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Abstract

Ti:Sapphire mode-locked lasers are a unique technology that enables a wide variety of
applications. Owing to the ultrabroadband nature of the Ti:sapphire crystal and the
invention of precisely engineered dispersion-compensating mirrors (DCMs), these
lasers are now capable of generating stable pulse trains directly with octave-spanning
spectrum, few-cycle pulse duration, and a desired repetition rate from a compact
system. This paves the way to a new world of emerging applications ranging from the
search of exoplanets, high-harmonic generation, to precision measurement

Qualitatively, the key to the stable mode-locking of Ti:Sapphire lasers lies in the
balance of various spatial and temporal nonlinear effects such as self-amplitude
modulation(SAM), self-phase modulation(SPM), saturable absorption, self-focusing,
gain-filtering, gain-guiding, and so on. However, since much shorter pulses and much
higher intracavity intensities are often reached inside the laser gain medium, the
spatiotemporal dynamics in such lasers are even more complicated as non-negligible
multi-photon processes also come into play. Due to the strong coupling between these
effects, performing a reliable analysis and optimization become extremely challenging.

In this thesis we study the spatiotemporal dynamics of pulse evolution in the
few-cycle regime and provide guidelines for designing and optimizing these lasers for
repetition rate ranging from 85 MHz to 2 GHz. The essential background reviews as
well as key concepts in KLM lasers will be given together with a demonstration of
octave-spanning Ti:sapphire lasers with record-high repetition rate. A numerical
model for simulating the full spatiotemporal dynamics is introduced. For an efficient
numerical calculation, GPU accelerated computing techniques are adopted. With this
model, many unique features that are observed from the experiments can be
simulated for the first time. A novel type of output coupler called gain-matched output
coupler is introduced which can greatly reduce the nonlinearity required for ultra-
broadband mode-locking. Already at pump power levels close to the cw lasing
threshold it is possible to initiate robust mode-locking and generate <8 fs output
pulses from Ti:sapphire lasers with excellent beam quality operating in the center of
its stability range. Moreover, the development of visible astro-combs based on few-
cycle Ti:sapphire lasers will be discussed. This application is enabled by two
promising technologies (broadband zero-GDD mirror sets and Cherenkov radiation in
the few-cycle regime) which are developed to increase the repetition rate and



spectral coverage of the laser systems operated in the few-cycle regime. Fiber-optic
Cherenkov radiation in the few-cycle regime excited by sub-10fs Ti:sapphire pulses is
studied. Through a dispersion-engineered PCF driven by a few-cycle pulse, the
nonlinearity can produce highly efficient broadband frequency up-conversion to the
visible wavelength range. Finally, we propose and demonstrate a new approach for
broadband dispersion-free optical cavities using a zero-GDD mirror set; With the first
zero-GDD mirror pair, the construction of a -40 GHz filtering cavity with 100 nm
bandwidth for a green astro-comb (480-580 nm) was demonstrated. Finally, the
thesis is concluded by discussing the practical issues related to the construction of a
easy-to-operate, long-term stable few-cycle Ti:sapphire laser.
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Chapter 1

Introduction

1.1. Background

Over the past few decades, the advances in ultrafast laser technology have led to a

remarkable success in generating few-cycle pulses directly from a laser. First of all,

using gain materials capable of emitting very broadband light such as Ti:sapphire

and other Chromium-doped crystals has opened the door to few-cycle lasers.

However, due to the non-uniform gain and loss profile, laser oscillation normally

occurs for just one or a few resonator modes where the saturated gain is close to the

loss curve. In order to obtain a short pulse, additional mechanisms must be placed

in the laser to overcome the gain filtering effect and maintain the phase coherence

of a large number of lasing modes. Such process has been termed mode locking

whose main goal is to create an environment that favors pulsed operation over

continuous-wave operation. Since the mid-1960s, various active [1-6] and passive

mode locking [7-13] techniques have been intensively studied. The results have

successfully pushed the shortest pulse duration from the sub-nanosecond to sub-

picosecond regime. For the two following decades, the world of ultrafast was

defined by dye lasers with colliding-pulse mode-locking (CPM) [14], [15] in the



-100fs regime. To date, the dye lasers have been replaced by Ti:sapphire laser and

the Kerr-lens mode-locking (KLM) technique [16]. Since the Kerr-nonlinearity

provides almost instantaneous response to the pulse intensity, it sets no limit to the

shortest pulse that can be generated even with the broadest bandwidth material -

Ti:sapphire. Since the first demonstration of the KLM-Ti:sapphire laser in 1991,

researchers spent more than one decade to fully explore the power of the

Ti:sapphire laser. Nowadays, Ti:sapphire laser has become a commercially

available tool for routine generation of sub-two-cycle or even octave-spanning

pulses at various repetition rates up to GHz range.

The key to the stable mode-locking of Ti:Sapphire lasers lies in the balance

of various spatial and temporal nonlinear effects such as self-amplitude modulation

(SAM), self-phase modulation (SPM), saturable absorption, self-focusing, gain-

filtering, gain-guiding, and so on. Due to the strong coupling between these effects,

performing a reliable analysis and optimization become extremely challenging.

Over the past few decades, various spatial or temporal theories have been

developed for explaining the physics behind the operation of KLM lasers from

different point of view. For example, through the introduction of an intensity

dependent lens in the ABCD analysis of the laser cavity, the SAM action can be

derived from the spatial variation of the beam width inside the gain crystal (for

soft-aperture KLM cavity) or at the plane of a slit (for hard-aperture KLM cavity).

In the time and frequency domain picture, the mode-locking dynamics can be

explained using the concept of dispersion-managed soliton [17]. Due to the balance

of SPM and cavity group delay dispersion (GDD), the pulse does not change its



shape after each round-trip and generate a stable output pulse. These mode-locking

dynamics are linked by the optical Kerr effect which leads to self-focusing effect in

space and SPM in the time domain. These nonlinear effects are more dramatic in

few-cycle lasers due to much higher intracavity pulse intensity. As a result, the

spatiotemporal dynamics become more complicated and the physics behind many

phenomena in the few-cycle lasers has not been unveiled such as the highly

structured beam profile across the entire wavelength range. Currently, the

optimization of few-cycle lasers is still relying mostly on the experimental

observations. To further improve these few-cycle lasers, a more accurate theory that

can deal with the full spatiotemporal mode-locking dynamics of the laser should be

employed.

Comparing to the lasers generating longer pulses, few-cycle lasers are more

desirable for applications demanding higher intensity and shorter pulse duration.

When the pulse duration is down to sub-two-cycle regime, manipulating the shape

of the electric field by the carrier-envelope phase control is an important technique

in electric-field sensitive applications. The broadband optical spectrum from a few-

cycle laser can be used for broadband spectroscopy [18-20] or excitation of

multiple fluorescence proteins [21]. For a few-cycle laser with octave-spanning

spectrum, it can also be turned into frequency combs when the laser repetition rate

and carrier-envelope offset frequency are both stabilized. The most common

approach used for detecting carrier-envelope offset frequency is 1f-2f

interferometry. This approach needs two successive nonlinear processes including

either an intracavity or extracavity spectral broadening for obtaining If and 2f



components and the self-referencing involving second-harmonic-generation for

producing a carrier-envelope (CE) beat note. The laser repetition rate is usually

detected with a photodetector and controlled by changing the cavity length. These

stabilization processes turn a laser into an optical flywheel that can transfer the

frequency stability from a microwave source to the optical frequencies and provide

unparallel fractional frequency stability. Frequency combs are also versatile tools

for stable and accurate measurements in frequency metrology, time resolved and

frequency-domain spectroscopy [22], optical arbitrary waveform generation

(OAWG) [23] and calibration of astronomical spectrographs [24]. To enable more

compact and more powerful frequency comb systems, ultra-broadband laser

oscillators operating at high repetition rates are highly desired. For frequency

metrology and spectroscopy, higher repetition rates correspond to larger mode

spacing, higher power per mode, and higher signal-to-noise ratio. In OAWG

applications, high repetition rate enables the use of lower resolution spectral

dispersers. The well-defined comb lines from a high-repetition-rate frequency comb

also serves as an excellent frequency ruler for calibrating an astrophysical

spectrograph. By mapping the CCD pixels with the laser comb lines with known

frequencies, radial velocity measurements with unprecedented precision - 1 cm/s

may be achieved. This will enable the determination of the mass of sub-Earth-mass

exoplanets by the Doppler shift resulting from the reflex motion of the parent star

around the common center of gravity. The Doppler shift sensitivity enabled by the

blue astro-comb will make it possible to determine the properties of a broad

spectrum of exoplanet systems including their geology as well as the detailed



properties of the stars they orbit. Such astronomical optical spectroscopy (also

known as astro-comb [24]) is an essential tool for addressing two of the leading

questions in science today: the existence and distribution of life throughout the

universe and the dynamics and nature of dark energy. A crucial enabling

technology for these investigations is an ultrastable, broadband, high line-density,

bright wavelength calibrator that can be deployed flexibly and reliably at ground

based observatories. The technology to build such a calibrator can be realized by

integrating an octave-spanning mode-locked femtosecond laser with a Fabry-Perot

filtering cavity, which produces a set of bright, regularly-spaced emission features

in frequency domain. To realize such an exciting application for exploring earth-

like planet, the development of broadband filtering cavity and a high-repetition rate

frequency comb based on high-performance, easy-to-operate, and long-term stable

few-cycle lasers are necessary.

1.2. Overview of the Thesis

This thesis is organized as follows: In chapter 2, the essential background reviews

as well as key concepts in KLM lasers will be given. The design guideline as well

as the main challenges for practical ultrabroadband Ti:sapphire laser will be

discussed. Finally, an octave-spanning Ti:sapphire laser with the world's highest

repetition rate will be demonstrated. In chapter 3, a numerical model for simulating

the full spatiotemporal dynamics is introduced. The NLSE dominating the

nonlinear propagation process of the pulse in the few-cycle regime is derived. To

enable efficient numerical calculation, GPU accelerated computing techniques are

adopted. With this model, many unique features that are observed from the



experiments can be simulated for the first time. In chapter 4, a novel type of output

coupler called gain-matched output coupler is introduced. The gain-matched output

coupler can greatly reduce the nonlinearity required for ultra-broadband mode-

locking. Already at pump power levels close to the cw lasing threshold it is possible

to initiate robust mode-locking and generate <8 fs output pulses from Ti:sapphire

lasers with excellent beam quality operating in the center of its stability range. In

chapter 5, we study the fiber-optic Cherenkov radiation in the few-cycle regime

excited by sub-10fs Ti:sapphire pulses. Through a dispersion-enginnered PCF and a

few-cycle pulse, the nonlinearity can produce highly efficient broadband frequency

up-conversion to the visible wavelength range. The technique has enabled the

constructions of visible astro-combs. In chapter 6 we have proposed and

demonstrated a new approach for broadband dispersion-free optical cavities using a

zero-GDD mirror set; e.g., to enable laser frequency combs for pulse repetition-rate

multiplication and pulse enhancement. With a first zero-GDD mirror pair design,

the construction of a -40 GHz filtering cavity with 100 nm bandwidth for a green

astro-comb (480-580 nm) was demonstrated. By proper structure scaling and re-

optmization, the spectral coverage of the zero-GDD mirror set can be easily shifted

to other wavelengths. We believe this technique can also enable many other

frequency-comb-based applications that demand large comb spacing or high peak

intensity. Finally, the thesis is concluded by discussing the practical issues related

to the construction of a easy-to-operate, long-term stable few-cycle Ti:sapphire

laser. Possible routes for further improvements will be suggested.



Chapter 2

Ultrabroadband Ti:Sapphire Lasers

2.1. Introduction

This chapter provides the essential background reviews as well as key concepts in

KLM lasers. We also discuss design guidelines and main challenges for an practical

ultra-broadband Ti:sapphire laser. As an example, we demonstrate an octave-

spanning Ti:sapphire laser with the highest repetition-rate.

2.2. Brief Review of the Laser Basics

LASER, an acronym originally for the process of Light Amplification by

Stimulated Emission of Radiation, is now generally used to represent the light with

high degree of spatial and temporal coherence or the device that emits such type of

light. Unlike the natural processes such as incandescence (hot body radiation) and

luminescence (cold body radiation) that radiate incoherent light, laser only allows

the emission of photons from a finite number of resonant modes predefined by the

laser cavity. As a result, the laser light exhibits predictable and controllable

behavior that can be used to sense, characterize, or even change the properties of

materials in its path. This property makes laser a powerful tool for both scientific



and industrial purposes. This section is devoted to a brief review of laser properties

as well as presenting the convention used throughout the thesis.

2.2.1. Plane Wave: The General Solution of the Helmholtz
Equation

Since lasers emit electromagnetic waves, it is appropriate to start from the well-

known Helmholtz wave equation derived from the Maxwell's equations (assuming

the medium is nonmagnetic, i.e. p-po)

V2 
a2

2E = p -E (2.1)

The general solution of the equation is a linearly-polarized plane wave propagating

along one direction (e.g. z-axis),

E(z,t) = E cos(ct - kz + #)n, (2.2)

where n is a unit vector in the transverse plane whose orientation is the

polarization of the wave, co the angular frequency, and k the propagation constant

satisfying the dispersion relation

22k2 2 2'7 (O2-3)

where n is the refractive index of the material and c is the speed of light. In the

form of a monochromatic wave, solution (2.2) can be used to compose the light

field radiated from an ideal laser. To take the advantage of Fourier analysis, it is

usually rewritten using a complex notation

E(z,t)= - -Re[E(z,t)] = n -Re[Eoej(t"~) (2.4)



where the phase # has been incorporated into the complex scalar E0 and the

frequency-domain representation of the complex field can be calculated by Fourier

transform defined as:

A1 00
E(z,co)=- jE(z,t)e-'dt (2.5)

2;r -

In this notation, the laser beam intensity I, i.e. the magnitude of time-averaged

Poynting vector, can be computed as:

I = cocn E0 2 (2.6)

The results can be extended to circularly and elliptically polarized waves as they

are the superposition of two orthogonal linearly-polarized waves in the transverse

plane.

2.2.2. Paraxial Approximation and Gaussian Beams

In the cases considered here, the beams are paraxial. In the simplest case where

only a monochromatic beam with a finite transverse extent is used, the optical field

can be conveniently represented as a superposition of plane waves with an angular

frequency co and a propagation vector close to the direction of energy flow defined

as z-axis. Mathematically, it is then useful to write a general solution in the form of

E(x, y,z,t) = Eou(x, y,z)eia"-"v (2.7)

The solution u(x,y,z) must obey the Helmholtz wave equation (2.1), resulting in the

well known paraxial wave equation (PWE)

V2u -2jk -=0 (2.8)
Tz



where V2 is the transverse Laplacian and u(x,y,z) is assumed to be slowly varying

along the z-axis. The PWE has Gaussian beam solutions. The fundamental

Gaussian beam uoo is written as

u00(x, y,z) ~ e 2y 2 (z)e,,2ek(X2+Y )/2 R(z) ej#(z)

b

(2.9)

w(z)

ZR

Figure 2.1 Diagram of a fundamental Gaussian beam.

The important parameters of a Gaussian beam can be summarized as follows (see

Figure 2.1):

wo = R

w(z)= wO 1+ -Z
2R

(2.10)

(2.11)

(2.12)

(2.13)

R(z) Rz2 +z

$(z)= tan-1
ZR



where A is the wavelength of the light, z the relative position along the propagation

axis, 2 ZR the confocal parameter (known as depth of focus) defining the region

where the beam radius w(z) is less than 45 times of the beam waist radius wo, R(z)

the radius of curvature of the phase front, and #(z) the Gouy phase shift. These

features are related to a complex beam parameter q given by

q = z + JZR (2.14)

In Gaussian beam propagation, the q parameter is very useful for describing the

beam evolution through an optical system composed of lenses, mirrors, tilted plates

and even a laser cavity formed by a number of optical components. The effect of an

optical system on a Gaussian beam can be determined by a bilinear transformation

of q using the ABCD matrix approaches:

- Aq,, + B (2.15)
Cq, + D

The generalized ABCD matrices describing propagation, refraction, and reflection

of Gaussian beams are shown in Table 2.1.

Element Sagittal Ms Tangential MT

Propagation in 1 da medium with
constant n ( 1

MA(d)



0 Vn, 2 -sin2 0. 0Refraction at a 2 n, cosJ0
curved interface co - n -si nr Cos j- n,2 - sin 20 i Cos e,

MB(Gi, nr, R) R-cos jn, --sin

Reflection at a 1
curved interface 1 0 -2cosoy 0 J

Mc(6, R)

Table 2.1 Generalized ABCD matrices for propagation, refraction, and reflection.
R is the radius of curvature of the interface, 9, is the angle of incidence, nr is the
refractive index ratio of the output medium to input medium.

For most optics used in common linear optical systems such as lenses,

mirrors, optical windows, and prisms, we can find their ABCD matrix using a

combination of these three matrices. For example, the ABCD matrices of a

Brewster window of thickness t in the tangential and sagittal plane are given by

2n*2-9sin2 n, - sinf2 1,2
MBPT n,cos, 1  1 d nCOS0,, (216)

0 CS 0,,21 0 17 0 CS 0,J 2

n n, - in2 _n,2 -sin2

(1 0 (1 0
MBP,s = 0 n,) 0 1)4r (2.17)

where nr is the refractive index ratio of the plate to free space and d is the path

length. OB,12 and GB,21 are the Brewster angles in the free space and the plate.

0B1 = tan-' (n) (2.18)
6B,12 r) -.

6B,2- Wan .) (2.19)



d = t (2.20)
COS OB,12

2.2.3. Optical Resonators

Self-consistent q-parameter

To solve the resonant modes supported by a laser cavity, one can calculate the

overall ABCD matrix by multiplying the matrix of each individual component in

one round-trip. The ABCD matrix is calculated from an arbitrary plane of interest

(i.e. reference plane). For a stable mode, the field must reproduce itself after every

round-trip, i.e.

=Aq+ B
q= +(2.21)

Cq + D

With the fact that AD - BC = 1, the self-consistent q parameter is then given by

q= + - 1- : (2.22)
2C C| 2

The stability condition is obtained by requiring that q must have nonzero imaginary

part, i.e.

-2 (A+ D) ! 2 (2.23)

Longitudinal Modes

Once the q parameter on a reference plane is found, the structure and the round-trip

Gouy phase shift of the resonator mode across the entire cavity can be obtained.

The round-trip Gouy phase is required to analyze the frequency of the longitudinal



modes using the resonance condition given by (assuming the resonator is made of

ideal mirrors that introduce no phase change in reflection)

eL+ A$2.,= 2p (2.24)

Le(f,) =fn(z, f,)zdz (2.25)

where f, is the frequency of the p-th longitudinal mode. Lfg denotes the effective

cavity length assuming the light is propagating in vacuum, which is calculated from

L (the real round-trip length of the cavity) and n (the refractive index of the medium

along the axis of propagation z). After rearranging (2.24), we can find

= (P AGoy)

Lef 2;r
(2.26)

'-S f
Figure 2.2 Longitudinal modes (fundamental) of a laser cavity without dispersion
compensation. Only a narrow bandwidth can be used to support mode-locking.

For a stable pulse train generated from a mode-locked laser, its spectrum

consists of many equally-spaced spectral lines. However, it should be noted that Leg



is not constant since practical laser cavities are always filled with dispersive media.

As a result, the frequency spacing between adjacent modes changes across the

wavelength. For the wavelength range covered by typical few-cycle Ti:sapphire

lasers (600 - 1 100nm), Leg becomes larger for shorter wavelengths if intracavity

dispersion compensating component is absent, leading to a more dense mode

spacing as shown in Figure 2.2. In such a dispersive cavity, the change in frequency

spacing is only negligible within a very narrow bandwidth, which limits the pulse

duration of the laser. In few-cycle laser mode-locking, the dispersion due to

intracavity materials needs to be compensated to create equally-spaced longitudinal

modes over the entire gain bandwidth of the laser crystal, as shown in Figure 2.3.

However, it was very challenging to precisely control the high-order cavity

dispersion until the invention of double-chirped mirror (DCM) pairs. In section 2.3,

the recent progress and design guidelines for DCMs will be discussed.

Cavity modes

Mod - er Spectrum
t It

II i I i

III l i ll
I i I lullI

I * i ii...O.4
Figure 2.3 Longitudinal modes (fundamental) of an ideal laser cavity without

dispersion. The ultrabroadband mode-locked laser can be supported in this case.



Transverse modes

Although the fundamental Gaussian beam is the most important spatial mode in

ultrafast lasers, the existence of higher-order transverse modes cannot be ignored

for understanding the solid-state mode-locking dynamics in the few-cycle regime.

As discussed in many papers [25], [26], mode-locking of ultra-broadband lasers is

usually accompanied by a wavelength-dependent beam profile. Fortunately, these

highly structured modes can be decomposed into a superposition of Gaussian

modes from a complete orthogonal basis set such as Hermite-Gaussian and

Laguerre-Gaussian modes. Hermite-Gaussians are often chosen to describe laser

mode from an optical system that is not radially symmetric but rather has a

distinction between vertical (sagittal) and horizontal (tangential) axes. In KLM

Ti:sapphire laser cavities, the q-parameter in the two axes might not be identical

due to the presence of tilted curved mirrors and Brewster plates. The resulting high-

order transverse modes are calculated by treating the two axes separately, as shown

in (2.27) and (2.28).

U,,.(X, yZ) = U,,(XZ)U,(Y'Z) (2.27)

1 2if -J_ /2 ij(M+ )OX(
. (xz) - - H. (-()e I (z)e w(zze 2

, 2  
2 (2.28)

1 ~ 2 Jy j,( 12,z (n+ I (
un(yIz)~ H,,,(_)e _2Z)e- R e 2 OW

T, (z) w,(z)
H4 ) are Hermite polynomials with a nonnegative integer index [27]. The

corresponding frequency of the high-order transverse mode is calculated by

replacing the term AocG0U in (2.26) with [28]



A#c,,(m,n) = mA$, + nA#, + A + (2.29)
2

The last term in (2.29) is the total Gouy phase change in one round-trip for the

fundamental mode. Typically, the fundamental mode sees more gain than the

higher-order modes since it overlaps better with the pump laser. As a result, the

laser will have a stronger tendency to mode-lock in the fundamental mode. The

excitation of high-order modes is usually observed in the KLM Ti:sapphire lasers

operated in the few-cycle regime. The reason is that the beam is always tightly

focused inside the crystal with a strong Kerr-nonlinearity which induces coupling

between longitudinal and transverse modes. For the wavelengths where the crystal

provides nearly no gain (e.g. above 1100 and below 600nm), these excited high-

order modes could dominate the beam profile depending on the cavity loss and

overall dispersion. More details will be discussed in Chapter 3.

When performing spatiotemporal simulations, we often assume that the

cavity is radially symmetric in order to speed up the simulation even though this is

not always justified in reality. In this case, using Laguerre-Gaussians as the basic

set is preferred. The mode field with a radial index p and azimuthal index 1 is given

by

1 2r 2r2 -

u,(r.,,Z)~ I _ Q(2 )e-'; (Z)e_ 2R(z) ej(2p+|lj+1)#(z) (2.30)
w(z) w(z) w2(z)

where I are the generalized Laguerre polynomials. The corresponding frequency

is then given by



A# .(p,1) = (2p + Ill + 1)A#

Linear Cavity vs. Ring Cavity

There are two main types of cavity configurations for solid-state lasers: ring

cavities and linear cavities. The schematics of a ring cavity and a linear cavity are

shown in Figure 2.5 and Figure 2.4, respectively.

M1 (ROC= R) M2(ROC= R2)

Figure 2.4 Schematic of the typical linear resonator used for KLM lasers.

M,(ROC= R1) M2 (ROC= R2)

Figure 2.5 Schematic of the typical ring resonator used for KLM lasers.

The main difference between the two setups is that the circulating beam hits

every component once in the ring cavity but twice in the linear cavity (except for

(2.31)



the end mirrors) per round-trip. Therefore, the cavity round-trip time of a linear

cavity will be roughly twice longer compared to a ring cavity with similar footprint.

As a result, ring cavities are often chosen in high-repetition-rate lasers. During the

cavity alignment, there are many practical issues related to the maximization of

mode-locking strength. As an example, in order to minimize the surface-reflection

loss, the gain crystal needs to be placed at Brewster's angle, which might lead to

astigmatism between sagittal and tangential planes. In order to compensate for

astigmatism, two curved mirrors must be tilted at some angle. Another important

issue in optimizing KLM mode-locked lasers is to place the beam focus at the

correct position inside the crystal. The issue has been intensively studied for both

cavities. In most cases the analysis was performed with an unfolded equivalent

system approach (see Figure 2.7 and Figure 2.6) and the cavity astigmatism was

compensated by tilting the curved mirror by [29], [30]:

_2 R 2n 6

11 = ;r -os1- 3 [ n2 -1- n4 -2n 2 +1+ 2B J (2.32)
a Rn3 1B

where lB is the path length inside the Brewster plate and R is the radius of curvature

of the curved mirror. In the simplest way, one can choose an identical angle on both

curved mirrors MI and M2 and use each one to compensate for half of the path

length (0, = 62 = 6a /2 with 1B= L2/2). However, it should be noted that using an

identical angle is not always necessary. Sometimes, one might need to use different

angles to break the cavity symmetry in order to avoid bi-directional mode-locking

in the ring cavity laser.



Reference Plane Reference Plane

Figure 2.6 Equivalent unfolded system for the linear resonator.
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Figure 2.7 Equivalent unfolded system for the ring resonator.

Alignment of laser cavity: Linear resonator

Linear cavity Ti:sapphire lasers operated at a repetition rate of -80MHz are

commonly used in many ultrafast applications. For example, a soft-aperture KLM,

85MHz few-cycle laser is used for demonstrating gain-matched output couplers

(Chapter 4) and broadband Cherenkov radiation in the few-cycle regime (Chapter

5). The Kerr-lens sensitivity of the linear laser cavity has been previously studied

by modeling Kerr-medium as a nonlinear lens [31]. It is found both theoretically

and experimentally that mode-locking can be initiated on the inner edge of the two

stability regions in the asymmetric configuration (L4 # L5) or near the center of

stability region in the symmetric configuration ((L4 = L5) (see Figure 2.8)
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Figure 2.8 Example plots of Kerr-lens sensitivity analysis for symmetric (left) and
asymmetric linear cavity (right). Figure adapted from [31] (Fig. 8 and Fig. 10)

The analysis of Kerr-lens sensitivity is usually performed on a specific

cavity using sophisticated calculation that gives plots like those shown in Figure 2.8.

The plots show a complex parameter dependence and as a result, building KLM

mode-locked lasers is still very challenging for most laser users. Even for a simple

laser, there are still many parameters that one can adjust. As a result, searching for

an optimum operating point in a multi-dimensional space without any guidelines

seems to be inefficient if not impossible. In order to provide more useful and

general guidelines for the laser operation, the connection between the cavity

stability region and the laser geometry will be discussed.



Stability Region

In the stability region, a standing wave can be formed in the cavity. Mathematically,

it is judged by whether a self-consistent q-parameter exists or not, using equation

(2.23). The stability region is usually given as a function of spacing between two

curved mirrors (i.e. LI+L2+L3). To simplify the analysis, we assume that the cavity

is astigmatism-free. For a symmetric cavity, there is only one stability region which

splits into two branches from the center when the symmetry is broken. Figure 2.9

shows that the two regions of stability become further apart as the cavity gets more

asymmetric.

L4+L5 = 25RoC

L L -3:2
...... L 7-3

0 L

1 1.01 1.02 .103 1.04 1.05 106 1.07 10
(Li +L2+L 3) / ROC

Figure 2.9 Beam waist size inside the crystal vs. asymmetry of the cavity

Understanding the evolution of the cavity mode inside the stability region is the key

to successful KLM laser designs. When designing a new laser cavity or modifying

an existing cavity operated at a certain repetition rate, it is particularly important to

maintain the ratio between the length of collimated arm (L+L 2) and the ROC of the



mirrors within a certain range. As shown in Figure 2.10 and Figure 2.11, the ratio

has a significant influence on the width of stability region and the beam waist size.

The result suggests that increased asymmetry, i.e. a larger arm length ratio, narrows

the width of the stability region and decreases the beam waist, which might

dramatically shrink the region where the mode-locking can be initiated.

Figure 2.10 Bea
collimated arms

1.01 1.02 1

n waist size inside

L4:L5=3:2

L,+L = 25ROC

L4+L5 = 50ROC
-L+L 5 = IOOROC

.03 1.04 1.05 1.06 1.07 1.08
(L +L2+L3) / ROC

the crystal vs. total propagation length in the

L4+L5 = 25ROCO

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08
(LI+L2+L3) / ROC

Figure 2.11 Beam waist size inside the crystal vs. total propagation length in the
collimated arms



It should be noted that the beam waist size in these figures is calculated from the

imaginary part of the q-parameter when the beam enters the crystal. In fact, the

beam waist might be somewhere outside depending on the crystal position. Since

the Kerr-lens effect depends on the pulse intensity, it is not surprising that it is

easier to start the mode-locking when the beam waist is positioned inside the crystal,

which corresponds to the high Kerr-sensitivity region shown in Figure 2.8.

Alignment Procedure

In a real laser cavity, astigmatism always exists, and therefore careful alignment

must be performed to overlap the high Kerr sensitivity region on both planes. The

alignment procedure consists of two steps that can be accomplished separately

(refer to Figure 2.4):

(1) Compensate for the astigmatism introduced by the Ti:sapphire crystal (n =

1.76) by adjusting (1, 92).

(2) Position the beam waist of the cavity mode at the right position inside the

crystal by adjusting (LI, L3).

The first step creates a joint overlapping region of stability for sagittal and

tangential plane. As mentioned earlier, the choice of (01, 62) is not unique. Figure

2.12 shows the calculated compensating angles (01, 62) with respect to different

position d from the crystal surface near Mirror 1 based on the resonator geometry

listed in Table 2.2.



Ri=,-"R2 L2 L4 Ls OB

75mm 2 mm 212 cm 125 cm 60.40

Table 2.2 Linear resonator parameters

Figure 2.12 Astigmatism compensating angles for two curved mirrors; d is the
distance from the crystal surface near Mirror 1 to the location of compensation.

7.8 7,9 8 81 7.5 7.6 7.7 7.8
Mirro Specing (cn) Mirror Spacing (cm)

Figure 2.13 Region of stability for the 85MHz linear cavity without (left) and with
(right) astigmatism compensation.



Figure 2.13 compares stability region of an uncompensated and a compensated

cavity. In the two cases, the curved mirrors are tilted by 0* and 5.80, respectively.

As shown in the plot, the edges of stability region are well-aligned in the

compensated cavity, implying that the high Kerr-sensitivity region for the sagittal

and tangential planes have a better chance to overlap.

Intuitively, a good operating point should have an astigmatism-free beam

inside the crystal, which means the real parts of the q-parameter in two orthogonal

planes are the same. In this way, the beam focuses simultaneously in both planes

which maximize the Kerr-lens effect. Experimentally, this is done by searching the

two-dimensional parameter space created by L, and L3. The searching procedure is

usually executed in two alternating steps:

(1) The mirror spacing, defined as L,+L 2+L3, is adjusted by changing L3 only,

i.e., by moving mirror M2.

(2) Then, the crystal position is adjusted to change the value of L, while

keeping the mirror spacing fixed.

The values of L, and L3 required for creating an astigmatism-free beam are

shown in Figure 2.14 - Figure 2.16 for d = 0.5, 0.25, and 0.75 L2, respectively. In

principle, the region of stability can be divided into four zones with each marked by

different colors. The outer edge of the stability region refers to zone A or D. The

inner edge refers to zone B or C, which is also the region where mode-locking can

be easily initiated.
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Figure 2.14 Analysis of astigmatism-compensated cavity with d=O.5L 2. (Top-left)
Difference in real part of the self-consistent q-parameter at the crystal surface
close to the mirror M, between sagittal and tangential plane. The value is
normalized to the total crystal length L2. (Top-right) Li vs. mirror spacing for
astigmatism-free operation. (Bottom-left) waist location inside the crystal for
astigmatism-free operation. (Bottom-right) Waist size vs. mirror spacing

When designing KLM laser cavities, these plots are very convenient for studying

the connection between laser performance and cavity parameters such as waist size

and location inside the crystal for the laser beam. For example, Table 2.3 shows the

action needed to move the beam waist location d inside the crystal while keeping

the same waist size and operating on the edge of the stability region.

d 01 02 L1  L3 L, + L3

4T 42 A t 4 -

Table 2.3 Action needed for moving the beam waist location d inside the crystal

-~-ZoneA
ZoneS

-Q-- Zone C
-e--ZoneO
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Figure 2.15 Analysis of astigmatism-compensated cavity with d=0.25L2. (Top-

left) Difference in real part of the self-consistent q-parameter at the crystal

surface close to the mirror M, between sagittal and tangential plane. The value is

normalized to the total crystal length L2. (Top-right) Li vs. mirror spacing for

astigmatism-free operation. (Bottom-left) waist location inside the crystal for

astigmatism-free operation. (Bottom-right) Waist size vs. mirror spacing.

Toward 01 02 L3L L1 + L3

Edge -

Centera - -

Table 2.4 Action needed for changing the beam waist size in zone B

Toward 01 02 Li L3 Li + L3

Edge

Center--

Table 2.5 Action needed for changing the beam waist size in zone C

Z, ai
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Figure 2.16 Analysis of astigmatism-compensated cavity with d=0.75L 2. (Top-
left) Difference in real part of the self-consistent q-parameter at the crystal
surface close to the mirror MI between sagittal and tangential plane. The value is
normalized to the total crystal length L2. (Top-right) Li vs. mirror spacing for
astigmatism-free operation. (Bottom-left) waist location inside the crystal for
astigmatism-free operation. (Bottom-right) Waist size vs. mirror spacing.

Besides moving the beam waist, other important optimization parameters

include the size of beam waist and the operating point on the edge of stability

region. When one moves the operating point toward the edge, the beam waist

becomes smaller. Table 2.4 and Table 2.5 provide useful guidelines for adjusting

the beam waist while keeping other parameters unchanged. As can be seen, either

moving the beam waist or changing its size cannot be accomplished with one

parameter (LI or L3) alone. As a result, the alignment becomes difficult without

these guidelines in mind.



Alignment of laser cavity: Ring resonator

Ring cavities have only one region of stability, similar to symmetric linear cavities.

Take a 2GHz ring cavity with 2.5cm ROC mirrors as an example. Same analysis is

performed with d = 0.5 L2, and shown in Figure 2.17. The top-left plot shows the

"hot zone" formed by the choice of L1 and L3 and the top-right plot draws a contour

where the cavity beam is astigmatism-free inside the crystal. Experimentally it is

found that mode-locking can be initiated on the left edge. The geometric parameters

for the marked operating point are listed in Table 2.6.
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Figure 2.17 Analysis of astigmatism-compensated ring cavity with d=O.5L 2. (Top-
left) Waist location difference between sagittal and tangential plane. (Top-right)
Li vs. mirror spacing for astigmatism-free operation. (Bottom-left) waist location
inside the crystal for astigmatism-free operation. (Bottom-right) Waist size vs.
mirror spacing. The red mark shows the current operating point and the arrow
shows the desired direction of optimization.
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Ri=R2  L2 Li =L 3  01 = 62 L4 + L5+ L6

25 mm 2 mm 1.25 cm 10.030 -12cm

Table 2.6 2GHz ring resonator parameters for the marked operating point

One might think that a similar optimization approach used in linear cavities can be

applied in ring cavities. As a matter of fact aligning ring cavities is not as trivial as

linear cavities because ring cavities have a closed beam path defined by all the

cavity components together. Unlike linear cavities whose folding angle and the

distance between crystal and the curved mirror can be controlled independently in

both arms, adjusting any single component in a ring cavity results in a change in the

whole beam path. As an example, Figure 2.18 shows the ideal beam path when the

laser operates in the marked operating point. For best laser efficiency, the pump

beam must overlap with the cavity beam inside the gain medium (i.e. BC).

Assuming we want to make the beam waist smaller to see whether the laser

performance can be improved or not. In linear cavities, this can be easily done by

moving the laser crystal and one mirror by Ax and 2Ax in the same direction.

However, when similar method is applied to the ring cavity, a new beam path will

be defined and hit on a different spot on each component. This will lead to a change

in all the folding angles, as shown in Figure 2.19, and the cavity astigmatism

becomes no longer compensated. Most importantly, the cavity beam will propagate

along different path B'C' as the pump beam path BC. As a result, the high-order

transverse modes are excited and the output power drops. Experimentally, we often

found that the structure of the high-order modes belongs to the Ince-Gaussian

family, meaning that cavity astigmatism is present [32].



Figure 2.18 Geometry of a 2GHz ring cavity operated at an astigmatism-free
operating point (marked in red in Figure 2.17). Points A-F indicate the position of
each components that the cavity mode hits on.

2Ax

Figure 2.19 Change in cavity mode path when moving the laser crystal and one
mirror by AY and 24x in the same direction. Points A'-F' indicate the new position
that the cavity mode hits on.

Figure 2.20 Schematic showing how to compensate for the cavity beam path
change. When both flat mirrors are tilted clockwisely, the cavity mode could hit
the original positions A-F except point E and the cavity is operated at the
astigmatism-free point again.



To fix the problem addressed above, one must adjust the tilt of the two flat

mirrors. From our cavity path solver, we found that the two mirrors need to rotate

clockwisely by some small amount as shown in Figure 2.20. The calculation shows

that, when the astigmatism is compensated again, the cavity mode will hit the

original positions on every component except for one flat mirror M3.

2.3. Kerr-lens Mode-locking

Kerr-lens modelocking (KLM) is a method of modelocking lasers via a nonlinear

optical process known as the optical Kerr effect. This method allows the generation

of pulses of light with a duration as short as a few femtoseconds. To favor the

pulsed mode over cw, the cavity design should emphasize aperture effects. Older

designs use a hard aperture that simply cuts off the cw beam that is not influenced

by the Kerr effect. Modem designs, which are also the topic of our interest in this

thesis, use a soft aperture defined by the overlap between the pumped region of the

gain medium and the pulse. In the case of soft aperture KLM, the Kerr lens leads to

a better overlap of laser and pump beam, and thus to a higher gain for the peak of

the pulse, as shown in Figure 2.21. This phenomenon provides a mechanism for

self-amplitude modulation (SAM) that keeps shortening the pulse until other pulse

lengthening effects such as gain-filtering and dispersion come into play and balance

the pulse duration.
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Figure 2.21 Concept of soft-aperture Kerr-lens mode-locking.

2.3.1. Dispersion Management

Precise control of cavity dispersion is a key to the generation of ultra-broadband

pulses from a laser cavity. In a prism-free KLM cavity, the dispersion usually

comes from the material and cavity mirrors. The material dispersion is unavoidable

but can be well characterized and described by Sellmeier equations. Since the

materials usually provide positive (or normal) dispersion around the wavelength of

interest (800nm), the main goal of the laser mirror design is to provide opposite

dispersion of the intracavity materials over a large wavelength range.

Materials

The Sellmeier equation describing the material dispersion is usually in the

following form

2B 1J2  B22 B32 2.3n (2)=+ + 2 + (2.33)
2 -C, 2 -C2 2 -C3



where n is the refractive index, and A is the wavelength B1 ,2,3 and C, 2,3 are

experimentally determined Sellmeier coefficients. These coefficients are usually

quoted for A in microns in vacuum.

B1  B2  B3  Ci C2  C3

Ti:Sapphire 1.023798 1.058264 5.280792 0.0037758 0.012254 321.3616

Air 0.0002463 0.000299 - 0.0082250 0.003637 -

BaF2  0.643356 0.506762 3.8261 0.0033396 0.012029 2151.698

Fused silica 0.68374 0.42032 0.58503 0.0046035 0.013397 64.493

Table 2.7 The Sellmeier coefficients of the commonly used material in prism-less
KLM laser cavity. The coefficients for air are for NTP condition.

Double-chirped mirrors

Dispersion compensating chirped mirrors are similar to dielectric Bragg type

reflectors in that they both use quarter-wave thickness layers of dielectric materials

for generating multiple reflections to ultimately achieve a high reflectivity. While

Bragg reflectors have layers with only one (optical) thickness through the material,

the layer thickness in a dispersion compensating mirror is slowly changed or

"chirped" for each layer, resulting in a wavelength dependent penetration depth into

the mirror coating.
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Figure 2.22 Reflectivity and group delay for a typical double-chirped dispersion
compensating mirror pair used in the octave-spanning Ti:Sapphire laser. The high
reflectivity band extends from 600 - 1200 nm, with a region of extremely low reflectivity
near 532 nm to allow transmission of light from the pump laser. In the lower portion of
the graph is the designed and measured group delay for each mirror as well as the
average value.

A subtlety of the mirror design requires that the mirrors be used in pairs.

The requirement is a result of a design modification necessary for broadband

operation. Most wavelengths must penetrate into the layer stack a finite distance

before being reflected, so it turns out to be necessary to use an anti reflection (AR)

coating on the front surface of the chirped layer stack. This AR coating prevents

small spurious reflections generated by the impedance mismatch between air and

the first layer from destabilizing the mode-locking process. An elegant solution to

this problem is to insert a quarter-wave-thickness layer for the central wavelength

between the AR coating and the chirped layer stack. In the frequency domain,

these spurious reflections are equivalent to an oscillating group delay. The addition

of the quarter wave layer shifts the oscillations by a phase of n; allowing
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cancellation of the reflections when such mirrors are used in pairs. This type of

mirror is referred to as double chirped dispersion compensating mirrors (DCM).

Figure 2.22 shows the typical performance of a DCM pair that can support octave-

spanning operation of the Ti:sapphire lasers. The dispersion of the mirrors is

carefully engineered to compensate the normal dispersion (including the high-order

dispersion) in the laser cavity caused by air and sapphire crystal. Determining the

exact dispersion compensating scheme is simply a matter of summing the

contribution from each element. Since there is a rather large uncertainty in this

calculation due to residual oscillations in the group delay of the DCMs, it is better

to allow for some tuning of this value in the construction of the laser than to try to

achieve a particular value. Experience has shown that this method is reasonably

reliable for achieving broadband mode locking.

2.4. Octave-spanning, Dual-output 2GHz Ti:sapphire Laser

In this section, a self-referenced octave-spanning Ti:sapphire laser with a repetition

rate of >2 GHz is demonstrated., which shows to our knowledge the highest

repetition rate. A -20dB improvement (using 100kHz RBW) of CE beat note for a

gigahertz-repetition-rate phase-stabilized laser oscillator is proved. This is possible,

because the laser uses specially designed double-chirped mirror pairs [33-35] with

excellent dispersion characteristics over the full Ti:sapphire gain bandwidth. In

addition, one of the mirrors is designed to transmit the If and 2f spectral

components used for CE-phase stabilization as a second output, separately from the

main output from the output coupler, in a non-intrusive manner [36], [37]. This



design allows the laser to deliver a phase-stabilized, octave-spanning laser beam

directly from the main output ready for future applications.

2.4.1. Motivations

Over the past few years, several Ti:sapphire lasers [38-43], with gigahertz-

repetition rates up to 10 GHz achieved most recently [44], have been demonstrated.

However, octave spanning operation was only obtained up to 1.35 GHz by Fortier

et al. and at the high end the CE beat note was already reduced from 31 to 25 dB

measured with a 300kHz resolution bandwidth (RBW) when increasing the

repetition rate from 550MHz to 1.1GHz [40], making a transfer oscillator necessary.

Although these authors have shown that the continuum generation resulting from an

enhanced self-amplitude modulation by introducing a convex mirror can be used to

assist octave-spanning operation even when the dispersion is only controlled across

the center portion of the Ti:sapphire gain bandwidth, we demonstrate here that

broadband dispersion compensation helps to maintain an octave spanning spectrum

for even 2GHz repetition rate.

2.4.2.Cavity Design and Alignment

The laser setup is shown in Figure 2.23. We use a 4-mirror Kerr-lens-mode-locked

(KLM) ring cavity consisting of two dispersion-matched pairs of broadband

double-chirped mirrors (DCM), (Ml,M2) and (M3,M4), which is a modified design

based on our recently proposed configuration for maximum carrier-envelope (CE)

beat signal generation [36], [37]. A 2.2 mm long Brewster-cut Ti:sapphire crystal

(a=4.5 cn 1) is located between two concave DCMs with a radius of curvature



(ROC) of 2.5cm. The laser is pumped by a multimode diode-pumped solid-state

laser (Millennia Xs) through a lens with a focal length of 4 cm. The folding angle at

the curved mirrors is set to 21 degree for astigmatism compensation. To increase

the stability of the laser when mode-locked at high repetition rate, we replace M4

with a slightly convex mirror (ROC=50 cm), instead of using two flat mirrors for

the second DCM pair. It was pointed out earlier by Bartels et al. [39] that this

configuration leads to a stronger self-amplitude modulation coefficient or KLM

strength 8 inside the cavity.
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Figure 2.23 Setup of CE phase stabilized octave-spanning Tsapphire (Ti:S) laser
and phase-locing electronics. The four-mirror cavity is formed by two pairs of
DCM, (Ms) and (hM). M1 and M2 are concave mirrors (ROC=2.5cm). M4 is
a convex mirror (ROC= 50 cm). AOM, acousto-optic modulator; L1, pump lens (f=
4 cm); FS OC, wedged fused silica output coupler; SM1-3, silver mirrors; DM,
dichroic mirror; L2-L3, lens (f=20mm); IF, interference filter centered at 580nm;
PBS, polarization beamsplitter; APD, avalanche photodetector; DPD, digital phase
detector; S, power splitter; LO, local oscillator; LPF, low-pass filter; VSA, vector
signal analyzer; RF-SA, RF spectrum analyzer.

The DCMs used here are identical to those in Ref. [37], and are designed -to

have a smooth average group delay and negative group delay dispersion (GDD)

from 650 to 1100 nm to compensate for the positive dispersion of all other



intracavity elements in this spectral range of interest. The coating on M3, same as

M1, is designed to transmit 50% of the intracavity power around f and 2f

components, which allows the main output to be completely separated from the lf-

2f output (coupled out from M3) so that the main pulses are not affected by any

extracavity manipulations needed for CE-phase stabilization. A 1.5 mm-thick BaF2

plate and a 1 inch long fused-silica (FS) wedge with a central thickness of 1.7 mm

are placed at Brewster angle. The corresponding path length of BaF2 and FS is 1.83

mm and 2.12 mm, respectively. Although there are some remaining fluctuations in

the GDD of the DCMs for discussion of the dispersion compensation the average

GDD curve is used. As shown in Figure 2.24, considering the dispersion of all intra

cavity components as well as the air path results in a vanishing net average GDD

within a few fs2 over the entire bandwidth of the Ti:sapphire crystal, which is the

key to the generation of octave-spanning spectra [45]. Due to the physical limits of

our cavity, the FS-wedge, which is used for fine-tuning of the intra cavity

dispersion and the carrier-envelope offset frequency, is vertically mounted

(perpendicular to the table) to maximize the range of adjustment. A 2% broadband

output-coupler (OC) coating carried by the wedge is designed to enhance the

spectral wings of the output pulses by increasing the reflectivity to >50% below

650 nm and above 1050 nm.



200

100

0

-100

o -200
-300

-400
- 00

700 800 960 100 1100
Wavelength (nm)

Figure 2.24 Calculated total intra cavity GDD (red solid curve) and individual
GDD for each component including 2.2mm Ti:Sa (black dashed curve), 1.83mm
BaF2 (purple short dotted curve) , 2.12mm FS (blue short dashed curve), 15cm
air (green dotted curve), and 2 DCM pairs (gray dash dotted curve)

The cavity was initially aligned for best continuous-wave operation, which

was judged by having a maximized output power and a clear transverse-mode

transition from fundamental TEMoo to circular symmetric higher-order modes when

translating mirror M2 towards M1 at the inner edge of the stability region. Both

criteria are very important for achieving optimum KLM because the former ensures

that the laser gain is maximized, while the latter helps to verify that there is no

transverse displacement or angular tilt between the optical axes of the cavity and

the pump beam [46]. When above criteria are met, bidirectional mode locking is

easily initiated by pushing M2 inward to the position where the first or second

higher-order mode was supposed to appear. Unidirectional mode-locking is finally

achieved by further translation of M2 by a few tens of microns.
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2.4.3. Laser Performance

Figure 2.25 shows the radio-frequency (RF) spectra of the directly detected pulse

stream when the laser is in unidirectional operation. The clean RF-spectrum

indicates stable fundamental mode locking with a repetition rate of -2.166 GHz

which is slightly higher than our previous result [47]. At 10.5 W of pump power the

laser generates a total output power of 812 mW including a main output of 750 mW

and a lf-2f output of 62 mW.
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Figure 2.25 RF spectrum of pulse train detected with a 10 GHz photo detector:
With high resolution at the fundamental repetition rate of 2.166 GHz; inset
shows full spectrum up to 16 GHz.

For comparison, the calibrated spectra displaying power spectral density for

both outputs are shown in the same plot (see Figure 2.26). The spectral components

of the lf-2f output below 600 nm and above 1120 nm, although containing only a

few percent of the total power, are stronger than the main output. The result

matches perfectly with our DCM design [45], [48] and also shows that we can

generate the necessary If-2f components in a very simple and efficient way without



affecting the main output of the laser. Moreover, the main output covers a spectral

range of more than 700 nm (extending from 570 nm to 1300 nm, when considering

a 30 dB dynamic range from the maximum at 800 nm). The power per mode in the

center of the spectrum is 18 pW with more than 100 nW per mode available from

250 THz to 500 THz. The power leaving the 1f-2f output port within a 10 nm

bandwidth located at 580nm and 1160nm, the wavelengths used for the CE-lock,

are 0.884 mW and 4.49 mW, respectively, which is more than enough power for

subsequent self-referencing.
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Figure 2.26 Output spectra of (a) lf-2f output beam (black curve) and (b) main
output beam (red curve) from the laser. The filled area between two curves
visualizes that the spectral components of lf-2f output below 600 nm and above
1120 nm are stronger than in the main output

2.4.4.Carrier-envelope Phase Stabilization

The CE-phase is detected with a lf-2f interferometer at the output of M3 (see

Figure 2.23) where a dichroic mirror is used to separate the if and 2f components

for proper group delay adjustment to maximize the CE-beat signal. The f-to-2f beat



note is generated and collected through a pair of uncoated lenses with a focal length

of 2 cm. The first lens was used to focus the laser beam into a 1 mm-BBO crystal

for second-harmonic generation (SHG), while the other is used to collect and re-

collimate the fundamental and generated SHG beams, which are then filtered by a

10-nm-bandwidth interference filter centered at 580 nm, and directed to a fast

avalanche photodiode (MenloSystems APD210). The delay line based on a dichroic

beam splitter, rather than DCMs, is used for generating the CE-beat note since the

overall achievable CE-phase error was dominated by the noise from the multimode

pump laser used [36], [37], [49]. This simple and inexpensive scheme still

generates a free-running CE beat note with a SNR of 50 dB measured in a 100 kHz

resolution bandwidth (see Figure 2.27 (a)) and a similar result for the integrated

residual phase jitter when compared with our previous lasers using the same type of

pump laser [49], [50].

The CE-offset frequency (fe,,) is locked to a local oscillator (LO) set at

20MHz through a phase-locked loop (PLL) (see Figure 2.23) that feeds the phase

difference between the CE-beat signal and the LO to an acousto-optic modulator

regulating the pump power, thus shifting the CE-frequency. The PLL uses a digital

phase detector to increase the capture range (-32n - +327C) beyond a traditional

analog mixer (-n/2 - +n/2). Figure 2.27 (b) shows the measured RF spectra of the

CE beat note signal in both linear and log scale when the laser is locked. As

demonstrated by the plot, a delta-function-like CE beat note with a linewidth of <10

Hz (the resolution limit of our RF spectrum analyzer) is achieved. The central peak

within four times the 10Hz resolution bandwidth (RBW) contains 91% of the



overall power that takes the entire pedestal caused by the amplitude and phase noise

into account. In order to precisely estimate the residual CE phase error when the

laser is locked, the following measurement is done. The residual phase noise of our

system was obtained by splitting the CE-beat note signal and mixing one part of it

directly with the local oscillator signal using a broadband analog mixer because it is

difficult to measure the small residual phase fluctuations from the digital phase

detector. The output from the mixer was filtered by a 10 MHz low-pass filter and

fed into a vector signal analyzer (VSA) for measuring the one-sided power spectral

density (PSD) of the residual CE fluctuations Sp, (see red curve in Figure 2.27 (c)).

The dashed curve in the same plot shows the integrated CE root-mean-square phase

errorA#(f) =[ 2fMHz S$(f)df]2 calculated from

Ao - So (f ')df '],22.4

Although in general it is true that the range of integration should be up to

Nyquist frequency [51], i.e., 1 GHz, it is difficult to measure So at high frequencies

as it is lower than the noise floor set by the photodetector. This has to be expected,

since the major source of carrier envelope phase noise are intracavity intensity

fluctuations, which rapidly decay beyond the relaxation frequency of Ti:sapphire

lasers, which is typically a few hundred kHz. Therefore, the upper limit of

integration in our case is set to be 1 MHz to exclude the high-frequency noise

contributed by the noise floor rather than the laser phase noise itself. The

accumulated phase error integrated from 0.1 Hz to 1 MHz is 0.187 rad. This is

equivalent to a timing jitter of 79 as at the center wavelength of 800nm, which is



slightly better than earlier constructed Ti:sapphire combs pumped by a multimode

laser. Multimode pump lasers are known to have significantly higher relative

intensity noise than single-mode pump lasers at high frequencies, where the

feedback loop of the PLL has already low gain for stability reasons or it is already

outside the loop bandwidth at all [49], [50]. Thus the CE-phase noise can be

further suppressed by switching to a single-frequency pump source such as

Coherent Verdi-10.
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Figure 2.27 RF spectrum of the free-running CE-beat (RWB = 100 kHz) showing a
SNR of -50 dB. (b) RF spectrum of the locked CE-beat signal in log scale (red
dotted curve) and linear scale (black solid curve) showing a resolution-limited
linewidth of 10 Hz. (c) Power spectral density (PSD) of the residual carrier-
envelope phase fluctuations (black curve) and integrated carrier-envelope phase
error (red curve). The accumulated phase error integrated from 0.1 Hz to 1 MHz
is 0.187 rad.



2.4.5. Conclusion

In conclusion, we demonstrated a self-referenced octave-spanning Ti:sapphire laser

operating with the highest repetition rate of >2GHz while maintaining a strong

(>50dB) CE-beat note in a 100kHz resolution bandwidth. The laser cavity uses

novel double-chirped mirror pairs that provide both the main octave-spanning

output carrying more than 90% of the total output power and a separate output port

for the 1f-2f frequency components used for non-intrusive carrier-envelope phase-

stabilization.
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Chapter 3

Spatiotemporal Model for Octave-
Spanning Ti:sapphire lasers

3.1. Motivations

With the advances in Kerr-lens mode-locked (KLM) solid-state laser technology

nowadays, generation of few-cycle optical pulses directly from a laser cavity with a

broadband gain medium such as Ti:sapphire and other Chromium-doped crystals

has been routinely achieved. Despite the great success in constructing few-cycle

lasers, the spatiotemporal pulse dynamics in this regime has not been precisely

understood from the existing numerical models. In the early spatiotemporal models

proposed by Herrmann [25], [52] and Christov [53-57], spatial effects in the Kerr-

lens mode-locking process such as gain-guiding and space-time astigmatism were

first studied. Nevertheless, these models are only able to simulate and provide

design guidelines for the lasers delivering pulses as short as sub-10fs. In order to

simulate sub-two-cycle or even octave-spanning Ti:sapphire lasers demonstrated

with the ultra-broadband dispersion-compensating-mirrors, a pure temporal

approach was employed by Sander [48] in 2009, in which all the spatial effects

were modeled by an artificial saturable absorber. Although the laser spectra seen

from the experiments become numerically reproducible in this approach, the



physics behind many phenomena in these few-cycle lasers has not been unveiled.

First of all, these lasers not only show variation in spot size at different wavelengths,

the mode structure also changes across the entire spectral range. In addition, some

pronounced spectral peaks are often found across the entire spectrum with its

dependence on the cavity dispersion unanswered. The main challenge is that, in

these ultra-broadband lasers, much shorter pulses and much higher intracavity

intensities are reached inside the gain medium in comparison to lasers delivering

pulses longer than lOfs. Therefore, the intracavity pulses experience stronger phase

modulation when propagating through the nonlinear medium. The modulation leads

to coupling between longitudinal and transverse modes of the laser simultaneously

from the self-phase modulation (SPM) and self-focusing (SF) effects that dominate

the spatiotemporal dynamics of the pulse. Moreover, since the beam is usually

tightly focused onto the gain medium, the peak intensity could reach to the level

where the multi-photon processes (ionization and absorption) might become non-

negligible. These processes not only add perturbations to the pulse dynamics but

also provide feedback to the mode-locking itself by introducing nonlinear losses

and plasma defocusing to the pulse transients. In this chapter, an extended 3-D

numerical model is developed capable of dealing with the complete spatiotemporal

dynamics of a dispersion-managed, Kerr-lens mode-locked Ti:sapphire laser

operating in the few-cycle regime.



3.2. NLSTPEE for Pulse Propagation

To study the spatiotemporal dynamics of the optical pulse circulating inside the

laser cavity, the pulse evolution within one round-trip needs to be modeled and

simulated in a numerically efficient way. The nonlinear propagation of the pulse

through the crystal can be modeled by a three-dimensional nonlinear

spatiotemporal pulse evolution equation (NLSTPEE). The equation is valid for

pulses in single-cycle regime as long as the envelope and the phase of the electric

field slowly vary. This is also known as slowly-evolving-wave-approximation

(SEWA) [58]. The NLSTPEE equation is generally written using a retarded time

rt - z/v, as:

A = NA(x, y, z,r) (3.1)

A is the complex envelop function with its amplitude normalized to the intensity I

(i.e. IA 12 = I). The operator L accounts for the linear effects including diffraction

(first term) and dispersion (second term) which are independent of pulse intensity,

and are given by

J ~ .Vj0 (n) n

n= -T-1 I V j (3.2)
2noko =2 n! r)

where V2 = 2 + a2 /ay2 is the transverse Laplace operator and k') accounts for

the n-th order derivative of the propagation constant. In solid-state lasers both terms

should be included while in fiber lasers only the dispersion is considered. ko is the

wavenumber in vacuum corresponding to the carrier frequency co.

T (1 - (j/woj), is the operator used to correct the diffraction and nonlinear



effects that have frequency dependency. R is the operator for intensity-dependent

nonlinear effects, divided into two parts:

(1) NL: In standard soft-aperture KLM Ti:sapphire lasers, mode-locking is

initiated through self-amplitude modulation (SAM) induced by self-

focusing that provides more gain to pulses with higher intensity. The

nonlinear operator accounting for the optical Kerr effect (first term) and

saturated gain (term) from the gain medium is given by:

NL = -jTkn 2 |AJ + g(x, y,z,t) (3.3)

where n2 is the nonlinear refractive index of the medium and spatial gain

profile g is given by

g(x, y, z,r) = IFT (xY'z)/WsaI (3.4)
2 1+ (,x, )Wsa, )1+ j(D/AQL )2-

Here IFT is the inverse Fourier transform operator, 9 the detuning from

the carrier frequency oo, a the absorption constant for the pump

wavelength in the gain medium, and r%, the quantum efficiency defined as

the photon energy ratio between the pump wavelength and the laser central

wavelength. W,,,=hco/(2rLfrep) is the saturation energy density of the

gain medium with a cross-section q- and an upper-state lifetime r.

frep 1 TR denotes the repetition rate of the cavity and A7L the half-width

half-maximum (HWHM) bandwidth of the gain-spectrum. W and W are

the integrated energy density (J/m2) over one cavity round-trip time of the

circulating laser and pump beam.
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W,(x, y, z) = " exp 2 (Z) 2 (3.5)
7CW, (Z)W, (z) w, (z (Z),

W((x, y,z)=fR IA(x, y, z,t)| 2dt (3.6)

(2) NMpI: In order to extend the model to few-cycle lasers in which much

shorter pulses and much higher intracavity intensities (>1TW/cm2) are

usually reached inside the gain medium, additional nonlinear effects related

to multiphoton ionization (MPI) are taken into account. These effects add

additional loss and defocusing terms that provide feedback to the pulse

dynamics in the high-intensity regime. The standard MPI processes are

treated with a nonlinear operator that connects to a plasma generation

equation given by:

A K 2K-2 0"
NMP, = -- -T(1- jaor)p (3.7)

2 2

= K 2K (Pat o ') + C 1A2P j (3.8)
t rec

The first term and the second term in eq. (3.7) correspond to multiphoton

absorption (MPA) and plasma absorption/defocusing. The first and second

terms in eq. (3.8) describe the generation of free electrons through MPI and

avalanche ionization processes, respectively. The last term represents

recombination of the electrons with a characteristic time. The description of

the parameters are given as follows: K is the photon number required to

induce band-to-band transitions of electrons in the Ti:sapphire crystal,

which is defined as mod(U/Ep). U, is the material bandgap and Ep the



photon energy of the laser. p is the plasma density with an upper limit of

background atom density pa,. 8(" = Kh a corresponds to the MPA

coefficient proportional to a cross-section (K derived from the Keldysh's

model. o- is the inverse Bremsstrahlung cross-section that is computed with

the reduced electron mass me* in the medium. -r represents a average

electron collision time and ree the electron recombination time.

Based on literature[59-61], the value of abovementioned parameters for the

Ti:sapphire crystal are listed in Table 3.1. Figure 3.1 plots the peak plasma density

inside the Ti:sapphire crystal generated by a lOfs pulse with an increasing peak

intensity from 0.1 to 10 TW/cm2. For a 5-photon process, the importance of MPA

and plasma effects increases with intensity to the power of 4 and 5, correspondingly,

while the Kerr effect is only linearly proportional to the intensity. Figure 3.2

compares the nonlinear coefficients for Kerr effect (= nokon2l), MPA (= /#Y/2),

and plasma effects (=alp'2). As shown in the plot, both MPA and plasma effects

can be omitted for an intensity of <1 TW/cm2 . When the intensity approaches 1

TW/cm 2, the contribution from MPA is no longer negligible as its coefficients is

only about one order of magnitude less than the Kerr effect. For a higher intensity

(>4 TW/cm2), the nonlinear coefficients of the plasma and MPA effects exceed the

Kerr effect and the pulse enters the filamentation regime.



Table 3.1 Parameters for Ti:sapphire crystals



1 E-3

1 E-5

1 E-7

I E-9

1 E-1 1

1E-13

......- .

)3.1 1 10
Peak Intensity (TW.A/cm2)

Figure 3.1 Maximum plasma density generated from a 10fs pulse of different
peak intensity.

1

0.01

1 E-4

I E-6

1 E-8

1~4f

-- Kerr Effects
--- MPA

Plasma

. *.

....... .................. ..... ............................*. .

Peak Intensity (TW/cmA2)

Figure 3.2 Nonlinear coefficients for Kerr effect, MPA, and
function of peak intensity assuming a 10fs pulse.

plasma effects as a

3.3. Numerical Methods

In order to minimize the computational complexity, a 2+1D simulation is

performed by assuming a cylindrically symmetric laser beam (i.e. x = y = r/V).
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The GNLSE is solved using the split-step Fourier-Hankel method implemented

with a fourth-order Runge-Kutta method in the interaction picture (RK4IP) [62],

[63]. The split-step method takes care of the linear propagation operator L and

nonlinear propagation operator R in different steps and the RK4IP is used for

achieving an accuracy of O(h4) in the numerical integration. Since the linear step is

often treated in the frequency domain while the nonlinear step is computed in the

real domain (time and space), Fourier and Hankel transforms are used to convert

the field back and forth between the two domains for time and space, respectively.

3.3.1. Hankel Transform

The Hankel transform (HT) and the inverse Hankel transform (IHT) are typically

chosen in the cylindrical coordinates, defined as:

(HT) F(v) = 2;f(r)J,(2vr)rdr (3.9)

(IHT) f(r) =2rfF(v)J,(2zvr)vdv (3.10)

where v is the spatial frequency and J, the p-th order Bessel function of the first

kind. In our model, the optical system is assumed to be uniform along the azimuthal

axis (i.e. p =0). Unlike Fourier transform using periodic sinusoidal functions as the

basis, computation of HT in a discrete system requires special treatment to the grid

size in r-axis due to the non-periodic behavior of the Bessel functions. In our model,

a quasi-discrete Hankel-Transform (QDHT) proposed by Guizar-Sicaiross [64] is

implemented. This method is highly efficient and can be used as the following

condition is met:



f(r)= 0 for r > R (3.11)

where R is the maximum physical radius and the size of spatial window used in the

simulation. The window is divided into m points which forms a radius vector f. It

should be noted that the elements in i are not uniformly distributed but located at

the roots of the Bessel function Jo scaled by R/am+,:

r = R a' for 1 i s m (3.12)
am+1

where at is the i-th root of Jo(x). Similarly, the elements of spatial frequency vector

v are defined as:

v, =V a for 1i < m (3.13)
am+i

where V = am+,/2;zR is the limiting spatial frequency. For efficient numerical

computation of the HT and IHT, a m x m transformation matrix T and a column

vector J are prepared.

T,.= IJ"('ai am+i for 1 i, j s m (3.14)
Ji (aj)J (a )Iam+

Ji = R for 0 s i !! m (3.15)
R

The HT and IHT can then be easily computed in the following way:

U = HT i}= T *[W/ /j (3.16)

W =]IHT()= T *[U /j) (3.17)

where * denotes matrix multiplication and / denotes element-by-element division.



3.3.2. Linear Step

The linear propagation of the laser beam is numerically computed by integrating

the partial differential equation aZA(r, z,r) = IA(r, z,r) along the z-axis where L is

defined in (3.2). In the split-step method, this step is usually treated in the

frequency domain (for both time and space) instead of solving the equation directly

in the real space. The frequency-domain field, for both time and space, can be

calculated by

A(v,z,Q) =FT{IHT{A(r,z,r}} (3.18)

The physical meaning is also easier to understand when the beam is viewed as a

superposition of many frequency components representing different longitudinal

and transverse modes. After an arbitrary propagation distance Az, a phase shift of

LAz is added to each mode, i.e.,

(v,z+ AzS) exp j 1+ - 2 - k ." nAz A(v, z,) (3.19)
a1;1 0-) noko n=2 n!

where the differentiation in VI and , can be avoided and conveniently replaced

by -42r 2v 2 and jn. It should be noted that energy is conserved when using eq.

(3.19). The operator T is now replaced by a frequency scaling factor (1+f/coo)~1

which accounts for the space-time focusing effect.



3.3.3. Nonlinear Step

As mentioned earlier, the nonlinear propagation of a laser beam is usually treated in

the real space. Different from the linear operator that has no z dependency, the

nonlinear operator acts on the envelope function A(rz, z) while taking A(rz, z) itself

as an input parameter. As a result, nonlinear evolution of the pulse must be

estimated iteratively by propagating A(rz, r) over many small steps. When the step

size is small enough, the nonlinear terms can be considered as perturbations of the

pulse.

A(r,z+ Az,r)- A(r,z,r) = Az(A(r,z,r))A(r, z,r) (3.20)

By assuming that the peak intensity of the pulse does not far exceed 1 TW/cm 2, one

can omit the last two terms of eq. (3.8) and calculate the plasma distribution

p(r,z, z) by

p(r, z,r) =op0  A(r, z,t 2Kdt (3.21)

The right-hand side of (3.20) can be decomposed into three terms for Kerr, MPA,

and plasma effects:

NKerr, z, - 2k0Az -IFT 1+ F{A(r, z,rf A(r,z,r) (3.22)

NMPA(rz, r)=- jA(r, (K) A(r, z, (3.23)
2

( = - o(1-jar ) rA - {IT 1+ FT{p(r,z, r)A(r,z,r)} (3.24)



For simulating KLM Ti:sapphire lasers with a pulse duration of > 10fs, one can

only consider the Kerr effect. However, in order to simulate sub-10fs lasers,

including MPA effects becomes necessary. Although the last term only has

contribution when the peak intensity is much higher than 1 TW/cm 2 and can be

ignored for most of the time, physically it behaves as a feedback that prevents the

beam from collapsing during propagation.

3.3.4. 4th Order Runge-Kutta method in the interaction picture
(RK4IP) with Adaptive Step-size Control

Due to the complicated nonlinear processes during the propagation, the evolution of

the pulse should be evaluated in a careful way. When solving the NLSE for soliton

propagation, the most commonly employed scheme is the simple split-step method

which has a second-order accuracy [65]. Although it is possible to implement a

higher-order split-step scheme (e.g. Blow and Wood [66]), the global accuracy is

still limited to the method used to integrate the nonlinear step. For this reason,

Runge-Kutta schemes are used to increase the global accuracy. However, the

numerical expense for implementing a high-order Runge-Kutta scheme increases

dramatically with the order number. In order to keep the high-order global accuracy

while reducing the numerical expense, an optimized Runge-Kutta scheme in the

interaction picture (RK4IP) is developed. RK4IP was first proposed to study the

Bose-Einstein condensates and have been successfully applied to simulation of

highly-nonlinear fiber for supercontinuum generation. In our spatiotemporal model,

the RK4IP is employed. The procedure of RK4IP is shown in Figure 3.3 and

summarized in the following equations:



A, =exp(LA )A
2

ki = exp( )[AzN(A, z)$

k2 = AzN(A, + k,/2, z + )(A, + k,/2)
2AA

k3 = AzN(A1 +k21/2,z+-)(A +k2/2)2jL~z jLz

k4= AzN[exp( )(A, +k 3 ), z+ Az](exp( )(A, +k 3 ))2 2

A(r, z+ Az,r)=exp(iLAZ )(A, +k1 /6+k 2/3+k 4/3)+k 4 /6
2

Linear propagation operator for h/2

Nonlinear propagation operator for h

A(z+h)

Figure 3.3 Numerical procedure of RK4IP
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The RK4IP scheme has a global error of O(h4 ), which means the accuracy

of the simulation can be significantly increased by reducing the step size h.

However, choosing a too small step size also slows down the simulation. In order to

choose an optimal step size, we implemented an adaptive step-size control method

similar to the one reported in Ref. [67]. In this approach, two fine evaluation with

h=Az/2 and one coarse evaluation with h=Az are made separately to propagate the

beam from z to z+Az, as shown in Figure 3.4.

Afine(z+dz)

A(z)

Acoorse(Z+dZ)

Figure 3.4 Concept of adaptive step-size control

When the solutions with fine and coarse steps are found, one can calculate the local

error Sby

SIAfine _AwarI 
(3.31

The goal of adaptive step size control is to maintain a local error within a

reasonable range of (SL, SuB) where St and SuB are the lower-bound and upper-

bound of the acceptable error. If 4> SuB, the solution is discarded and the step is

repeated with the step size h multiplied by 2/3. If S<S, the solution is kept and

the step size h is divided by 2/3 for the next step. If Sis within the range, then the

result obtained from fine steps is used since it is closer to the exact solution. The

)

RK41P (h=dz)



algorithm used here is a simplified version from the one in the original paper which

adjusts the step size in almost every step. The reason is that in spatiotemporal

models the size of the dispersion and diffraction matrices are often huge and they

need to be recalculated when the step size is adjusted might significantly increase

the computation time, if the step size is changed too often.

3.4. Efficient Round-trip Cavity Model

In each round-trip, the pulse experiences nonlinear evolution when passing through

the gain or Kerr medium, which dynamically reshapes its spatial and temporal

profile. For the rest of the path, the pulse experiences linear propagation according

to the spatial arrangement as well as the dispersion of the intracavity components.

However, since the pulse diverges very quickly after leaving the crystal, a large

spatial window would be required for the simulation. To circumvent this problem,

an equivalent optical system with two effective lenses attached to the front and

back of the crystal and separated by an effective distance can be found. This

ensures that the maximum spot size outside the crystal will not exceed that inside

the crystal. As an example, Figure 3.5 shows the schematic of a typical cavity path

outside the crystal and the corresponding equivalent system. To find the equivalent

system, an overall ABCD matrix describing all the components in the real path is

calculated. The beginning and ending reference planes are both chosen inside the

crystal. nr is the refractive index ratio between crystal and free space; 61 and 64 are

the Brewster's angle of the interfaces; 62 and 63 are the incident angles on the

focusing mirrors used for astigmatism compensation. With these parameters, the



ABCD matrices corresponding to each individual component can be obtained using

Table 3.2 and used to compute the overall ABCD matrix:

) = M,(04,n-)*MA(D)*Mc(3,2f2)*MA(D2)*
C D

Mc(02,2fj)*MA(Dj) *M,(0,, n,)

(3.32)

02

I

If 1  
f 2 II

Figure 3.5 Schematic of a typical unfolded cavity path (top) and its equivalent
system (bottom) for efficient simulation of the beam propagation outside the
crystal.

Once the overall matrix is found, the focal length (fi 'f2') and spacing D' of the two

effective lenses in the equivalent system can be calculated by

D'= B

B
f1-A

(3.33)

(3.34)



B
21--D (3.35)

Element Sagittal M5 Tangential MT

Propagation in a I d
medium with
constant n 0 1

MA(d)

n2-in2 O
Refraction at a 1 0 "In, 0

curved interface o0Yn n) cos ,
MB(Oj,nr nr n, 7-sin20,

Reflection at a 1curved interface 1 0 -2cos OX j
Mc(Oi , R)

Table 3.2 Same as Table 2.1 with MB(A-, nr, R) reduced to MB(64, nr) for a flat interface.

With the equivalent system, one can easily propagate the beam around the

cavity with a series of transformations without changing the simulation window:

A 1 0(r,) =D F2 ITL HTF,@ Ai(r,O) (3.36)

where F1,2 are the matrices for the lens transformation; L is the matrix for

propagating a distance of D'; D is the matrix for overall cavity dispersion excluding

the crystal. These matrices can be pre-calculated using the following formulas:

F1 2(r, f) = exp j 1+ , '

L(v,C)= exp j + D'
co noko

(3.37)

(3.38)



k n"
D(r, ) = exp [- j a#n!] (3.39)

n=2 n!

In both ring and linear cavity lasers, the same approach can be applied to the linear

propagation section for the round-trip. The only difference is that in linear cavities

two separate sets of transformation matrices for propagating the beam in each of the

two arms should be prepared.

Although it is possible to avoid using a large spatial window during the free

space propagation with the above method, there is still a theoretical limit due to the

finite resolution of the spatial grid. Since the focal lengths of the effective lenses

are usually very small, the phase difference between two adjacent radial points

might become too large to be resolved as r increases. To find a range of r that has

no aliasing effect, one can use the following condition (assuming dr is the spatial

grid size):

2;r no Ir2 - (r -Aryl <K (3.40)
A 2|f|I

By using the approximation that Ar<<r, the following condition can be found

r < (3.41)
2Arn

After a rearrangement of eq. (3.41) using N = R/Ar, another useful criterion can be

derived for determining the required number of spatial grid points for running a

simulation with a spatial window size R

2n0R 2N > 2n R (3.42)
V|f



3.5. Simulation Results and Discussions

3.5.1. GPU accelerated computing

The spatiotemporal model is implemented in MATLAB * accelerated by GPU

computation techniques using the Jacket® platform. The simulations are performed

on a machine equipped with two Intel® Xeon 5680 (6 cores, 12 threads) CPU

processors, two nVidia* Tesla C2070 GPU cards with 6 GB of onboard memory on

each card, and 96 GB of RAM. With the GPU as a backend computation engine,

Jacket® boosts the computational speed by parallelizing many time-consuming

operations such as matrix multiplication and FFTs while maintaining the user-

friendliness of the MATLAB programming. To give an idea of the computing

power of a GPU for large matrices, I compare three types of operations including

simple matrix addition, matrix multiplication, and FF'Is with a 1024x1024 matrix

using GPU and CPU. As shown in Table 3.3, computation using GPU enables

significant speedup comparing to the traditional CPU computing. Even though

computation on GPU is extremely fast, the memory available on the GPU is limited.

As a result, data transmission between CPUs and GPUs often becomes the

bottleneck in the simulation. Avoiding unnecessary data transmission is an

important issue in optimization of the program.



Operations GPU CPU Speedup
nVidia C2070 (2x) Intel Xeon 5680

Addition 33 ps 6 ms 182 x

Matrix Multiplication 18 ms 146 ms 8 x

1D-FFT 870 ps 14.7 ms 17 x

2D-FFT 1.4 ms 22.3 ms 16 x

Table 3.3 Comparison of computational speed using GPU and CPU

3.5.2. Cavity Setup

DCM-G
(ROC2=2.5cm)

DCM-B
(ROC1=2.5cm)

Figure 3.6 Setup of a 2GHz four-mirror ring cavity Ti:sapphire laser used for
simulations and experiments.

The numerical model is tested on a four-mirror ring cavity similar to the 2GHz

laser discussed in Chapter 2. As shown in Figure 3.6, the cavity consists of one pair

of flat mirrors and one pair of curved mirrors with a radius of curvature of 2.5cm.

The curved mirrors are tilted to compensate the astigmatism introduced by the

crystal that is placed at Brewster angle to minimize reflection loss. The path length

inside the crystal LT is 2mm. The length D 2 is set to 12cm for a - 2GHz cavity. In

order to precisely control the size and the relative position of the cw laser mode and



pump laser mode inside the crystal, we numerically adjust the position and the

angle of the curved mirrors based on the analysis of cavity stability region

performed in Figure 2.17. In the experiments, the dispersion of the crystal is usually

overcompensated by the ultra-broadband double-chirped mirrors and then adjusted

by inserting additional dispersion compensating wedges made of, for example,

BaF2 or fused silica. To simplify the numerical study and explain the

spatiotemporal mode-locking dynamics, we first test an ideal cavity with a constant

loss and zero cavity dispersion for all wavelengths. The dependence of important

cavity parameters will be studied. Finally, the reflectivity and dispersion from the

DCMs as well as the output coupler calculated from the real mirror designs will be

used to simulate the practical cavity. In our simulation, we use a 300 x 1024 matrix

to describe the field with a spatial and time resolution of 0.5 pm and 1.2 fs,

respectively.

3.5.3.Mode-locking Dynamics

To check if the laser cavity can support a stable pulse, we calculate the local error

between round-trips using the following formula

6= II4+i(wr)-A(wr)I (3.43)A (cw, r)I

The error converges to zero when the pulse approaches the steady state.

Theoretically, the mode-locking starts from mode beating, which generates

temporal spikes and induces the self-amplitude modulation. To simulate this

phenomenon, a long initial pulse is used to trigger the mode-locking. As the very

first test of the model and a reference point of operation used for later comparisons,



we create an ideal dispersion-less cavity by assuming that the crystal dispersion is

cancelled by all the dispersion compensating components (e.g. mirrors and

materials other than the crystal). The round-trip loss of the cavity is set at 7% for all

the wavelengths. The path length of the crystal LT is 2 mm. The cavity is

numerically aligned to support a fundamental transverse mode with a beam waist at

the center of the crystal and a FWHM spot size of 23 pm (in tangential plane). The

pump beam is also focused onto the same location with a FWHM spot size of 10

pm. The mode-locking dynamics is excited with a 5nJ, 100fs initial Gaussian pulse

and a pump power of 7 Watt. Round-trip iterations repeat until the local error

converges and reaches 10-4.

The temporal profile of the pulse and its evolution when passing through the

crystal and from the initial to the steady-state are shown in Figure 3.7. In the early

stage (0 - 100 passes) of the evolution, along with the growth of the pulse energy,

more spectral components are generated due to self-phase modulation. Later (100 -

250 passes), the spectrally broadened pulse is compressed by the cavity

components outside the crystal and becomes a shorter pulse with higher peak

intensity. Finally (250 passes to steady state), a few-cycle pulse forms with its

profile gradually smoothened and cleaned.
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Figure 3.7 The temporal evolution of the pulse
round-trips from initial to steady state.
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Figure 3.8 The evolution of laser spot size and its overlap with the pump beam
inside the crystal for every 50 round-trips from initial to steady state.

The main pulse-shaping mechanism in soft-aperture KLM lasers is the

intensity-dependent overlap between the laser and pump beam, as shown in Figure

3.8. In the early stage when the pulse is still long and its intensity is weak, the spot

size of the laser beam is not too different from that in a cold cavity. However, as the

energy and the peak intensity grow, the interplay between gain-guiding, diffraction,

and self-focusing effects triggers the oscillation in the laser beam size. Meanwhile,

the main pulse shapes itself by radiating energy in the time domain (see passes



150 - 250 in Figure 3.7). Since the radiated pulse transients have a lower intensity,

they do not experience the same amount of nonlinear phase and therefore diverge at

different rate as the main pulse. As a result, the main pulse and the transients will

overlap with the pump beam differently in the following round-trips. If the cavity is

properly aligned such that the high-intensity main pulse is favored, pulse transients

will die out eventually and a clean, stable short pulses will build up. The steady-

state pulse spectrum is shown in Figure 3.9, corresponding to a transform-limited

pulse of 6.17fs.

0.01
C.)
a)
0. 1IE-3
C/)

0.6 0.8 1.0

Wavelength (pim)

Figure 3.9 The steady-state pulse spectrum for an
cavity. The transform-limited pulse duration is 6.17fs

ideal dispersionless laser



Figure 3.10 Spectral evolution (log scale) of the intracavity pulse vs. number of
round-trips. The figures are obtained with an initial pulse of (left) 100fs and
(right) 10fs.

Figure 3.10 shows the evolution of the pulse spectrum with number of

round-trips performed using a 100fs (left) and 10fs (right) initial pulse. As

discussed above and shown in the 100fs plot, the pulse spectrum is first broadened,

reshaped, and finally smoothened out. The pulse converges to its steady state in

about 1500 round-trips. As a comparison, we repeat the simulation using the same

laser parameters but with a lOfs initial duration. Not surprisingly, the same results

are found as shown in the figure, which verifies that the steady-state solution is

unique and independent of the initial pulse chosen. However, when an initial pulse

that is closer to the steady-state solution is used, one can save a significant amount

of simulation time. Figure 3.11 compares the local error for both cases. In the 100fs

case, the pulse transients cause an increase in the local error during the first 400

round-trips. Once the pulse transients die, the error converges linearly. In the 10fs

case, the local error converges quickly down to 10-3 in 200 round-trips while the

1OOfs takes about 1100 round-trips.
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Figure 3.11 Comparison of local error convergence using a long (100fs) and a
short (10fs) initial pulse. Once the pulse transients die, the error converges
linearly.

3.5.4. Operating Point vs. Laser Performance

Finding an operating point with a large Kerr sensitivity is an important issue in the

construction of KLM lasers. Even though the results from a pure temporal laser

model have shown that octave-spanning spectra can be generated with some

saturable absorption effect and careful dispersion management, the model fails to

figure out the strength of the effective saturable absorption and its connection to the

cavity alignment. To study the dependence of laser performance on the operating

point, the spatiotemporal model must be employed. In this section, 6 different

operating points on the shorter edge of the stability region with a cw waist size

from 20-25 pm (see Figure 3.12) are simulated.

100
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Figure 3.12 Region of stability of the simulated laser cavity. The laser is operated
at the edge of shorter mirror spacing with a waist size of 20-25 pm.
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Figure 3.13 The steady-state laser spot size and its overlap with the pump beam
inside the crystal as a function of cw laser waist size from 20 - 25 pm.

In this set of experiment, same waist size and power for the pump beam are

used as the previous setup. Figure 3.13 shows the steady-state laser spot size and its

overlap with the pump beam for all the cases. It can be clearly seen that the laser

beam is focused to a smaller spot when the laser operating point is closer to the



edge of the stability region. As shown in Figure 3.14, the peak intensity of the pulse

is the highest near the center of the crystal. The maximum pulse intensity could be

as high as >1 TW/cm2 for the 20im case and as low as <0.5 TW/cm2 for the 25prm

case. As a result, the spectrum is broader (see. Figure 3.15) due to stronger SPM

when an operating point closer to the edge of stability region is used.
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Figure 3.14 Peak intensity of the pulse inside the laser crystal.
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Figure 3.15 Intracavity spectrum of the steady-state pulse with different
operating points of the laser.

102



The strength of SPM can be roughly estimated by the nonlinear phase accumulated

along the nonlinear medium. This is calculated by finding the difference between

the round-trip phase of the steady-state pulse and the total Gouy phase shift in a

cold cavity. Figure 3.16 plots the accumulated nonlinear phase at different

operating points for 7W, 8W, and 9W of pump power. With a higher pump power,

the nonlinear phase becomes larger since the pulse energy also increases. However,

the laser might enter an unstable zone if the beam is too tightly focused.

0.70

1Unstable'rone O

0.60-

CU
0.55-

. .5 0 -

0.45 -- 7W
-+8W

0.40-

20 21 22 23 24 25

Waist Size (pm)

Figure 3.16 Accumulated nonlinear phase vs. operating point at different

pumping powers.

The limiting factor behind the instability is the maximum intensity of the

pulse inside the crystal. As shown in Figure 3.17, the estimated intensity threshold

for the unstable zone is -1.1 TW/cm2 . This is also the level where a significant

MPA effect is induced. Theoretically, the KLM Ti:sapphire laser is considered as a

dispersion-managed soliton that maintains its shape by the interplay of SPM and

dispersion. However, when the intensity is too high, MPA effect occurs and
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introduces instability to the pulse by absorbing the energy from the pulse peak. This

process effectively causes energy radiation from the soliton to a dispersive transient

wave. In order to stay in a stable mode-locking state, much stronger SAM must be

provided. Since the MPA effect is highly nonlinear, the demand for SAM also

increases exponentially. As a result, stable mode-locking can hardly be found once

the pulse enters the MPA regime.
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Figure 3.17 Maximum intensity vs. operating point at different pumping powers.

Figure 3.18 shows the calculated intracavity pulse energy at the operating

point of interest with different pump powers. The pulse energy decreases when a

smaller cw laser waist is used for a fixed pump power, which agrees with our

experimental observations. The result suggests that in order to maximize the output

power from a few-cycle laser, a large cw laser beam waist should be used. Ideally,

one can still acquire similar amount of nonlinear phase by increasing the pump

power. Practically, the beam distortion caused by the thermal lensing effect might

become a serious problem when the pump power is too high. Finally, Figure 3.19
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plots the local round-trip errors of the 6 operating points at a pump power of 8W.

The pulse transients live longer when a smaller cw laser beam waist is used. For the

20 ptm case, there is no sign of convergence after 3500 round-trips.
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Figure 3.18 Intracavity pulse energy vs. operating point at different pumping

powers.
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Figure 3.19 Convergence of local error for different operating points with a pump
power of 8W.

105



3.5.5. Cavity Dispersion

In this section, the influence of cavity dispersion on the laser performance is

studied. The dispersionless cavity (7W pump power, 23 gm waist size) analyzed in

the beginning of this section is also used here as a reference point for comparison.

We first compare the laser output spectrum with a net cavity GDD of -10, -5, -2 , 0,

and 2 fs2 and no high-order dispersion. Figure 3.20 and Figure 3.21 shows the

simulated transform-limited pulse width and intracavity pulse energy supported by

the cavity.
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Figure 3.20 Transform-limited pulse width vs. net cavity GDD
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Figure 3.21 Simulated intracavity pulse energy vs. net cavity GDD
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Figure 3.22 Simulated intracavity laser spectrum vs. net cavity GDD

As shown in Figure 3.22, the spectrum is broader as the net cavity GDD is

approaching from a negative value to 0. When the GDD becomes positive, a flat-

top spectrum is formed with two steep edges. These phenomena agree with the

theory of dispersion-managed soliton mode-locking. However, the existing theory

was not able to accurately explain the physical origin of the spectral peaks that are

often seen on both sides of the spectrum as shown in the simulation. When the net

GDD is closer to zero, the peaks become less dense. In the past, researchers used to

attribute these peaks to phase-matching resonances, but unfortunately the phase-

matching condition was not yet found. In facts, these spectral features often come

with highly-structured beam profiles. As an example, Figure 3.23 shows the

simulated laser beam profile as a function of wavelength from a cavity with a net

GDD of 0, -2, -5, and -10 fs2.
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Figure 3.23 Wavelength-dependent beam profile of a mode-locked beam from a
cavity with a net GDD of 0, -2, -5, and -10 fs2 .

The influence of third-order dispersion (TOD) on the laser spectrum is also

simulated. Figure 3.24 compares the spectra generated from a cavity with zero

GDD and a net cavity TOD of 2, 0, and -2 fs3. It can be observed that the presence

of TOD skews the laser spectrum. For a negative TOD, the peak wavelength shifts

to the short wavelength side; for a positive TOD, the peak wavelength shifts

towards the long wavelength side. Although the spectral peaks are still found in

both cases, the wavelength-dependent beam profile in Figure 3.25 shows very

different mode structures on both sides of the spectrum depending on the sign of

the applied TOD.
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Figure 3.24 Simulated intracavity laser spectrum for net cavity TOD of -2, 0 and 2
fs3. The net cavity GDD is set to f fs2.
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Figure 3.25 Wavelength-dependent beam profile of a mode-locked beam from a
cavity with a net TOD of 2 and -2 fs3.

3.5.6.Wavelength-dependent Beam Profile and Resonant
Condition

As discussed earlier, the output beam produced from an ultra-broadband laser

strongly depends on wavelength and is also affected by the cavity dispersion.

Figure 3.26 shows the typical beam profile measured from an octave-spanning,

Ti:sapphire ring cavity laser. Experimentally, the mode is found to be less
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structured if it is in the wavelength range where the cavity loss and dispersion are

small (e.g. A 700-900 nm). For the wavelength region with a higher output

coupling/loss or a larger dispersion (A - 600-700 nm and 900-1100 nm), higher-

order spatial modes are observed. For the region where the cavity is extremely

lossy (A < 600 nm and > 1100 in), the mode structure is determined by the single-

pass nonlinear effects inside the crystal. In this region, a typical ring structure

appears.

Figure 3.26 Measured beam profile at different wavelengths from a DCM-based
ring cavity Ti:sapphire laser

To analyze these mode structures and find the connection to the laser

spectrum, we numerically setup a laser cavity using the dispersion and reflectivity

calculated from the real mirror designs used in the experiment [36], [68]. The

cavity is operated at a nearly dispersion-free point by carefully adjusting the
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thickness of the BaF2 and fused silica in the cavity. The overall round-trip phase

from the cavity dispersion is shown in Figure 3.27.
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Figure 3.27 Cavity round-trip phase from dispersion

Similar features as in the experiment can be observed from the simulated beam

profile shown in Figure 3.28.
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Figure 3.28 Simulated wavelength-dependent spatial beam profile of the laser
beam from a DCM-based ring cavity Ti:sapphire laser
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Figure 3.29 compares the measured and simulated output spectrum of the

same laser. As shown in the plot, both spectra share a common feature of multiple

spectral peaks near 650nm and 1 100nm.
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Figure 3.29 Comparison of measured and simulated spectra from a DCM-based
ring cavity Ti:sapphire laser

The physical origin of the peaks can be explained by a general phase-

matching process between a soliton-like wave and a dispersive wave. In a mode-

locked laser, the circulating pulse only gains a fixed amount of nonlinear phase and

does not change its shape after every round-trip. However, unlike a real soliton

whose shape always maintains during the propagation due to the balance of SPM

and dispersion, the shape and the spectrum of the pulse travelling inside the laser

cavity change dramatically within each round-trip. Also, in addition to SPM and

dispersion, the soliton-like mode-locked pulse experiences loss and gain during the
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propagation. Since the loss, gain, and TOD per round-trip are usually small in the

steady-state, they can be treated as perturbations to a dispersion-managed soliton

whose dynamics is still dominated only by the SPM and dispersion. These

perturbations lead to radiation of dispersive waves that propagate around the cavity

with only linear effects like dispersion and diffraction. When the phase contributed

by the linear effects equals to the nonlinear phase experienced by the soliton wave,

the newly generated and existing dispersive waves will coherently add up, result in

resonantly enhanced peaks in the spectrum. The phase-matching process described

here is similar to the fiber-optic Cherenkov radiation using photonic crystal fibers

(PCFs). The only differences are that the soliton propagation is perturbed by TOD

of the PCF and there is one phase-matching condition since the PCF only supports

one spatial mode. The detailed explanation will be discussed in Chapter 5 of this

thesis.

In the solid-state laser cavity, since the Kerr effect not only induces

coupling between longitudinal modes via SPM but also the transverse mode via

self-focusing, the dispersive wave at each wavelength can be viewed as a

superposition of transverse modes. Even in the linear propagation regime, higher-

order modes experience more Gouy phase than lower-order modes, which leads to a

different phase-matching condition. Here we assume that the soliton is mainly in

the fundamental transverse mode. By requiring that the nonlinear phase 5NL is equal

to the linear phase contributed by the cavity dispersion OD and the round-trip Gouy-

phase shift louyRT, one can write the a general phase-matching condition for any

transverse mode assuming a radial symmetry

113



NL GouyRT + 2mr = D(2) (2 p + 1)0GouY RT

D = 0NL - + 2mir

(3.44)

(3.45)

According to eq. (3.45), the position of the phase-matching peaks becomes

predictable as shown in Figure 3.30.

10'

0.

-10.

-20 -

6-2 -
620

- -Simulated

I U

-- uca

Cav6 ha

630f 640l 650 660 670l 680l 690 700

Wavelength (nm)

Figure 3.30 (Top) Zoom-in of the resonant peaks near 650 nm of the simulated.
spectrum. (bottom) cavity round trip phase #Sfrom dispersion. The color plots on
the right show the beam profile corresponding to the phase-matched wavelengths.

3.5.7. Optimization of Laser Output Spectrum

According the phase-matching condition derived above, the fundamental mode can

be enhanced when the nonlinear phase is equal to the linear phase contributed by

the dispersion per round-trip. To demonstrate this idea, we artificially create a

phase profile that phase-matches the nonlinear phase for the wavelengths above

1050nm and below 650nm, as shown in Figure 3.31. The original cavity has a

dispersion of 0 fs2 GDD and -2 fs3 TOD and a constant output coupling of 3%.
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Figure 3.31 (Black solid) Round-trip phase from a cavity with 0 fs2 GDD and -2 fs3

TOD. (Red dashed) engineered phase for enhancing side-band generation using
the phase-matching concept

Figure 3.32 compares the simulated output spectra for the original and phase-

matched cavities. We first tested the case with phase-matching on the long

wavelengths side and then on both sides. As shown in the plot, the spectrum from

700 to 1000nm is nearly the same but the frequency components typically used for

lf-2f self-referencing are greatly enhanced.
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Figure 3.32 Simulated output spectra for (1) original cavity (Black), (2) cavity
with phase-matching phase in long wavelength wing (Red), and (3) cavity with
phase-matching phase in both wavelength wings (Red).

The wavelength-dependent beam profile plotted in Figure 3.33 confirms

that the fundamental mode is enhanced for these wavelengths. To further optimize

the laser, we gradually increase the output coupling from 3% to 100% for the

wavelength below 600nm and above 11 00nm and repeat the simulation. Figure 3.34

shows the simulated output spectra for each case. It is noticeable that the output

power for the lf-2f window drops when the output coupling increases. Also, since

the intracavity enhancement process is done by the coherent interference between

the existing wave in the cavity and newly-generated wave after each pass through

the crystal, the process will become weaker when the loss of the cavity is too high.

As a result, the beam profile will become less confined and eventually the structure

will be dominated by the self-focusing effect in the single pass of the crystal when

the output coupling becomes 100%. This is confirmed by the wavelength-

dependent beam profile plotted in Figure 3.35.
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Figure 3.33 Simulated wavelength-dependent spatial beam profile from a phase-
matched laser. Fundamental modes are generated for the 1f (1140nm) and 2f
(570nm) wavelengths.
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Figure 3.34 Simulated output spectra with different output coupling for the 1f
and 2f wavelengths
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Figure 3.35 Simulated wavelength-dependent spatial beam profile from a phase-

matched laser with different output coupling for the 1f and 2f wavelengths: (1)
10%, (2) 30%, (3) 50%, and (4) 100%. When the output coupling is higher, the

beam becomes more structured.
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Chapter 4

Gain-Matched Output Couplers

4.1. Motivations: Balance of pulse shortening and lengthening
effects

Passive mode-locking assisted by the Kerr nonlinearity [16] has been

experimentally proven to be a very successful technique for generating ultrashort

pulses from various broadband laser media. As discussed earlier, the mechanism

can be understood as an artificial saturable absorber that creates a self-amplitude

modulation (SAM) on the circulating intracavity pulses, which leads to pulse

shortening until pulse lengthening caused by gain-filtering keeps the balance.

Different from traditional saturable absorbers [69] whose response is typically

limited by the material characteristics, KLM utilizes an instantaneous lensing effect

that imposes no additional limitations on the pulse duration achievable beyond the

limitation set by the laser gain bandwidth and overall cavity dispersion. With an

ultra-broadband gain medium such as Ti:sapphire, generation of octave-spanning

spectra directly from a KLM laser cavity operating at different repetition rates

using double-chirped-mirror pairs (DCMPs) has been demonstrated [49], [50], [70],

[68], [71]. In order to overcome the strong gain-filtering effect, such lasers usually

demand high pump power, low output coupling, and critical cavity alignment which
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means that the laser can only be operated within a small range at the edges of the

cavity stability region where SAM is maximized. Although optimization of the

KLM strength has been studied both experimentally and theoretically by many

researchers [30], [52], [72-75], the current operating point for the ultra-broadband

version of these lasers suffers from many practical issues such as high mode-

locking threshold, low laser efficiency, less robust operation, and greatly reduced

beam quality. However, if there would be no or only strongly reduced net gain

filtering, which implies that the total cavity loss has the same spectral profile as the

gain, an arbitrary low KLM action could sustain short pulses covering the spectral

range where the intracavity dispersion is well-compensated. This also suggests that

mode-locking with less critical alignment, lower pulse energy, less self-focusing

and, therefore, improved beam quality can be expected.

4.2. Output Coupler Design

Creating an intracavity frequency-dependent loss has been demonstrated previously

in a Ti:sapphire regenerative amplifier with a thin angle-tuned etalon [76].

However, the etalon behaves as an additional lossy component that significantly

lowers the laser efficiency. Moreover, the spectral profile of the transmitted power

and phase cannot be controlled independently as they are predefined by the

interference nature and the thickness of the etalon, which makes it very challenging

to precisely match the laser gain profile over a large spectral range while not

introducing uncompensatable dispersion. As a solution to this problem, a new type

of gain-matched output coupler (OC) based on a multi-layer dielectric coating has
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been designed. Since dielectric coatings do have a high flexibility in design, the

presented technique provides a general solution as it can be adapted to lasers with

vastly different gain media. In this paper, the general idea is demonstrated with a

broadband dielectric gain-matched OC for a linear cavity Ti:sapphire laser

supporting sub-10fs pulses. Under these conditions, we found that mode-locking

can be initiated and run robustly with much improved beam quality for a pump

power just above the continuous-wave (cw) lasing threshold.
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Figure 4.1 (a) Gain profile of Ti:sapphire crystal (dashed black) and the designed
transmission (solid red) and group delay (dashed blue) of inverse-gain output
coupler; (b) Layer structure of the gain-matched output coupler design. The
layers are numbered from top (free-space) to bottom (substrate).

To derive the transmission profile for a gain-matched OC design, we start

from measuring the fluorescence spectrum of the Ti:sapphire crystal [77] and use a

rescaled version of it as the design goal in the coating optimization procedure. The

measured spectrum shows a typical Lorentzian profile with a center frequency of

375 THz and a full-width-half-maximum of 101 THz. In order to minimize the
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uncompensated dispersion introduced by the OC, we set the group-delay (GD) goal

of the design to be complementary to BaF2 of some to-be-determined path length,

which can be easily taken into account by changing the already present intracavity

BaF2 plate to a thicker one. The design procedure optimizes the thicknesses and

number of layers using the approach developed in [78]. Figure 4.1 (a) shows the

design goal and nominal transmission characteristics of the gain matched OC. It has

a peak transmission of 4% and a smooth GD that can be compensated by a 1.1 mm-

long BaF2 plate in the wavelength range of 600-1000 nm. Figure 4.1 (b) shows the

structure of the gain-matched OC consisting of 47 layers of SiO2/Nb 205 on a fused-

silica substrate. The impact of this design on the laser output was then first studied

numerically using the model developed in [45]. Simulations of the pulse dynamics

confirm that for a cavity with a gain-matched OC the modulation depth of the

effective saturable absorption could be decreased by half its initial value and stable

steady state pulses are still generated. With the previously used output couplers the

modulation depth could not be varied over such a large range without loss of pulse

stability. To further demonstrate it experimentally, the OC was fabricated and

tested in a commercial 85 MHz ultrabroadband Ti:sapphire laser (IdestaQE

Octavius-85M) in which three double-chirped-mirror pairs are used to compensate

the material dispersion of the 3.6m-long air path, the 2.2mm-long Ti:sapphire

crystal and three BaF2 plates including two adjustable wedges for dispersion fine-

tuning. Since the laser was originally equipped with a 1% OC that had only

negligible dispersion, the dispersion change due to the gain-matched OC is
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compensated by increasing the optical path length of BaF2 in one arm of the laser

cavity by 1.1 mm.

4.3. Characterization of Laser Performance

570 nm 900 nm 1140 nm No Filter

(a)

Figure 4.2 Measured beam profile of mode-locked Ti:sapphire laser when
operated at (a) center of stability region with gain-matched output coupler and
(b) edge of stability region with traditional output coupler without an
interference filter and after 10 nm filters centered at 570 nm, 900 nm, and 1140
nm.

We first observed the cw-behavior of the laser and noticed that it lases at

one or more wavelengths simultaneously in a range over 200 nm, which implies

that a broadband, flat net-gain is successfully generated by the OC. By slightly

tapping the end mirror, mode-locking is initiated easily, even so the cavity is at or

near the center of the stability region where the SAM is small. The mode-locking is

very robust even when the laser is directly exposed to free-space. Figure 4.2 (a)

shows the mode-locked beam profile in this configuration both without any

interference filter and after 10-nm filters centered at 570 nm, 900 nm, and 1140 nm

123



under 5.5 W pumping. Compared to the original laser without compensated gain

filtering, the new design has improved beam quality with nearly no wavelength

dependence across a range of frequencies spanning one octave. Moreover, there is

no noticeable change in beam profile as we change the pump power. Figure 4.2 (b)

shows the typical beam profiles at the corresponding wavelengths from the original

laser in which frequency-dependent beam distortions [26] due to strongly coupled

nonlinear effects and spot-size changes can be observed.
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Figure 4.3 (a) Intracavity and (b) output optical spectrum generated at different
pump power levels.

We also measured several important laser parameters to characterize its

performance in such a low-SAM region. Since our test laser has a relatively high

intracavity loss due to the scattering from many material surfaces, the cw lasing

threshold is about 2.85 W. However, we are able to initiate mode-locking at a pump

power of 2.9 W when the cw output power is only 7 mW. Once mode-locked, we

could further decrease the pump power to 2.5 W and still generate sub-10 fs pulses.
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Figure 4.3 shows the optical output spectrum and the corresponding intracavity

spectrum calculated with the measured output coupling at different pump levels. As

shown in the graph, the laser has only weak pump power dependence for the center

portion of the output spectra. However, as the pump power increases, the

intracavity pulse energy also increases, which induces stronger self-phase

modulation that broadens the spectra and shortens the pulses. Due to the output

coupling profile, the pulses undergo spectral filtering by the OC, so that the output

pulse duration is longer by 5-10% percent in comparison with the intracavity pulse

duration. Figure 4.4 (a) shows the calculated output and intracavity pulsewidth

based on the measured spectrum assuming transform-limited pulses. As also plotted

in Figure 4.4 (a), the measured output power from the gain-matched OC does not

change significantly with increased pump power, since the output coupling profile

produces reduced average loss seen by the intracavity pulses with increasing

spectral bandwidth. Such bandwidth-dependent output coupling also explains the

large difference between the cw and mode-locked output power (7 mW vs. 108

mW) near the lasing threshold (2.85 W). The calculated intracavity pulse energy

based on the average output coupling is plotted as a function of pulsewidth in

Figure 4.4 (b). The product of intracavity pulse width and pulse energy is almost

constant indicating that optical soliton formation is the major pulse shaping process.

125



8.0 180

7.5- u~160

7.0 A140

6.5 120

A 100
5.5 80-

5.0 *Output AA

A ntracavity ~ A60

2.5 3.0 3.5 4.0 4.5 5.0 5.5
Pump Power (Watt)

(a)

8.0-

7.5

7. -\Scaled 1/(pulse energy)

36. 0 -

5.5-

5.0 -

4.5 4 1
40 4 50 55 6

Pulse Energy (nJ)
(b)

Figure 4.4 (a) Intracavity and output pulsewidth at different pump power levels
(left axis) and the corresponding output power (right axis). (b) Calculated
intracavity pulse energy vs. intracavity pulsewidth. Dashed curve shows
pulsewidth that is inversely proportional to the pulse energy.

4.4. Summary

In conclusion, we have demonstrated that the use of a gain-matched output

coupler greatly reduces the nonlinearity required for ultra-broadband mode-locking.

Already at pump power levels close to the cw lasing threshold it is possible to

initiate robust mode-locking and generate <8 fs output pulses from Ti:sapphire

lasers with excellent beam quality operating in the center of its stability range. We

believe this technique can be applied to many other lasers with widely different

gain media to extract pulses covering the full gain spectrum of the laser medium

with minimum saturable absorber action and at high average output power.
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Chapter 5

Application: Fiber-Optic Cherenkov
Radiation in the Few-Cycle Regime

5.1. Motivation and Application of Broadband Visible
Wavelength Generation

Fiber-optic Cherenkov radiation (FOCR), also known as dispersive wave

generation or non-solitonic radiation, describes the radiation from a fiber-optic

soliton when perturbed by higher-order fiber dispersion [79-83]. This intriguing

phenomenon has emerged as a wavelength conversion technique to generate

significant radiation in the visible-wavelength range, where mode-locked

femtosecond lasers are not available [84-88]. First theoretically studied in 1986,

FOCR has attracted renewed research interest in company with the advent of

photonic crystal fibers (PCFs) whose properties can be flexibly engineered [89].

For example, controlling a PCF's hole-size and inter-hole spacing results in two

zero-dispersion wavelengths (ZDWs) which in turn give rise to two FOCR bands

[90]. As a matter of fact, deliberate designs allow the presence of three ZDWs [91];

such a PCF would accommodate a variety of novel phenomena arising from phase-

matched interactions between soliton and the resulting FOCR [92]. To date, most of

FOCR research in PCFs is carried out in the context of supercontinuum generation
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since FOCR extends the spectrum towards shorter wavelength [84], [85], [93-98].

Supercontinuum generation requires that the pump pulse propagate in the

anomalous dispersion regime and form a higher-order soliton. To achieve a SC

without substantial spectral gaps, the pump's center wavelength needs to be close to

the fiber's ZDW so that the generated FOCR merges with the spectral components

building up from other nonlinear effects. As this wavelength separation increases,

FOCR manifests as an isolated spectrum that corresponds to a wavelength up-

conversion or down-conversion of the pump depending on the sign of the third-

order dispersion [86], [87], [90], [99], [100]. The up-conversion FOCR is of

particular importance due to its capability of converting near-infrared (NIR)

ultrafast lasers (e.g., Ti:Sapphire laser) to their counterparts in the visible

wavelength range. The resulting ultrafast sources are desired in many applications,

such as multi-photon microscopy, fluorescence spectroscopy, and optical coherence

tomography. It is widely believed that FOCR generates resonant, narrowband (i.e.,

-10 nm in the visible wavelength range) spectrum with relatively low conversion

efficiency (-10%). These two drawbacks have hampered many real-world

applications that demand high photon flux with a broadband coverage. Recently,

we have explored the dependence of these two quantities (i.e., bandwidth and

conversion efficiency) on the NIR pump-pulse's parameters (such as duration and

pulse energy), and have demonstrated FOCR featuring high efficiency (>40%),

broadband spectrum (>50 nm), and low threshold (<100 pJ for pulse energy) [101].

Such a dramatic improvement results from using few-cycle pump pulses to drive

the radiation.
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Generation of few-cycle laser pulses and their applications for investigating

ultrafast processes in physics and chemistry have received a great deal of research

attention [102]. While FOCR excited by few-cycle pulses has been pursued for

different purposes (e.g., investigation of soliton-trapped FOCR [88] and synthesis

of single-cycle pulses [103]), a thorough and detailed study of FOCR emphasizing

bandwidth and conversion efficiency in this new regime is yet absent. In this

chapter, the FOCR in the few-cycle regime will be theoretically and experimentally

investigated.

5.2. Theory of Fiber-Optic Cherenkov Radiation

In the FOCR process, three characteristic propagation scales are defined: 1) initial

buildup stage in which FOCR acquires most (>90%) of its energy; 2) quasi-

independent propagation with minimal interaction with its host soliton; and 3)

strong interaction with the host soliton that is decelerated by stimulated Raman

scattering (SRS). Since the FOCR spectrum splitting and trapping that take place in

the 3rd stage has been well studied, we rather focus on the first two stages.

5.2.1.Phase-matching and the Concept of Coherence Length

Propagation of an ultrashort pulse inside an optical fiber is well modeled by the

generalized nonlinear Schr6dinger (GNLS) equation [104]

aA+ i n-I A~ i ,)2e

+Ip -- A=ir 1A(z,T)(R(t')|A(z,T - (5.1)
aZ y n! 

(5.1

where A(zt) represents the input pulse's amplitude envelope. , = is
8euy

evaluated at the central frequency coo of the input pulse. ris the nonlinear parameter
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of the fiber and p8(a)) the fiber's dispersion curve. R(t) describes both the

instantaneous electronic and delayed molecular responses (i.e. SRS) of fused silica,

and is defined as

R(t) = (1-fR )6(t) +fR [(fa + fc)h (t) +fbh, (t)] (5.2)

Typical values offR,fa,fb, andfc are 0.245, 0.75, 0.21, and 0.04, respectively [105].

Isotropic Raman response ha(t) and anisotropic Raman response hb(t) are defined as

h, (t) = (rf +r )/(rjr )exp(-t/r 2)sin(t/r) (5.3)

hb(t) = 0(t)(2r - t)/r. exp(-t /rb) (5.4)

where r, 2 , and mo have values of 12 fs, 32 fs, and 96 fs, respectively. If higher-

order dispersion (i.e. /,, , n>2 ), self-steepening, and SRS are absent, equation

under /2< 0 supports fundamental soliton solution with propagation constant

Ai,(co)=A#+4(w - o)+ Q-fR)O1 /2 (5.5)

The peak power Po and full-width-half-maximum (FWHM) duration To are related

by the soliton area theorem, i.e.,

(1 - f,)Ao --3- 1[f2,T2 (5.6)

Optical soliton-a non-dispersive pulse with the propagation constant p,(o)-is a

consequence of interplay between anomalous dispersion and self-phase modulation

(SPM). Higher-order dispersion exerts perturbation onto a soliton and enforces it to

shed away energy carried out by a dispersive pulse; the pulse travels with a

propagation constant which coincides with the fiber's dispersion curve p(co).

Evidently, two sources contribute to the FOCR at position z+Az: (1) the FOCR at z,

which propagates Az distance and acquires an extra phase due to fiber dispersion;
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and (2) the new radiation emitted by the soliton as it moves from z to Az.

Depending on their phase difference, these two fields add up constructively or

destructively. If the phase-matching condition, i.e. p(o)=p8(o), is satisfied for any

frequency, the two fields stay in-phase all the time and the generation of FOCR is

maximized. In reality, however, the phase-matching condition only holds at a

certain discrete frequencies. This is owing to the fact that ,(co) is a linear function

of frequency (that is why soliton is non-dispersive) while /o) could be highly

oscillatory for specially engineered dispersion. These phase-matched frequencies

grow up monotonically along the propagation due to constructive interference. In

contrast, non-phase-matched frequencies experience destructive interference and

thus are strongly suppressed given enough propagation distance. Such a phase-

sensitive mechanism explains why FOCR is widely regarded as a resonance process

and forms a narrowband spectrum-a popular image one bears in mind. To

describe phase-mismatch caused spectral narrowing, we introduce a new quantity

Le -coherence length-defined as

IM)= ;/#(0)-A 0)| (5.7)

Plugging in the expression of the soliton's propagation constant, after a little math,

the coherence length can be expressed as a function of fiber's dispersion and input

soliton peak power,

#(o)-,( (-) (1- f) (5.8)
.n22 n! 2

Apparently Le characterizes the fiber length where a ;r phase-slip accumulates

between the CR radiated by a soliton located at z+Le and the radiation that emerges
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at z and then propagates to z+Le. A destructive interference between these two

radiations diminishes the efficient power buildup of a FOCR.

It is noteworthy that the physical picture behind FOCR is quite universal in

nonlinear optics, especially in illustrating -initiated nonlinear phenomena, such as

second-harmonic generation, sum-frequency generation, difference-frequency

generation, etc. For example, when driven by femtosecond pulses, optical

rectification-a degenerate difference-frequency generation-gives rise to

generation of broadband spectrum located at terahertz regime. In fact, we have

borrowed the concept of coherence length from the terahertz community. In the

context of ultrafast terahertz generation, coherence length quantifies the matching

between the terahertz pulse's phase-velocity and the optical pulse's group velocity

[106]. This velocity-matching is intrinsically equivalent to phase-matching required

for efficient three-wave (i.e. terahertz frequency and two optical frequencies for

optical rectification) mixing in a J') nonlinear process.

For a J') nonlinear process, it is the thickness of the nonlinear crystal that

largely determines phase-matching bandwidth. Thus a thinner crystal is desired to

achieve broader bandwidth at the cost of a decrease in conversion efficiency. Since

FOCR shares a similar physical mechanism, one may ask whether such a tradeoff

between bandwidth and conversion efficiency also exists for FOCR. Answering this

question necessitates numerically solving the GNLS equation.

5.2.2.Continuum generation in the few-cycle regime

132



To investigate the effect of coherence length, we perform simulations for a

fundamental soliton propagating in a PCF. The mode-field diameter of the PCF is

1.2 pm. The group-velocity dispersion shown in Figure 5.1 indicates that the PCF

has a ZDW at 0.71 pm. Also plotted in the same figure are the coherence lengths

for three fundamental solitons with different FWHM duration (i.e. To) or center

wavelength (i.e. e) which are specified in the legend of Figure 5.1. These three

curves share similar features:

100 7_6_6_6_ 100

- T0=20fs, X0=0.754m

E -OT -1Ofs, X =O.75 m
5e0 '0 80

- T =10fs, 0 =0.8 m E

0 -60
(a)

.5 -50- -40C
0 d)
O0
0. U
: -100 :900

C) L con

-150 0f1LW.5 0.6 0.7 0.8 0.9 1
Wavelength [pm]

Figure 5.1 The PCF's group velocity dispersion and calculated coherent length for
three fundamental solitons with different peak power or center wavelength (see
the legend). Le. labels the continuum length for the blue curve.
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1) The coherence length goes to infinity at the phase-matching wavelength

which is shorter than the soliton center wavelength due to a positive third-

order dispersion (i.e. 3s(coo)>O).

2) Similar to a 2) nonlinear process, the FOCR phase-matching bandwidth

depends on propagation distance. At the vicinity of the phase-matching

wavelength, which is practically useful, the phase-matching bandwidth

decreases with the increase of propagation distance.

3) Below a certain distance Leon (we refer to it as continuum length hereafter;

see the label in Figure 5.1 as an example), phase mismatch <Iris achieved

for a continuous, broad wavelength range covering hundreds of nanometers.

For shorter soliton duration (equivalent to increasing soliton peak power) or

increasing soliton center wavelength blueshifts the phase-matching

wavelength while the continuum length decreases accordingly.

The broad phase-matching bandwidth around the continuum length strongly

suggests that a continuum might build up spanning between the phase-matching

wavelength and the soliton center wavelength. To verify such a prediction, we take

each of the three fundamental solitons as the input and numerically solve the GNLS

equation. Figure 5.2 and Figure 5.3 record the resulting spectral evolution for these

three solitons propagating up to 10 cm; the spectra normalized to their peak power

at each position are shown in logarithm scale. Despite calculated for different

inputs, the corresponding spectra evolve following a similar pattern:
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Figure 5.2 Spectrum evolution along propagation distance for
solitons with different FWHM duration. The spectrum intensity
logarithm scale. The double-arrow line marks the continuum that
phase-matching wavelength and the soliton center wavelength.
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Figure 5.3 Spectrum evolution along propagation distance for fundamental
solitons with different center wavelength. The spectrum intensity is shown in
logarithm scale. The double-arrow line marks the continuum that connects the
phase-matching wavelength and the soliton center wavelength.
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1) As the soliton enters the PCF, higher-order dispersion together with other

nonlinear effects (e.g., self-steepening and SRS) initiates the FOCR, which

primarily extends to the shorter wavelength as predicted by the coherence

length shown in Figure 5.1.

2) The blue edge of the radiation eventually reaches the phase-matching

wavelength. Meanwhile, a continuum (marked by the double-arrow line in

each figure), spanning between the soliton's center wavelength and the

phase-matching wavelength, forms at the distance close to the calculated

continuum length Lc..

3) At the distance of about 2Le,, the continuum nearly vanishes and an

isolated spectrum builds up which stays almost unchanged for further

propagation.

4) The phase-matching wavelength (i.e. the FOCR peak wavelength) obtained

by numerically solving the GNLS equation is always shorter than predicted

by equation (5.8). This discrepancy arises from the spectral recoil effect: to

preserve the entire-spectrum's center-of-mass, the emitted FOCR red-shifts

the soliton spectrum, which in turn emits new FOCR at even shorter

wavelength [95]. Consequently, the resulting FOCR is further blue-shifted

with a broader bandwidth compared to the prediction from equation (5.8).

Generation of continuum highly depends on input soliton's duration. A

comparison between Figure 5.2 reveals that using a shorter, few-cycle pulse as the
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input favors continuum generation accompanied by higher power conversion

efficiency and better spectral flatness. For most reported FOCR experiments, which

exploit input pulses of -100-fs duration, the continuum generation is extremely

weak and thus not observed.

5.2.3.Higher conversion efficiency in the few-cycle pulse
regime

Results in Figure 5.1 to Figure 5.3 confirmn the physical picture described in section

2; that is, FOCR at a propagation distance z+Az includes two parts: the radiation

accumulated before z and new radiation as the soliton travels from z to z+Az. Note

that the new added radiation AECR(co) is proportional to Az as well as to the

soliton's spectral amplitude at a. Therefore, a soliton with shorter duration extends

more in the spectral domain which enhances FOCR generation, leading to a higher

conversion efficiency as indicated by the comparison in Figure 5.2.

The simulation performed in last section has assumed fundamental solitons

as the input, which possess low pulse energy. For example, the soliton centered at

0.75 pm with 20-fs duration is only 12 pJ. The typical pulse energy in FOCR

experiments is normally at -1 nJ level. In this scenario, the input hyperbolic secant

pulse becomes a Nth-order soliton rather than a fundamental soliton; the soliton

order N is given by

N = VF0.32(1- f, -) fT 2/j2| oc JE T , (5.9)

where Eo is the soliton's energy. When perturbed by higher-order dispersion and

SRS, a Nth-order soliton becomes unstable and breaks into N fundamental solitons

137



with different peak powers and durations [107]. The resulting jth (O<j<N+1)

fundamental soliton has the peak power P;, duration T, and energy Ej given by

P = PO(2N - 2j+1)2 IN 2  (5.10)

T = T 1(2N - 2j+1) (5.11)

Ej =EO(2N-2j+1)/N 2  (5.12)

While all these fundamental solitons participate in the FOCR, their contributions

differ dramatically. The first (corresponding to j=1) fundamental soliton, which

possesses the shortest duration and highest peak power, has the strongest spectral

amplitude at a given frequency and thus dominates the FOCR yield [98]. The

coherence length may be extended to the following expression which is also valid

for higher-order soliton as an input:

71*

(-)" A, (WO__ (2N -1) 2 (-_y 0f- (5.13)
In2 n! 2N

Equation (5.9) indicates that, if soliton energy Eo is fixed, soliton number N

decreases with a reduction of soliton duration To. A less N results in a larger Pj, a

shorter T, and a larger Ej , which in turn lead to a stronger FOCR carrying more

shed energy. In other words, using a shorter soliton as the excitation pulse improves

FOCR conversion efficiency.
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Figure 5.4 Dependency of FOCR conversion efficiency on input pulse duration for
different pulse energy. An optimum duration in maximizing conversion efficiency
exists for a given input pulse energy; the optimum duration becomes shorter
with increasing pulse energy. The orange dashed line indicates the duration that
corresponds to a pulse of 10 cycles centered at 0.8 sm.

From above analysis, one might speculate that, with input pulse energy

fixed, conversion efficiency may monotonically increase as the input pulse duration

decreases. As a matter of fact, this is not true. It has been well known that, if To is

so small that the resulting soliton number is much less than 1, fiber dispersion

overtakes the nonlinearity and no soliton can form. As a result, FOCR is absent.

Therefore there must be an optimum pulse duration that maximizes conversion

efficiency for a given input energy. Figure 5.4 plots dependency of FOCR

conversion efficiency on input pulse duration for different pulse energy. Evidently,

an optimum duration in maximizing conversion efficiency exists for a given input

pulse energy, and it becomes shorter with increasing pulse energy. More

specifically, the optimum duration decreases from 18 fs to 12 fs as the input pulse

duration increases from 80 pJ (red line with diamond marker) to 150 pJ (green line
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with square marker); the conversion efficiency at the optimum duration goes up

from 10% to 24%. For a given duration, increasing input pulse energy always

improves conversion efficiency. The dashed, orange line marks the duration

corresponding to 10 carrier oscillation cycles at 0.8 pm. The fact that the optimum

duration is less than 10 optical cycles even for a moderate energy level (80 pJ - 150

pJ) indicates that FOCR in the few-cycle regime is highly desirable to achieve

higher conversion efficiency and stronger FOCR pulse. The soliton order ranges

1.5 - 2 at the optimum duration.

5.2.4. Broader bandwidth in the few-cycle regime

In the physical picture that qualitatively describes FOCR generation and evolution,

the emitted FOCR linearly propagates inside the fiber, only experiencing fiber

dispersion. Such a model is valid when the conversion efficiency is low so that the

resulting weak FOCR pulse creates negligible nonlinear effects. Apparently this is

not the case for FOCR in the few-cycle regime featuring high conversion efficiency.

In this new regime, FOCR pulse may carry -40% of the total input energy [101],

strong enough to cause nonlinear effects (e.g., SPM) which in turn reshape the

FOCR pulse and broaden its optical spectrum.
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Figure 5.5 Evolution of FOCR conversion efficiency and spectral bandwidth along
propagation distance for a 10-fs hyperbolic secant pulse centered at 0.8 prn with
300-pj pulse energy. Insets (a) and (b) plot spectra corresponding to the
maximum and minimum bandwidth. Further propagation of spectrum recorded
in (b) up to 2 cm results in the FOCR spectrum shown as the blue, solid line in
inset (c). If we propagate only the FOCR spectrum (i.e., spectrum in 0.4-0.6 pm),
the corresponding spectrum at 2-cm distance is denoted by the red, dashed curve.
See the text for details. Note that the spectra are shown in linear scale.

Figure 5.5 plots the evolution of FOCR conversion efficiency and spectral

bandwidth along propagation distance for an input 10-fs pulse of hyperbolic secant

shape centered at 0.8 pm with 300-pJ pulse energy. The spectral bandwidth is

FWHM of the optical spectrum located in the range of 0.4-0.7 pm. The spectra at

0.8 mm, 4 mm and 20 mm are presented as inset (a)-(c), respectively. A

comparison of FOCR spectral bandwidth reveals a three-stage evolution, which

normally does not coincide with the aforementioned three-stage process in terms of

conversion efficiency:
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1) Stage 1 (0 - 0.8 mm): rapid growing of spectral bandwidth due to continuum

generation as a result of large phase-matching bandwidth. At the end of this

stage, the FOCR continuum partially overlaps with the red-shifted soliton

spectrum, forming a smooth supercontinuum (spectrum in inset (a) of

Figure 5.5) which spans more than one octave. The spectrum between 0.4

and 0.7 pm accounts for -20% of the total input energy.

2) Stage 2 (0.8 - 4 mm) mm: fast narrowing of the spectrum within 0.4-0.7 pm

due to the reduced phase-matching bandwidth as propagation proceeds

beyond the coherence length. The continuum's short-wavelength edge

concentrates more and more energy, while the longer-wavelength side

diminishes during propagation, leading to the formation of an isolated

FOCR spectrum. This stage ends up with a FOCR spectrum of 23 nm

bandwidth, which carries 35% of the total input energy. As the spectrum in

inset (b) of Figure 5.5 shows, the narrowband FOCR spectrum and its host

pumping spectrum are well separated with a spectral gap of -300 nm. The

phase-matching wavelength (i.e. the FOCR peak wavelength) obtained by

numerically solving the GNLS equation is always shorter than predicted by

equation (14). This discrepancy arises from the spectral recoil effect: to

preserve the entire-spectrum's center-of-mass, FOCR red-shifts the soliton

spectrum, which in turn emits new FOCR at even shorter wavelength [9].

Consequently, the resulting FOCR is further blue-shifted with a broader

bandwidth compared to the prediction from equation (5.13).
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3) Stage 3 (4 - 15 mm): gradual broadening of the isolated FOCR spectrum up

to 53 nm. The constant conversion efficiency in this stage indicates that

there is no further energy exchange between the isolated FOCR spectrum

and the residual pump. In the time domain, the residual pump pulse travels

faster than the FOCR pulse. Their temporal separation increases during

propagation and thus the nonlinear interaction between them diminishes

continuously. To verify that the FOCR pulse propagates almost

independently from the residual pump pulse in this stage, we seed the

GNLS equation with the FOCR spectrum at 4-mm distance (i.e. the isolated

spectrum within 0.4-0.6 pm in inset (b) of Figure 5.5), and propagate it for

16 mm; the resulting spectrum is plotted in inset (c) as the red, dashed curve.

Clearly, the two spectra perfectly overlap on the short wavelength side

(0.43-0.47 pm) and deviate slightly on the long wavelength side (0.47-0.55

pm) while they possess the same energy (i.e., integrated area under both

curves). The deviation arises from cross-phase modulation (XPM) exerted

by the residual pump pulse whose trailing tail overlaps with the FOCR

pulse's leading tail. Propagating in the normal dispersion region, the FOCR

pulse develops positive chirp; that is, its leading tail corresponds to the

longer wavelength. That explains why such XPM only modifies the FOCR's

long wavelength side, leaving the other side unaffected. The results shown

in inset (c) also indicate that main mechanism for the FOCR spectral

broadening from 23 nm to 53 nm is attributed to the nonlinear effects (e.g.,

SPM and self-steepening) caused by the FOCR pulse itself. Apparently, a
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higher FOCR conversion efficiency-a consequence when pumped in the

few-cycle regime-results in a stronger FOCR pulse which facilitates the

broadening process.

Note that the concept of coherence length explains the buildup of the FOCR

in the first two stages. In the third stage in which CR emission stops, coherence

length is not meaningful since interaction between CR and the pump pulse is absent.

As for further propagation beyond 20 mm, part of the residual pump develops into a

soliton (hereafter, we refer it as Raman soliton) which continuously shifts towards

longer wavelength driven by SRS, and as a result, slows down. Eventually the

FOCR pulse catches up with the decelerating Raman soliton; their strong nonlinear

interaction splits the FOCR spectrum into two well-separated parts. The shorter

wavelength part will be captured by the Raman soliton. Detailed studies on FOCR

spectral splitting and trapping have been presented in Ref. [88], [101].

5.3. Simulation and Experimental results

To be consistent with experimental results, we simulated an optical pulse centered

at 0.8 pm propagating inside a photonic crystal fiber [(PCF) NL-1.8-710, Crystal

Fibre A/S]. As the group velocity dispersion curve in Figure 5.6 shows, the fiber

exhibits zero dispersion at 0.71 m. Also plotted in the same figure is the optical

spectrum after 2 cm propagation of a hyperbolic-secant pulse with 10 fs FWHM

and 300 pJ energy. Clearly, CR has developed an isolated spectrum centered at 0.5
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pm determined by the phase-matching condition. Spanning more than 60 nm, this

isolated spectrum carries about 40% of the total input power.
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Figure 5.6 PCF dispersion and pulse spectrum after propagating a 300 pj, 10 fs
pulse through 2 cm PCF and

Figure 5.7 illustrates CR efficiency as a function of input pulse energy for three

different pulse FWHM durations. We consider the power distributed between 0.4

pm and 0.6 pm being carried on by CR because the isolated CR spectrum appears

in this region for all the simulated cases. The CR efficiency is simply defined as the

portion of total and a tuning range over 100 nm. Cherenkov radiation Excitation

sources: 85MHz and 1GHz Ti:sapphire lasers input power converted into the CR

spectrum. Three curves in Figure 5.7 corresponding to 10 fs, 50 fs, and 100 fs

follow the same trend: the CR efficiency grows drastically with the increment of

input pulse energy and tends to saturate at higher energy levels. These simulations

immediately suggest that CR can be a highly efficient (>40%) process if 10 fs level

pulses are employed. The broader bandwidth (>60 nm) indicated by Figure 5.6

145



constitutes another benefit brought from switching to shorter excitation pulses.

These two merits (i.e., high efficiency and broad band) are of particular importance

for applications that require larger bandwidth out of relatively weak ultrafast

sources.
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Figure 5.7 (b) CR efficiency versus input pulse energy for three FWHM durations
of the input pulse: 10 fs, 50 fs, and 100 fs.

Guided by the simulation, we have performed a series of experiments on CR

from NL-1.8-710 PCF pumped by a homebuilt Ti:sapphire laser operating at 85

MHz repetition rate with -10 fs pulse duration. Because the fiber exhibits slight

birefringence, we use an achromatic half-wave plate to align the input pulse

polarization and ensure a linearly polarized output. The input power is adjusted

with a neutral-density filter wheel inserted into the beam path. The dispersion of the
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neutral-density filter, the achromatic half-wave plate, and the coupling lens to the

fiber is compensated by 10 bounces on double-chirped mirrors [33-35]. Each

bounce provides -60 fs2 group-delay dispersion. The PCF output is collimated and

sent into an optical spectrum analyzer (OSA) or a power meter. To reveal the

evolution of CR along the propagation distance inside the fiber, which has not been

experimentally studied before, we coupled 300 pJ pulses into PCFs of different

lengths and recorded the corresponding spectra in Figure 5.9. The results suggest

three evolution stages corresponding to three fiber length scales: (i) CR within

several millimeters, (ii) CR spectral broadening due to self-phase modulation

within a few centimeters, and (iii) blueshift and splitting of CR's spectrum due to

the decelerating Raman soliton, which normally occurs beyond several centimeters

propagation distance.

The location of CR in the first stage is governed by the phase-matching

condition [93]:

2 (5.14)

where OCR and op are the central frequencies of CR and the input NIR pulse. $n

represents the nth order derivative of the propagation constant taken at the

frequency o,. y and P, denote the fiber nonlinear parameter and the pulse peak

power, respectively. The diamond-marked blue curve in Figure 5.8 illustrates the

calculated CR location as a function of the input pulse wavelength, assuming a 300

pJ input pulse of 10 fs length. As the input pulse centers at 800 nm, the curve

predicts the CR to be located at 500 nm, in agreement with our experimental
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observation [the curve labeled with 4 mm in Figure 5.9]. For comparison, the case

neglecting nonlinear phase contribution (i.e., Pp = 0) is also plotted as the circle-

marked green curve.
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Figure 5.8 Phase-matching condition for CR and group-velocity matching. The
matching points between the CR pulse and Raman soliton corresponding to 15
cm and 74 cm PCF are marked, respectively, to illustrate the trapping process.
Inset shows the wavelength-dependent group-velocity normalized to the light
speed in vacuum.
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Figure 5.9 Evolution of FOCR spectrum with increased PCF length, labeled as 2
mm, 4 mm, 2 cm, 15cm, and 74 cm, respectively. The input pulse energy is fixed
at 300 pj. Inset shows the laser spectrum coupled into the fiber (i.e., the optical
spectrum at the beginning of the PCF).

Figure 5.9 records the FOCR spectra generated by three PCFs with different lengths:

2 mm, 4 mm, 2 cm, 15 cm, and 74 cm; the input pulse energy coupled into these

fibers is fixed at 300 pJ. While the coupled spectrum [inset in Figure 5.9] is not of

hyperbolic shape, the experimental results well reproduce the main features of the

three-stage evolution discussed before:

1) As expected for the case of a 2-mm PCF, a broadband continuum develops

at the pump's short wavelength side-a signature for the first stage.
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2) At the output of the 4-mm PCF, a narrowband (20-nm FWHM), isolated

FOCR spectrum builds up; the resulting spectral recoil pushes the residual

pump spectrum toward longer wavelength [see Fig. 1(d)]. The experimental

FOCR spectrum is close to the theoretical prediction [inset (b) in Figure 5.5]

in terms of FWHM bandwidth (20 nm vs. 23 nm) and spectral shape.

3) Emanating from the 2-cm PCF, the narrowband FOCR spectrum broadens

to 50 nm due to its nonlinear propagation. SRS continuously red-shifts the

residual pump spectrum, from which a Raman soliton gradually emerges.

Before red-shifting to 1.05 pm, the Raman soliton travels faster than the

FOCR pulse centered at 500 nm; no interaction exists due to the large

temporal separation. The FOCR pulse carries -40% of the input power.

4) With further propagation, the Raman soliton continues shifting towards

longer wavelength and slows down. As the FOCR pulse eventually catches

up with the decelerating Raman soliton, the evolution enters the fourth stage

in which the Raman soliton traps part of the FOCR spectrum [the curve

labeled with 15 cm in Figure 5.9]. Due to the continuous red-shifting of the

Raman soliton, the group-velocity matching forces the captured FOCR

spectrum to shift towards shorter wavelength accordingly. As a result, the

FOCR spectrum splits into two well-separated parts [the curve labeled with

74 cm in Figure 5.9].

It is worth noting that the CR spectrum at the first several millimeters of the

PCF manifests as a pulse about 15 fs long in the time domain. Self-phase
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modulation experienced by such a short pulse during the second stage significantly

broadens the CR spectrum and reshapes it into a rectangular shape [the curve

labeled 2 cm in Figure 5.9] - a characteristic feature attributed to the interaction

between self-phase modulation and normal dispersion. The large normal dispersion

quickly stretches the pulse to -1 ps long within several centimeters of propagation

distance; self-phase modulation that is proportional to the pulse peak power

becomes minimal. The spectrum bandwidth stays nearly constant until entering the

next stage.

Also in the second stage, a Raman soliton forms at the long wavelength and

redshifts, driven by stimulated Raman scattering. The interaction between the CR

pulse and the Raman soliton relies on their group velocities [88], [94]. The inset of

Figure 5.8 plots the wavelength dependent group velocity defined by the fiber

dispersion. Such a quasi-parabolic curve permits two wavelengths matching the

same group velocity. The non-marked, red curve in Figure 5.8 illustrates this group-

velocity governed wavelength matching. Apparently, before red-shifting to 1:05 jim,

the Raman soliton travels faster than the CR pulse centered at 500 nm; no

interaction exists due to the large temporal separation. With further propagation, the

Raman soliton continues shifting toward the longer wavelength and, therefore,

slows down. As the CR pulse eventually catches up with the decelerating Raman

soliton, the evolution enters the third stage, in which the Raman soliton traps part of

the CR spectrum [the curve labeled with 15 cm in Figure 5.9]. Because of the

continuous red-shifting of the Raman soliton, the group-velocity matching forces

the captured CR spectrum to shift toward the shorter wavelength accordingly. As a
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result, the CR spectrum splits into two well-separated parts [the curve labeled 74

cm in Figure 5.9]. The two circles on the group-velocity matching curve in Figure

5.8 denote the matched wavelengths for the Raman solitons generated in PCFs of

15 cm and 74 cm, respectively. These group velocity matched wavelengths are

identified by the arrow pairs in Figure 5.9. The theoretical prediction and the

experimental observation agree extremely well on the wavelength position of the

trapped CR spectrum.
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Figure 5.10 Evolution of CR and Raman solitonwith increased pulse energy for 15
cm PCF.

The phase-matching condition implies that the CR wavelength depends on

the input pulse peak power (or input pulse energy when the pulse duration is fixed).

Comparing the circle-marked green curve (phase-matching with nonlinear-phase

contribution) with the diamond-marked blue curve (phase-matching neglecting

nonlinear phase) in Figure 5.8 indicates that the CR locates at a shorter wavelength

as we increase the input pulse energy. To verify this prediction, we adjusted input



pulse energies coupled into a 15 cm PCF and recorded the spectra as shown in

Figure 5.10
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bandwidth of CR and Raman soliton versus input pulse energy.

As expected, the CR blueshifts with the increment of the input pulse energy.

Figure 5.11 and Figure 5.12 summarize the conversion efficiency and 7 dB

bandwidth of the CR pulse and Raman soliton. These data clearly revealed three

distinct evolution regimes with respect to pulse energies: (i) below 70 pJ, no
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distinguishable CR is observed, while a Raman soliton has developed; (ii) at 70-

200 pJ, CR conversion efficiency and bandwidth grow dramatically with the

spectrum approaching rectangular shape due to self-phase modulation and normal

dispersion; and (iii) beyond 200 pJ, these two quantities (i.e., conversion efficiency

and bandwidth) saturate and stay nearly constant. In this regime, a noticeable dip

has developed in the middle of the CR spectrum and becomes deeper with

increased input pulse energy-a signature indicating Raman soliton trapping. While

its central wavelength undergoes steady redshift as the input pulse becomes

stronger, the Raman soliton energy varies marginally, and, therefore, its conversion

efficiency drops continuously, as shown in Figure 5.11. Additionally, the spectra in

Figure 5.10 imply that the aforementioned "three fiber length scales" depend on

input pulse energy.

Most importantly, the data of the above experiments have demonstrated that

CR, when pumped with 10 fs pulses of more than 200 pJ pulse energy, exhibits

high conversion efficiency (>40%), broad bandwidth (>50 nm), and low threshold

(<100 pJ for pulse energy). These three merits allow achieving broadband visible-

wavelength spectra from relatively low-energy ultrafast sources, which opens up

new applications. For example, scaling up the repetition rate of a Ti:sapphire

femtosecond oscillator beyond gigahertz is inevitably accompanied by low pulse

energy (<1 nJ). A frequency comb based on such a gigahertz Ti:sapphire laser

constitutes a crucial part (known as a "source comb") of an astro-comb that has

recently emerged as a enabling tool for precision radial velocity observations [24].

The demonstrated low-threshold CR can efficiently convert such a NIR source
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comb into its broadband counterpart at the visible-wavelength range. With a proper

Fabry-Perot filtering cavity to increase the line spacing of the CR source comb, the

resulting astro-comb of visible wavelength holds the promise to locate Earth-like

extrasolar planets orbiting around stars similar to the Sun.

As the results in Figure 5.4 show, using few-cycle pulses to excite FOCR

enhances its conversion efficiency, leading to a stronger FOCR pulse; the

corresponding stronger nonlinearity eventually leads to a broader FOCR spectrum

in the visible wavelength range. In other words, FOCR excited by few-cycle pulses

allows achieving broadband visible-wavelength spectra from relatively low-energy

ultrafast sources. For example, scaling up the repetition rate of a Ti:sapphire

femtosecond oscillator beyond 1 GHz is inevitably accompanied by low pulse

energy (<1 nJ). Such high repetition-rate sources are desired in many applications,

such as frequency metrology, optical arbitrary waveform generation, and high

speed A/D conversion, to name just a few. To demonstrate that FOCR in the few-

cycle regime constitutes a powerful wavelength up-conversion tool to efficiently

convert a NIR, GHz laser source into its broadband counterpart in the visible

wavelength range, we switch to a home-built, 1 GHz Ti:sapphire oscillator as the

pump source, centered at 0.83 gm with -140 nm bandwidth and -800 mW average

power. Figure 5.13 presents the FOCR spectra generated by 10-cm PCFs with

different ZDW, i.e., 710 nm, 735 nm, and 750 nm. The maximum powers coupled

into these fibers are 210 mW, 250 mW, and 190 mW, respectively [see the figure

legend that specifies each fiber's ZDW and coupled power]. The relatively low

coupling efficiencies into these PCFs are due to chromatic dispersion caused by the
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singlet coupling lenses. Higher coupled powers are expected if achromatic coupling

lenses are employed. The FOCR spectrum, its center wavelength mainly

determined by the phase-matching condition, shifts toward longer wavelength

along with increasing the PCF's ZDW. Indeed, 10-cm length of PCF is enough to

substantially slow down the Raman soliton (emerging from the residual pump) so

that it has a considerable overlap with the FOCR pulse; the overlap-introduced

XPM manifests as amplitude modulation onto the FOCR spectra shown in Figure

5.13. With 20-30% conversion efficiency, the resulting FOCR spectra, locating in

the visible wavelength range, exhibit a bandwidth of 50-70 nm.

7A I _ 710 nm
0

0.

0u

6 - - -

0. b_ 750 nm (PM)
0.2190 mW

0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62
Wavelength [um]

Figure 5.13 FOCR spectra generated by 10-cm PCFs with different ZDWs, i.e., 710
nm (red curve), 735 nm (green curve), and 750 nm (blue curve). The one with
750-nm ZDW is a polarization maintaining (PM) PCF.

Recent years have seen growing research interest in optimizing

femtosecond-laser based frequency combs for astrophysical spectrograph

calibration ("astro-combs") [24], [108-114]. Through precision radial velocity

(PRV) observation, astro-combs hold the promise to enable the search for Earth-
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like extra-solar planets (exoplanets), direct observation of cosmological

deceleration, and the study of temporal variation of fundamental constants. Astro-

combs in the visible wavelength range are of particular importance because, in this

wavelength region (400-600 nm), emission from Sun-like stars provides the largest

photon flux as well as high-quality spectral features most suited for PRV

observation [115]. While astro-combs in the blue and green have been

demonstrated via second harmonic generation of NIR source combs, they exhibit

narrow bandwidth (2 nm for the green astro-comb and 15 nm for the blue [114]). In

this scenario, the broadband, highly efficient, GHz FOCR in the few-cycle pulse

regime emerges as a powerful wavelength up-conversion tool to implement a

broadband astro-comb in the visible wavelength range. As a proof-of-concept, we

have demonstrated a broadband green astro-comb using this method [116].

5.4. Discussion and conclusion

In this chapter, we have both theoretically and experimentally studied FOCR in the

few-cycle regime, with a focus on its evolution before spectral splitting due to the

decelerated Raman soliton. Although FOCR originates from j3) nonlinear

susceptibility of an optical fiber, its buildup and initial evolution resembles well-

known J2 nonlinear effects, such as second-harmonic generation, sum-frequency

generation, difference-frequency generation, and optical rectification. A universal

feature of these phenomena is that they all require phase-matching to achieve

efficient power conversion. At the initial evolution stage of FOCR, its bandwidth is

determined by phase-matching condition in a manner similar to J2) nonlinear

process; that is longer propagation leads to narrower bandwidth. Inspired by such a
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resemblance, we have introduced the coherence length for continuum generation-

a characteristic phenomenon only evident for FOCR in the few-cycle regime.

Coherence length also elucidates the physical mechanism behind the formation of

an isolated FOCR spectrum that builds up at the short wavelength side of the

continuum and experiences spectral narrowing. Inside a 22) medium, normally the

effect of /) is negligible and spectral broadening due to SPM is absent. Therefore

spectral bandwidth is nearly exclusively determined by the phase-matching

condition. In contrast, after the spectral narrowing due to limited phase-matching

bandwidth, FOCR is broadened as a consequence of nonlinear propagation. Such a

nonlinear spectral broadening process is enabled by the high conversion efficiency

achieved by exciting FOCR with few-cycle pulses.

In summary, we have demonstrated (both theoretically and experimentally)

that FOCR in the few-cycle regime exhibits three unique features that are absent

when pumped with often-used, long pulses: (1) continuum generation (may span

one octave in connection with the pump spectrum), (2) high conversion efficiency

(up to 40%), and (3) isolated FOCR spectra with broadband (70 nm experimentally

obtained) coverage. Dependence of coherence length on fiber dispersion [see

equation (5.8)] suggests that these three features can be engineered by tailoring the

fiber's dispersion-a manufacturing flexibility readily provided by PCFs. For

example, during the nonlinear propagation in which FOCR acquires more

bandwidth, large normal dispersion quickly stretches the FOCR pulse up to

hundreds of fs within a couple of centimeters, which dramatically reduces its peak

power, weakens the nonlinear effects (e.g. SPM), and thus diminish the spectral
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broadening. Apparently, such a pulse-stretching effect can be suppressed by

reducing the amount of normal dispersion in the FOCR spectral region.

Consequently, the strengthened nonlinear effects will enhance the spectral

broadening process. Furthermore, a reduced normal dispersion increases the

coherence length, implying that constructive addition between the existing FOCR

and newly emitted radiation takes place within a longer propagation distance. As a

result, more input energy transfers to the FOCR, giving rise to an even higher

conversion efficiency, which in turn benefits FOCR's spectral broadening.
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Chapter 6

Toward Higher Repetition Rates:
Broadband Filtering Cavity

6.1. Motivations

Dielectric coatings with custom reflectivity and group-delay dispersion (GDD) over

a desired spectral range are key components in ultrafast optics. With powerful

computer-based optimization algorithms, one can explore a multi-dimensional

design space (constructed by the choice of material and layer thickness) and create

sophisticated coating designs for the manipulation of laser pulses of various

durations or spectral coverage. For example, incorporation of broadband double-

chirped mirrors (DCMs) [33-35] into mode-locked Ti:sapphire lasers for precise

GDD compensation has been used for achieving octave-spanning spectra directly

from a laser cavity [37], [42], [49], [68], [70], [71]. Compression of ultrabroadband

laser pulses down to sub-two cycles using dispersion-compensating mirrors with a

bandwidth spanning over 1.5 octaves has been recently demonstrated [117]. With

both their pulse repetition rate and carrier-envelope phase stabilized, these lasers

become frequency combs, whose spectra are composed of many narrow and
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equally spaced optical lines. In addition to precision frequency metrology [118],

frequency combs have found more applications via short pulse field enhancement

or repetition-rate multiplication with the aid of high-finesse optical cavities. For

short pulse field enhancement, the equally-spaced spectral lines of a frequency

comb are coupled into a cavity with a free-spectral range (FSR) matched to the

laser pulse repetition rate, which constructively enhances the resonant pulse

circulating inside the cavity without the need of active amplification. This

enhancement technique has been used in the facilitation of high harmonic

generation driven by high repetition-rate (i.e. - 100 MHz) lasers, enabling the

generation of EUV frequency combs [119]. If gaseous samples are introduced into

the cavity, the effective interaction length between light and sample can be

increased by many orders of magnitude, leading to an unprecedented high

sensitivity in spectroscopy [120]. For repetition-rate multiplication, the cavity FSR

is tuned to be an integer multiple of the source-comb spectral line spacing and the

cavity acts as a filter that selectively suppresses unwanted lines and passes those

aligned with the cavity's narrow transmission resonances. The resulting filtered

comb can be spatially resolved by spectral dispersers so that individual spectral

lines become accessible and controllable. Rarely achieved from fundamentally

mode-locked solid-state lasers, such high repetition-rate sources are essential for

many applications such as arbitrary optical waveform generation through line-by-

line modulation [23] and precision wavelength calibration of astrophysical

spectrographs for the detection of Earth-analogous extra-solar planets (the resulting

filtered comb is often called an astro-comb) [24], [109], [110].

162



One crucial requirement of the optical cavity is to have wavelength independent

FSR, or equivalently wavelength independent round trip optical length over a broad

bandwidth to ensure that the frequencies of the transmission resonances are aligned

with equally-spaced frequency comb lines, which can be achieved by designing a

broadband zero-dispersion cavity. For short pulse field enhancement, the cavity

bandwidth limits the transform-limited pulse duration as well as the peak intensity

of the circulating pulses. In the astrophysical spectrograph calibration, the cavity

bandwidth limits the available wavelength coverage and thus compromises the

calibration accuracy. Currently, most of the enhancement or filter cavities are

constructed from dielectric mirrors that are individually designed to have negligible

dispersion or compensate the GDD of intracavity materials at a certain wavelength

range. In this paper, we demonstrate a novel design for an optical cavity that

consists of a set of dielectric mirrors with zero GDD in reflection, which allows

optimization of many mirrors simultaneously to extend cavity bandwidth. The

design concept, optimization algorithm, and tolerance to manufacturing errors for

such zero-GDD mirror sets are also discussed. As an example, we present our

design and experimental demonstration of the first zero-GDD mirror pair with 100-

nm bandwidth (480-580 nm) and -99.2% reflectivity using Nb20 5/SiO 2 layer pairs.

This mirror pair is designed for construction of a Fabry-Perot (FP) filter cavity with

40 GHz FSR, a pivotal device for implementing a broadband astro-comb in the

visible wavelength range. The demonstrated cavity, for the first time, has

successfully transformed a 1 GHz green comb into an astro-comb spanning over

100nm bandwidth.
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6.2. Zero-GDD Mirror Set: Design Concepts

As a linear closed-loop system, a passive optical cavity can be modeled in a lumped

way with its loop transfer function H(co) determined by all cavity mirrors and

intracavity materials per round-trip. The magnitude IH(co)l is the accumulated

amplitude decay ratio and the phase shift op(co) =zH(co). Assuming that an input

field is coupled into the cavity and propagating to a certain reference plane, the

power spectrum of the circulating pulse at that plane is scaled by the following

closed-loop transfer function:

2

1- (6.1)
1 - H(co)|ej0'

For a passive high-finesse cavity, IH(co)l is close to but less than one. Inside the

cavity, resonant frequencies, corresponding to P(c)being a multiple of 2;r, are

significantly enhanced. From a simple physical viewpoint, this phase shift

originates from the required round-trip time for the light at a certain wavelength.

When the round-trip time is wavelength-independent, P(co) becomes simply a

linear function of co. Therefore, the resulting resonances are equally spaced in the

frequency domain. By careful adjustment of the cavity length and eventually also

the carrier-envelope offset frequency of the laser, these resonant frequencies can be

tuned to align with frequency comb lines. However, due to the cavity dispersion,

the non constant mode spacing causes a mismatched cavity. The tolerance against

residual dispersion depends on the cavity finesse. As IH(co)l approaches a high

finesse cavity, i.e. IH(co)I -}1, the closed loop transfer function is more sensitive to

the phase, and the resulting tolerance to dispersion-induced deviations in mode
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spacing caused by phase deviations becomes smaller. In other words, even a small

phase deviation from a multiple of 2rcan lead to a dramatic decrease in the

cavity's transmission for frequencies around resonances. One can derive a simple

criterion for estimating this phase tolerance by solving for the phase corresponding

to half of the maximum of (6.1) and find:

V(CO)< ~H ) 1 -|H()| , for |H(a|~ 1 (6.2)
JH(w)j
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Figure 6.1 Schematic of the two-mirror dispersion-free cavity based on (a) Bragg-
stack mirror pair and (b) zero-GDD mirror pair. The curves on the right show the
individual and average group delay on the cavity mirrors as a function of
wavelength.

For example, to design a dispersion-free Fabry-Perot cavity consisting of

two identical mirrors with a reflectivity of 99%, one needs to ensure the dispersion-

induced phase deviation is less than 0.01 radian within the desired wavelength

range. For applications demanding less distortion on the filtered comb lines, this

value could be even smaller.
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In the traditional cavity designs, low-dispersion mirrors based on Bragg-

stack mirrors (BSMs) are commonly used, as shown in Figure 6.1. Although BSMs

are typically high reflectors with a moderate bandwidth, different wavelengths

reflects from different depths inside the structure. Consequently, only a narrow

spectral range near the center of the high-reflectivity region experiences negligible

dispersion, imposing limitations on effective cavity bandwidth. In practice, slight

optimization is usually required to broaden the usable bandwidth of such BSM-

based, low-dispersion mirrors, but the possible improvement is very limited. In

addition, any uncompensated dispersion from intracavity materials causes further

bandwidth narrowing. As a result, it is often necessary to put the cavity in vacuum

to avoid air dispersion. In this sense, any individual component with non-zero

dispersion is limiting the cavity bandwidth. However, the real bottleneck, as

discussed earlier, is the cavity round-trip time. A constant round-trip time for the

wavelengths of interest does not imply that they have to travel at the same speed.

Instead, as we will show in the following sections, allowing some dispersion on the

mirror coating provides additional degrees of freedom to design cavity mirror sets

for broadband cavities. This idea is illustrated in Figure 6.1 (b) with a simple

mirror pair shown as an example. Note that the concept can be easily generalized to

a mirror set including even more mirrors. As plotted in the figure, the layer

thicknesses of the mirror pair are chirped to create a complementary, wavelength-

dependent penetration depth in both mirror coatings. With the total dispersion

minimized, such a mirror pair constitutes a dispersion-free building block for

optical cavities. Compared to individually-optimized BSM cavities, this approach
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excels because chirped-mirrors intrinsically have larger bandwidth and more

flexibility for dispersion customization, which creates a larger parameter space for

extending the bandwidth of dispersion-free cavities. Another advantage of

optimizing a mirror set instead of individual mirrors is that the intracavity material

dispersion can be easily taken into account in the design process. For a complicated

multi-mirror cavity, mirror sets can even be designed to provide additional features

such as transmission windows at specific wavelengths to meet the application

requirements. Eventually, the cavity can use one or more zero-GDD mirror sets

with all the necessary features without significant bandwidth reduction. In short,

zero-GDD mirror sets are a set of mirrors jointly optimized to provide custom

reflectivity and negligible dispersion over a large bandwidth. Also, depending on

the application, additional characteristics can be implemented during the design

process.

6.3. Optimization Algorithm and Design Issues

The design of a zero-GDD mirror set is based on the efficient group-delay (GD)

computation approach developed in Ref. [78]. The optimum layer thicknesses are

found by minimizing the merit function that evaluates the weighted deviation of the

computed dispersion and reflectivity from our design goal. The wavelength range

of interest is discretized into k points, denoted as Xk. The employed merit function

is simply determined by the summation of the weighted deviation from the targeted

reflectivity and GD values corresponding to the thicknesses of the layer set x:

f(x) = E 2R('4)[R(,;x) -Rg,,l(4 )I +coa(Al)[rg(,I;x) - Tggoa ) + r o(x) (6.3)
k
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where R is the reflectivity, tg the group delay, and COR,d the weighting function for

the reflectivity and GD goals. The term tgo is used to exclude the irrelevant offset

between the computed and ideal GD, which minimizes f(x) for a given layer set x.

To find good initial structures to start with, we first optimize all mirrors separately

using smooth GD functions split from a GD goal that is complementary to the

dispersion of the materials. This ensures that the remaining errors are mostly from

higher-order dispersion. In the second step the residual dispersion is minimized

with an iterative optimization procedure in which all the mirrors are optimized in

turns. The requirement of a constant round-trip time is implemented in this step by

updating the GD goal of the mirror to be optimized with the computed GD of all

other mirrors and the materials:

ikk

The iteration continues until the target specification is reached.

Theoretically, an ultrabroadband (e.g., 650-1100nm) zero-GDD mirror set can be

produced using this algorithm by designing a complementary double-chirped mirror

pair, with one mirror having the opposite average dispersion of the other one. In

practice, broadband highly dispersive mirror designs demand higher precision in

fabrication, a requirement ultimately limited by the capability of current coating

technology. The increased sensitivity stems simply from the increased penetration

depth of the light into the mirror giving rise to spurious reflections. The deeper the

penetration the more opportunity there is for such reflections to occur. As a result,

it is always necessary to confirm the robustness of a practical design by adding
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random thickness perturbations to each layer, imitating manufacturing errors; and

to estimate the resulting phase errors for worst-case scenarios.

6.4. Design Examples: Two-mirror Zero-GDD Mirror Pair for a
Green (480-580 nm) Filtering Cavity

To demonstrate the idea, we have designed a zero-GDD mirror set consisting of a

complementary mirror pair supporting a dispersion-free region from 480-580 nm.

This zero-GDD pair is aimed for a moderate-finesse (>250) FP filtering cavity, as

used in a green astro-comb. Astro-combs that cover spectral bands in the green

(480 nm - 580 nm) are of particular interest in high accuracy astronomical

spectroscopy because this wavelength region provides the largest photon flux from

sun-like stars and is rich in spectral features of high quality. Charge-coupled

devices (CCDs) used in astrophysical spectrograph also have better response in this

wavelength region. Recently, we have demonstrated a blue astro-comb (410 nm -

425 nm) [114] based on a frequency-doubled 1 GHz Ti:sapphire frequency comb

filtered by a FP cavity. Limited by the bandwidth of the phase matching of the

frequency doubling process in a 1 mm thick beta-barium borate (BBO) crystal, the

blue astro-comb has a bandwidth of only 15 nm, which is slight narrower than the

transmission bandwidth of the FP cavity (20nm) made with two identical,

individually-optimized low-dispersion mirrors. In order to design more powerful

astro-combs that span much larger bandwidths using our recently-developed

broadband visible source [101], [121], we constructed a broadband dispersion-free

cavity using a zero-GDD mirror pair. Figure 6.2 shows the calculated reflectivity
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and group delay of the zero-GDD mirror pair designed for a -40 GHz FSR cavity.
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Figure 6.2 Structure of a two-mirror zero-GDD mirror set designed for a 40GHz
FSR, 100 nm bandwidth (480-580 nm) cavity using Nb205/SiO2 layer pairs. (b)
Structure of a low-dispersion BSM mirror that is individually optimized for the
same goal. (c) Calculated reflectivity (dotted curves) and group delay (solid
curves) of the zero-GDD mirror pair. The total cavity group delay using the zero-
GDD mirror pair (blue) is calculated by taking the dispersion of both mirrors and
7.5 mm of air into account. As a comparison, the total GD (solid) and reflectivity
(dashed) of a cavity in vacuum based on two individually-optimized, low-
dispersion BSMs is shown in green.

The dispersion caused by 7.5 mm of intracavity air (-0.24 fs2 for 1

atmosphere at 300 K) is taken into account during the optimization. With an initial

structure of 22 layers of Nb205/SiO2 quarter-wave layer pairs, both mirrors are

optimized to have a reflectivity of ~99.2% and complementary dispersion over the

desired range (Figure 6.2 (a)), which supports a FP filtering cavity with a finesse of

-390. For comparison, we also designed a similar low-dispersion miror centered at

530 nm based on the traditional approach, i.e. individually-optimized BSMs (Figure

6.2 (b)). In Figure 6.2 (c), we compare the calculated total GD of the FP cavities

built with both designs and find a three-fold bandwidth improvement with the new

zero-GDD mirror set design even when the traditional design is evaluated for a
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cavity in vacuum. Such improvement is due to the simultaneous optimization of the

mirrors of the zero-GDD set.

................. ~ 140-

.0

40- J-4-s=nm

1(0 Pulse WMt (s)
(a) (b)

Figure 6.3 Simulated phase deviation from a dispersion-free cavity using one
zero-GDD mirror pair. The deviation of the ideal zero-GDD mirror pair design is
shown in black and the spread of possible phase errors with 100 tests assuming a
random manufacturing error of +0.5 nm for the mirror layer thicknesses is
shown in red. (b) Estimated enhancement factors for 100, 50, 20 and 10 fs
Gaussian pulses considering normally-distributed manufacturing errors with a
standard deviation a. of = 0 (blue), 1 (red), and 2 nm (black). Each marker
indicates shows the average value and the error bar show the standard deviation
of enhancement factor for 1000 tests.

As mentioned in the previous section, the bandwidth can be even larger if

the structures are more chirped. However, this will inevitably degrade the

manufacturability of the mirrors and causes uncertainty for astro-comb applications

that demand extremely low phase error. As a result, we used quarter-wave layer

pairs, identical to the traditional design, as the initial structure for optimizing the

zero-GDD mirror set, a conservative design that improves robustness to

manufacturing errors. Figure 6.3 (a) illustrates the simulated phase deviation from a

zero-dispersion cavity using the zero-GDD mirror pair shown in Figure 6.2 (a) with

manufacturing thickness errors taken into account. The analysis is performed with

100 tests assuming random layer thickness fluctuations of ±0.5 nm on each layer of
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both mirrors. The spread of possible round-trip phase errors confirms that the

criterion (2) is fulfilled in the presence of reasonable manufacturing tolerances.

We also performed another analysis on our zero-GDD mirror pair to show

that it can also be applied to broadband pulse enhancement in the few-cycle pulse

regime. We simulated the enhancement factor for 100, 50, 20 and 10 fs Gaussian

pulses with the central wavelength matched to the cavity. Normally-distributed

random thickness errors with a standard deviation a, of 0, 1, and 2 nm were added

to each layer. The enhancement factor was obtained by calculating the peak

intensity of the steady-state intracavity pulse normalized to the input pulse. With

1000 tests on each combination of pulse duration and manufacturing tolerances, we

obtained the average enhancement factor and its standard deviation (Figure 6.3 (b)).

The result clearly indicates that the enhancement factor approaches the theoretical

limit even for relatively low accuracy in fabrication (a, = 2 nm); an average

enhancement factor of -100 can be achieved for transform-limited pulses as short

as 20 fs. For applications requiring ultra-high peak intensity from cavity-enhanced

femtosecond lasers, laser-induced damage threshold (LIDT) is a critical issue.

However, in the subpicosecond regime LIDT does not scale linearly with the pulse

duration -c but proportional to -c, where x < 0.5 [122]. For extremely high intensity

experiments, however, special cavity designs [123], [124] and high damage

threshold coating materials are necessary.

6.5. Proof-of-concept Experiment: 45 GHz Filtering Cavity
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As a proof-of-concept experiment, we first constructed a tunable light source in the

visible wavelength range using Cherenkov radiation from a photonic crystal fiber

(PCF). When pumped by ultrashort pulses (-10 fs), this mechanism becomes a low-

threshold nonlinear process for broadband, highly efficient optical frequency up-

conversion [12]. Figure 6.4 (a) shows the experimental setup. An octave-spanning

Ti:sapphire laser operating at 1 GHz repetition rate pumped a PCF with a zero-

dispersion wavelength at 710 nm (NL-1.8-710). An achromatic half-wave plate and

several bounces from broadband dispersion compensating mirrors were employed

to optimize the polarization and duration of the input pulses. With -200 pJ of

coupled pulse energy, the PCF emits in the visible wavelength range covered by the

designed mirror bandwidth. Figure 6.4 (b) shows the spectra before and after a -40

GHz dispersion-free filtering cavity, measured with a low-resolution spectrometer.

The filtering FP cavity consisted of the zero-GDD mirror coatings on slightly

wedged flat substrates for avoiding etaloning effects. The measured laser spectrum

is nearly undistorted after passing through the cavity, demonstrating successful

filtering over the entire bandwidth of the zero-GDD mirror pair. The detailed

spectrum (see inset plot), acquired with an optical spectrum analyzer (OSA) further

confirms that the individual comb lines become resolvable after filtering. The

measured linewidth of the resolved comb lines was limited by the OSA, which has

a resolution of -20 GHz.
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Figure 6.4 Experimental setup for generating a 40 GHz green astro-comb for
astronomical spectrograph calibration. DCM: doubled-chirped mirrors for
dispersion compensation; HWP: half-wave plate; PCF: photonic crystal fiber. (b)
Input (black) and output (red) spectra before and after the 40 GHz FP filter cavity
based on a zero-GDD mirror pair; inset shows detailed output spectrum near
555.4 nm obtained with a high resolution (-20 GHz) optical spectrum analyzer.

6.6. Summary

In conclusion, we have proposed and demonstrated a new approach for broadband

dispersion-free optical cavities using a zero-GDD mirror set; e.g., to enable laser

frequency combs for pulse repetition-rate multiplication and pulse enhancement.

With a first zero-GDD mirror pair design, the construction of a -40 GHz filtering

cavity with 100 nm bandwidth for a green astro-comb (480-580 nm) was

demonstrated. By proper structure scaling and re-optmization, the spectral coverage

of the zero-GDD mirror set can be easily shifted to other wavelength. Further

performance improvement can also be achieved by using better manufacturing

techniques or materials with higher refractive index contrast since the intrinsic

bandwidth of dielectric mirrors is proportional to (nHL-1)/(nHL+1), where nHL is the

ratio of higher refractive index to lower index of the dielectric materials. We
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believe this technique can also enable many other frequency-comb-based

applications that demand large comb spacing or high peak intensity.
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Chapter 7

Future Work

This dissertation presents a series of studies on soft-aperture KLM Ti:sapphire

lasers operated in the few-cycle regime where complicated spatiotemporal mode-

locking dynamics occurs. The principles of the laser design regarding spatial

arrangement of laser components, dispersion management in the laser cavity, and

choice of operating points have been addressed in details. Based on these guidelines,

octave-spanning Ti:sapphire lasers operated at various repetition rates have been

demonstrated. With the numerical model developed in this dissertation, many

unique features that were only observed from the experiments can now be

successfully simulated for the first time. This model should not only be used for

studying the intracavity pulse dynamics but also as a tool incorporated during the

laser design procedure for engineering the spectral features of the output pulse

needed by different applications. Today, few-cycle lasers are still considered as

sophisticated laboratory tools that need frequent maintenance by people with

extensive laser knowledge. In order to make these lasers more user-friendly for

researchers from different fields, several practical issues related to the construction
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of an easy-to-operate, long-term stable few-cycle Ti:sapphire laser will be

discussed to conclude this dissertation.

7.1. Laser Spectrum and Spatial Mode Engineering

The performance of few-cycle lasers is highly sensitive to the dispersion and loss

properties of the optics used in the cavity. In the past, the focus of laser

optimization was mainly on designing laser optics for achieving least residual phase

caused by the cavity dispersion over a large bandwidth. As a result, ultrabroadband

DCMs and output couplers are often used in few-cycle lasers. However, as shown

from the simulation, dispersion-free cavities are not always ideal for generating

broadest spectra. Since the Ti:sapphire crystals only provides a finite gain

bandwidth, obtaining spectral power at the wavelengths far away from the gain

peak through the amplification process is not efficient. In order to enhance the

power at the desired spectral wings, using phase-matching techniques as described

in section 3.5.6 turns out to be a better solution. The ideal phase-matching

condition is met when the nonlinear phase is equal to the linear phase contributed

by the dispersion per round-trip, which confines the enhancement in the

fundamental transverse mode of the cavity. In practice, one can incorporate such

conditions into the laser coating design by optimizing the phase instead of group

delay or group delay dispersion provided by the coating for creating a phase

difference corresponding to the nonlinear phase per round-trip between the laser

central wavelength and the desired wavelengths. This additional feature can be

provided by one or many laser mirrors dedicated to different applications.
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7.2. Hands-off Operation

Even though few-cycle lasers are powerful scientific tools in the laboratory, they

are currently too immature to be reliable industrial products. In order to let people

without extensive experiences use these lasers, they must be constructed in a robust

way and allow long-term hands-off operation. To achieve this goal, stable

mechanical design must be implemented with excellent rejection to environmental

disturbances such as vibrations or temperature fluctuation since few-cycle laser are

more vulnerable to cavity misalignment comparing to long-pulse mode-locked

lasers. Moreover, the cavity needs to be assembled and sealed in a clean

environment to avoid contamination. The position of critical components such as

gain crystal, pump lens, and curved mirrors should be adjusted with encoded

translation stage to keep track of the operating point of the laser. When operating

the laser, the performance should be continuously monitored in order to prevent

fatal failures. The goal of these protection and monitoring approaches is to

minimize the chance for the laser to drift away from a working operating point.

7.3. Crystal Damage Issue

It has been found that the crystal damage is a serious issue in building long-term

stable few-cycle lasers. This problem becomes more severe when the laser is closer

to the octave-spanning operation. For octave-spanning lasers operated at low

repetition rate (<100 MHz), noticeable performance degradation is usually

observed within a few hours to one day of continuous operation. Such degradation

often comes with increasing pump beam scattering from the crystal surface. If the

crystal surface is immediately cleaned when the laser output power starts to
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degrade, the laser might be able to regain its original performance. However, if the

laser keeps running without cleaning, the damage might become permanent and

eventually the user might not be able to recover the laser performance without

changing the active spot on the crystal surface. Figure 7.1 (a)-(c) show the

microscope image of the active zone on the crystal surface with different level of

damage. In Figure 7.1(a), the crystal surface is coated with certain contaminants

with a small burn spot in the middle. In Figure 7.1(b), a large portion of surface

contaminants is burned. In Figure 7.1 (c), the burned area is turned into permanent

surface damage that cannot be removed with cleaning. Right now, it is not yet clear

what kind of material is in the contaminated area. A reasonable guess for the

sources of contamination are floating dust particles in free-space or from outgassing

of materials used on the mechanical components. These contaminants are carried,

eventually also decomposed and coated onto the crystal surface by the strong laser

beam that functions like an optical tweezer. Once the crystal is coated with the

contaminants to a high degree, the contaminants are burned into the surface by the

laser beam and permanent damage is created. The accumulation rate of

contaminants is usually slow which agrees with experimental observations. As

shown in Figure 7.2, these contaminants can be removed with careful cleaning

before critical damage occurs. Right now, only little attention has been paid on

tracing the sources of contamination and means to keep them away from the laser

cavity. However, this must be done if one wants to turn such laser systems into a

reliable tool. In addition to the failure mode described above, there is another mode

of crystal damage that occurs on a shorter time-scale in few-cycle lasers. It is found
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that the crystal damage might happen when the mode-locking is initiated. In this

failure mode, a different damage pattern showing a huge hole surrounded by

microcracks on the crystal is produced. As shown in Figure 7.2 (d), the diameter of

the damaged spot is about 10 times larger than the contaminated area in the other

three pictures and can even be seen with the naked eye. The physics behind this

damage process is not clear yet. It might be induced by the high-intensity transients

during the mode-locking process. To confirm these hypotheses, further study needs

to be done in the future.

(d)

Figure 7.1 Microscope images of Ti:sapphire crystal surface showing different
level of crystal damage. (a) crystal surface is coated with contaminates with a
small burn spot in the middle. (b) a large portion of surface contaminates is
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burned. (c) The burned area is turned into permanent surface damage that
cannot be removed with cleaning. (d) A severe damage showing a large hole
surrounded by many microcracks on the crystal surface. (Note: the diameter of
damaged spot is about 10 times larger than the contaminated area in the other
three pictures. The microcracks can be seen with the naked eye.)

Figure 7.2 Microscope image around a damaged spot on the crystal (left) before

cleaning and (right) after cleaning.
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