique keys (typically
secondary indexes), range sets are only updated when accessing tuples via a predicate on
that index. This ensures that when a range exists in a range set, all possible tuples in that
range have been migrated.

There are several other considerations when performing this fetching:

• For LIMIT clauses on non-unique indexes, we can only update range sets for the keys
where it is guaranteed that all values have been fetched. This means either fewer
results than the limit were returned, or we must exclude the last key in the result set.
For example, for the query with predicate 0≤ id LIMIT 4 and result set (1, 1, 1, 2),
we can only add the range [0, 1] to the range set, since there may be more tuples with
id = 2.

• For queries with conjunctive (AND) predicates over a set of indexed attributes A, data
is only fetched if all ranges for the attributes in A indicate the data has not already
been fetched. This works because if at least one attribute’s range has been fetched, it
contains the result set. The other attributes are only used to restrict the results. For
these conjunctive queries, we cannot update range sets, except for the normal case of
adding values to unique indexes for tuples that were retrieved.

• For disjunctive (OR) predicates, data must be fetched if any of the predicates are non-
indexed or if any of the range sets indicates the predicated data has not yet been
retrieved. In this case, however, we can update range sets in all indexes.

Range sets are also used to determine when migration is complete. The “background
copy” task iterates over the primary index range set, issuing queries to fill the holes and
ensure that all data has been migrated. This background copying process is described in
more detail in Section 5.2.4.

We describe how these range sets are used to determine exactly what queries are sent
from the destination to the source in the next section.

5.2.2 Query Rewriting
When the migration agent on the destination determines some of the data needed to answer
a query has not yet been migrated, it issues a query to fetch the needed tuples. Since
Wildebeest is implemented as middleware, this is done by means of query rewriting.

As noted in the previous section, we take a conservative approach to guarantee sound-
ness. Rewritten queries are designed to always fetch all of the needed data, without per-
forming excessive amounts of repeated fetching. We explore more opportunities for op-
timization in Section 5.4, where we discuss a technique that pre-fetches extra tuples by
relaxing the query predicates.

In the following we briefly discuss rewriting of different classes of queries.
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1. Single table queries: The query is rewritten by substituting the target list with a
SELECT * statement. This guarantees that all the attributes of the records are mi-
grated. If the WHERE clause has predicates over a column for which we maintain
range sets, we determine the difference between the query ranges and the range sets.
Specifically, we modify the WHERE clause with predicates that fetch only the miss-
ing tuples (i.e., tuples in the difference). If the tuple has no predicates, or single
or disjunctive predicates on non-indexed fields, we fetch the entire table, since as
noted above, these queries require a table-scan on the source anyway. Aggregate and
GROUP BY clauses are simply removed. LIMIT clauses are left untouched by the basic
rewriting strategy.

2. Multi table queries: Our general strategy is to determine the range of tuples that
are accessed for each of the tables mentioned in the query, fetch all the required
tuples with independent queries, then perform the join at the destination. When no
predicates other than the join predicates are defined for a table, we perform a multi-
step execution akin to a semi-join. Specifically:

• Tuples from smaller or predicated tables are fetched first.

• These tuples are used to bind the join attribute values in queries that are issued
to the non-predicated tables.

While this basic strategy is efficient for key-foreign key joins typically found in
OLTP/web workloads, it is not ideal for OLAP-like queries that access large amounts
of data. For these queries our strategy degenerates to fetching all the data from the
source immediately, rather than fetching data lazily.

5.2.3 Inserts, Updates, and Deletes
Statements that modify the database also require some additional modification, because the
data that is modified may be on the source, the destination, or both. For recovery of writes
it is important to note that the logical “state” of the database is the union of the source and
destination databases, with the destination as the authoritative copy in case of disagreement.
This allows us to perform inserts and updates only on the destination, although deletes need
to be run on both. Recovery and fault-tolerance are discussed in the next section.

1. Inserts: Inserts can be performed at destination provided that integrity constraints
are respected. We limit our discussion here to unique/primary key constraints3. In
order to enforce uniqueness constraints we check that all the potentially conflicting
tuples are available at the destination by checking the appropriate range sets. If some
tuples are missing, before running the INSERT statement, we execute a query on the
same table with a WHERE clause containing an OR of all uniquely constrained fields.
Fetching this data and storing it locally guarantees that every possible conflict will be

3Foreign key constraints can be supported through a similar mechanism, though we have not done so
because they are not frequently used in OLTP/web workloads for performance reasons, and doing so would
introduce significant overhead. Most shared nothing distributed databases, like DB2 Parallel Edition, do not
support them for similar reasons.
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detected at the destination. In order to handle auto-increment keys, the source sends
the destination the next auto-increment value as part of the SWITCH message.

2. Deletes: Deletes need to be propagated both to the source and destination, since
during recovery we will union the source and destination databases. Thus, we exe-
cute deletes as a distributed transaction on both the source and destination databases.
This ensures that during recovery when merging the state of the source and destina-
tion databases, a deleted tuple stays deleted (we call this the “resurrection” problem,
where a dead tuple comes back to life). This operation adds entries to the range
set for the associated indexes, as with a regular query, which avoids querying of the
source if later queries try to access the deleted tuples.

3. Updates: Most updates are handled by first ensuring that the target tuples have been
migrated, following the same rewriting as for queries. Then the update can be pro-
cessed locally. We currently do not support updates that modify primary keys because
our example applications have not needed this functionality and so we have not im-
plemented the correct rewriting. These updates need to be converted to a SELECT-
DELETE-INSERT sequence, in order to correctly handle failure during the migration.
This is required so that the original primary key is marked as no longer existing on
the source, in order to handle failures that may occur during migration. This is to
avoid the same potential “resurrection” issue described for deletes.

5.2.4 Background Fetching

Our approach lazily fetches tuples only when required to answer user queries. However, in
order to complete migration we need to eventually also fetch those tuples that are never ac-
cessed by the workload, but are part of the partition/database being migrated. We introduce
a background task on the destination that slowly fetches the missing tuples. The goal of this
task is to fill the missing gaps in the primary index range sets, while minimally affecting
performance. There are many potential policies that could be applied here, with various
performance trade-offs. In our current prototype, we only implemented a single very sim-
ple policy. Every second, the background task checks how many tuples were fetched from
the source. The background task then fetches enough tuples to ensure that at least T tuples
are fetched every second (we use T = 1000 in our implementation). This policy adds no
extra pressure during the early part of migration, when many misses cause a lot of data to
be migrated, but it maintains a constant transfer rate and thus ensures that the migration
will eventually complete. Investigating other potential policies is left as future work.

5.3 Recovery and Fault Tolerance
During migration, the logical state of the database is spread across both the source and the
destination servers. As a result, failure of either server can cause the database to become
unavailable. The source cannot serve queries without the destination because the desti-
nation may contain updates, and because any propagated deletes may cause the source’s
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snapshot to no longer be consistent. If the source in unavailable, the destination can con-
tinue to serve any data that it has migrated, but any operation which must migrate data from
the source will fail. This is different from the existing commercial systems, which have a
well defined single point of time where they switch from the source to the destination.
However, the migration procedure should be short, so this should not significantly affect
the overall system availability.

In the rest of this section, we describe the details of how our recovery protocol works
to handle individual component failures. The assumption is that the individual databases
use traditional durability techniques, such as an ARIES-style undo and redo logging [72],
or replication. Additional mechanisms are required to recover the state of the migration.

5.3.1 Router Failures
Routing information is stored persistently in a metadata database, and replicated locally
at each backend node. Each backend node only maintains the portion of the metadata
database that describes the partitions stored locally. The front-end router nodes only main-
tain a cache of the routing information. Inconsistencies in router caches are detected by the
backend nodes, when transactions targeting a partition that has already been migrated are
incorrectly sent to the source rather than destination. This is shown in Figure 5-1, when the
source node in phase 2 returns a redirect response to the router for query Q2, causing it to
be reissued to the correct destination. Routers thus contain only soft-state. In the event of
a router failure, in-flight transactions are aborted, and routing tables are reloaded from the
metadata database when the router recovers from the crash. This also allows us to spawn
router nodes on demand, based on load.

5.3.2 Source and Destination Failures
To recover from a failure, the source and destination database servers first perform their
standard independent recovery procedures. The migration message deliveries and the cur-
rent migration state are critical for recovery correctness, and thus these messages are sent
using standard reliable delivery techniques. Each message is resent until it is acknowledged
by the destination. The messages are idempotent, so it does not matter if the destination
receives them multiple times. Migration agents on both source and destination maintain a
write-ahead persistent log. Records are force-written before messages are acknowledged
by the receiver, and after acknowledgments are received by the sender. In case of failure,
the migration agents on the source and destination read the log and can determine which
migration phase they were in at the time of the crash.

Simple recovery strategy: A simple strategy for recovery that ensures correctness
would be to simply restart migration with empty range sets on the destination. This may
cause data to be re-fetched from the source. However, duplicate migrated data that is
fetched from the source is discarded when it is inserted, so this is correct.

Efficient recovery strategy: To improve efficiency, we propose a variant of this pro-
tocol. In this variant, the destination, after basic database recovery, creates empty range
sets for each migrated table and then scans each migrated table, adding range set entries for
every unique index. For non-countable types (e.g., floats, strings) range set merging cannot
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be performed, causing these regenerated sets to contain a large number of entries. For this
reason, we do not rebuild range sets for non-countable types in our current prototype. At
the end of this procedure, migration can be resumed as usual. This significantly reduces
the re-fetching of tuples.

5.3.3 Failure Analysis
To illustrate the correctness of our protocol, in this section we describe what happens after
a source and destination failure in the various phases of migration shown in the sequence
diagram in Figure 5-1.

Destination Failures In the event of a destination failure:

• Before setup: nothing to be done as migration has not begun.

• Between setup and prepare: abort migration by rolling back any setup.

• Between prepare and switch: nothing to be done. Continue to queue transactions and
wait for the SWITCH message.

• Between switch and end: Optionally load the range sets by scanning the local data-
base, and restart processing user transactions in migration mode. Duplicates are
ignored by regular processing.

• After end: standard database recovery is sufficient.

Source Failures In the event of a source failure:

• Before prepare: standard database recovery is sufficient;

• Between prepare and switch: do not accept new transactions, and send the SWITCH

message to the destination.

• Between switch and end: do not accept new transactions, and keep serving data
requests from the destination.

• After end: Standard database recovery is sufficient, repeating the cleanup if needed;

This procedure will recover any application modifications that committed at any point
during the migration. There are two cases; either:

1. The transaction committed while the source was executing transactions, in which
case the source will ensure that it was durable, and the migration procedure will
eventually migrate the changes to the destination, or

2. The transaction will have committed while the destination was executing transac-
tions. In this case, the destination’s local recovery will recover the modifications,
and even if an older version of those tuples are migrated again, these older tuples
will be discarded.
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5.4 Optimizations
The previous sections discussed the basic components of Wildebeest and the recovery pro-
tocols. We now focus on a series of optimizations that provide significant performance
improvement. The final system performance is validated in Section 5.5.

5.4.1 Batching
In Section 5.2 we described the basic policy in which we fetch the “bare minimum” data
required to answer the user queries. However, due to per-query overhead, it is often more
efficient to process larger groups of tuples at a time. This amortizes the per query costs
of network messages, source data index lookups, and the destination writes across a larger
number of tuples at a time.

We extended our query rewriting, described in Section 5.2.2, to fetch a configurable
batch of tuples of size Bsize. It uses the range sets to determine lower and upper bounds
for the missing range of tuples, and adds a LIMIT clause. For example, if we have fetched
ranges [0, 20], [30, 40] and we get a query for id = 22, we will rewrite the query to id ≥ 22
LIMIT B.

This rewriting guarantees that we fetch all tuples required to answer the user queries,
plus additional tuples up to either the Bsize result set size limit Bsize, or the end of the
gap, whichever comes first. This avoids performing duplicate work on both the source
and the destination, but leverages batching where possible. Increasing the batch size more
aggressively fetches tuples from the source, which causes migration to complete faster,
but also means that each migration query is more expensive for both the source and the
destination. We explore the performance impact of this parameter in Section 5.5.

We choose to always scan forward from the requested key. The primary reason is that
scanning in one direction (the increasing direction, in our case) avoids potential deadlocks
when two scans in opposite directions collide. A second reason is that is a simple technique
that works for uncountable ranges. For countable ranges, it is possible to use a more intelli-
gent implementation that attempts to always fetch a range of size Bsize, which may require
starting at a value below the key. This would avoid some fetches from the source server,
which would likely improve performance, at the cost of having some additional logic to
determine the appropriate rewriting.

5.4.2 Write-Behind Caching
Migrating data from one database to another involves a significant amount of writing data
to disk at the destination. Migrating at the logical level also requires secondary indexes
to be rebuilt, which increases the cost of these inserts. The basic implementation we dis-
cussed earlier directly inserts migrated tuples into the destination database, as part of the
same transaction as the query that needs to fetch them. While this is correct, it seriously im-
pacts client latency and the system throughput. The additional inserts transform read-only
transactions into read-write transactions, meaning that they must now be synchronously
logged to disk. Moreover, this can decrease concurrency by transforming shared locks into
exclusive locks, creating additional read-on-write conflicts.
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To ameliorate this issue, we use write-behind caching. We insert migrated tuples into
a main-memory transactional table, as an operation outside the transaction. This table
implements two-phase locking, and aborts, but is not recoverable (e.g., does not use write-
ahead logging.) This avoids additional logging for reads, and allows migration writes to
be performed lazily in the background. Updates, inserts, and deletes are still performed as
described earlier, except that deletes and updates must acquire exclusive locks on the main
memory table, and both must remove any records they touch from the main memory table
before releasing those locks. We rely on the fact that the data is already persistently stored
on the source database. For this reason, this is crash-safe, even if the contents of this table
are lost. As discussed in the previous section, in case of failure the recovery procedure will
re-fetch any missing tuples from the source, merging them with the tuples that have been
migrated and persisted at the destination.

Queries must now search two tables. Equality queries first search the main-memory
table, then the traditional database table if the key was not found. Range queries must
search both tables. This is similar to how log-structured merge trees[83], where the state of
the table is contained in multiple trees.

In order to eventually complete migration, a background task runs whenever the main-
memory table is not empty, and continuously reads ranges of tuples and inserts them into
the final table. This insert task can be tuned to adjust the rate and batch size of transfer
operations. More frequent transfers cause the migration to complete faster, but increases
the performance impact on the destination, which could affect application queries. A larger
batch size is generally more efficient, but similarly is more expensive to process.

5.5 Experimental Evaluation
We experimented with several scenarios designed to isolate different performance charac-
teristics of our design. We used our Relational Cloud system, which combines uses Dtxn
with MySQL as the storage engine. In each scenario, we run a workload against the source
server for five minutes, then migrate it to an identical destination server. During the entire
experiment we monitor the throughput and latency of transactions at the clients. Since we
are interested in OLTP and web applications, we size our databases so that the working set
fits in RAM, as this is the typical configuration for modern systems.

We test the performance of Wildebeest on the Yahoo Cloud Serving Benchmark (YCSB-
B) [26], which is designed to model web applications. This workload uses a single table.
Each tuple has an integer primary key and ten fields each containing 100-byte ASCII text
values. Each client selects a tuple from a single table by primary key. The value is chosen
using a Zipfian distribution, such that 50% of the accesses are to 6.5%. of the keys. The
operations are 95% reads of the entire tuple and 5% updates of one of the values. For most
experiments we used a database composed of 5 million rows, which occupied 6.5 GB of
space on disk. For the scale out scenario, we used a smaller database of 1 million rows.

While our system is designed for general purpose multi-statement transactions, this
simplified workload permits us to avoid some of the complexities of analyzing the perfor-
mance of a more sophisticated transactions. For example, our throughput is CPU limited
in these experiments. Despite its simplicity, the workload is representative of a significant

75



fraction of the queries and updates in OLTP and web applications that retrieve records via
indexed fields.

We consider three scenarios:

1. Complete database migration with clients generating a fixed load that is less than
peak. This represents the case where we can predict that a database needs to be
moved before it is heavily loaded, perhaps for load balancing purposes or hardware
maintenance. This is discussed in Section 5.5.1.

2. Complete database migration with clients generating peak load. This case represents
a database that needs to be moved because the physical node it is running on is over-
committed/saturated. This is discussed in in Section 5.5.2.

3. Partial migration from a machine running at peak capacity to a second machine. In
this test we move half the database and load. This demonstrates Wildebeest’s ability
to elastically scale a database. This is discussed in detail in Section 5.5.3.

We compare Wildebeest to stop and copy, replica failover, and virtual machine migra-
tion. These three techniques are supported by MySQL, with additional tools and software.
They only support complete migration of a partition, and thus cannot directly support the
partial migration scenario like Wildebeest can. For these technologies, we pre-partitioned
the system using multiple instances of MySQL.

Stop and copy shuts down the source database, copies all the data files, then starts the
database at the destination. Before shutting down the source, we allow all in progress
transactions to finish. Stop and copy is a simple technique, but the partition is unavailable
for the duration of the migration. For MySQL, we found that doing a “dirty” shutdown by
killing the source database and performing recovery on the destination had shorter periods
of unavailability than using a clean shutdown, so we use that version here.

Replica failover brings up a new replica from a checkpoint, catches it up to the origi-
nal, then fails clients over from one to the other. In the case of MySQL, we create a hot
checkpoint from the running database using Percona XtraBackup [86]. The new destina-
tion replica then synchronizes with the source using MySQL’s built-in replication support.
After the destination in nearly caught up, we stop accepting transactions at the source.
Once the destination is completely caught up with the source, it becomes the master and
we redirect clients. Replica failover only has a brief pause when allowing the destination
to catch up completely with the source. However, the migration period is much longer than
with stop and copy, because not only does it need to copy the data, but it also needs the des-
tination to catch up with the in flight transactions. Additional resources are used during the
copy period, so while the partition remains available, its performance is impacted. It is also
possible that the destination cannot catch up to the source. In particular with MySQL, the
destination executes replication writes in a single thread, while the source executes them
on many threads. In YCSB-B with the default ratio of writes (5%), this is not a problem.
However, when the write rate increases to approximately 30% on our machines, the desti-
nation can no longer catch up. If this happens, the pause time will be much longer, as the
number of operations that must be replayed will be large.
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Virtual machine migration runs the database in a virtual machine and uses its built-
in migration support to migrate the database instance from one machine to another. In
this case, the database is stored on a shared storage device. However, since we focus on
memory-resident workloads, this does not affect the performance. VM migration copies
the in-memory image while the virtual machine is running. There is a small pause while
copying the last remaining state, but the migration is designed to minimize this period.

Our experimental test bed involves four identical Dell PowerEdge R710. Each has two
quad core Intel Xeon E5530 2.4 GHz processors, for a total of 8 cores, although we limit
our tests to 2 cores on each processor, for a total of 4 cores, in order to avoid scalability
limits in our prototype code. Each system has 24 GB of RAM, and a 6 2TB 7200 RPM
SAS disks (Seagate Constellation ST32000444SS; 150MB/s sequential IO; 8.5 ms seek),
configured as a single RAID 5, formatted with ext4. These systems are interconnected to
a single gigabit Ethernet switch. We used MySQL version 5.5.7 running on Ubuntu 10.10
with kernel version 2.6.35. We configured MySQL to use a 7 GB buffer pool, which is
enough to hold the 6.5 GB database table.

For the virtual machine experiments, we used a commercially available virtual machine
monitor (VMM). One server was used as a network attached disk server to store the virtual
machine image and database (to use the VMM’s migration facilities, we had to store data
on a shared disk). The virtual machine migration used a separate network port from the
application traffic, as recommended by the vendor. This provides it an advantage over
Wildebeest and the other migration techniques, which were only configured to use a single
port. We give each virtual machine 8 GB of RAM, which provides 7 GB of memory of the
buffer pool, and 1 GB of memory for the database server and operating system. Although
the performance of local and shared disk is quite different, we minimize the impact of
these differences by using a database whose working set fits into main memory and using
a benchmark that is CPU bound.

For each experiment, we measure the latency for each individual transaction. We bucket
the results using a 3 second sliding window, computing the throughput and latency distribu-
tion in this window. We consider three measures of performance: i) the “visible” migration
time, i.e., the portion of migration during which time the user perceives lower throughput;
ii) the 95th percentile of latency during migration; iii) and the aggregate number number
of “unserved” transactions, i.e., the integral of the difference between the transactions re-
quested by the users and the transactions served by the system during migration. While we
only show the results of a single experiment here, we did repeat each experiment 3 times,
and the results are repeatable.

5.5.1 Complete Migration With Rate Limit
In the first scenario, the load is fixed at a rate of 10,000 or 20,000 client transactions per
second. At a rate of 10,000 transactions per second, Wildebeest, replica failover and VM
migration are able to handle the load during the migration, without a decrease in through-
put, as shown in Figure 5-2. As expected, stop and copy shows a pause in Figure 5-2a
as it takes 60 seconds to copy the database and 4 seconds to perform recovery, for a total
downtime of approximately 64 seconds. Replica failover, in Figure 5-2b, shows only a
small throughput impact during the copy. For just one 1 second interval, the throughput
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Figure 5-2: Throughput at a desired rate of 10,000 transactions per second
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Figure 5-3: Latency at a desired rate of 10,000 transactions per second
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falls to 6,148 transactions per second. The VM approach (Figure 5-2c) requires a small
amount of time to take a snapshot at the beginning of migration, decreasing throughput to
8,910 transactions per second for one second after migration. It also has a pause during the
handoff at the end of migration, which in this case results in zero throughput for six sec-
onds. Wildebeest shows nearly no impact on throughput, with only a tiny decrease down to
9,939 transactions per second during the one second window immediately after migration
begins. Thus, it appears as a straight line in Figure 5-2d. The latency results in Figure 5-3
show similar trends as the throughput results. Wildebeest has a short period with increased
latency, while the others have much larger increases.

At a rate of 20,000 transactions per second, shown in Figure 5-4, only Wildebeest is
able to sustain a desired load. Stop and copy has a complete outage, while replica failover
and VM migration decrease to around 15,000 transactions per second for around 100 sec-
onds. They are unable to keep up with the request rate because of the additional resources
required to copy the state during migration. The 95th percentile latency for Wildebeest at a
rate of 20,000 transactions per second, in Figure 5-5d, shows that Wildebeest experiences a
short pause at the instant migration is triggered. The latency increases from 2 milliseconds
to around 8 milliseconds. During migration itself, latency is more than doubled than before
migration time, hovering around 5 milliseconds. The reason is that the first queries must
perform a “cache fetch” query at the source. However, latency falls back down as more
of the workload is “cached” at the destination, settling to a value that matches the original
latency after approximately 170 seconds. Replica failover and VM migration both have
worse latency during the migration, with latencies around 20 ms and 15 ms, respectively.
These results show that Wildebeest has minimal impact on the application when there are
sufficient resources for the migration process. Other techniques will have more of a visible
impact in this scenario.

5.5.2 Complete Migration at Maximum Load
In this scenario, a database that is running at full load is migrated from one server to another.
The throughput for replica failover and VM migration again falls to approximately 15,000
transactions per second during the period that state is being copied, as shown in Figure 5-
6b and Figure 5-6c. Replica failover takes 103 seconds to copy the database state, during
which the throughput is reduced. It then takes an additional 125 seconds for the destination
to perform recovery on the checkpoint, then 81 seconds for replication to catch up to the
source. In this case, replica migration takes a total of 310 seconds to actually transfer the
data from the source to the destination and resume with full throughput. VM migration
takes a total of 140 seconds, and again has a zero throughput period of approximately 11
seconds at the end.

In this scenario, Wildebeest’s performance is decreased for approximately 70 seconds
after migration, shown in Figure 5-6d. Initially the performance is poor, falling as low as
7,000 transactions per second. However, it gradually increases as fewer and fewer requests
require fetching data from the source. Before and after migration, the virtual machine
performance is worse than the other techniques, with the virtual machines achieving 25,000
transactions per second while MySQL running directly on Linux achieves nearly 33,000
transactions per second. This difference appears to be due to the overhead of running in
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Figure 5-4: Throughput at a desired rate of 20,000 transactions per second
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Figure 5-6: Throughput during complete migration at maximum load
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Figure 5-7: Latency during complete migration at maximum load
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a virtual machine. Also note that Wildebeest’s performance after migration is better than
before migration. This is because our prototype main-memory cache is specialized for
integer primary keys, and is not a general purpose relational database table. Thus while
data is served from the cache it is actually faster than when server MySQL. Wildebeest’s
throughput eventually decays back to MySQL’s throughput once all the requests are being
served from MySQL directly. For completeness, the latency results for this experiment are
shown in Figure 5-7.

5.5.3 Scale Out Scenario
In the third scenario, we have a database that is overloaded. To increase the throughput,
we move half of it to another server by range partitioning the table into two equal sized
pieces. Our migration technique is able to re-partition the database while running, and can
directly copy just half the data. For this scenario, we use a smaller 1 million row table
which occupies approximately 3 GB of disk space (1.5 GB per partition). Requests are
made with a uniform request distribution, in order to get perfect scale out. Wildebeest is
able to split the single database into two, due to its support for partial migration. For the
other techniques, we partition the database in advance, running two instances of MySQL
with 2 GB buffer pools. For virtual machine migration, each virtual machine has 3 GB
total memory. The combined throughput and the throughput for each partition is shown in
Figure 5-8. The 95th percentile latency is shown in Figure 5-9.

Looking at the combined throughput in this scenario, stop and copy appears to continue
processing requests during the migration with only a modest throughput decrease, when
in previous scenarios it served no transactions. This is because the partition that is not
migrated continues to serve transactions in this case. Thus, the aggregate throughput is not
far from the throughput before migration, since when one partition is stopped, the other
partition can consume the extra resources. As shown in Figure 5-8a, the throughput for
the migrating partition falls to zero, but the throughput for the remaining partition nearly
doubles. Thus, while it looks like stop and copy has limited impact, in fact half the database
is unavailable for 35 seconds.

Replica failover, on the other hand, has a small throughput decrease while the data is
being copied, which takes about 15 seconds. However, the overall migration takes longer,
for a total of 39 seconds before the second machine is utilized. Virtual machine migration
is faster, taking 24 seconds to move the 2 GB database. However during this time, its
throughput drops from approximately 30,000 transactions per second to 20,000 transactions
per second, a decrease of 33%. This shows that there is a trade-off between how aggressive
the system should copy state and the impact on the throughput. In all cases, after migration
has completed, the system nearly doubles its throughput because it can use both machines.

Wildebeest is able to double the throughput in significantly less time than the other ap-
proaches. It has a period of approximately 5 seconds where it experiences reduced through-
put, after which it jumps up. This happens quickly because it immediately offloads work to
the destination machine. As before, the throughput ends up more than double because our
prototype’s in-memory table is specialized, so reading from it is actually faster than reading
from MySQL’s buffer pool. The important part here is that if this were a real production
system that were overloaded, Wildebeest would provide much better quality of service by
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Figure 5-8: Throughput when scaling from one to two machines
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Figure 5-9: Latency when scaling from one to two machines
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Figure 5-10: Throughput with Wildebeest when changing the batching size (Bsize).

being able to react quickly to changes in load.

5.5.4 Impact of Batching Size
As a final experiment we show the impact of batching on the migration performance. We
use the skewed full database example of Section 5.5.2, and present the impact on through-
put of various batch sizes. As we show in Figure 5-10, a larger batch size (Bsize) causes
more aggressive data fetching at the beginning of migration. The effect is a more pro-
nounced initial impact on performance for few seconds, followed by a quicker transition to
almost full speed.

On the contrary, a smaller batch size spreads the migration costs over a longer period of
time. It produces as a smaller impact on throughput, but it lasts longer as more individual
requests must be sent to the source database. In the extreme case of a Bsize = 1, Figure 5-
10 shows that the throughput “settles,” but at a lower level, which is then very slowly
increasing. This is because nearly every request requires a fetch from the source server,
and so the overhead of all these extra fetches decreases the systetm performance, and the
throughput slowly increases as the hit rate improves. This shows that avoiding excess query
overhead is important for good overall system performance.

This batch size has a similar impact on the source server. The larger batches cause high
load as soon as migration is triggered, but it decreases rapidly, whereas small batches cause
the load on the source server to be spread out over a longer period of time. For fully loaded
scenarios like the one we show in Figure 5-10, different utilization scenarios might favor
more or less aggressive batching.

As discussed before, in rate-limited scenarios our migration strategy is nearly com-
pletely invisible. In such scenarios, the choice of batch size should be the largest compatible
with little perceivable performance degradation. This will minimize the overall migration
time by more aggressively fetching tuples while maintaining performance. As part of our
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future work we plan to investigate algorithms to automatically adjust batching size on-line.

5.5.5 Migration Times
An important metric is how long the migration actually takes to complete for each technique
in each scenario. The times are plotted in Figure 5-11. For Wildebeest, we included two
times: the time that the performance returns to normal, and the time that all the data is
actually migrated. Since Wildebeest moves data on demand, the time until the performance
returns to normal is the fastest of all the techniques, while the time to move all data is the
longest. For these experiments, we used a policy where we fetched a minimum of 10,000
rows per second. This places an upper bound on the length of time of the migration, while
controlling the number of additional requests on the source and destination.

For the commercially available techniques, stop and copy takes the least time to com-
plete. However, the database is unavailable during this time. Virtual machine migration is
faster than replica failover, but also has more performance impact. In general, there is a
trade-off between the performance impact on the running workload and the time it takes to
migrate. A faster migration requires more resources.
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5.5.6 Summary of Results
Dtxn, with its Wildebeest live migration system, is able to migrate data from one partition to
another, with minimal visible performance impact. Our results show that it has shorter pe-
riods of time with reduced performance, when compared to stop and copy, replica failover,
and virtual machine migration. Its use of logical data migration means that it is easily able
to support partial migration. The combination of that with the fetch on demand policy
means that it quickly offloads the source server, in case of heavy load. This means that it
can be used in a reactive way to scale a system that is overloaded. This allows Dtxn-based
systems to be scaled in an elastic way.
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Chapter 6

Related Work

Distributed database systems and main-memory databases have been widely studied, and
others have written excellent surveys of these subjects [30, 36]. The key design decisions
that differentiate Dtxn from this previous work is that it relies on speculative concurrency
control rather than locks, uses replication instead of write-ahead logging, provides a trans-
action protocol optimized for single partition transactions, and can migrate data at a logical
level through a cache-based approach. In this chapter, we review the work that is relevant
to these aspects of the design. We begin by reviewing the work on some of the related
fundamental building blocks: concurrency control for main memory databases, distributed
commit protocols and database replication. We then discuss previous work on database
migration, and conclude by reviewing similar academic and industrial systems.

6.1 Concurrency Control

Databases rely on concurrency control to provide the illusion of sequential execution of
transactions, while actually executing multiple transactions simultaneously. It is typically
assumed that transactions provide serializable consistency, where the results of a set of
transactions are equivalent to executing those transactions in some serial order. This pro-
vides a powerful abstraction: the transaction effectively sees a database that is unchanging,
except by the transaction’s own updates. Dtxn provides serializable transactions because it
makes writing applications easier.

The most common technique to provide serializable consistency is strict two-phase
locking, where a transaction acquires read and write locks on data items as they are ac-
cessed, then releases all the locks at the end of the transaction [7, 43]. However, lock-
ing adds overhead to each data access due to the bookkeeping required to acquire and
release locks, it limits concurrency in cases of conflicting accesses, and adds overhead
due to deadlock detection. Many researchers have noted that in main-memory systems,
manipulating a lock can cost approximately the same amount as simply accessing the
data [45, 40, 60, 84, 95].

A radical alternative for avoiding the costs of concurrency control is to not execute
any transactions concurrently. This is the approach taken by Dtxn, where transactions are
executed sequentially in each partition, and multiple partitions execute independently to
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take advantage of parallelism. The proposal that main-memory databases could eliminate
concurrency control completely appears to have first been published by Garcia-Molina,
Lipton and Valdes [37, 36] in 1984, and some early main-memory databases used this tech-
nique [61], or permitted concurrency control to be optionally disabled [53, 10]. Whitney
et al. [101] presented a database execution engine that processes transactions in this way.
Like Dtxn, they rely on partitioning to take advantage of multiple CPUs, although they also
provide a system for users to manually specify which transactions types conflict. Kemme
et al. presented a similar system that relied on each stored procedure being assigned to a
single “conflict class” that never conflicts with other conflict classes [55]. In both cases,
this information is used to allow some transactions to be processed concurrently without
needing locks.

Thomson and Abadi presented a system that orders all transactions in advance, and
transforms transactions with multiple rounds of communication into simpler operations
that always involve a single round of communication [98]. As a result, they can avoid
concurrency control entirely, and not even need to speculate transactions. However, their
system has different failure handling properties. In particular, if one partition in the system
fails, the system either must stop, or transactions that involve that partition are left in an
unusual partially applied state. Dtxn chooses to use traditional two-phase commit to handle
these types of partial system failures.

As an alternative to eliminating locks, many researchers have instead investigated how
to reduce the cost of locking. Lehman and Carey presented a technique for dynamically ad-
justing the granularity of locks to balance the cost of acquiring and releasing locks against
the additional concurrency obtained from finer grained locks [60]. The Starburst database
used a similar approach, and additionally reduced the cost of obtaining locks and latches by
redesigning the lock table [40]. The Dtxn approach of sequential execution inside a parti-
tion can be considered as a static policy with very coarse-grained locks on entire partitions.

DORA is a single machine database that changes the traditional assignment of work
to threads [84]. Rather than assigning a transaction to a thread, it assigns partitions of
data to specific threads, which is similar to Dtxn. This permits many locks to be kept
local to a single thread, which can then be acquired and released much more cheaply than
locks that must be maintained in global shared memory. Unlike Dtxn, DORA can migrate
transactions to the appropriate thread based on data accesses.

Our speculative concurrency control mechanism is similar to an early proposal for pre-
committed transactions [30]. A transaction can be “pre-committed” by releasing its locks
after the transaction has committed, but before the log records have actually finished being
written to disk. This permits other transactions to read the dirty data that has not yet been
durably recorded. This is safe, provided that any dependent transactions that read dirty
data cannot commit until the earlier transaction has also committed, which requires some
additional bookkeeping. Additionally, clients must not be notified about commits until
they are on disk. Speculative concurrency control must do the same bookkeeping, although
it is simplified because we track this at the granularity of the entire partition, rather than
individual data items.

The SP algorithm (for serial protocol) is inspired by this pre-commit idea, but is de-
signed for main memory databases that execute transactions sequentially like Dtxn [9].
This version assigns each data item a write timestamp, which is used to determine when
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read-only transactions can commit. This means that read-only transactions that do not read
dirty data can commit immediately. Speculative concurrency control avoids this additional
overhead, but instead it must always assume that transactions accessed dirty data and so
they must be delayed until previous transactions have committed. Because transactions
in main-memory are so fast, we believe this is not a significant disadvantage. They also
found they could use up to 3 CPUs concurrently by executing multiple read-only transac-
tions at once, which is an optimization that could also be applied to Dtxn since we know
if a transaction is read-only in advance. They also argued that partitioning is an effective
approach for scaling up their system for their target telecommunications algorithms, which
is an argument that applies to Dtxn as well.

The OPT [44] protocol applies pre-committed transactions to distributed databases.
They make the same observation that we do: because the delay in finishing two-phase
commit is long, it makes sense to speculate future transactions. They also only speculate
one transaction, while speculative concurrency control will speculate many. This means
that speculative concurrency control can overlap the two-phase commit for many transac-
tions from the same coordinator, at the cost of potentially needing to do a cascading abort.

Reddy and Kitsuregawa proposed an extension of pre-commited transactions called
speculative locking, where the database keeps both “before” and “after” versions for mod-
ified data items [57]. Transactions always process both versions. At commit, the correct
execution is selected and applied by tracking data dependencies between transactions. This
approach assumes that there are ample computational resources. In our environment, CPU
cycles are limited, and thus our speculative concurrency control always acts on the “after”
version, and does not track dependencies at a fine-granularity.

6.2 Atomic Commit Protocols
One of the important properties of transactions is that they are atomic: either all the changes
are committed, or none are. An atomic commit protocol enforces this property in a dis-
tributed system, ensuring that either all participants commit or all participants abort a given
transaction. The simplest and most widely known protocol is the basic two-phase commit
protocol [41]. The basic version has two forced disk writes: the participants force their
commit/abort vote, and the coordinator forces its final commit/abort vote. Extra disk writes
record the final decision at each participant and acknowledgments at the coordinator, which
are used to terminate the protocol and garbage collect old transaction records. These writes
do not need to be forced to disk, but the acknowledgment that the transaction has been com-
pleted cannot be sent until the log record has actually been written to disk. This early paper
actually gets this wrong. The pseudocode shows the participants sending the acknowledg-
ment without writing the decision to disk. This could result in a transaction getting stuck
in the prepared state on the participant. The coordinator can receive the acknowledgement,
and so it can forget the outcome of the transaction. However, if the participant crashes after
sending the acknowledgement, it can forget the outcome and be stuck.

The basic version of two-phase commit has three forced disk writes: prepare at the
participant, commit at the coordinator, and commit at the participant. This last disk write
does not need to be forced, but the acknowledgment that the transaction has been completed
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cannot be sent until the log record has actually been written.
Many tweaks and optimizations of this basic protocol have been presented. The pre-

sumed abort protocol [70] is a widely used variant, and is included in many commercial
systems via the XA transaction model and interface [97, 96]. The optimization reduces
disk writes for aborts, but more importantly it eliminates all disk writes and one network
message on read-only participants. This is also sometimes called the two-phase commit
read-only optimization. Another common optimization is the “early prepare” or “unso-
licited vote” optimizations, first named by Mohan [88], but credited to Stonebraker [94].
While Stonebraker does not use the terms early prepare or unsolicited vote, his description
of how INGRES handles distributed updates does describe that slaves prepare to commit
transactions before responding to the coordinator, and without requiring an explicit prepare
message.

To eliminate as many disk writes as possible, so-called “one-phase commit” protocols
are possible, such as Implicit Yes Vote [4] and Coordinator Log [93]. They take the early
prepare optimization further by sending log records to the coordinator. This means the
coordinator has the only record of the transaction, so it must be contacted during recovery,
or else participants cannot process new transactions.

Two-phase commit introduces a potential single point of failure in a distributed system:
the coordinator. If the coordinator becomes unavailable after it informs all participants to
prepare, then all participants must wait for it to come back to determine if the transaction
should commit or abort. This is called the two-phase commit blocking problem. A num-
ber of three-phase commit protocols have been created to fix this problem, but Gray and
Lamport claim that there is “none that provides a complete algorithm proven to satisfy a
clearly stated correctness condition” [42]. Thus, there are no known implementations of
three-phase commit in commercial systems.

A solution that does work is to replicate the coordinator decision. The Paxos Commit
by Gray and Lamport [42] does exactly this. It ensures that the commit makes progress
provided that a majority of the processes (called acceptors) are available. They also show
that two-phase commit is a degenerate version of Paxos Commit with a single acceptor. The
Scalaris key/value store [90] supports transactions using a variant of Paxos Commit [89].
The current implementation of Dtxn does not replicate the coordinator, but our design is
to replicate the commit decision using the same primary/backup protocol used to replicate
partitions, as described in Section 2.6.

6.3 Distributed Transaction Systems
The utility of distributed transactions has been widely understood, and so they appear in a
number of commercial systems. A two-phase commit protocol for distributed transactions
across different systems has been standardized as XA transactions [96], which is included
in the Java programming language and supported by many applications as the Java Transac-
tion API (JTA) [23]. Transactions were also added as part of the CORBA distributed object
system [76]. Transaction monitors are middleware systems used to implement distributed
transactions, typically by communicating with multiple XA or JTA participants. Commer-
cial examples include Oracle Tuxedo [81] and JBoss Transactions [46]. Dtxn can be used
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as a transaction monitor, although that would not take advantage of its unique features like
speculative concurrency control or live migration.

Many distributed transaction systems and protocols are described as supporting the
“tree of processes” transaction model introduced by R* [62]. In this model, any participant
can also be a coordinator by delegating tasks to other processes, forming a tree. Dtxn
instead chooses to support a flat structure with dedicated coordinators and participants.
While any commit protocol, include Dtxn’s, could be used in a tree, by hiding the commit
protocol inside the participant, this would require the backend developer to do significant
additional work. Others have proposed nested transactions to be a useful abstraction for
distributed systems, where subtransactions can be committed and aborted independently
of the parent transaction [28]. We have found that Dtxn’s flat structure is sufficient for
building distributed storage systems, which can usually be easily divided into two parts:
processes requesting work and processes storing data.

6.4 Replication Protocols
Replication is the standard technique to provide protection against independent failures.
Replication protocols are used to build fault-tolerant systems by ensuring that more than
one process receives the same sequence of operations. Consensus protocols such as View-
stamped Replication [78] and Paxos [59] are at the heart of any replication system. While
there are many variants, the basic principle of all these protocols is the same: use a majority
of independent tasks to decide the state of the system. They permit a system with 2 f + 1
nodes to survive f failures.

These protocols need an odd number of replicas, and have proven to be tricky to im-
plement [20]. To address these issues, many systems choose to implement the replication
protocol in a special service that is then used for master elections and group member-
ship [16, 50, 69]. The master then uses a primary/backup replication protocol with the
group. This reduces the number of replicas, permitting a group of f +1 nodes to survive f
failures, assuming that the master replication service is available. This is the approach used
by Dtxn, as well as many other systems like the Google File System [38], Bigtable [21], and
HBase [35]. The Niobe replication protocol provides a formal description of an algorithm
to do this [66].

An different approach to reducing the number of replicas is to use witnesses that only
need to participate when nodes fail [64, 87]. This means that a replicated group only needs
f + 1 nodes with a copy of the data, plus an additional f nodes in case of failures. This
approach seems strictly superior than the master election service approach in terms of fault-
tolerance. However, it is more difficult to understand and makes the protocol even more
complicated, so it does not appear to be used outside of academic systems.

6.5 Database Replication
Replication protocols provide a primitive tool that can be applied in many different ways
for building replicated databases [18, 54, 102]. Weismann and Schiper categorize the vari-
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ous approaches into three main groups: active, certification based, and weak voting [102].
Dtxn’s primary/backup replication protocol uses active replication, which is sometimes
called state machine replication. In this type of replication, the replicated operations repre-
sent deterministic operations. Each replica is a state machine that begins in a given state,
and executes these operations in identical orders. As a result, they end up in the same state.
In the case of Dtxn, the operations are entire stored procedures, or fragments of stored
procedures. This is a very high level and compact representation for the operations, but
requires that stored procedures be deterministic.

The other approaches, certification-based and weak voting, both rely on only a single
replica to execute the operations. However, they then must replicate at least the set of
updated database records, so that the updates can be applied on all replicas. Weismann
and Schiper’s simulation results show that active replication does not scale as well as the
other approaches because all replicas execute all operations. Thus, the replicated system
cannot possibly be faster than the non-replicated system. This does not apply to Dtxn for
two reasons: first, it is designed for lightweight main-memory transactions, so there is
little performance difference between executing a transaction and applying a write set, and
recording the write set will impose additional overhead. Second, we can permit replicas to
execute read-only transactions, provided that we are willing to accept slightly stale results.

6.6 Live Migration
Making changes to a running database is generally referred to as online reorganization,
and has been widely studied, particularly in the context of single machine databases [92].
In this section, we review previous work on systems that transfer the execution of queries
from one machine to another, as that is the problem we have focused on.

Commercially deployed systems support three techniques: stop and copy,
replica failover, and virtual machine migration [65, 24, 75, 12]. Stop and copy means that
the source database is paused, the data is copied to the destination, then the transactions are
resumed. This implies a long period of unavailability while the data is copied, so this does
not really count as “live” migration. Copying a smaller logical partition can reduce the un-
availability window [15], but it still can be unacceptably long. Replica failover begins by
making a hot backup copy of the database while it is running. Then this backup is brought
up to date by replaying operations, just like replication does. Finally, once the backup has
caught up, the source database is paused, the final operations are applied to the backup, and
transactions then resume. The final approach is to use virtual machine migration, where the
database is running in a virtual machine, and the in-memory image of the virtual machine
is migrated from one machine to another.

Migration is an important feature for virtual machine monitors. The “pre-copy” tech-
nique is the most popular technique, used by VMware [75], Xen [24], and kvm [56]. This
works by making an initial copy of memory while the virtual machine is running, then
performing subsequent passes that copy the pages that were dirtied. This is repeated until
only a few pages remain, or the migration process decides that this will never converge.
Finally execution is paused, the remaining state is copied, and execution resumes on the
destination. This is similar to replica failover for databases. Fetch on demand strategies
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have also been investigated [47, 58, 49], and are also referred to as “post-copy” techniques.
They allow execution to be migrated very quickly, but incurs the cost of network page faults
when data is first accessed. Hirofuchi et al. observe that this can be useful for migration in
response to overload, which is similar motivation to our design.

Virtual machine migration usually requires that the virtual machine storage is network
accessible by both the source and destination. However, migrating the storage used by a
virtual machine has been proposed [48, 13], and is supported by commercial systems [67].
However, for a database that resides primarily in RAM, disk is typically not a bottleneck,
so the technique used to migrate the storage does not impact performance.

Process migration is similar to virtual machine migration, but rather than migrating an
entire operating system and all its applications, it only migrates a single process. Stop-and-
copy, iterative copy, and copy on demand approaches have all been investigated for process
migration [68]. While it is a popular research topic, process migration is not widely used.
It is also possible to use techniques like process mig

Academic researchers have also investigated similar systems. The Clustra distributed
database supported migration in order to scale up and down [14]. They used a replica
failover approach, by taking a dirty copy of the data and replaying the redo log to apply
any changes. To support partial replication, they use logical logging for the database and
perform a logical copy of the data, similar to Wildebeest. They found that during migration,
throughput was reduced, due to resource contention, with a direct trade-off between the
agressiveness of the copying and the impact on observed throughput. Our experimental
results show a similar relationship.

An alternative for scaling a system is to add or remove replicas. This works when the
workload is composed mostly of read operations, as reads only need to be performed on
one replica while writes need to be performed on all. Most replication systems include
a mechanism to add and remove replicas while running. Researchers have used that to
automatically decide when to add or remove replicas [22]. Wildebeest could be used with
these decision systems, in order to automatically decide how to migrate data. However,
Wildebeest is more flexible, as it supports partial migration while adding a replica must
make a complete copy.

Albatross is a system for live database migration in a shared storage architecture, where
the cache is copied to the destination to start with a hot cache. Our design is for a shared
nothing architecture instead, and chooses to “pull” data into the cache on demand. The
Zephyr system is a recent academic project that also partially uses a “fetch on demand”
policy [31]. However, that system pushes all internal index nodes from the source to the
destination before switching over, and then fetches the physical leaf nodes on demand.
Thus, it still adds some additional load to the source server. It also cannot directly migrate
part of a database due to copying at the physical level.

6.7 Similar Systems
The need to scale a database by distributing it across multiple machines was recognized
long ago, and thus there is a large body of work on distributed databases, such as the pio-
neering work on R* [71], Gamma [29], and Bubba [11]. Most of the initial work focused
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on disk-based systems, and how to execute complex joins. More recently, to build ex-
tremely large systems developers are choosing distributed key/value stores, such as Google
Bigtable [21], Yahoo PNUTS [25], HBase [35], or MongoDB [1]. These systems typi-
cally only provide operations over a single table key space (i.e. no joins), and only provide
consistency on single keys. This makes it easier to distribute operations and data across
multiple machines than general purpose relational databases. Two exceptions are Scalaris,
which uses the Paxos Commit protocol and provides multi-key transactions [90], and Per-
colator [85], which extends Bigtable with snapshot isolation.

Dtxn aims to obtain similar scalability as simple key/value stores by requiring users to
manually partition their data, but supporting complex operations inside a partition. Google
Megastore [6] and Microsoft SQL Azure [8] similarly force users to only access a single
partition, although Megastore also supports weakly consistent indices across all partitions.
A Siemens project called Netbase [74] also relied on the schema being annotated to de-
scribe which attributes can be joined locally.

Other systems have also combined both replication and distributed transactions to-
gether. Argus [63] is a programming language and runtime system with support for nested
transactions, while Dtxn is just an API. Arjuna [91] provides an API for replicated state
machines, similar to Dtxn. Both these systems support nested transactions in a tree of pro-
cesses, while Dtxn provides a flat namespace with transactions composed of scatter/gather
rounds. Argust and Arjuna’s approach is more flexible and powerful, but also more com-
plex. The CORBA distributed object specification has an extension for transactions [76],
and FT-CORBA [77, 73] is an extension that adds replication, but they are not widely
adopted due to their complexity [32]. Dtxn has attempted to avoid this death by complexity
by focusing specifically on main-memory data storage system

A number of distributed main-memory databases have also been proposed, each with
slightly different design decisions. One of the earliest projects is PRISMA/DB [5], which
used traditional concurrency control and two-phase commit with main-memory storage,
and thus is more similar to traditional distributed databases than to Dtxn. The ClustRa
Telecom Database [51] was replicated and designed for telecommunications applications.
Similar to Dtxn, it uses primary/backup replication for each partition of a table and con-
siders a log record to be durable when stored in memory of more than one system. It
supported both disk and memory tables, and used traditional locking protocols. Sprint [17]
is a middleware layer that partitions statements across commercial main-memory database
instances, relying on disk logging but without support for replication. Similar to Dtxn, it
optimizes for single partition transactions, but it classifies transactions at run time instead
of ahead of time. They begin each transaction assuming it is a single-partition transaction,
then upgrade from to a distributed database when needed. dsmDB [33] is a main memory
database for a cluster of machines, but it uses traditional database algorithms and relies on
distributed shared memory to fetch pages as needed.

A category of commercial products that are sometimes called in-memory data grids
have emerged recently. These products are characterized by storing objects in memory
across a cluster of machines, with replication and optionally strong consistency. Exam-
ples include Oracle Coherence [80], VMware GemFire [99] and Gigaspaces [39]. Typi-
cally these are used to cache data outside the database. This is the same application do-
main where Memcached [52], an in-memory cache server, is used. The difference is that
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while Memcached does not provide any consistency guarantees, in-memory data grids typ-
ically maintain transactional semantics and provide high availability and durability. RAM-
Cloud [82] fits in this category, although they argue that replication is too expensive for
main-memory systems, and instead rely on disk logging with very fast recovery [79].
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Chapter 7

Conclusion and Future Work

This thesis presented the design of Dtxn, a system for building distributed OLTP databases.
Dtxn provides excellent performance by distributing work across multiple machines, using
a low-overhead concurrency control mechanism, and providing a distributed transaction
protocol optimized for transactions with a single round of communication between the ap-
plication and the database. It provides high availability through built-in replication. To
support dynamic scaling, it can re-distribute data while continuing to process transactions.
The result is a system that allows system developers to easily build high performance stor-
age systems.

Speculative concurrency control is a novel concurrency control scheme specifically for
partitioned, main memory databases. It is designed for workloads where most transactions
execute as a stored procedure at a single partition, but some may need to span multiple
partitions. It does not require tracking data accesses at a fine granularity. Instead, it uses
speculation to hide stalls related to network access. This provides up to a factor of two
better throughput than traditional two-phase locking. The biggest weakness of the current
implementation is its reliance on a single coordinator to order distributed transactions. In
order to scale the system to extremely large rates of distributed transactions, it must be
possible to distribute this work across multiple coordinators. A timestamp-based approach
could be feasible, where each coordinator uses a local real time clock to order transactions.
This would improve the scalability of the system, as well as making it more robust to
failures.

Live migration allows additional machines to be added to a running system. Our cache-
based approach allows this migration to quickly offload the original source server. Tradi-
tional approaches add load by copying a significant amount of state before switching over.
However, this only provides a mechanism for redistributing data. In a real system, there
is also a planning problem of determining when and where to move partitions. This is
a particularly hard problem when the application has been updated in a way that forces
nearly all data to be redistributed. For example, this can occur when it is determined that
the original partitioning is not optimal for the workload. In this case, the data must be
redistributed through a series of smaller moves. Determining the best way to achieve this
while continuing to serve queries is an unsolved problem.

Dtxn has proven to be a useful tool, by supporting multiple applications that have been
used for two different research projects. This suggests that its design is re-usable, and can
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be useful for other data storage systems. Dtxn can be particularly useful for applications
that have specialized storage needs that aren’t well-met by existing database products. It
provides system builders the ability to make their own distributed storage system, without
sacrificing features like serializable transactions, fault tolerance, and elastic scalability.

While Dtxn is very useful in its current state, there are two reliability weaknesses that
could be easily improved.First, when a transaction coordinator performs two-phase com-
mit, it exposes the system to the traditional two-phase commit “blocking” problem because
there is only a single commit log. To solve this, we need to replicate this log, either by
adding the replication protocol to the transaction coordinator library, or by adding a repli-
cated commit log service to explicitly record the outcome of two-phase commit. The sec-
ond weakness is that if the metadata service is unavailable, partitions cannot recover from
failures. Augmenting our replication protocol to support witnesses would allow each parti-
tion to have any number of replicas, while not relying on a single metadata service. These
improvements would make Dtxn even more resilient than it currently is.
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