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Abstract

Normalizing angiogenesis is a promising strategy for treatments of cancer and several
disorders plaqued by misregulated blood supplies. To address the daunting complex-
ity of angiogenesis arising from multiple phenotypic behaviors governed by multiple
stimuli, computational approaches have been developed to predict sprouting angio-
genic outcomes. In recent years, the agent based model, in which individual cells
are modeled as autonomous decision making entities, has become an important tool
for simulating complex phenomena including angiogenesis. The reliability of these
models depends on model validation by quantitative experimental characterization of
the cellular (agent) behaviors which so far has been lacking.

To this end, I develop an experimental and computational method to semi-automatically
estimate parameters describing the single-cell decision in the agent based model based
on flow cytometry aggregate headcount data and single cell microscopy which yields
full panel single cell trajectories of individual endothelial cells. Applying thees method
to the single cell decision data, I propose two conceptual models to account for the
different state transition patterns and how they are modulated in the presence of op-
posing inflammatory cytokines. The observed unique state transition patterns in the
angiogenic endothelial cell population are consistent with one of these descriptions,
the diverse population model (DPM). The DPM interpretation offers an alternative
view from the traditional paradigm of cell population heterogeneity. This understand-
ing is important in designing appropriate therapeutic agents that take effect at the
cellular level to meet a tissue level therapeutic goal.

Thesis Supervisor: Douglas A. Lauffenburger
Title: Ford Professor of Bioengineering
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cell-cell adhesion formation. hMVECs seeded at instant monolayer

density (50,000 cells/cn 2 ) form confluent monolayer on collagen I gel.

Treatments of cells with physiological concentrations of VEGF aid

PF4 modulates the cell morphology amid VE-cadherin mnediated cell-

cell junctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2-10 VEGF and PF4 changes are associated with changes in cell area and

shape. (a) Cell area vs. axis ratio of hMVECs on Type I collagen gel

after 72 hour treatment with 20 ng/mL VEGF alone (red x's) or with

addition of 500 ng/mL PF4 (blue circles). VEGF treated hMVECs

are elongated. With PF4 treatment, iNMVECs adopt a more rounded

morphology and some of the cells spread out more as seen by the

increase inl cell area. (b) Quantified changes in numbers of cells within

an imaging frame as a measure of cell densities under 72 hour dosage

treatment with PF4 in the background of 20 ng/mL VEGF. Number

of cell in each of 12-16 image frames taken from each of the three

experimental triplicate samples were shown a~s blue circles. The mean

and standard error within each of the three triplicates are shown as

red asterisks and red error bars respectively. . . . . . . . . . . . . . . 73



2-11 Potential mechanisms of PF4 on VEGF-mediated endothelial (cell bi-

ology. PF4 can modulate VEGF-mediated endothelial cell behavior

through two main classes of mechanisms. (1) Non-signaling HSPG

mediated niechanisin. PF4 binds to HSPG and precludes VEGF from

adhering to HSPG and fibronectin. This effect causes a significant

reduction in local effective concentration of VEGF around VEGF re-

ceptor 2 on the cell surface. (2) Signaling CXCR,3 mediated necha-

nism. PF4 binds specifically to CXCR3B, a G-protein couple receptor

variant specific to PF4 that is expressed exclusively on endothelial cell

types. PF4 mediated activatiomi of CXCR,3B trigger intracellular sig-

naling that can cross talk to VEGFR2 mediated signaling. CXCR3B

activation by PF4 has been reported to activate p38 MAPK. . . . . . 76

2-12 High levels of VEGFB2 and CXCR3 are detected in both HUVECs

and h IVECs as determined by immunofluorescent (IF) staining and

flow cytometry. Iimmmuofluorescent staining of cells in mnicrofluidic de-

vices reveals the two receptors are co-expressed in angiogenic sprouts

as well as in an endothelial monolayer. Since VEGFB2 and CXCR3

are specific to the potent angiogenic VEGF and angiostatic PF4 re-

spectively. their presence on the highly angiogenic prinary cndothelial

cells suggest that the two factors cian counteract aid jointly determines

angiogenic outcomes inflammatory angiogenesis. . . . . . . . . . . . . 78



3-1 Two types of experimental data containing single cell decision informa-

tion. (a) Longitudinal data is an aggregate counting of cells in different

states, e.g. snap-shot neasurement of population using flow cytome-

try. For this type of data,, paraimeter inference is not straightforward

and requires snapshot counting of large number of cells from popu-

lation. (b) Full panel data contains individual cell state trajectories

through time e.g. by live cell imaging. For this type of data, paramne-

ter inference is more straightforward and can be obtained by tracking

of individual cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3-2 (a) State detection within one time point of a longitudinal dataset

collected 1) measuring proliferative andI apoptosis markers (Ki67 and

cleaved caspase-3 respectively) by flow cytonetry. Using Fuzzy clus-

tering algoritlms (in this case, the Gustason-Kessel clustering [ ]) to

define the mixture (istribution. we consistently detect two phenotypic

clusters from the flow cytometry data. . . . . . . . . . . . . . . . . . 86

3-3 Predicted probabilities at varying transition rate parameter (Aps) of

five transitions occurring within the population during the time inter-

val T between two consecutive FC measurements. For each value of

transition rate, the transition curve exhibits a sigimoidal shape consist-

ing of transition lag and parameter range over which rapid transition

occurs similar to that observed in the FC data. . . . . . . . . . . . . 90

3-4 (a) Expression of proliferative and apoptotic markers of hMVECs un-

der the serun starvation (a) and serumn addition treatments (b). . . 92

3-5 Bayesian inference of joint transition rate parameter distribution in

dual transition problemi using conjugate priors. (a) The posterior dis-

tributions in serum starvation experinent and (b) in serum addition

experim ent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



4-1 Angiogenic uunan inicrovascular endothelial cells (hMVECs) cultured

on Collagen type I gel is capable of initiating angiogenic sprout. (a)

Angiogenic protrusions of hMVECs in the collagen gel observed as

shadow (red arrowheads) in phase contrast timelapse images. (b) Phal-

loidin staining of actin cytoskeleton showing an angiogenic sprout tip

invasion over the distance of 150 pm into the collagen gel as observed

in the confocal images. (c) Experimental setup for live cell imaging

experiients. First, a mixture of GFP-labeled, RFP-labeled, and un-

labeled hNIVECs were seeded at an optimized seeding density (50,000

cells/cm2) to yield a confluent monolayer after 24 hours of seeding

(instant monolayer density). Cells are starved for 20 hrs under 5%

fetal bovine serum (FBS) supplemented cytokine-free base medimn,

then stimulated with angiogenic/angiostatic cytokines. After cytokine

stimulation, cells are imaged over 24 - 30 hour period. (d) Illustra-

tion of the data analysis. From the fluorescent images, cell contours

and centroids at each time point were detected by a level set active

contour algorithm. The detected cell contours and centroids trajecto-

ries were classified into different phenotypic instances types: sessile,

proliferative. migration, and apoptotic. . . . . . . . . . . . . . . . . . 125



4-2 Timelapse imaging of hMVECs reveals four major phenotypes: pro-

liferative, apoptotic, migratory, and sessile. (a) Example contours

outlining hMVEC in sessile, proliferative, migratory, and apoptotic

states as detected by level set active contour. Proliferative instances

are characterized by contour splitting, while apoptotic instances by

contour collapsing and disappearance. Scale bar is 20 ?nm. (b) Semi-

hierarchical scheme for state classification. Contour is first classified

base( on change in contour topology. If topology is conserved, they

are further classified into sessile or migratory instances based on con-

tour morphology., and centroid trajectory features. (c) Two clusters

of topology-conversed, noin-proliferative, non-apoptotic instances are

identified by agglomerative clustering. The umain discriminatory fea-

tures between the two subsets are the mean and variance of velocity

autocorrelation functions (VACFs) computed over 1 - 6 hour track

intervals centered at the instance in which the feature is being com-

puted. (d) Three component PCA projection of the motile vs. sessile

instances as classified by an optimized ensemble of linear sessile vs.

motile base classifiers (det ails in Supplementary text). (e) Examples of

state-labeled contour and centroid trajectories (sessile in aqua, motile

in oraige). Contours labeled in orange correspond to the instances

in which cells progress productively and persistently, consistent with

motile state description. On the other hand, contours labeled in aqua

correspond to instances of unproductive movement of cell centroid,

consistent with the sessile state description. . . . . . . . . . . . . . . 127

4-3 State labeled cell trajectories under different concentrations of counter-

acting angiogenic and angiostatic cytokines (VEGF and PF4 respec-

tively). In the cell trajectory matrices, single cell state trajectories are

plotted along rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



4-4 Conceptual models to account for the individIal-cell phenotypic state

transitions dynamics across an angiogenic population. (a) Uniform

population model (UPM) posits that endothelial population is homo-

geneous in state transition dynamics and the population is unimodally

distributed in transition rate parameter space (middle). Under the

control condition, the population assumes a unimodal distribution in

state transition rate parameters. Treatments with cytokines (shown as

dark red arrows) cause individual cells to respond in a similar man-

ner and the population distribution to shift unidirectionally (left., right

and middle shown as results of three different stimulations). (b) Di-

verse population model (DPM) posits that endothelial population is

heterogeneous in state transition dynamics. Under the control con-

dition, the population consists of multiple subpopulations (clusters)

characterized by differeit transition rate paraneters. Treatments with

cytokines cause changes in the fractions of cells within subpopulations

without shifting subpopulations centers. . . . . . . . . . . . . . . . . 130



4-5 (a) laximum likelihood estimates (MLEs) of transition rate imatri-

ces under different angiogenic and angiostatic cytokine treatment eon-

ditions. Under UPM. the condition base transition rate estimates

(A "o)) were computed from the cell trajectories under each treat-

ment condition separately. (b) Comparing A(co1) of each transition

types across cytokine conditions. Each subplot presents rate MLEs of

one transition types estimated from different cytokine conditions (la-

beled I - 5 and specified as in the condition indicator box (beneath

Figure 4-5a)). The fourth bar in each subplot represents the no cy-

tokine control condition. The effect of VEGF alone can be seen by

comparing the 31 to the 4" bars; the effect of PF4 alone: 511 to 4t"

bars; and the dosage effect of PF4 in the presence of VEGF: 3rd 21",

then 1 st bars. Subplots are organized by the initial state of transi-

tion (row block) and the final state of transition (colunn block). (c

and d) Statistical comparisons of the distributions of A(('()"(). Pairwise

Konolgorov-Smirnov test (with Bonferroni correction) results indicate

thati in most cases, the cytokine-elicited changes are statistical signif-

icant. (c) Log asymptotic p-value of the pairwise comparisons under

the null hypothesis that two (istributions of A"") being compared are

the same. (d) The hypothesis decision at the significant level of 0.95

with Bonferroni corrections. . . . . . . . . . . . . . . . . . . . . . . . 131



4-6 Hierarchical clustering of cell trajectories in all cytokine conditions

reveals 3-5 identifiable clusters. (a) Dendrograi of the clustereHierar-

chical clustering of all cell trajectories in all cytokine conditions reveals

3-5 identifiable clusters. Hierarchical clustering was performed based

on the trajectory features described in Table 2. (a) Dendrograni of

the clustered features (left) alnd the corresponding clustered single cell

trajectories (right). Clusters color labels are consistent from (a - c).

(b) The corresponding transition rate MLEs computed from the single

cell trajectories in each cluster separately A(c"st). The transition rates

matrices in sessile, migratory and switching clusters are qualitatively

similar. Under DPI. the effect of cytokine treatment can described as

changes in the fraction of cells adopting different dylalic phenotypic

transition patterns (also referred to as cluster weights). The bar graph

in (c) presents the fraction of cells in the population that adopts the

five (ifferent state transition patterns identified by hierarchical cluster-

ing1. The analysis consistent with DPM framework reveals that VEGF

and PF4 directionally shifts the cluster weights (see text for details). 132



4-7 A three component principle component projections of the cell tra-

jectories shows the separation of the endothelial subpopulations. The

apoptotic and proliferative clusters (1 and 2) are well separated in state

transition dynamics from each other and from the sessile, inigratory,

and switching clusters. Sessile. mnig-ratory and switching clusters (3,

4. 5) consist of cells that transition between sessile vs. motile states

and are only differentiated by the frequencies of transition and the

dwell times within the sessile vs. motile states. (b) Hierarchical clus-

tering of cell trajectories in each cyt okine condition exhibits similar

cluster pattern with 3 - 5 identifiable clusters within each condition.

Shown in each subfigures are clustered features with dendrograin(left)

and clustered state labeled trajectories (right). The clustering pat-

tern across different, angiogenic/angiostatic cytokine commbinations is

consistent with the diverse population iodel (DPM). . . . . . . . . . 133

4-8 Statistical pairwise comparisons of the cluster weights across different

cytokine conditions show that most of the cytokinme elicited difference

in the cluster weights are statistically significant. (d) Indicator matrix

specifying the pairwise comnparison. For exaiple, the first row of (d)

are true (white) for the first two conditions, indicating that the coidi-

tions being compared are conditions 1 and 2 (20 ng/mL VEGF with

500 ng/mL PF4 and 20 ng/muL VEGF with 50 ng/mL PF4, respec-

tively). (e) Log of the asyllptotic p-value (probability of mistakenly

rejecting the null hypothesis). (f). The hlypothesis decision based oi

the p-values indicating that most of the cytokine elicited changes are

statistically significant. . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4-9 Condition based and cluster based estimates are computed over dif-

ferent sets of single cell trajectories. Condition based estimates are

optimized over single cell trajectories taken from the same cytokine

conditions, while cluster based estiniates are optimized over trajecto-

ries taken from the same cluster .. . . . .. . . . . . . . . . . . . . . . 135



5-1 A schematic diagral of a method to map tip vs. stalk state of the cells

to phenotypic transitions. Based on this method. tip and stalk cells

are tracked separately after the stalk-to-transition has occirred. Since

the tip and the stalk cells do not need to be imaged simultaneously,

they can be tracked using appropriate imaging modalities that not only

allows the acquisition of phenotypic transitions information, but also

amenable to high throughput imaging. In this case, the tip cell can lbe

imaged in 4D in microfindic devices and the stalk cells can be imaged

using a on-gel invasion assay in which high throughput imaging call be

performed. Stalk-to-tip transition can be modeled as a Poisson process

described by a stalk-to-tip transition parameter (A). This parameter

can be inferred from the end point neasurement of tip cell density in

nicrofluidic device and oi-gel sprouting assays. . . . . . . . . . . . . 148

A-I Schematic drawing of Chan-Vese two phase active contour algorithm. 150

A-2 Convergence of contour fiiding algorithmtis using the two methods of

contour initialization. Evolution of the level set surfaces during the

runs of level set based contour finding algorithns (a) using the intensity

of the image to initialize the contour and (b) using randomly initialized

contour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B-1 Schematic drawing of the high throughput nicrofluidic [?]. . . . . . . 154



Chapter 1

Introduction

Sprouting angiogenesis - formation of new branch from existing blood vessel - is

a normal and vital process in growth, development, and tissue repair. It is however

involves in tumor progression, supporting tumor growth beyond the diffusion-limited

length scale and enabling progression beyond tissue/organ of origin and colonization

of new sites in the body. From a perspective of endothelial cell behavior, angiogenesis

has been described as a multi-cue, multi-response process. Initially a few endothelial

cells lose contact with their neighbors, then acquire the ability to actively divide and

to migrate into the surrounding tissue. While cells in an angiogenic population are

exposed to different levels of various angiogenic factors, initiating diverse signalings

and exhibiting responses, their proliferation, and survival must be coordinated to

produce appropriate vascular structures [4, ]. In the past decade, sprouting an-

giogenesis has become an important target for combating diseases characterized by

insufficient blood supplies, or excessive/abnormal vascularization [21, 2, ]. While

the general understandings of angiogenesis at the tissue level has been established, the

cellular and molecular understandings that will enable control of the process remain

inadequate [22].

To address the daunting complexity of angiogenesis arising from multiple phe-

notypic behaviors governed by multiple stimuli, mathematical and computational

approaches have been developed to predict sprouting angiogenic outcomes; an ex-



cellent review of the current state of these approach is discussed in [ ]. In recent

years, the agent based modeling approach, in which individual cells are modeled as

autonomous decision making entities called agents, has become an important tool for

simulating complex phenomena including angiogenesis. The reliability of these mod-

els depends on model validation by quantitative experimental characterization of the

cellular (agent) behaviors which so far has been lacking. To address the model val-

idation rigorously, I designed and implemented an experimental and computational

method to quantify cellular behaviors and quantify the parameters describing the

single-cell decision making by direct observations of individual angiogenic endothelial

cells. In this thesis, I conceptualized an implemented an experimental and compu-

tational method to estimate the parameters describing single cell decision consistent

with an agent-based model developed in the Kamm lab. By applying this method to

study the cell decision in angiogenic population subjected to inflammatory cytokine

stimulation, I observed interesting emerging patterns of single cell decision dynamics

within the endothelial population that led me to purpose an alternative conceptual

model of how angiogenic and angiostatic cytokines may modulate the tissue level re-

sponses by altering single cell decision dynamics.

The central premise of this thesis is that the complex cell behavior leading to

sprouting is a consequence of cell-level decisions. Here, the decision making process

is represented by the transitions among four key phenotypic behaviors involved in

angiogenesis: proliferative, migratory, apoptosis, and sessile (i.e. non-proliferative,

non-migratory, and non-apoptotic). In this work, I discovered from flow cytometry

and live imaging experiments that the phenotypic state transitions are appropriately

described by a continuous Markov chain (CTMC), a class of stochastic framework

widely used in agent based approach. As such, we used CTMC formulation to esti-

mate the single-cell decision parameter. Together these findings support the validity

of the agent based modeling approach and offer quantitative parameters required for

modeling cellular behavior in angiogenesis.



The contents of this thesis are arranged as followed. In the first chapter, I de-

scribe the importance of sprouting angiogenesis as therapeutic targets and briefly

review evolution of experimental platforms for angiogenesis. Then I review the cur-

rent state-of-the-art mathematical and computational approaches in the past decade

to simulate and predict the tissue level outcomes of sprouting angiogenesis. Then I

argue that for the current-state-of-the-art methodologies in angiogenesis modeling,

the quantitative understanding of the single cell decision derived from experimenta-

tion is essential in generating reliable model predictions.

In the second chapter, I describe the experimental results that led me to purpose

inflammatory angiogenesis as a physiological context in which to study the single cell

decision. To this end, I explain the role of vascular endothelial growth factor and

platelet factors as key relevant cytokines and describe the effect of these cytokines on

the tissue level angiogenic responses on angiogenic endothelial cells.

In chapter three, I explain the rationale and expected outcome of studying single

cell decision in sprouting angiogenesis. I described two types of experimentally ob-

tainable single cell decision data: aggregate and full panel data sets. In this chapter,

I present the derivation of the parameter inference formulation consistent with the

aggregate data obtained by multi-parametric flow cytometry.

Chapter four describes the experimental design to obtain full panel data from

live cell microscopy. In this chapter, I describe the parameter inference algorithms

consistent with the full panel data. Then, I present the parameter estimation results

of applying the parameter maximum likelihood estimatation to the full panel data

of angiogenic endothelial cell population under the inflammatory cytokine treatment

conditions. In addition to the parameter estimation, I describe the further step I took

to show that within a presumably homogeneous population, angiogenic endothelial

cells adopt a few unique transition patterns (clusters) distinguished by the dwell time

in and the transition frequencies among the four phenotypic states. Based on this



finding, I purpose two conceptual models to account for the different state transition

patterns and how they are modulated in the presence of the inflammatory cytokines

PF4.

In this final chapter, I conclude the thesis and discuss the future perspectives of

this thesis work. I specifically describe the framework for incorporating the experi-

mentally obtained single cell transition dynamic parameter to agent based simulation

of angiogenesis. With the additional end point dataset I used to estimate the sprout-

ing (stalk-to-tip transition) probabilities under different cytokine conditions and the

collaboration with Levi Wood for his sprout elongation model, we will use this ap-

proach to try to predict different sprout morphologies.

1.1 Angiogenesis as a therapeutic target

Blood vessel arose in evolution as a mechanism that allows the supply of nutrients,

oxygen, and waste exchange in multi-cellular species and thus evolutionary survival

of genes in such systems. In modern medicine, it is also utilized as a conduit through

which physicians may obtain diagnosis and/or introduce therapeutic drugs to pa-

tient's internal organs. As a living tissue, blood vessel can be induced to overgrow,

degenerate or become dysfunctional in many physiological conditions. The ability to

modulate and normalize blood vessel morphology and vessel properties has enormous

therapeutic appeal as it can be used to cure diseases characterized by inappropri-

ately overgrown vessel such as in age-related macular degeneration, insufficient blood

supply such as in diebetic wounds and coronary artery obstruction. The ability to

control blood vessel growth can be also used to stop unwanted misregulated blood

vessel growth such as in tumor angiogenesis.

Promises in controlling of angiogenesis to meet therapeutic goals have led to a

spurt of research efforts in the recent decades to develop experimental and computa-

tional methods to study the angiogenesis process and series of clinical trials following



the efficacies of therapeutic strategies stemming from these research efforts. For most

of these research initiatives, the main goal is to understand how angiogenesis process

occurs especially in tumor context. In this section, I review the experimental and

computational approaches to study angiogenic process. In the subsequent section,

I will describe how the designs and implementation of my thesis work are drawn

from the strengths of these efforts and how the findings from my thesis work add to

understanding on angiogenesis understanding at the cell population level.

1.2 Experimental advances in sprouting angiogen-

esis

The scientific attempts to control angiogenesis started during the 1970s when the

research team led by Judah Folkmann successfully developed methods to culture en-

dothelial cells and induce vascular growth ex vivo. The experimental platform of an-

giogenesis during that early time includes the chick-embryo chorioallantoic-membrane

(CAM) assay, the sustained-release polymers and the implantation of these polymers

as pellets in the rabbit and murine cornea. These in vitro angiogenesis bioassays has

allowed the Folkmann team to rapidly discovered and purified myriad of angiogene-

sis modulating agents that can be use for therapeutic purposes - especially a family

vascular endothelial growth factor (VEGF) inhibitors.

1.2.1 In vitro assay of sprouting angiogenesis

While in vivo assays may better mimic the physiological states in which angiogenesis

occurs, in vitro assay provide several advantage over the in vivo counterparts. These

advantages includes the ability to manipulate the cell types, extracellular matrices,

genetic manipulation, ease of result evaluation, and direct assessment of therapeutic

agents. In this section, I briefly review a few in vitro assay that remain the mainstay

of angiogenesis research.



* Aortic ring assay

The aortic ring assay is an organ culture model in which angiogenic sprouts form

from a segment of aorta containing native cell types and extracellular matrices

[, 2]. The rings of aortic explants are embedded in collagen gel and cultured in

serum free medium for approximately one week. During this period, the aortic

explants send out vascular outgrowths [4), 1 c;]. that elongate, form branches

and anastomose (fuse) into a capillary network (Figure 1-1). In this assay

setup, some experimental conditions such as gel concentration and mechanical

stiffness, and bulk concentrations of angiogenesis modulators can be modulated.

The main strength of the assay are that the vessel outgrowths are anatomically

similar to angiogenic sprouts in vivo. However, the variability in the handling of

the rings and in the amount of sprouting active cells can significantly influence

the sprouting responses.

* Retinal explant culture assay

Retinal explant culture is another organ culture model that have been widely

used. In this assay, retinal tissue containing microvascular is isolated from

neonatal mice and culture ex vivo. This assay provides an advantage over the

aortic ring assay in that the vascular sprouts are formed from microvascular

endothelial cells (rather than aortic cells). This assay has been successfully been

used to made important discoveries in angiogenesis. Such advances includes the

identification of the specialized endothelial cell situated at the tip of vascular

sprouts, the so-called tip cell [12, 92]. The main disadvantage of this assay is

that retinal explants cannot be maintained for long-term culture. The retinal

explants likely experience hyperoxic conditions and lesions made during the

dissection typically leads to sprout regression by increased cell death or by

vessel pruning.

* Matrigel tube formation assay



Figure 1-1: Angiogenic sprouts formation from a segment of mouse aorta. (a) Aortic
ring in day 6 of culture in Type I collagen gel sends out numerous vascular outgrowth.
(b) High resolution image of the same aortic ring explant reveals the continuous sprout
formation led by invasive tip cells. Scale bar is 400 pm. Images are taken from a
review by Aplin et al [.].

The matrigel tube formation assay is a cell culture model in which angiogenic

endothelial cells form multicellular network like structure (referred to as "tube")

when seeded on Matrigel. The ability of endothelial cells to form this two di-

mensional network structure has been referred to as capillary-like tubes and has

been used as a measure of the endothelial cells' ability to form three dimensional

network [ m]. Due to the ease of assay setup and the reproducibility [ j] the

assay has been used to study various biological applications - to quantify the

effects of pro- and anti-angiogenic factors and small molecule therapeutics, to

screen for genes and proteins regulating angiogenesis [ I, 1] and to characterize

the endothelial progenitor cells [1 2, 7(]. The assay result can be relatively easily



(a)

(b)

(c)

Figure 1-2: Neonatal mouse retinal explant culture sends out vascular outgrowths.
The vascular development in this model system progress in a reproducible spatiotem-
poral manner. (a) Schematic presentation of an entire neonatal retinal explant with
developing primary plexus of the retinal vascular network. (b). Schematic drawing
of the explant's cross-sectional slab showing the sprouting angiogenesis in the fiber
layer (top) of the retina, and subsequently in the deep layer. (c) Isolectin staining of
the retinal vasculature revealing the invasive tip cell at the leading edge. Images are
adapted from Gerhardt et al. [ 1

assessed by 2 dimensional microscopy. One of the major criticism of assay is

that the tube-forming ability has been reported in non endothelial cell types

including fibroblasts.



Figure 1-3: Angiogenic endothelial cell seeded on matrigel form network liked tubules
on the gel. Representative images show the typical network structure formed after 24
hours culture on reduced growth factor Matrigel. Images are taken from Khoo et al

39



* On-gel sprouting assay and transwell assays

The on-gel sprouting assay is cell culture in vitro model. The experimental setup

for this assay is similar to the matrigel tube formation assay setup. Angiogenic

endothelial cells seeded as a confluent monolayer on Type I and Type II collagen

and fibrin gels can invade the gel in 3D [ 5-]. The main advantage of this

assay are multiple folds. The on-gel invasion assay is relatively require a simple

experimental setup and the results are reproducible. As such the assay can

be used in a larger scale such as in screening studies. Contrary to the tube

formation on Matrigel, the ability to form a continuous invasive sprout and

capillary like network on these gels is unique to endothelial cells.

EC monola er

sproutin ECs (c)

Figure 1-4: Experimental setup and representative images of sprout formation in
on-gel cell culture model. Extracellular matrix such as collagen gel is prepared and
casted inside a well of a transwell plate or of a glass bottom dish. After the gel solidify
to a flat gel surface, endothelial cells is seeded at confluent monolayer seeding density.
Cell culture medium containing growth factor can be added on top of the collagen gel
monolayer. Images are adapted from Bayless et al [15]. (b) Representative images
of invasive sprout formation imaged from top. (c) Confocal imaging of the sample
showing the extent of sprout invasion. Images are taken from Yamamura et al [2].

* Sprouting assay on microcarrier bead

Sprouting assay on microcarrier bead (aka microcarrier bead assay) is another



cell culture model of angiogenesis. HUVECs and hMVECs incubated with

microcarrier beads in suspension adhere to the beads. The cells remain attach to

the beads when transferred to a culture dish containing culture medium. When

the coated beads are suspended in extracellular matrix including fibrin and

collagen gel, angiogenic endothelial radially sends out vascular sprouts similar

to those observed in aortic ring assays [7), 7>]. The main strength of this

assay are that the number of cells required is small and that the the cells are

surrounded by extracellular matrix in 3D which better mimics the physiological

environments.

Figure 1-5: Representative images of sprout formation on microcarrier bead coated
with angiogenic endothelial cells. Beads were embedded in fibrin gel(a) Human um-
bilical vein endothelial cell (HUVEC) coated bead form nascent sprouts on fibrin gel
after 2 days in culture. (b-c) Continuous sprout continue to grow and extend away
from the beads over longer period in culture. (d) Angiogenic sprouts from the same
and different beads can fuse when they come into contact. Images are taken from

. Microfluidic device assays



In the cell culture model of angiogenesis discussed so far, the sprouting re-

sponse is studied using macroscale culture systems, so termed for the inability

to control cell patterning and biomolecular transport at length-scales down to

a cell diameter. In recent year, the microfabrication technology has enabled

the creation of 2D patterns and 3D scaffold. These microsystems have proven

to be a powerful technology to study cell biology and tissue engineering, offer-

ing significant improvements over traditional cellular macroscale assays. Mi-

crofluidic technology allows for a wide variety of micro-channel dimensions and

geometries [2] for generating soluble and insoluble gradients of biochemical

factors, on-chip valving and pumping through multilayer fabrication [ I] and

incorporation of membranes [96)G] and three-dimensional extracellular matrices

for increased functionality [I2]. In addition to the ability to control the culture

microenvironment, microfluidic assay requires much less experimental material

- including cells, culture medium, extracellular matrix, and biochemical factors

- than the traditional macroscale counterparts. As such it can be used when

resources are limited such as for testing new pharmaceutical agents.

Many of tissue culture and cell culture experiments can be performed in mi-

crofludic devices. In recent years, several research groups have adopted the

microfluidic technology for in vitro studies of sprouting angiogenesis [P1, 2, ,

]. By combining the strength of the cell culture models (technical simplicity,

manipulability, reproducibility) and of microfludic technology (the ability to

control the microenvironment), microfluidic sprouting angiogenesis assays are

now at the forefront of in vitro angiogenesis research.

In the recent studies, the Heilshorn group adopts the bead culture assay into

a two channel microfluidic device. This microfluidic setup allows the group to

investigate the effect of matrix stiffness on angiogenic sprouting response in-

duced by vascular endothelial growth factor (VEGF) gradient [) ]. Our own

research group has developed a three-channel microfluidic device separated by



two gel regions. The exposure of angiogenic endothelial cells to two gel regions

are useful as they can be used to test the same cell population under two mi-

croenvironments that differ only by one factor. One gel region can be used as no

cytokine control region [2], or the two regions can be infused with gradients of

two different biochemical, pharmaceutical factors[5:"]. The two gel regions can

be filled with two types of extracellular matrices. Alternatively, the multichan-

nel microfluidic system can be used for heterotypic cultures on angiogenesis by

addition of a non-endothelial cell types in one of the two side channel [ 1 , iR;].

1.3 Computational modeling of angiogenesis

Computational modeling is a useful tool for studying specific questions pertaining to

complex process such as angiogenesis. For the past two decades, computational mod-

els has used to study angiogenesis. These models can be classified by the approaches

taken from a mathematical and computation ground.

* Continuum based models

Continuum based modeling approximates the vascular tissue as a continuous

series of entities [ , ]. These approaches implicitly assume that individual

cells that constitute the sprouting angiogenesis span much smaller length scale

than the length-scale of tissue being model. The variations among the different

parts of the tissue is accounted for by gradual transitions over individual cellular

constituent. For this reason, the continuum models can be implemented by

assigning one set of system of different equations as a continuous spread over

the modeling space and time.

" Discrete models

In contrast to the continuum approaches, discrete models describes the con-

stituent parts of the tissue being model as discrete entitites such that their
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Figure 1-6: Microfluidic assays for studying sprouting angiogenesis. (a) Schematic
drawing of the two-channel microfluidic device in which the bead assay is adopted.
The device consists of two channels separated by a gel region. Endothelial cell coated
beads are suspended in collagen gel and injected into the gel region through which
the sprouting response can be observed microscopically. The images are taken from
Shamloo et al. (b) Schematic drawing of the three-channel microfluidic device in
which on-gel setup is adopted. The three channels are separated by two gel regions.
Endothelial cells seeded in the middle channel can adhere to the extracellular matrix
on both sides. The angiogenic sprouts can be observed within the gel regions with
standard light microscopy. The images are taken from Chung et al [2 7].

unique and independent behaviors are explicitly represented [(]. These ap-

proaches discretize the modeling space and time as small increments. In the

context of angiogenesis, discrete constituent units are individual endothelial

cells. The model can be implemented by numerically solving the system of dif-

ferential equations at discrete lattice points. An example of such approach is

the Cellular Potts Model (CPM) developed by Glazier et al [43] and applied

to model vascular morphogenesis by [71]. The main feature of CPM is the

lattice-based description of cellular structure and their interactions which can
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be described by agent-based interaction rules.

* Stochastic vs. deterministic models

The evolution of the system can be described either deterministically or stochas-

tically. In deterministic model, the state of the systems has no randomness

associated with it such that the set of differential equation describing the evo-

lution of the systems predict the systems' exact outcome - i.e., under the same

model parameter and initial conditions, deterministic models always produce

the same predictions. On the contrary, stochastic models describe the evolution

of biological process probabilistically [9()(]. These models can accommodate the

multiple possible outcome associated with biological process by using probabil-

ity distributions to describe the outcomes in the simulation.

* Hybrid and combined modeling approaches

Most of the recent modeling efforts in angiogenesis focuses on combining de-

sirable aspects of the aforementioned modeling approaches. For example, in a

hybrid stochastic agent deterministic field modeling approach [ , 11 I], the cells

are described as discrete stochastic agents, while the chemical and biochemical

environment within the 'field' is governed by a continuous deterministic systems

of differential equations. The solutions of the field equations in discrete space

and time affects the behaviors of the stochastic cells.

In recent years, multi-scale modeling approach has become a powerful tools

for studying angiogenesis which is inherently a multi-scale process [M]. The

receptor-ligand binding of angiogenesis modulating factors, extracellular matrix

cleavage, and corresponding intracellular signaling events occurs at the molecu-

lar level spanning diffusion time scale (in the order of 1 seconds [1 I0, ', >, ,

]). These molecular events influence the changes in cellular behaviors that

occurs at a longer time scale (in the order of minutes for intracellular signal-

ing events and minutes to hours [5), 1 11] for transcriptional and translational

changes). The collective changes at the level of cell population lead to tissue



tissue level response at an even longer time scale (hours to days). The integra-

tion of computational modeling across different length scales can be extremely

powerful and essential as they are capable of predicting the effect of molecular

and cellular intervention on tissue level outcomes.

As with most of the modeling approaches, there are certain challenges and lim-

itations of computational approaches of modeling of angiogenesis. Understanding

these limitations are crucial in enhancing our understanding of angiogenesis. The

limitations of the computational issues can be include the simplifying assumption,

parameter identification, and model validation. Excellent discussion of these issues

are discussed in an excellent review by Pierce ['i].

1.4 Predictive values of the computational models

and requirement of quantitative experimenta-

tion

Computational modeling can be a powerful tool for address specific questions in an-

giogenic research. First, computational predictions often is valuable in suggesting

potential hypotheses or addressing alternative and competing hypotheses in angio-

genesis research. In addition, computational model can be used to determine exper-

iments necessary in addressing those hypotheses. Recently, Bentley et al use their

agent-based model of tip cell migration and selection to form a hypothesis and guide

the experimental design for addressing the molecular mechanism of the tip cell selec-

tion [ I , ].

Computational modeling is also useful in evaluating and predicting abstract quan-

tities or quantities that are not easily measurable by experimental means. As an

example, the concentration of growth factors or enzymes around a tip cell or on

the endothelial monolayer maybe very difficult to measured and controlled experi-



mentally. These quantities can be computationally evaluated given the constitutive

equations description their transport phenomana and the spatiotemporal scales of the

computation. In addition, computational modeling is useful in identifying the keys

parameters and evaluating the sensitivity of the system outcomes to these parameters.

Mathematical models especially the multi-scale approaches are emerging with ca-

pabilities to integrate biological understanding of the angiogenesis that span multiple

spatial and temporal scales. Astute design of the modeling approaches in such a way

that complement experiments can tremendously enhance our understanding of the

angiogenesis process and ways to control it.

The main underlying hypothesis in this thesis work is that the complex cell behav-

ior leading to sprouting angiogenesis is a consequence of cell-level decisions. Endothe-

lial cells may follow trajectories in a state space containing sessile (S), proliferative(P),

migratory(M), and apoptotic (A) states. As I discussed in Chapter 4 of this thesis, the

multi-response transition among these phenotypic states can described as a stochastic

process. With the appropriate stochastic model of the phenotypic transition, I ad-

dressed the parameter identification issue for a hybrid stochastic agent based model

]. More specifically, I have designed and implemented experiment consistent with

a hybrid discrete cell, continuous environment model of angiogenesis. The details

of this method are discussed in Chapter 3, 4, and 5 of this thesis. This parameter

estimation framework combined with corresponding intracellular measurements can

be used to construct a predictive model of how intracellular signalings implicated in

sprouting angiogenesis affect the state transitions in the stochastic model. We aim

to develop a predictive signal-response-state model governing angiogenesis.



48



Chapter 2

Tissue level angiogenic response

driven by phenotypic decision in

acute inflammatory angiogenesis

2.1 Summary

Chronic wounds represent a significant burden to health care professional and pa-

tients. It has been reported that in the USA alone, more than 35 million cutaneous

wound cases require major medical intervention annually, costing more than 20 mil-

lion dollars [2(]. As a result, the social and financial burden in support of chronic

wound care is staggering [ 7]. One of the primary goals of better managing chronic

wound and driving down this cost are to accelerate wound closure and achieve func-

tional and aesthetic scars.

Successful wound healing depends on the formation of new blood vessel at the

wound site (known as wound angiogenesis). In a typical healing wound, new capil-

laries appear in the wound bed 3 - 5 days after an injury. The formation of these

new capillaries occurs in the context of granulation process at the wound site - the

creation of a supporting matrix consisting of proliferative endothelial cells, migrat-



ing fibroblasts, and the deposition of new extracellular matrix especially collagen.

Angiogenesis supports acute inflammation during wound repair process in a number

of ways by providing nutrient supply and inflammation promoting cytokine environ-

ment. Failure in sprouting angiogenesis associated with impaired granulation is a

hallmark of poorly resolved injuries leading to chronic wounds [H m7, 7]. As such,

better understanding in the regulation of angiogenesis in wound healing not only is

scientifically interesting, but also may suggest unforeseen therapeutic strategies in

managing chronic wounds.

In this chapter, I report experimental results that address how two potentially

counteracting inflammatory cytokines secreted during an early phase of wound heal-

ing affects a longer term angiogenic outcomes. The main goal of this study is to quan-

tify the contributions of two mechanisms whereby PF4 - one of the most abundant

proteins secreted by platelets during inflammation - can suppress VEGF-mediated

angiogenesis.

2.2 Background and Motivation

2.2.1 Wound angiogenesis determines the switch regulating

the development from acute to chronic wound

Wound healing is a finely coordinated process in which a damaged tissue repairs it-

self after an injury. Wound healing occurs in most multicellular organisms across

the animal kingdom. The resolution of wound healing process ranges from complete

regeneration (occurring only in fetuses and planarians) to development of chronic

wounds and scars. An important step in determining whether an injury will heal

completely or develop into a chronic wound is wound angiogenesis.

In the classic model, wound healing process is divided into 3 to 4 sequential phases:



hematostatic (not recognized as a separate phase by some experts), inflammatory,

proliferative, remodeling phases. These phases are distinct in cellular activities, but

can be overlapping in timing. For example, the onsets of hematostasis and the in-

flammatory phase occur almost simultaneously.

Onset of injury to an endothelium immediately sends off signals that start the

hematostatic (the process that stops bleeding) and inflammatory phases of wound

healing. Early events during these phases includes the activation of the coagulation

cascade that leads to platelet recruitment and activation. To achieve hematostasis,

recruited platelets aggregate and form platelet plug at the injury site on the en-

dothelium. Aggregated platelets also activate the coagulation pathway that leads to

fibrin clot formation. This clot acts to further control active bleeding and tissue losses.

In the inflammatory phase, innate immune cells including neutrophils are recruited

to the wound site to remove bacteria and debris. Aggregated platelet secretes a

myriad of factors that contributes crucially to the recruitment of neutrophils and

macrophages and usher the next phase of wound healing [2(), 1]. The inflammatory

phase typically last 2 to 4 days in healing wounds.

The next phase of wound healing - the proliferative or new tissue formation phase

- is characterized by cellular migration and proliferation of various cell types. Peaking

in number during this phase, fibroblasts initiate sprouting angiogenesis, epithelializa-

tion and collagen formation. Sprouts of new capillaries replace the fibrin clot with

granulation tissue which serves as new substrate on which keratinocytes migrate to

cover the injured tissue [ 1]. This phase occurs after the inflammatory phase approx-

imately 3 day post injury and can last from 10 days or more. In tissue injuries with

dysregulated angiogenesis such as in diabetic or ischemic wounds, the wound healing

process stalls in the inflammatory phase for a long period of time and evolves into

a chronic wound [ 1]. Sprouting angiogenesis plays an important role in determin-

ing this development as it is reported that application of a potent angiogenic factor



VEGFA can normalize the healing [-i, ) , i , i , 72].

The last phase of wound healing - the remodeling phase is characterized by reso-

lution of all of active cellular processes, increased collagen deposition and reorganiza-

tion, and mobilization of cells out of the wound site. During this phase myofibroblast

differentiates into myofibroblast and causes tissue contract. Most of the capillar-

ies disintegrates as the endothelial cells undergo apoptosis, while neutrophils and

macrophages exit the wound site.

The switch in tissue level response from acute and healing wound to a chronic

wound occurs between the inflammatory and the proliferative phases of wound heal-

ing. This decision is primarily determined by the platelet-secreted cytokine environ-

ment during the inflammatory phases which in turn determines the extent of sprouting

angiogenesis at the wound site.

Platelets contributes crucially to multiple physiological and pathological processes

in mammalian biology. They are involved in thrombosis, haemostasis, inflammation,

angiogenesis and atherogenesis. Most of platelets' involvement in myriad of phys-

iological processes are mediated by the chemical regulators that are synthesized in

megakaryocytes and stored within platelets' a granules.

Platelets are known to store and release a large number of proteins within their

a-granules including angiogenic factors (angiogenin, VEGF), and angiostatic/anti-

angiogenic factors (endostatin, angiostatin, PF4) [2)]. At sites of vascular injury, cir-

culating platelets adhere to collagen fiber of the subendothelial basement membrane,

followed by aggregation and release of their a and dense granules. Surrounding po-

tentially harmful pathogens exposed to high concentration these chemical are killed.

In addition to pathogen killing, platelet aggregation and a-granule secretion creates a

biochemically rich microenvironment that activates surrounding tissue especially the

injured endothelium itself.



Some of the platelet secrete cytokines during the inflammatory phases have been

reported to have opposing functions. As such, it is unclear how these cytokine re-

lease is regulated and how such regulation may affect wound angiogenesis. There

are multiple lines of hypotheses suggesting that the regulation occurs at the level of

platelets through selective cargo-sorting into a-granules and/or differential a granules

release. Alternatively, the regulation can occur at level of endothelial cell response.

By simultaneously secreting factors with opposing functions on the endothelium, the

platelet could exert a finely balanced effect at the damage site. In this chapter, we

will address this possibility in the context of the opposing potent cytokines released

by activated platelets: the angiogenic VEGF and the angiostatic PF4.

2.2.2 VEGF and PF4 are important and relevant inflamma-

tory cytokine determining the tissue level sprouting

angiogenesis in wound healing.

Platelet factor 4 (PF4 aka CXCL4) is one of the most abundant protein released

during platelet activation. It belongs to a CXC family cytokine family as it was

previous found to promote neutrophil chemotaxis (which was later shown to be due

to contamination by other CXC family members). It is predominant synthesized in

megakaryotes residing in bone marrow, stored in platelets' a granules and are released

upon the onset of acute inflammation.

From its early studies, PF4 has been reported to be mainly involved in the coag-

ulation pathway. PF4 can bind to heparin with a notably high affinity and avidity

, thereby neutralizing heparin's anti-coagulation activity. It is of note that this pro-

thrombotic effect of PF4 is achieved only at high concentration (3 - 10 pg/mL). This

high local concentration range of PF4 has been reported on injured vascular wall

within minutes of platelet recruitment and disappeared after several hours [ 1]. In



addition to its role in modulating heparin activities, PF4 have been reported to be

able to suppress basic fibroblast growth factor (b-FGF) and VEGF modulated angio-

genic sprouting. Recently, the PF4's specific receptor has been identified. However,

the signaling cascade downstream of PF4 that may regulate PF4's angiostatic activity

have not yet been elucidated in details.

Vascular endothelial growth factor (VEGF) is the first and among the best studied

pro-angiogenic cytokine. VEGFA, the predominant form of VEGF ligand, belongs

to a family of growth factors, ubiquitously expressed in vascular cells in arteries,

veins, and lymphatics [ , >]. It activates proliferation only in cells of vascular

origin including in human umbilical vein endothelial cells (HUVECs) and human mi-

crovascular endothelial cells (hMVECs). It also functions as a survival factor for

endothelial cells in vivo and in serum-depleted endothelial culture [61], possibly by

inducing the expression of anti-apoptotic protein Bcl-2 [1]. VEGFA interacts with

both VEGFRI and VEGFR2, the two main VEGF receptors expressed in HUVECs

and hMVECs. VEGFRI is a decoy receptor and VEGFA binding to VEGFRI does

not trigger intracellular signaling. Only the binding of VEGF to VEGFR2 leads

to receptor autophosphorylation and recruitment of a number of signaling adaptor

proteins. In vivo, VEGF has been shown to induce vascular permeabilization and

angiogenesis.

VEGF and PF4 have been detected in a-granules of unactivated platelets [3].
Physiological levels VEGF and PF4 can be detected in thrombin induced platelet ag-

gregation ex vivo, suggesting that VEGF and PF4 are released by platelets during an

early phase of inflammation. Given the potential roles of VEGF and PF4 involving a

fine regulation of angiogenesis outcome, we set out to investigate the effect of VEGF

and PF4 at the single cell decision level leading to tissue level responses. The effect

of VEGF and PF4 on the tissue level outcome will be discussed in this chapter, while

the single cell decision results will be discussed in chapter 4.



Using multiple tissue level angiogenic assays, we examine whether the simulta-

neous treatments of VEGF and PF4 can regulate successful angiogenesis. If so, the

angiogenic switch regulating acute to chronic wound outcome does not necessarily

occur only at the platelet secretion level but also at the endothelial cell response

level. More specifically, we determine whether there are VEGF and PF4 concentra-

tion ranges within which the tissue level response switches (between no sprouting vs.

with extensive sprouting).

In this chapter, we demonstrate that highly angiogenic primary endothelial (HU-

VECs and hMVECs) express high levels of VEGFR2 and CXCR3, receptors specific

to VEGF and PF4 respectively. Using an in vitro microfluidic angiogenic sprouting

assay and a more traditional bulk ongel angiogenic assay(collagen gel invasion assay),

we show that PF4 dose-dependently suppresses VEGF mediated angiogenic sprouting

of hMVEC and HUVECs cultured on Type I collagen gel measured in term of sprout

density, sprout length, and sprout diameter. The concentration range at which the

suppressive effect occurs falls within the two ends of the physiological ranges of PF4.

Using a Matrigel cord formation assay, we show that PF4 reverses VEGF stabilization

of endothelial cord of hMVECs and HUVECs. In addition, PF4 reverses VEGF in-

duced changes in cell morphology and cell-cell adhesion of hMVECs cultured on type

I collagen gel. To tease out the molecular details of PF4 effects in modulating VEGF-

induced endothelial cell responses, we consider two types of mechanisms of PF4 on

VEGF mediated sprout formation. First, because of its high affinity and avidity to

HSPG, PF4 can interfere with VEGF recruitment by heperan sulfated proteoglycans

(HSPG) and we refer this potential mechanism as extracellular. Alternatively, PF4

can bind to its specific receptor CXCR3 highly expressed in HUVECs and hMVECs,

thereby triggering signal transduction that potentially cross-talks to VEGFR2 medi-

ated signaling. By assuming that the two mechanisms linearly combine to determine

the VEGF mediated sprout density, length, and diameter, we propose the scheme by

which we can quantify the relative contributions of the two potential mechanisms.



Figure 2-1: The series of events following the onset of vascular injury during the
early stage of wound healing. In the moments after an injury occurs, components of
blood coagulation and inflammatory cascades are needed to prevent ongoing blood
and tissue losses. First, as part of the coagulation response, circulating platelets
recruited to the injury site adhere to the injured endothelium and form platelet plug.
Platelets also mediate the activation of thrombin leading to conversion of fibrinogen to
fibrin which helps seal the damaged endothelium [10 9]. The plug forming aggregated
platelets secretes high concentration of VEGF and PF4 that can potentially act upon
the endothelial cells at the injury sites. The illustration is modified from Frenette et
al 1996 [A.
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Figure 2-2: Angiogenic sprouting assay setups. (a) Schematic drawings of the on-gel
sprouting assay setup. Type-I Collagen gel was prepared as previous described. (In
[] 2.0 mg/mL pH 7.4 Collagen gel has previously been shown to promote angiogenic
sprout formation of hMVEC in microfluidic devices). The gel was evenly spread into
individual well of a multi-well glass bottom plate, let solidified at 37'C in humidified
environment and soaked in cell culture medium for at least 1 hour before cell seeding.
hMVECs and HUVECs suspended in cell culture medium was allowed to adhere for 4
hours. For cytokine studies, adhere cells were incubated with low serum medium (5%
FBS suppplemented base medium) for 20 hours, completing a 24 hour after seeding
period. Cells were refreshed with VEGF and PF4 containing medium every 24 hours
until the assay end point (72 hours after cytokine treatment). The entire samples
were fixed with 4% paraformaldehyde, permeabilize, and stained with DAPI and
Phalloidin to visualize the angiogenic sprout formation. (b) Schematic drawings of the
high throughput microfluidic devices for an in vitro angiogenic sprouting assay. The
device consists of two fluidic channels (flanking an extended gel regions). Collagen I
gel was injected during standard micropipette tips into the gel region through the gel
filling port. Cells are culture medium were introduced into the device after the gel
solidification through the cell seeding and media ports. Cytokine containing medium
were refreshed every 24 hours since the start of the treatment.



2.3 Material and Methods

2.3.1 Angiogenic endothelial cells source

Primary human adult microvascular endothelial cells (hMVECs) from dermal ori-

gin and primary human umbilical vein endothelial cells (HUVECs) were purchased

(Lonza NJ; Cat.No. CC-2543 and CC-2519 respectively) and maintained according to

manufacturer's instruction. The cells were used at passaged 7 for all on-gel sprouting

assay, unless indicated otherwise.

2.3.2 On-gel sprouting (collagen gel invasion) assay

Type I rat tail collagen (BD Bioscience; Cat.No. 354236) diluted in 0.02 N Acetic

acid to 2.0 mg/mL at pH 7.4 was prepared on ice and was immediated casted in glass

bottom 24-well multi-well plate (MatTek Corp; Cat.No. P24G-0-13-F) and allowed to

solidify at 37'C for 30 minutes in a humidified environment. After gel solidification,

cell culture medium was added to the plate to prevent the gel from desiccation. After

at least 1 hr of medium incubation with collagen gel, hMVECs or HUVECs introduced

at instant monolayer density (50000 cells/cm 2) which consistently were allowed to

adhere to the gel. At this seeding density, HUVECs and hMVECs consistently formed

a confluent endothelial monolayer on collagel gel at 18 hours after seeding (Figure 2-

2). To test the effect of cytokine conditions on sprouting, cytokine containing medium

was introduced at 24 hours after seeding. The conditioned media were refreshed

every 24 hours until the end of experiment (72 hours after seeding, unless indicated

otherwise).



2.3.3 Angiogenesis sprouting assay in a high throughput mi-

crofluidic device (HTD)

PDMS device preparation

High throughput microfluidic photoresist pattarned silicon wafer mold was designed

in house and custom-ordered from the Stanford University Microfluidic Foundry. The

microfluidic system consisting of PDMS (polydimethylsiloxane; Silgard Dow Chemi-

cal, MI; Cat.No. 184) was prepared on SU-8 2050 photoresist-patterned wafers (Mi-

croChem, MA) using a standard soft lithography process described previously [2 , 2N].

The fabricated PDMS channel and the microscopy grade cover slip used to seal the

channel were sterilized and dried at 80'C overnight. Subsequently, they were plasma

treated (Harrick, CA) in air, and bonded together to form a closed microfludic chan-

nel. After the plasma bonding, all microfluidic channels were coated with 1 mg/mL

poly-D-lysine hydrobromide (Sigma-Aldrich St. Loius, MO; Cat.No. P7886) and in-

cubated for at least 4 hours at 37'C in a humidified environment. The device was

then washed thoroughly with sterile water and dried at 80'C overnight to allow the

PDMS surface to return to its native hydrophobicity - a crucial surface property in

confining the extracellular matrix within a specified region.

Extracellular matrix casting and cell seeding

Microfluidic device that have been bonded, sterilized and surface treated were brought

to room temperature prior to gel injection. Type I rat tail collagen is diluted to 2.0

mg/mL concentration and calibrated to pH 7.4 as in the on-gel sprouting assay. While

at 40C, the collagen gel solution was carefully injected into the microfluidic gel region

through a gel filling port using a standard 200 pL micropipette tip. The collagen gel

was allowed to solidify at 37'C in a humidified chamber for at least one hour. After

gel solidification, 370C cell culture medium was flown into the device on both sides

of the gel through the medium ports. The gel was incubated with the cell culture

medium for at least one hour before cell seeding. At the cell seeding time, hMVECs



and HUVECs cell suspensions were diluted to the instant monolayer seeding density,

flown into the channel, and allowed to adhered for at least one hour prior to additional

medium filling.

Inflammatory cytokine treatment

After at least 24 hour of seeding in cell culture medium (EGM2MV; Lonza NJ

Cat.No. CC-3202), hMVEC culture were switched to conditioned medium contain-

ing specified concentrations of recombinant human VEGF and PF4 (Peprotech NJ;

Cat.No. 100-20 and 300-16 respectively). Conditioned media were refreshed every 24

hours onward.

2.3.4 Angiogenic sprout visualization and quantification

Sprouting endothelial cells in HTD were visualized under a phase contrast microscope

every 24 hours after seeding. Images were taken and analyzed using an image pro-

cessing MATLAB script developed in house. At the end point of the assay, 3D images

of DAPI and Alexa-568 Phalloidin (Molecular Probes, Eugene, OR; Cat.No. A12380)

stained samples (in ongel and HTD setups) were imaged using a laser scanning mi-

croscopes (Zeiss LSM510 and Olympus FV1000).

2.3.5 Tube (cord) formation assay

Growth factor reduced, phenol red free Matrigel (BD Biosciences, Bedford, MA;

Cat.No. 356231) were used at 100% concentration, managed while on ice, and casted

on to wells of 24 well plate prior to seeding. Gel was allowed to solidify for 30 mins

37'C in a humidified chamber. hMVECs suspended in cell culture medium were

seeded onto solidified Matrigel at the instant monolayer density (50,000 cells/cm2 ).

Under this condition, hMVECs tube formation can be seen on the Matrigel at 18 - 24

hrs after seeding. Condition media containing specified concentrations of VEGF and

PF4 in base medium (5% FBS EBM-2; Lonza NJ; Cat.No. CC-3156) was refreshed

every 24 hours after seeding onward.



2.3.6 siRNA transfection

CXCR3 level in HUVECs and hMVECs were knocked down by a validated CXCR3

siRNA pool (Dharmacon Lafayette CO; Cat.No. L-005472). HUVECs and hMVECs

were seeded at low density to achieve 25 - 30% confluence at the time of siRNA

transfection. On the day of transfection, transfection media were prepared according

to manufacturer's recommendation. siRNA delivery was ensured by the visualization

of Cy3-labeled oligos 4 hours after transfection. After 4 hours of siRNA incubation,

cells were refreshed with antibiotic free, serum and growth factor containing medium

for 20 hours before antibiotic is added back.

2.4 Results

2.4.1 PF4 suppresses VEGF-induced induction of angiogenic

sprouting in both on-gel sprouting assay and microflu-

idic devices

To determine whether the regulation of angiogenic outcome in inflammatory angiogen-

esis occur at the endothelial cell level, we quantitatively characterized the angiogenic

response following VEGF and PF4 treatments. In the absence of any growth fac-

tors, both HUVECs and hMVECs can form a complete monolayer on type I collagen

gel, but their angiogenic activities are minimal with HUVECs consistently being less

invasive and sending in fewer angiogenic protrusion into the gel. Consistent with

previous findings, 20 ng/mL VEGF increases the overall angiogenic sprout density

both in HUVECs and hMVECs. More specifically, VEGF and PF4 effectively mod-

ulates angiogenic sprouting densities at their respective physiological concentrations

- 20 ng/mL for VEGF; 500 ng/mL for PF4 during the inflammatory phase of wound

healing (Figure 2-3 a and b).

The observed angiogenic sprouts can be classified based on their attachment to

the endothelial monolayer at the gel interface; class 1: attached nascent sprout, class



2: detached. Attached sprout (class 1) often consists of multiple cells (string of cells)

or starts off with a single cell but subsequently develops into a multicellular sprout

(forming string of cells) and forms cell enclosed lumen. The attachment and the

lumen formation are important characteristic of functional angiogenic sprout (Sup-

plementary Figure 1 (Section 2.6)). On the other hand, detached sprout (class 2)

fails to maintain the contact with the monolayer and only contains a few invasive

cells. Based on high resolution imaging data, only the class 1 sprout will lead to

a functional vascular network. We found that VEGF strongly increases the density

of attached (class 1), but only minimally affects the density of detached sprout as

measured at 24, 48, and 72 hours of cytokine treatments in microfluidic devices (Fig-

ure 2-3b and d).

To examine the effect of VEGF and PF4 on sprouting angiogenesis over a wider

range of concentrations, we performed a dose response sprouting experiment. We first

performed the assay in high throughput microfluidic devices (HTDs). However, the

device-to-device variabilities make the assay less scalable and the HTD based dose

response results less reliable. As such, we moved to performing the assay in multi-well

glass bottom plate - the platform in which image-based quantification of the result

remain possible and the results are more reproducible.

In adopting a new experimental setup, we first validated that the HUVECs and

hMVECs can be induced to form angiogenic sprout in an ongel assay and that the

resulting sprouts are comparable in size and morphology to those observed in HTD

(Figure 2-4a). At 72 hours after the treatments, we observed dose dependent increase

in sprout density of hMVECs seeded on type I collagen in the ongel assay (Figure 2-

4b). This increased sprout densities were dose dependently suppressed in response

to increasing PF4 concentration in the background of 20 ng/mL VEGF (Figure 2-

4c). The dose response range of VEGF spans the entire tested range (0 - 80 ng/mL)

and the response is almost linear from (0 - 40 ng/mL). On the other hand, the dose

response curve of PF4 is characterized by a narrow transition range (compared to
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Figure 2-3: VEGF and PF4 modulate angiogenic outcomes. (a) Representative im-
ages showing the varying extent of angiogenic sprouting of HUVECs observed after 24
- 72 hours of treatments (20 ng/mL VEGF and 500 ng/mL PF4). (b) Quantification
of sprout density of HUVECs observed after 72 hours of treatments. (Statistically
significant difference are denoted as follow: *** -p < 0.005; *-p < 0.05; ns - p > 0.05
(not significant)). (c) High resolution image of angiogenic sprouts in microfluidic de-
vices showing class 1 (blue arrow heads) and class 2 (red arrow) sprouts. (d) VEGF
and PF4 differentially affects nascent attached sprout (class 1) and detached sprout
(class 2). VEGF significantly increases the average density of class 1 sprout but does
not significantly affect class 2 sprout density. PF4 suppresses the effect of VEGF
induced increase in class 1 sprout density.



the test range) of 10 - 80 ng/mL PF4. Notably, the transition range (range of PF4

concentration at which transition occurs) falls within the bracket of reported physi-

ological PF4 concentration - 2 - 10 ng/mL in the plasma (no inflammation) and 5 -

10 pg/mL in serum [! W] (generated by thrombin-mediated platelet aggregation and

coagulation as occurring during inflammation).

In addition to quantifying sprout density, we examined additional sprout char-

acteristics that may indicate the quality of sprout formation under the same VEGF

and PF4 concentrations. These characteristics are sprout length, invasion depth, and

sprout diameter. Sprout length measures the contour length of an attached sprout

from the invasive tip to the base of the sprout at the gel interface where it comes

into contact with the monolayer. This quantity reflects the extent to which individ-

ual sprout has extended within a gel. Invasion depth represents the perpendicular

distance from the base of the sprout to the invasive tip. This quantity indicates

how persistent individual sprout is in moving away from the monolayer and invading

collagen gel. Lastly, sprout diameter represents the width of the sprout at the gel

interface. This quantity reflects the ability of sprout to become part of a functional

conducing vascular network.

HTD sprouting assay under selected VEGF and PF4 concentrations shows that

20 ng/mL of VEGF significantly increases sprout length and invasion depth and sig-

nificantly decreases sprout diameter (Figure 2-5a-c). High concentration of PF4 only

mildly suppresses sprout length and invasion depth. On the other hand, PF4 sup-

presses VEGF-induced reduction in sprout diameter. Ongel sprouting assay reveals

the effect of dose response of the aforementioned sprout characteristics. Under a

constant concentration of VEGF, increasing PF4 concentration does not significantly

affect sprout length, and invasion depth. These results is consistent with the effect of

PF4 found in microfluidic devices.

Taken together these results indicate that endothelial cells respond to the oppos-
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per unit gel a rea) can be modulated by treatments with inflammatory cytokines
(VEGF and PF4) (b). VEGF dose dependently increases sprout density after 72
hours of treatment. On the other hand, platelet factor 4 (PF4) dose dependently
reverses the sprout-inducing effect of VEGF measured after 72 hours of treatment.
It is of note that in the PF4 dose response curve, the sprout density change within
a narrow window of PF4 concentration. This transition window falls within the two
physiological concentrations of PF4. The lower end coincides with the reported PF4
concentration in plasma (7 ng/mL) where is not inflammation. On the other hand,
the higher end of this range coincides with the reported range of PF4 in serum (3 - 10
pg/mL) extracted from aggregated platelets, similar to that occurs during an early
state of inflammation.
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ing inflammatory cytokines VEGF and PF4, which are secreted by activated platelets

during the inflammation phase of wound healing. These observations indicate that

angiogenic switch regulating the outcome of wound angiogenesis can occur at the

endothelial cell level irrespective to whether platelet cytokine secretion occurs in the-

matic manner. More specifically, our results suggest that VEGF promotes lengthy

and invasive sprout formation. PF4 modulates the sprout responses by causing a

reduction in sprout density and sprout diameter without changing how far and how

persistent sprout invades the gel. Recall that sprouting angiogenesis can be divided

into the following sequence of events: (1) tip/stalk cell selection; (2) tip cell navi-

gation and stalk cell proliferation; (3) branching coordination; (4) stalk elongation,

tip cell fusion, and lumen formation; and (5) perfusion and vessel maturation. The

quantified sprouting responses suggest that PF4 most strongly affects the tip/stalk

selection step, but has minimal effect at the tip cell navigation, stalk cell proliferation

and stalk elongation steps.

2.4.2 PF4 reverses VEGF-mediated deceleration of endothe-

lial cord dissociation

To examine the role the PF4 in regulating sprout formation on a more physiological

substrate, HUVECs and hMVECs were analyzed for their ability to form tubes on

growth factor reduced Matrigel in the presence of VEGF and/or PF4. HUVECs and

hMVECs seeded on Matrigel form network-like structure on gel. This network struc-

tures gradually dissociate over multiple days in culture. VEGF helps maintain the

network structure over at least 36 hours. Addition of PF4 significantly accelerates

cord dissociation (Figures 2-6).

To quantify the different level of cord dissociation in the presence and absence

of physiological PF4 concentrations, we computed the fractional area covered by the

endothelial cord, branch point density and end point density. When endothelial cords
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Figure 2-5: (a-c) The effect of VEGF and PF4 on the average sprout length, average
invasion depth, and average sprout diameter of hMVECs at 72 hours after treatment
in microfluidic devices. (Statistically significant difference are denoted as follow:
* * * - p < 0.005; * - p < 0.05; ns - not significant, p > 0.05). (e-f) The effect of
VEGF and PF4 on the average sprout length and invasion of hMVECs at 72 hours
after treatment in ongel assay (Only statistically significant different among cytokines
are plotted). (d and g) Sprout length is measured along the trunk of an angiogenic
sprout from the tip to the point at the gel interface to which the sprout attached to
the endothelial monolayer. Sprout diameter is measured as the diameter of the sprout
lumen at the gel interface to which the sprout attached to the monolayer. Invasion
depth represents the distance in direction perpendicular to the monolayer from the
monolayer to the tip of the sprout.

disintegrate, the fractional area coverage and the number of cord branch point de-

crease. On the other hand, the number of end points increases as dissociation of

endothelial cord results in new ends. These metrics were quantified from from phase



contrast images of endothelial cord over time. Quantification reveals that, compared

to the no PF4 control (0 ng/mL PF4, 75 ng/mL VEGF), physiological level of PF4

(400 ng/mL PF4, 75 ng/mL VEGF) causes a more rapid reduction in fractional area

coverage and in branch point density, and more rapid increase in the end point den-

sity (Figure 2-7). These results together suggest that PF4 accelerates endothelial

cord dissociation.

2.4.3 PF4 reverses VEGF-mediated changes in cell orienta-

tion and in cell-cell adhesion

PF4's effect in accelerating cord dissociation leads us to hypothesize that PF4 may

counteract VEGF's effect by modulating cell-cell adhesion and cell-ECM interac-

tions. In endothelial cell population, cell-cell adhesion occurs through the homotypic

interactions of vascular endothelial cadherin (VE-cadherin). VEGF has been shown

to disrupt cell-cell adhesion by interfering with VE-cadherin's homotypic binding.

Mechanistically, VEGF can signal through VEGF receptor 2 (VEGFR2) which in turn

initiates the signaling cascade that leads eventually to VE-cadherin phosphorylation

and conformational change. Inhibition of VE-cadherin by anti-VE-cadherin antibody

or the knockdown of CDH5 (gene encoding VE-cadherin) suppresses sprouting in an

organotypic angiogenesis assay and during embryonic development in zebrafish [2].

To test whether PF4 can modulate VE-cadherin mediated cell-cell adhesion, we

examine the VE-cadherin expression in hMVECs on type I collagen gel under VEGF

and PF4 dosages. At the same bulk concentrations of VEGF and PF4 as in the sprout-

ing assay, 72 hour treatments with VEGF and PF4 cause changes in VE-cadherin

band thickness as observed in the confocal images. Quantitative analysis of the im-

munofluorescent staining of VE-cadherin band reveals that VEGF treatments leads

to dose-dependent reduction in VE-cadherin band thickness and an approximately

two-fold reduction at the highest tested concentration (80 ng/mL VEGF, Figure 2-
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Figure 2-6: Representative phase contrast images of hMVEC on Matrigel under the
NO PF4 vs physiological PF4 conditions. In the absence of PF4, VEGF prevents
endothelial cord dissociation over 36 hours. PF4 accelerates the cord dissociation
observed as reduction in endothelial cord density and cord branching over time.

8). On the contrary, PF4 treatment in the presence of low concentration of VEGF

(20 ng/mL) dose-dependently reverses the effect.
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Figure 2-7: Platelet factor 4 reverses VEGF-mediated deceleration of endothelial cord
dissociation. (a) High resolution image of the endothelial cord showing distinction
between the endothelial cord branch point vs. end points. (b) Quantified fractional
area coverage by the endothelial cord (ratio between cord area vs. total image area)
(c) Quantified branch point density and (d) end point density.

In addition, VEGF and PF4 treatments lead to opposing dose-dependent changes

in cell-shape (Figure 2-9). At the same VEGF and PF4 concentrations as in the

sprouting assay, increasing VEGF dosage is correlated with more elongated cell shape

detected at 72 hours of treatment. On the contrary, PF4 dosage in the presence of low

concentration of VEGF (20 ng/mL) is associated with more squamous and rounded



cell shape.
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Figure 2-8: VEGF and PF4 treatments are associated with opposing changes in
VE-cadherin band thickness at the cell-cell junctions. (a) Quantification of the VE-
cadherin band thickness of a representative cell based on contour tracking. The outer
and inner contours were represented by two hundred control points. The VE-cadherin
band thickness are computed as the perpendicular distance between the two contours
at the aligned control point coordinates. (b) VE-cadherin band thickness distribution
for a representative cell in (a). (c)VEGF treatments correlates with a dose dependent
reduction in VE-cadherin band thickness in hMVECs.

2.4.4 Two classes of PF4's potential mechanisms in reversing

VEGF-mediated endothelial cell behavior

The results so far support the hypothesis that PF4 reverses VEGF-mediated changes

in endothelial cell phenotypes in angiogenic sprouting and cell-cell adhesion. Sev-

eral molecular mechanisms have been proposed to explain PF4's effects on angiogenic
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Figure 2-9: Platelet factor 4 reverses VEGF-mediated change in cell shape and
cell-cell adhesion formation. hMVECs seeded at instant monolayer density (50,000
cells/cm 2 ) form confluent monolayer on collagen I gel. Treatments of cells with phys-
iological concentrations of VEGF and PF4 modulates the cell morphology and VE-
cadherin mediated cell-cell junctions.

endothelial cells. They can be largely classified into two major types: 1. Heparan

sulphate proteoglycan (HSPG)-mediated non-signaling mechanism and 2. CXCR3B

receptor mediated signaling mechanism (Figure 2-11).
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Figure 2-10: VEGF and PF4 changes are associated with changes in cell area and
shape. (a) Cell area vs. axis ratio of hMVECs on Type I collagen gel after 72 hour
treatment with 20 ng/mL VEGF alone (red x's) or with addition of 500 ng/mL PF4
(blue circles). VEGF treated hMVECs are elongated. With PF4 treatment, hMVECs
adopt a more rounded morphology and some of the cells spread out more as seen by
the increase in cell area. (b) Quantified changes in numbers of cells within an imaging
frame as a measure of cell densities under 72 hour dosage treatment with PF4 in the
background of 20 ng/mL VEGF. Number of cell in each of 12-16 image frames taken
from each of the three experimental triplicate samples were shown as blue circles.
The mean and standard error within each of the three triplicates are shown as red
asterisks and red error bars respectively.
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* HSPG mediated extracellular mechanism

PF4 binds with high affinity and avidity to several types of glycans including

HSPGs and chondroitin sulfate proteoglycans (CSPGs) [67]. In vitro studies

have shown that HSPGs are also implicated in the angiostatic capacity of PF4.

The evidence from in vivo studies, however, seem to indicate a contrary role of

HSPG in PF4's angiostatic effect. Maione et al and others reported that mod-

ified recombinant PF-4 variants that have lost their HSPG binding domains

exhibit even stronger angiostatic effect [ , ]

Given PF4's high affinity and avidity to cell surface proteoglycans, it can out-

compete VEGF for glycan binding. The potential effects of PF4 occupancy on

these glycans are two folds. First, PF4 occupancy excludes glycan molecules

from capturing soluble VEGFs. HSPG have been reported to be an impor-

tant mediator of VEGF-VEGR2 interactions. Second, PF4 occupancy excludes

glycan molecules from binding fibronectin (FN). HSPG has been shown to be

essential for conformational change of FN from a closed non-VEGF binding to

an open VEGF binding conformation [71, 7 1]. Both of these effects can lead

to an overall reduction in VEGFR2 binding and activation. Since the HSPG

mediated mechanism occurs upstream of VEGF receptor activation and phos-

phorylation, we also refer to it as 'extracellular mechanism.'

* CXCR3 mediated intracellular signaling mechanism

Recent studies have discovered a new variant of CXCR3 receptors [60] known

as CXCR3B. Several lines of evidence suggest that this newly identified recep-

tor variant play an important role in mediating the angiostatic effect of PF4.

Compared to the more prevalent 'A' variant, CXCR3B binds preferentially to

PF4. More importantly, CXCR3B is selectively expressed on the surface of an-

giogenic endothelial cells especially in microvessels [ M, 57]. Molecular studies

in CXCR3B signaling in non-endothelial cell lines have shed some light on the



the signal transduction pathways downstream of CXCR3B. For instant, recent

studies in the effect of modulating CXCR3 in renal cancer cells indicates that

CXCR3B can modulate the levels of the anti-apoptotic heme oxygenase-1 pro-

tein, leading to the better prognosis of the cancer [3 1]. However, the molecular

details of CXCR3B signaling leading to its angiostatic effect of PF4 remains

largely unknown. We refer to the effect of PF4 through CXCR3B as 'intracel-

lular signaling mechanism.'

2.4.5 Experimental methods to perturb the two mechanisms

of PF4

Based on the current understanding of PF4, we hypothesize that both the 'extracel-

lular' HSPG-mediated and the 'intracellular' CXCR3B-mediated mechanisms con-

tribute to the observed angiostatic effect of PF4. To quantify the partial contribu-

tions, we dedicate the following section for discussing the methods to perturb the two

mechanisms.

" Inhibition of HSPG mediated mechanism

HSPG synthesis can be blocked by non-specific Sodium Chlorate treatment,

Heparinase treatment, and inhibition of Ext-1/Ext-2 gene expression by shRNA.

In the context of this thesis, preliminary treatment of HUVECs with Hep III

does not significantly affect cell viability. Further experiments need to be con-

ducted in order to quantitatively determine the effect of HSPG depletion on the

angiostatic capacity of PF4.

" Inhibition of CXCR3B mediated mechanism

CXCR3B expression can be inhibited by specific small molecular inhibitors,

blocking antibodies, siRNAs, shRNAs, and targeted knockdown using site-

specific Zn-finger nuclease. Commercially available siRNA pool was used to

knock down the expression CXCR3B receptors in the cells. In the context of

this thesis, further experiments need to be conducted to quantify the effect of



CXCR3B receptor depletion on the angiostatic effect of PF4.
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Figure 2-11: Potential mechanisms of PF4 on VEGF-mediated endothelial cell biol-
ogy. PF4 can modulate VEGF-mediated endothelial cell behavior through two main
classes of mechanisms. (1) Non-signaling HSPG mediated mechanism. PF4 binds
to HSPG and precludes VEGF from adhering to HSPG and fibronectin. This effect
causes a significant reduction in local effective concentration of VEGF around VEGF
receptor 2 on the cell surface. (2) Signaling CXCR3 mediated mechanism. PF4 binds
specifically to CXCR3B, a G-protein couple receptor variant specific to PF4 that is
expressed exclusively on endothelial cell types. PF4 mediated activation of CXCR3B
trigger intracellular signaling that can cross talk to VEGFR2 mediated signaling.
CXCR3B activation by PF4 has been reported to activate p38 MAPK.

2.4.6 HUVECs and hMVECs express high level of VEGFR2

and CXCR3

In order to address the signaling mechanism of PF4 on VEGF signaling, we visualized

the relative level of CXCR3B and VEGF receptors in the endothelial monolayer and

the angiogenic sprouts. Immunofluorescent staining of HUVECs and hMVECs on

absorbed collagen coated glass slide reveals that both cell types express comparably

non-signaling signaling



high level of CXCR3 receptors compared to the unstained control (Figure 2-12a).

Flow cytometry measurements of cells co-stained for VEGF receptor 2 and CXCR3

receptor confirms the presence of both receptor types in HUVECs and hMVECs (Fig-

ure 2-12b). To visualize the localization of the two receptor types in monolayer and

angiogenic sprouts, hMVECs were cultured in HTD and allowed to form angiogenic

sprouts. The HTD were refreshed with cell culture medium every 24 hours after seed-

ing and fixed after 72 hours. Immunofluorescent staining against VEGF receptor 2

and CXCR3 receptor of these samples reveals that both receptor types are present

in the monolayer and in the angiogenic sprout. High resolution confocal images of

the samples show that the two receptors are distinctly localize on the membrane of

hMVECs both in the monolayer and in the angiogenic sprouts.

2.5 Discussion:

Platelets store and release their cargos in thematic way - supporting angiogenesis in

one circumstance by releasing pro-angiogenic cytokines or suppressing angiogenesis

by releasing anti-angiogenic cytokines in another. Italiano et al reported that platelet

stored angiogenic and angiostatic cytokines in separate subsets of a granules [71]. Ma

et al and Chatterjee et al found that platelets selectively release pro-angiogenic and

angiostatic upon activation of distinct receptor mediated signaling pathways [1, 2]).

The two lines of evidence together support a hypothesis that platelets can serve as a

'contextually adaptive' delivery device, by being selective of the subsets of a-granules,

or of the timing of the granules to be released or both. High resolution imaging of

the platelets cargo and detailed co-localization studies by Kamykowski et al; how-

ever, indicates that the cytokine release of platelets are considerably variable and less

thematic [1]. Colocalization analyses in their study reveal that cargo distribution

follows a Gaussian distribution that implies random cargo sorting into a-granules.

Suggesting that platelet may achieved selective delivery of cytokines by differential

timing of release.
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Figure 2-12: High levels of VEGFR2 and CXCR3 are detected in both HUVECs
and hMVECs as determined by immunofluorescent (IF) staining and flow cytometry.
Immunofluorescent staining of cells in microfluidic devices reveals the two receptors
are co-expressed in angiogenic sprouts as well as in an endothelial monolayer. Since
VEGFR2 and CXCR3 are specific to the potent angiogenic VEGF and angiostatic
PF4 respectively, their presence on the highly angiogenic primary endothelial cells
suggest that the two factors can counteract and jointly determines angiogenic out-
comes inflammatory angiogenesis.

In this chapter, we show that angiogenic sprouting decision can occur at the level

of endothelial cells in response to the co-release of angiogenic and angiostatic cy-

tokines VEGF and PF4. The highly angiogenic endothelial cell types HUVECs and

VEGFR2

cxcR3

VEGFR2



hMVECs express the receptors for both the these platelet cytokines. We show that

the angiogenic response of hMVECs to PF4 exhibits a switch like response with the

narrow transition concentration range lying between the two ends of physiological

concentrations - one detected during inflammation and the other in the absence of

inflammation. In addition, PF4 reverses VEGF-mediated endothelial phenotypes in-

cluding Matrigel tube formation, cell-cell junction formation, and cell shape. These

lines of evidence suggest that the multitude of PF4 effects may be directly to oppose

the role of VEGF in endothelial cell behaviors.

PF4 has previously been reported to exhibit anti-angiogenic properties through

potential two main mechanisms. The quantitative contributions of these mechanisms

has not been determined. Only recently has the CXC3B receptor - the only defined

receptor for all ELR-negative CXC chemokines - been shown to be preferentially

expressed on endothelial cells [, ,]. We show that that hMVECs and HUVECs ex-

press high levels of CXCR3 and correspondingly response to the angiostatic effect of

PF4, suggesting that the intracellular signaling mechanism has some contribution to

the PF4's angiostatic effect. We propose a quantitative framework and experimental

perturbations that need to be done to parse the contribution of PF4 effect through

the two mechanisms. Further characterization of the signaling mechanism mediated

by CXCR3B and the regulation of CXCR3 expression may provide another method

by which the regulation of angiogenesis can be controlled in therapeutic settings.



2.6 Supplementary Figures

Supplementary Figure 1: Three-dimensional confocal images of continuous class
1 sprouts with lumens. hMVEC formed angiogenic sprouts in 3D collagen gel in HTD
imaged at 72 hours after seeding. Cross sectional images showing continuous lumens
from the base of sprouts (top side) to the tips (bottom side).



Chapter 3

Studying single cell decision in

angiogenic endothelial cell

population

3.1 Summary

Angiogenesis, the formation of new vascular networks from an existing vessel, is a

multi-step process that requires fine regulation of multiple cellular response states

including proliferation, migration and apoptosis. In order to coordinate successful

angiogesis, endothelial cells switch their cellular states in response to environmental

cues to maintain viability. Understanding the transition dynamics of cellular state

transitions not only gives insight into the underlying process but also offers a means

to make predictions of phenotypic outcome over time by numerical simulations. We

hypothesize that the angiogenic vascular network formation is achieved as a result of

a series of cell-level decisions in response to the infusion of growth factors. The chal-

lenge is to explain how a specific vascular network pattern emerges from individual

agent behaviors. Currently, there is a substantial gap between individual cell-level

behaviors and pattern formation as an aggregate effect of cell population behaviors.

Agent based model is an important tool in bridging this gap. The model treats indi-



vidual cell as a decision making entity ('agent') and encodes the single cell behaviors

as 'rules'. The model then simulates the tissue level responses arising from the collec-

tive results of single cell decisions. The reliability of this modeling approach depends

crucially on the experimental validation of the model parameters. In this chapter, I

present the development of an experimental methods for acquiring quantitative data

and computational algorithms from inferring cell-decision parameters based on the

two types of experiments. The first is the time-lapse aggregate population statistics

acquired from multidimensional flow cytometry. The second is the individual cell

state trajectories acquired by quantitative timelapse imaging. We formulate the pa-

rameter estimation algorithms based on the maximum likelihood estimation and the

Bayesian inference of the posterior probabilities of transitions. These experimentally

derived parameter values are novel and can be validated by stochastic simulations of

endothelial cell populations with different initial conditions to experiments.

3.2 Introduction

3.2.1 Single cell decision as a stochastic process

Cellular phenotypes represent observable biological states among which cells adopt to

accommodate to changing environmental cues. Transition patterns of cell from one

phenotypic state to another have been reported to exhibit high degree of stochasticity

[i %, Ms, 62, 1]. In fact, stochastic decisions are ubiquitous in biology. From the

genetic switch in the bacterial virus A-phage in prokaryotic system to stem cell re-

programming in mammalian eukaryotic system, cells make stochastic switch in their

behaviors [66]. Stochastic choices in cellular phenotypic response are advantageous

for multiple reasons. In the case of single cell organisms such as bacteria and yeast,

stochastic choices may allow for adaptive responses which confer evolutionary advan-

tages in the face of changing environments. A strong evidence supporting this hypoth-

esis is the existence of the persister state observed in many bacteria [1 ]. Multitude



of studies have shown that populations of bacterial cells containing subpopulations

that enter non-growing or slow-growing state in which they can elude killings by most

antibiotics. In the case of multi-cellular system, stochastic choices can create diverse

gene expression patterns and genetic individuality which proved useful in sperm and

egg productions and expansion of olfactory receptor repertoire. If these patterns are

deterministically encoded, the amount of genetic material and machineries required

to encode and decode this amount of information would be costly. In these cases,

stochastic choices offer an advantage in economy of information storage.

Stochastic decisions are by definition non-random, but probabilistic. In modeling

the multi-state stochastic decision processes, the key parameters are the phenotypic

state transition rates. These parameters characterize the dynamics of cell decision

within a population succinctly and enables the predictions pertaining to transition

dynamics and steady-state distributions of the population. As such, the quantitative

knowledge of transition probabilistic rates not only provides valuable insight to the

underlying biological process and how they are influenced by external stimuli, but

they also enable simulation and predictions of the population behaviors.

3.2.2 Types of data available for studying cell decision

Given the current state of the art experimental techniques in mammalian cell biology,

there are two types of experimental data containing single cell decision information.

The first type of data is the snapshot measurement of cell population at discrete time

points. This types of data can be obtained by detecting single cell levels of phenotypic

cellular state markers of a cell population at fixed time points such as in immunoflu-

orescent staining (IF), or flow cytornetry (FC). Since such measurements do not keep

track of cell identities across time points, the resulting data only consists of aggregated

head-counts of cells in the populations adopting different states. We refer to this type

of data as aggregate data (Figure 3-la). The second type of data is the time series

measurements of cellular state markers by following individual cell over time. This



type of data can be obtained microscopically. Since the cell identities are recorded

across time points in time series images, the resulting data is a full panel series of

cellular states over time. We refer to this type of data as full panel data (Figure 3-1b).

The algorithms employed for parameter estimation depends on the types of data

that can be experimentally obtained. We formulate methods for estimating the state

transition rates under the aforementioned two types of observations. We rely on

maximum likelihood estimation (MLE) and Bayesian inference (BI) for obtaining the

parameters. Our decision to use both parameter estimation methods is motivated by

multiple reasons. Maximum likelihood estimation selects the set of model parameters

that yields the greatest likelihood of observing the data. Since the estimation does

not rely on prior knowledge, MLE can be computed when prior knowledge regarding

the parameter values is unavailable or unreliable. Moreover, MLE can be determined

numerically even when the underlying probability model is complex or cannot be de-

rived formally. On the contrary, Bayesian inference computes the degree of belief in

the parameter values by combining both the evidence (the experimental data and the

underlying probability model) with prior knowledge. Since BI infers parameter dis-

tributions rather than parameter values, it can capture the inherent inhomogeneity in

the parameter values among the population members as distributions. Additionally,

BI is equipped with a formal means to incorporate prior knowledge if available or

derivable from the underlying biology.

3.3 Problem formulation

Consider a population of N cells undergoing single cell phenotypic transition. Each

cell i adopts a phenotypic state si(t) E S at time t. Let 'U = (so, to, si, ti, ... , S_1, tkl, Sk)

denotes the set of random variables describing a chain of single cell state trajectory up

to time t. We start by a description of the temporal statistics of cell state transitions

for the aggregate headcount data. We assume that cells transition in time from one



(a)
200

150

-100

0
5 10 15 20 25 30 35 40 45 50

(b) Time interval

C 50

-- 100

U150

200
5 10 15 20 25 30 35 40 45 50

Time interval
Figure 3-1: Two types of experimental data containing single cell decision informa-
tion. (a) Longitudinal data is an aggregate counting of cells in different states, e.g.
snap-shot measurement of population using flow cytometry. For this type of data,
parameter inference is not straightforward and requires snapshot counting of large
number of cells from population. (b) Full panel data contains individual cell state
trajectories through time e.g. by live cell imaging. For this type of data, parameter
inference is more straightforward and can be obtained by tracking of individual cells
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collected by measuring proliferative and apoptosis markers (Ki67 and cleaved caspase-
3 respectively) by flow cytometry. Using Fuzzy clustering algorithms (in this case,
the Gustason-Kessel clustering [!]) to define the mixture distribution, we consistently
detect two phenotypic clusters from the flow cytometry data.

state to another according to a Poisson process, which is a common description of

population transition times. The Poisson process assumption further implies that i)

the number of transitions occurring within a particular time interval follows a Pois-

son distribution, and ii) the residence time of each cell as it visits a state follows an

exponential distribution.

3.3.1 Problem 1 : parameter inference for aggregate head-

count data

Measuring proliferation and apoptotic markers (Ki67 and cleaved caspase 3 respec-

tively) within cell population by FC, we consistently detect two distinct subpopula-

tions of cells (Figure 3-2) for at all time points measured. As proof-of-principle, we

use the following treatments to drive the single cell decisions within the population:

1. starvation condition - in which case we expect the population to shift from prolif-

erative (P) to sessile (S) and apoptotic (A) states; and 2. growth medium stimulation

of a pre-starved population - in which case we expect the population to shift from
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sessile to proliferative states. The single cell decision events we are interested in are

the state transitions of from proliferative state (P) to sessile state (S) with proba-

bilistic rate (Aps). To obtain the aggregate headcounts over time, we performed the

FC measurements of cell population under these treatments at discrete time points

(Figure 3-2).

3.3.2 Likelihood of one transition type can be modeled as

Poisson arrival process

To model the state transition in the starvation experiment, we start with a simpler

probability model with the following underlying assumptions:

" there is only one transition type

" the single cell decision Poisson process is homogeneous

" all cells are identical in transition dynamics

Poisson probability of one arrival

Given these assumptions, we employed the homogeneous Poisson process to describe

the single cell decision (shown in the schematic diagram above). To construct an

analytical expression for the likelihood function for MLE and BI, we first derive the

probability of an occurrence of one cell. Let Sn be the state of the cell at time n

and T be the waiting time, then the probability of state transition occurring after an

observed time T according to the Poisson process is given by



P(Sn+ 1 =j, Tn+ 1 > T S11 - - Sn = i; T1 - - Tn)

= P(Sn+1 j, Tn+1 > T S=i)

= P(Sn+1 = Sn =i)P(Tn+ TSn=1)

Pij eviC

pij - transition probability vi - transition rate out of state i

P(1, T) = pij - -"T

= Pij iT

= (AT)-e-AT

In the following section, we extend the Poisson probability function to account for

multiple observed arrivals over an interval T by treating multiple arrivals as indepen-

dent events.

Poisson probability of more than one arrivals

It is of note that when FC runs are performed, only a fraction of cell population are

taken for the measurements. As such, the FC results are representative samplings

of the cell population in P, S states at certain observation time. We denote these

samplings as fractions of cells in P and S states( p(t), ys(t)respectively). Given a

relatively long doubling time of the human microvascular endothelial cells (hMVECs),

it is reasonable to assume that the total number of cells (Nxt) does not change over

the course of the experiment. As such, the following relationship holds:

N(t = tj) - N(t = 0) ki
fi= f (ti) = ot= s(t = ti) - s(t = 0) = N.

Not o

Given the above relationship, we can turn the likelihood function of Poisson arrival

in terms of the number of observed transition (ki) into a function the fractions Ft-t,



and Yt=O, the quantities we obtain directly from the FC measurements. Here we

propose two ways of formulating the probability of k arrivals.

1. Joint probability of k arrivals as a product of the probabilities of k

independent one arrivals

Taken the probability of one arrival in time interval [0, t] from the previous

section ((ft Poiss(1, A, T)dT)), the probability of k independent arrival can be

written as the product of individual arrival, i.e.,

P(ttrans < t A) P(k = 1, A, ttrans < t)

fo P(N(t + ttrans) - N(t) 1; ttrans = T)dT

o PQN(I + ttrans) - N(t) = 1; ttrans T) dT

f ATe-A'dT

fo Are AdT

I - e-At - Ate-At.

If k independent transitions are observed over the interval [0, t], the likelihood

is given by

P(ttrs < t n ... n tr(k) < t A) =trans tran - *P(ttrns < t) P(ttrns < t)

I (P(ttrans < t|A))k

S(1 - e-At - Ate .t

2. Joint probabilities of k arrivals as described by the k Poisson arrivals

The probability of k arrivals for a given time t can alternatively be described

using the k-arrival Poisson process ((Poiss(k, A, t))) at certain amount of time

t. Then, the probability of k arrivals in the interval [0, t] is given by the integral
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Figure 3-3: Predicted probabilities at varying transition rate parameter (Aps) of five
transitions occurring within the population during the time interval T between two
consecutive FC measurements. For each value of transition rate, the transition curve
exhibits a sigmoidal shape consisting of transition lag and parameter range over which
rapid transition occurs similar to that observed in the FC data.

over the time period (fJ Poiss(k, A, T)dT) i.e.,

P(k > 1, A, t)

F(trans k)< t IA)

(At)k e

k!

J(AT k e 
1'7T 00

_(q,k + 1)
F(k+1)

where r(j, k + 1) is an incomplete Gamma function.

Note that the predicted likelihood calculated with the first and the second methods

yield slightly different expressions. We numerically assert that the two methods

are equally valid as the produce same predictions in the domain of all admissible

parameter values (A, t, k).

(AT )k e-A-rdT



3.3.3 Parameter estimation formulations

Given the likelihood function derived in the previous section, we can now formulate

the parameter estimate based on MLE and BI.

Maximum Likelihood Estimation (MLE)

For the one step transition with single path model, the only parameter in the model is

the transition rate Aps. The likelihood function given the aggregate headcount data

is just the joint probability function conditioned on the observed transition ki derived

from the FC measurements. For the PS transitions, the log likelihood function of the

transition parameter Aps is given by

L(Al~iti} =lo Q(P(ttri)s < ti I A) ki > 0, ti > 0, Vi

N ki

L(A) Zlog k(P(ttrans < tiI A)

L(A) = kilog ((1 - e- i - Atie-Ati)

L(A) =Not filog((1 - - Ate ), where

AMLE argmax((A))
A

Here, it is worth noting that the number of transitions from ith observation (ki) is

a positive linear coefficient inside the sum in the log likelihood function. By replacing

the derived variable ki with the experimentally measured fi, we merely scale the like-

lihood function by a positive integer Not > 0 without affecting its shape. As such we

can directly evaluate and optimize the resulting likelihood using the experimentally

observed (fi, ti).

We apply the MLE formula to compute parameter estimates from the FC mea-

surements of hMVECs under starvation and refreshment experiments. With the one



transition type assumption, we show that the Poisson likelihood estimate the FC

measured fraction of cells in S and P state reasonably well (Figure 3-4).
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Bayesian inference

Given the likelihood function and the FC measurements at two successive time points

(fi, ti; fi+1, ti+1), we can easily compute ki. To estimate the probability distribution

of the transition parameters by the Bayesian approach, we write the Bayes' rule in

terms of these variables:

likelihood

prior

P(ki, ti lA) -P(A)

P(A l{ki}, {ti}) =

P(k,ti)
i=1

evidence

In Bayesian analysis, the prior distribution P(A) is either given or assumed based on

biological (prior) knowledge of the parameter. When such information is not available

or unreliable, we may consider the following priors:

1. Conjugate prior

Conjugate prior is the prior distribution of the same family as the posterior

distribution. Using conjugate priors in Bayesian analysis is mathematically

convenient as the posterior distribution can often be expressed analytically.

Consider a general problem of inferring the parameter distribution, the poste-

rior distribution can be express as the product of the likelihood and the prior

distributions, i.e.,

p(Alx) P(x|A) - P(A)
fAP(xlA) - P(A)dA'

where x denotes observations.

Using conjugate priors, we demonstrate that we can obtain the posterior dis-

tribution of the parameters for the Poisson transition with a single parameter

transition problem and the dual transition problems (Figure 3-5).



2. Non-informative prior

When conjugate priors yield improper posterior distributions, we consider alter-

native priors that does not require prior knowledge about the parameter values.

As the name suggest, non-informative prior is appropriate choice when no prior

belief is available or when one does not wish to influence the analysis with the

prior. The problem with non-informative priors are that the it may be uniform

in one scale, but might take a different shape and information upon parameter

transformation. To avoid this problem, we rely on Jeffreys prior to make sure

that the statement of non-informative prior belief is transformation-invariant.

Jeffreys prior is among the most widely used non-informative prior in Bayesian

analysis. It is defined as the expectation of Fisher information, a measure of

the amount of information observations provide about unknown parameters of

a probability distribution []. Fisher information is formally defined as:

I(A) = L(Alm) p(xl)dx,

or alternatively,

1(A) = dL(Al) p(x|A)dx,

where, x represents the set of parameters that define the probability distribu-

tions; L denotes the likelihood function of the parameter A.

In the alternative form, Fisher information measures the expected curvature

or acceleration in the log-likelihood function with respect to the parameter A

[~]. High curvature in log-likelihood surface indicates that the observations

x provide much information about the parameter A. For the aggregate data

parameter estimation problem at hand, = {k= , ti} is the set of the observed



transitions the and intervals between aggregate data acquisition.

For single parameter problems, Jeffreys prior is proportional to the square root

of the determinant of the Fisher information, i.e.,

P(A) oc V/I(A) .

Given the likelihood function we derive in the previous section, we can write

the Fisher information and Jeffrey prior in term of the observation parameters

{ki, ti} as:

I (A) dz I(L(A{f , ti) p( i i t

and

P(A) = L(Al{, ti}) 2p(Alki, ti)d) 1/2

3.4 Two state model with dual transitions

APS

P S1

Asp

So far the previous analysis implicitly assume that all cell in the population go

through only one transition type. The assumption is justified in the context

where the transition is irriversible in cell fate determination and differentiation.

In most cases of phenotypic transitions, however, cells with two accessible phe-

notypic states can transition between the two states both ways. Therefore, we

extend the development of the previous section to explicitly account for the

'dual' transition.



3.4.1 Model setup and parameters

First, recall the probability of Poisson likelihood of each type of transition is

given by:

P(kps = 1, T) = ApsT 'eAPST

P(ksp = 1, T) = ASpT e- ASPT

As in the previous case, let f(PS) and fi(sP) be the fraction of cells that undergoes

PS and SP transition over the interval ti respectively. These quantities are not

measured directly from the flow cytometry experiments.

Fs(t = ti) - Fs(t = 0) fi(Ps) - f(SP)

From the previous part, the probabilities of kps transitions are given by

P(t < t n ... n t _s) < t APs) = 1 - e-APst - Apste-A) kps
kSes!PS)kps

=P(kps, APS)-

P(ks, kSP, APs, Asp) P(ks, Aps) SP(k, As) P(kps, ksp)

1 - e- Apst - Aste-APst) kps _ eAsPt - Aspte AsPt) kp

kpS! XkSP!

x P(kPs, kSP)-

by sampling methods

In the above expression, there are two unobserved number of transitions (kes,

kSP) and two rate parameters (Aps, Asp). The joint probability P(kps, kSP, APQ, Asp)

depends on P(kps) which we neither know apriori nor wish to optimize. Instead,

we would like to find the maximum likelihood estimate and the posterior proba-

bilities of these rate parameters under all the admisable values of (kps, ksP). To



get around this problem, we note that the two unobserved number of transitions

(k's) are dependent and are bounded by the following constraints:

AFsot kps fs N Mot

0 < kSP < PS~ ANot K (1-fs).

Since fs, Not, and AFS are measured or can be derived from the experimental

measurements directly, these constraints are well defined for each experimental

measurement and form a bounded domain.
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transition problem using conjugate priors. (a) The posterior distributions in serum
starvation experiment and (b) in serum addition experiment.

3.4.2 Problem 2 : parameter inference for full panel longitu-

dinal data

As we discussed in the beginning of the chapter, there are two types of experimental

data available for single cell phenotypic transition probability inference. When obser-
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vations are made for every single agent at frequent time interval, the resulting dataset

(full panel dataset) simplifies the parameter interference algorithm significantly since

the likelihood function can be computed directly. In the next chapter, we will ex-

plain the experimental method for acquiring full panel data from live cell microscopy.

Given the full panel data availability, we will discuss parameter inference in details.

3.5 Conclusion and discussion

In this chapter, we discuss the types of experimental from which single cell decision

parameters can be extracted: 1. the aggregate measurements of phenotypic state

markers across the population measured by FC and 2. the full panel data containing

single cell trajectories over time. We derive the formulation for estimating transition

rates between proliferative and quiescent states based on aggregate FC measurements

of proliferation marker (Ki67) and apoptotic marker (cleaved caspase-3). For this

dataset, we showed that we can use Poisson process to model the single cell decision.

The derivation of likelihood function based on Poisson description leads to successful

estimation of phenotypic transition rates based on MLE and BI. In the next chapter,

we will discuss the parameter estimation based on the full panel data derived from

microscopic imaging of endothelial cell population.



Chapter 4

Quantitative analysis of phenotypic

transition in angiogenic endothelial

cell from full panel data

4.1 Summary

Angiogenesis requires coordinated dynamic regulation of multiple phenotypic behav-

iors of endothelial cells in response to environmental cues. Multi-scale computational

models of angiogenesis can be useful for analyzing effects of cell behaviors on the tis-

sue level outcome, but few experimental studies have been dedicated to determining

the required quantitative rules for cell-level phenotypic responses across a landscape

of pro- and anti-angiogenic stimuli. Here we employ single-cell microscopy to ascer-

tain phenotypic behaviors of more than 500 human microvascular endothelial cells

distributed across 5 combinations of angiogenic (VEGF) and angiostatic (PF4) cy-

tokine concentrations, analyzing their dynamic transitions among sessile, migratory,

proliferative, and apoptotic states. We find that the cells exhibit an identifiable set of

phenotypic state transition patterns consistent across all conditions, with the propor-

tion of a population following a particular pattern being condition-dependent. VEGF

strongly increases the population proportions in the proliferation-associated P clus-



ter along with migration and migration/sessile switching-associated M cluster and

Sw cluster, at the expense of the sessile-associated S cluster and apoptosis-associated

A cluster, as expected. PF4 does not affect the population proportions significantly

by itself, but reverses the VEGF-induced ratio of P cluster to A cluster dramatically.

Under any given treatment condition a fraction of the population follows dynamic

phenotypic transitions characterized by each of these clusters, with the particular

fractions altered by treatment condition. Thus, overall population behavior is repre-

sented by individual cell programs rather than by each cell following an idiosyncratic

transition trajectory, and environmental stimuli govern the proportion of cells oper-

ating within a particular program.

4.2 Background and Motivation

The power of hybrid-agent based approach to model angiogenesis is critically depen-

dent on having a strong foundation in experimental characterization of the pheno-

typic behavior responses of endothelial cells to angiogenic and angiostatic stimuli.

This characterization needs to possess a number of complex features, including: a a

probabilistic nature, since individual cells may exhibit different phenotypic behaviors

in a given environment; b a dynamic nature, since any given cell may exhibit different

phenotypic behaviors over the course of time; c a contingent nature, since these be-

haviors will likely be influenced by environmental conditions such as cytokine stimuli.

With an aspiration for aiding the advance of computational modeling approach of

angiogenic sprouting predictions, we endeavor in this work to contribute a necessary

advance in the underlying experimental foundation.

Toward the goal of constructing a framework for characterizing quantitative, prob-

abilistic, dynamic, and contingent endothelial cell phenotypic behaviors to combina-

tions of angiogenic and angiostatic stimuli, we have designed and implemented an

experimental and analytical methodology to determine stochastic transition rate pa-

rameters among the four key phenotypic behaviors involved in angiogenic sprouting:
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proliferation, migration, apoptosis, and a state representing quiescent/sessile (i.e., not

proliferating or migrating). Although we are aspiring to broader generality, we have

aimed this initial manifestation of our framework to be consistent with a particular

agent-based model from the Kamm laboratory at MIT [ i ]. We establish a method

to identify phenotypic cell behavioral state from time-lapse live-cell microscopic imag-

ing, showing that the basic phenotypic states can be inferred from cell morphology and

movement parameters. Using this state identification tool, we then characterize the

state transition dynamics of more than 500 individual human microvascular endothe-

lial cells (hMVECs) over 24-30 hours across 5 different concentration combinations of

angiogenic and angiostatic cytokines (VEGF and PF4, respectively). We find that the

transitions among the phenotypic states are consistent with the conditional indepen-

dence and the memoryless properties of a continuous-time Markov (CTM) process.

As such, a continuous-time Markov framework provides a valid model of dynamic

phenotypic state transitions, with the transition rates estimable from single-cell tra-

jectories. We discover that the hMVEC population comprises several subpopulations,

which cluster with respect to distinct state transition patterns that remain categor-

ically consistent across the landscape of cytokine conditions. The angiogenic VEGF

and angiostatic PF4 treatments alter the hMVEC population behavior by changing

the proportion of cells adopting the various state transition patterns categories, or

''programs."

4.3 Results

4.3.1 Human microvascular endothelial cells can generate

angiogenic sprouts from confluent monolayer on Col-

lagen I gel

Human microvascular endothelial cells (hMVECs) can be induced to initiate an-

giogenic sprouts from a monolayer seeded upon a Collagen I gel (Figure 4-la,b).

The extent of sprout initiation has been attributed to the net balance between
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pro-angiogenic, anti-angiogenic and angiostatic cytokines in the microenvironment

, ]. Using both a more traditional angiogenic assay setup (endothelial mono-

layer on gel as reported in [ 2, ]) and our microfluidic device, we can modulate

the extent to which sprout initiation occurs by treatments with the potent angiogenic

cytokine VEGF (Supplementary Figure 1b).

To understand how combinations of angiogenic and angiostatic cytokines affect

the hMVEC population at individual cell level, we used microscopy to track cells over

the course of 24-30 hours and ascertained their phenotypic patterns by image analysis.

To follow individual cells in fluorescent time-lapse images, a mixture of cytoplasmic

GFP-labeled, RFP-labeled, and unlabeled hMVECs were seeded at a 1:1:3 ratio. This

mixed cell population was allowed to adhere on 2.0 mg/mL Collagen I gel for 4 hours

in endothelial growth medium and then incubated with growth factor-free, low serum

medium for 20 hours, completing a 24 hour period after seeding. The cells are then

stimulated with cytokines and immediately imaged in a live-cell imaging chamber

with regulated temperature, humidity and CO 2 levels (Figure 4-1c). Cell contours

were detected using a modified level set active contour algorithm [1 H], with cell cen-

troids computed as the center of mass of the detected contour points (Figure 4-1d).

From these individual-cell contours and centroid tracks, we determined the pheno-

typic state of each time point in the track using morphology- and movement-related

features as discussed in the following section.

4.3.2 Individual endothelial cells exhibit four identifiable phe-

notypic behaviors: Sessile, Proliferative, Migratory, and

Apoptotic

Timelapse imaging and tracking of hMVEC contours and centroids revealed four dis-

tinct major phenotypes exhibited by any given cell at any given time-point: prolifera-

tive, apoptotic, migratory, and sessile; these are identifiable based on cell morphology
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and dynamics of transient motility features (Figure 4-2a). Proliferative and apoptotic

phenotypes are characterized by doubling/splitting and disappearance/shrinkage of

existing contour respectively and can be detected as changes in contour topology.

Migratory phenotype is characterized by productive and persistent translocation of

the centroid, whereas sessile phenotype is characterized by erratic and unproductive

centroid variation. A single-cell track is obtained from live-cell imaging as a temporal

series of snapshots of the cell contour and centroid properties; we refer to individual

snapshot as an instance in the track. To assign a phenotypic state to each instance

of a given track, we used a hybrid approach outlined in Figure 4-2b. First, we de-

termined whether the contour topology changes (splits, or collapses), with respect to

the previous time-step within the instance being state assigned. If a contour instance

splits or collapses, we assign the instance to be in proliferative or apoptotic state

respectively. If the contour topology does not change, the instance is subjected to

further classification into either migratory or sessile states.

Based on the above description of migratory vs. sessile states, it is unlikely that

a single motility feature is sufficient as a discriminatory criterion. To undertake mi-

gratory vs. sessile classification in a more informed yet still unbiased manner, we

computed morphological and motility related features of instances of centroid tracks

(listed in Table 1). Among these features, we include cell step size and velocity

autocorrelation function (VACF), which are one-interval equivalents of speed and di-

rectional persistence of cell migration respectively. Hierarchical clustering analysis in

the feature space reveals two distinct subsets of instances (Figure 4-2c). Notably, the

first subset (orange cluster) is characterized by high mean VACFN and low variance of

VACFN, fitting the migratory description. Conversely, the other subset is character-

ized by low mean VACFN and high variance of VACFN (aqua cluster) which follows

the sessile description. Three-dimensional principle component embedding of the in-

stances shows clear separation of the two clusters, supporting that mean and variance

of VACFs are important determinants of migratory vs. sessile instances (Figure 4-2d).
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To achieve a robust classification result, we performed hierarchical clustering on

multiple randomly-drawn subsamples of cell track instances. In all of the subsamples

analyzed, the hierarchical clustering yields two clusters (example shown in Figure 2d).

To reliably classify the rest of the cell track instances, we used these cluster assigned

subsamples (of cell track instances) as labeled data to train, test, and cross validate

an ensemble of base classifiers using the Adaptive Boosting algorithm [;, 7]. The

validated ensemble classifier achieved the desired classification task as seen from the

images of cell centroid tracks and the sessile vs. migratory state prediction (Figure 4-

2e). In the instances in which cells exhibit productive locomotion, the instances are

labeled migratory (shown as orange centroid track and contours), while those in which

cell contours or centroid fluctuate erratically the instances are labeled sessile (shown

as aqua centroid track and contours). Taken together, these results demonstrated

that our state annotation approach yields satisfactory classification results using an

unbiased image analysis algorithm.

4.3.3 Single cell state transition patterns statistically fol-

low one step dependent continuous time Markov chain

(CTMC) dynamics

Applying the state classification method described above, we converted the time-series

snapshots of each cell track into a sequence of states with corresponding waiting time

prior to each transition; we refer to this sequence as a single-cell state trajectory

(illustration in Table 2). We verified that the transition dynamics of these single cell

trajectories are well characterized by continuous time Markov process based on two

criteria. First, the waiting time distributions of the state transition in the data are

well estimated by an exponential distribution (Supplementary Figure 2a). Second,

the state transitions are consistent with the conditional independence properties of a

one step dependence continuous time Markov chain [81].

An advantage of modeling single cell trajectory as a continuous time Markov

chain (CTMC) is that the parameter estimation problem based on likelihood function
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can be solved analytically. In a CTMC, the probability at which a cell transitions

from a state s to another state s after some time t depends on the relative rates

to s compared to the rates to other states s reachable from s (details in SI). Since

individual state transitions in CTMC are independent, the likelihood of a single cell

trajectory (as a sequence of state transitions and corresponding waiting time) is a

product of likelihood of all individual transitions (illustration in Table 2). From this

likelihood of single cell trajectories (expression in Table 2), we can determine the

set of transition rate parameter values most consistent with the observed single cell

trajectories by either a maximum likelihood estimation (MLE) or Bayesian inference.

In either case, we rely on the same likelihood distribution of the phenotypic transition

rates given the observed single cell trajectories (details in SI). For MLE, we solved for

the rate parameter sets that maximize the likelihood distribution function whereas for

the Bayesian approach we weighted the likelihood distribution by a conjugate prior

and renormalized the resulting distribution.

By combining automatic phenotypic state identification from single-cell data and

the parameter estimation procedure, we have a method that enables determination

of the phenotypic state transition rates consistent with agent-based modeling. Our

rate parameter estimation methodology consists of three main aspects. First is the

contour tracking method that maps the input time-lapse images to sets of contour

points outlining individual cells. Second is the automated state annotation based on

features derived from the input images, the detected contour points, and the cen-

troids. Third is parameter estimation method based on CTMC. We can now proceed

to the application of our method to a particular biological system: quantitative anal-

ysis of how hMVEC population behavior related to angiogenic sprouting is influenced

by competing angiogenic and angiostatic stimuli.
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4.3.4 VEGF and PF4 differentially influence hMVEC dy-

namic phenotypic state transitions by altering the dis-

tribution of cells among diverse behavioral subpopula-

tions.

With our analysis methodology in hand, we proceeded to examine the phenotypic

state transition dynamics of hMVECs treated with vascular endothelial growth fac-

tor (VEGF) and platelet factor 4 (PF4) - opposing angiogenesis modulators that are

co-released from activated platelets during the onset of inflammation[. , ]. The

cytokine conditions selected for this study (control, 20 ng/mL VEGF, 50 ng/mL

PF4, and 500 ng/mL PF4, and combinations thereof) are physiologically relevant

for angiogenesis under acute inflammation conditions, and have been shown to ef-

fectively modulate sprouting angiogenesis in vitro and in vivo [60, 1 1, ts]; VEGF

induces sprouting at this concentration, and PF4 at the higher concentration sup-

presses VEGF-induced sprouting. The question we address here specifically is how

these treatments influence the various individual-cell phenotypic behaviors that are

coordinately involved in determining the extent of sprouting.

Figure 4-3 shows the single-cell state trajectories for each of the 5 cytokine treat-

ment conditions. Some differences among the sets of trajectories seem readily appar-

ent, such as more migratory states for the VEGF-treated cells, but the quantitative

comparisons of both kinds of states and transitions between them are not obvious

from inspection. Thus, we need to bring a next layer of computational analysis to

bear on these data, in order to elucidate the key treatment condition-related influ-

ences.

We can imagine two kinds of conceptual models to account for the individual-cell

phenotypic state transitions as they are distributed across a cell population (Fig-

ure 4-4). A Uniform Population Model (UPM) posits that all cells in the population

intrinsically possess identical potential to adopt different phenotypic states, such that
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the population state transition rates are described by a single transition rate param-

eter set. In contrast, aDiverse Population Model (DPM) posits that endothelial cells

within angiogenic population are heterogeneous in their state transition dynamics

such that it cannot be described by a single parameter set (Figure 4-4). One or the

other kind of model might prove superior with respect to capturing the features of

our experimental data, although it is possible that both kinds of models can do so

satisfactorily. If the UPM is superior, the dependence of phenotypic transitions on

context conditions is due to a uniform population of cells exhibiting transition prob-

abilities that are as a whole modulated by context (angiogenic/angiostatic cytokine

treatment); if, on the other hand, the DPM is superior, the context dependence is

better explained as due to cell subpopulations exhibiting transition probabilities in-

variant with respect to treatment but with the treatment modulating the proportion

of cells in each subpopulation.

To address this question, we applied our parameter estimation method in two

ways. First, under the UPM, we performed parameter estimation on the single cell

trajectories within each condition separately and refer to the rates estimates ob-

tained via this approach as condition-based estimates (A(cond)). Alternatively, under

the DPM, we first determined whether subpopulations of distinct state transition dy-

namics exist, using unsupervised clustering of the single-cell trajectories in the feature

space of transition dynamic descriptors (Table 2). We subsequently performed param-

eter estimation on the single-cell trajectories within each cluster separately. The rate

estimates obtained via this approach is referred to as cluster-based estimates (A(clust)).

For this set of cytokine treatments, the UPM-derived condition-based estimates

are shown in Figures 4-5a and b. Some differences can be seen between the pheno-

typic state transition rates for different cytokine treatment conditions. Going from

no cytokine control to VEGF-treated conditions (fourth and third bars in Figure 4-5b

subplots respectively), the transition rates among S, P, and M states increase dra-

matically while the S-to-A transition rate decreases mildly, consistent with previous
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findings that VEGF promotes proliferation, migration, and survival [ ]. Going from

control to PF4-treated (fourth and fifth bars in Figure 4-5b subplots), the S-to-P

transition rate diminishes, S-to-M transition mildly decreases, while S-to-A transi-

tion mildly increases, suggesting that PF4 suppresses proliferation [ , ]. Going

from VEGF-treated to combination with PF4 (third, second, to first bars in Fig-

ure 4-5b subplots respectively), the P-to-S, M-to-S, M-to-P, and M-to-A directionally

decreases as PF4 concentration increases, while other rates do not change direction-

ally. Pair-wise comparisons using Kolmogorov-Smirnov (KS) criteria (Figures 4-5c

and 4-5d) indicates that majority of these treatment-related changes are statistically

significant. White space in these panels indicate state transitions that are not ob-

served to a quantitative extent. Figure 4-2c shows the log p-values which in this case

represent the probabilities of rejecting by mistake the Komolgorov-Smirnov null hy-

pothesis that a change in the transition probability between the particular treatment

condition pair is due merely to chance. Figure 4-5d denotes the statistically significant

changes in white squares. Thus, only about 13% (20 out of 160 of the off-diagonal

squares) of the observed changes do not reach significance of 0.05 with Bonferroni

correction; however, the vast majority of these 13% are associated with PF4-related

treatments. All together, these results suggest that while the VEGF-induced changes

are consonant with previous findings and are predominantly statistically significant,

the PF4-induced changes are more complex and difficult to interpret with the UPM

framework.

To pursue the alternative DPM-derived cluster-based estimates, we ascertain de-

scriptors of state transition dynamics that will resolve the differential transition rates

of single cell trajectories within the population pool. Accordingly, we investigate the

likelihood expression specifying the probability of observing single cell trajectories

given particular values of the rate parameters (equation in Table 2). The expression

contains two sets of experimentally obtainable variables: {a} fe, is the trajectory

length normalized frequencies of the transition from s to s' states; and {b} E t, is

the total dwell or waiting time in a particular state s for that trajectory. Note that
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f8S, describes the average frequency at which ss state transition occurs, while E t,
the total s state dwell time is inversely proportional to the rate at which an agent es-

cape state s. Intuitively, these parameters are relevant descriptors of state transition

dynamics and can be used as clustering features.

Hierarchical clustering of single cell trajectories based on the aforementioned fea-

tures reveals three to five identifiable clusters (Figure 4-6a). Notably, the clustering

pattern and the cluster assignment correspond well to the different cellular phenotypes

in which cells dwell in the most. Clusters 1 and 2 consist exclusively of single-cell

trajectories that transition through apoptotic and proliferative states and are referred

to as apoptotic (A cluster) and proliferative (P cluster) respectively. Clusters 3, 4,

and 5 contain trajectories that traverse only through sessile and migratory states and

are more related. Trajectories in Cluster 3 are characterized by relatively longer dwell

time in sessile and Cluster 4 by relatively longer dwell time migratory states and are

referred to as sessile (S cluster) and migratory (M cluster) respectively. Cluster 5

is highlighted by the high frequencies of transitions between sessile and migratory

states and is referred to as switching (Sw cluster). Each of these clusters can be

represented by cluster-based transition rate constant values (Figure 4-6b), character-

izing the dynamic probabilities for each subpopulation in quantitative manner. The

MLE matrices here permit explicit appreciation of the underlying structure of the

key phenotypic transitions, which may not be easily discerned from the trajectories.

For instance, A cluster exhibits the largest rate constants for transition into A state,

but predominantly from S state and M state. For another, P cluster shows a large

rate constant for transition into P state but only from S state.

As a complementary way to see these behavioral subpopulations, projection in

principle component subspace (Figure 4-7a) shows clear separation among A clus-

ter and P cluster and the aggregate of S, M, and Sw clusters confirming that single

cell trajectories of different clusters should be assigned distinct sets of transition

rate constants. The same hierarchical clustering analysis performed on single-cell
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trajectories of different treatment conditions yield similar clustering patterns (Fig-

ure 4-7b), suggesting that: {a} the hVMEC population is heterogeneous with respect

to angiogenesis-related phenotypic behaviors and can adopt one of a few distinct state

transition patterns; and {b} that angiogenic and angiostatic cytokine treatments al-

ter the distribution of the population among these distinct patterns.

To examine the cytokine effects within the DPM framework, we computed the

cluster weight coefficients of each treatment condition with respect to proportion of

cells in each behavioral subpopulation (Figure 4-6c). In the no cytokine control con-

dition (fourth bar), almost half (0.48) of the weight is in the S cluster (blue), while

about quarter of the weight (0.24) of is in the Sw cluster (purple). In this condition,

the proliferative (green), migratory (orange), and apoptotic (red) cluster weights are

small (about 0.1 each). Upon adding 20 ng/mL VEGF alone (third and fourth bars in

Figure 4-6c), the cluster P and cluster M weights increase while cluster A and cluster

S weight decreases drastically. Upon adding 500 ng/mL PF4 alone (comparing fourth

and fifth bars in Figure 4-6c), the weights do not significantly change, suggesting that

PF4 alone does not alter the phenotypic state transition rates. However, increasing

PF4 concentration from 0 to 500 ng/mL under constant 20 ng/mL VEGF concen-

tration (comparing third, second, to first bars in Figure 4-6c respectively) yields a

reduction in the proliferative cluster weight from 0.16 to 0.03 and an increase in the

apoptotic cluster weight from 0.04 to 0.10. Compared to the corresponding conditions

with VEGF, the conditions with no VEGF have higher apoptotic (0.10 vs. 0.14) and

sessile cluster weights (0.36 vs. 0.48) and slightly lower migratory cluster weights

(0.10 vs. 0.08).

To determine whether these directional changes are statistically significant, we

estimated the distribution of weight coefficients by bootstrapping. We drew 1000

random samplings with replacement of 50 trajectories from the pool of all single-cell

trajectories. For each of these samplings, we assigned clusters based on relative sim-

ilarities of the sampled trajectories to the cluster prototypes (cluster means in the
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feature space) in Figure 4-6a and computed the cluster weight coefficients. We per-

formed pair-wise comparisons of the resulting cluster weight coefficient distributions

across different cytokine conditions using non-parametric Kolmogorov-Smirnov (KS)

tests with the null hypothesis that the two samplings are drawn from the same distri-

butions. For 47 of the 50 pair-wise comparisons, the weight coefficient differences are

statistically significant to the 0.05 level (Figures 4-8b and c). These results confirm

that the cytokine-elicited changes in the cluster weights are robust across the various

treatment conditions, and suggest that the DPM appears to be more effective than

the UPM in characterizing individual endothelial cell phenotypic transitions as they

are modulated by angiogenic and angiostatic cytokines.

4.4 Discussion

To understand why the cluster-based estimates were better suited to our experimental

data, we examine the optimization conditions in condition-based and cluster-based

MLE derivations. Condition-based rate estimation seeks to find a set of rate param-

eters that maximizes the likelihood of observing the pool of single-cell trajectories

subjected to the same cytokine conditions. Alternatively, cluster-based rate estima-

tion first determines the similarity/differences or patterns in the transition dynamics

of the entire pool of the single cell trajectories, and then seeks the rate estimates

consistent with the patterns of state transition dynamics. This difference is reflected

in optimization conditions as the sum over different sets of single cell trajectories log

likelihood (SI section 3). In the presence of cell subpopulation of different transition

dynamics (as in Figure 7a), adopting condition-based estimates amounts to attempt-

ing to describe a multimodal distribution by unimodal distribution descriptors.

In our hMVEC population, we have found that regardless of treatment condition

a few distinct behavioral subpopulations exist with respect to phenotypic trajectories.

We hypothesize that these patterns represent unique phenotypic programs available
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to individual cell. Based on the results presented here, we surmise that angiogenic en-

dothelial cells do not switch a chosen phenotypic program (i.e., do not transition to a

different cluster) at least within the 24-30 hours observation period. For proliferative

program, this observation is consistent with the reported average period of prolifer-

ation cycle (23 - 67 hours depending on the growth medium conditions and number

of passages [;7, 1 ]). While the information on apoptotic dynamics in endothelial

cells is limited, our findings are consistent with the reported average apoptotic time

in Hela cells [ 7].

4.4.1 Implications of phenotypic diversity in angiogenic pop-

ulation

An important challenge in developing reliable, and even predictive, approaches to

modulate angiogenesis in biomedical applications, such as for tissue regeneration or

anti-cancer therapeutics, is the need for design principles that offer guidelines for

how molecular-level interventions will alter tissue-level properties via cell-level be-

havioral processes. The past decade has witnessed advances in multi-scale (often

agent-based) computational modeling of angiogenesis aimed toward this objective,

generating theoretical predictions and insights concerning the molecular-to-cell and

cell-to-tissue relationships. A consequent need is accompanying quantitative exper-

imental information from which these models can be constructed and constrained.

In the work we offer here, we have designed and implemented an experimental mea-

surement and data analysis method that quantifies multiple concurrent phenotypic

behavioral responses of individual cells to angiogenic and angiostatic cytokine treat-

ment conditions relevant for new blood vessel sprouting along with a set of parameter

estimates that characterize the dynamic transition rates among these various behav-

ioral responses as they depend on the different conditions. Our method consists of

three main components: cell contour detection, automated state annotation, and rate

maximum likelihood estimate (MLE) computation based on continuous time Markov
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model analysis. Combined with application-specific variations of the contour detec-

tion algorithms, our automated state identification and rate MLE computation can be

applied to estimate parameters describing other dynamical processes from single-cell

data.

To address the effect of opposing inflammatory cytokines VEGF and PF4 on

phenotypic state transition dynamics, we have considered two conceptual models

to account for variations in phenotypic transition dynamics across cell population:

uniform population model (UPM) and dynamic population model (DPM). We have

shown that under DPM, the cytokine-elicited changes can be understood in a more

straightforward and directional manner (Figure 4-6c). More importantly, the en-

dothelial subpopulations identified under DPM are distinct and well separated in

their unique transition dynamics (Figure 4-6a and 4-7a) and consistent across all cy-

tokine treatment conditions (Figure 4-7b). Taken together, our findings offer a novel

perspective in understanding the phenotypic behaviors of endothelial cell population.

as a unique consistent set of dynamic transition cassettes across both angiogenic and

angiostatic cytokine stimuli. In this light, the influence of the angiogenic and angio-

static cytokines is usefully characterized as the directional changes in cell population

proportions within the various dynamic transition programs.

Agent-based models of angiogenesis in the literature (including previous contri-

butions from our laboratory [ 0, 1 11]) typically assume that the vascular endothelial

cells can be described in terms of a uniform population model in which the cell

population is homogeneous and any given treatment condition modulates the phe-

notypic behaviors according to an identical relationship (whether deterministic or

probabilistic) for all individual cells. We have found in our studies here that the

phenotypic behavior of a human microvascular endothelial cell population is hetero-

geneous and, most remarkably, that this heterogeneity can be mapped to a small

number of distinct patterns based on phenotypic transition dynamics. This hetero-

geneity may reflect cell-to-cell variability in genetic, epigenetic regulation and protein
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expression. Alternatively, we speculate that the observed heterogeneity may serve

as diverse potential phenotypes among which endothelial cell can adopt, especially if

such heterogeneity can be directionally altered by relevant cytokine stimulation. In

this study, we demonstrate examples supporting cases of such directional alterations

by potent angiogenic cytokine VEGF and PF4 - as VEGF induces higher fraction

of the population to adopt the transition pattern consistent in proliferative program

and lower fraction to adopt apoptotic program while angiostatic cytokine PF4 exerts

the opposite directional effect on endothelial population.

Primary angiogenic endothelial cells take on multiple roles in physiological and

pathological conditions. Apart from being central players in sprouting angiogenesis,

they act as selective barrier for transport of molecules and immune cells between blood

and tissues, help regulate blood fluidity, and participate in inflammatory responses.

In each of these roles, endothelial cells need to exhibit different phenotypes (31,32).

To achieve wide variety of phenotypic requirements, individual cells in a homoge-

neous endothelial population have to be able to switch their responses accordingly.

Our findings suggest that in a microvascular endothelial population, at least tran-

siently, endothelial population may achieve such diverse phenotypic requirement by

possessing subpopulations specialized for different phenotypic responses.
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4.5 Materials and Methods

4.5.1 Live imaging of hMVECs

Human adult microvascular endothelial cells (hMVECs) of dermal origin (purchased

from Lonza at passage 4; Cat No. CC-2543) were maintained in culture according to

manufacturer recommendations. Cells were passage once then stably infected with

GFP and RFP plasmid following a standard retroviral infection protocol. For all

live cell imaging experiments, GFP-labeled and RFP-labeled hMVECs were used

at second passage after infection, while unlabeled hMVECs were used after three

passages after the cells were received. hMVECs were mixed at 1:1:3 ratio in complete

medium to allow visualization of single cell when seeded at instant monolayer density

(50000 cells/cm 2 ) to allow sprout initiation on 1 mm thick 2.0 mg/mL Collagen I gel

(BD Biosciences; Cat No. 356236). At 4 hours after seeding, adhered hMVECs were

replaced with 5% FBS no cytokine medium. At 24 hours after seeding, hMVECs

on gel were stimulated with VEGF and PF4 (Peprotech; Cat No. 100-20 and 300-

16 respectively) . The cell were imaged upon stimulation using Cellomic array scan

microscope.

4.5.2 Contour and centroid tracking by level set active con-

tour

Fluorescent live cell images were enhanced by median and entropy filtering algorithms

using the builtin scripts in the MATLAB R2011a image processing toolbox (Math-

Works - Natick, MA). These preprocessed image were binarized (thresholded based

on intensity histogram to partition intensity levels into that of the foreground and

the background) and the foreground-background boundary of preprocessed image was

used as an initial contour. Contour detected by a level set active contour algorithm

of Chan-Vese [1 1] implemented in MATLAB and applied to filtered, unbinarized

images. For time series images, the first image in the series was contour detected

as described. For subsequent images, the contour detection was initialized with the
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optimal contour of an immediately previous image in the series.

4.5.3 Pairwise statistical comparisons by Kolmogorov Smirnov

test

Pairwise comparison were performed most extensively in two tasks: 1. comparing

the condition- based rate MLEs (A(cond)) across cytokine conditions (Figure 5cd) and

2. comparing the cluster weights MLE across cytokine conditions (Figure 6d-6f).

In comparing A(cona), 1000 bootstrapped samples of 50 single cell MLE trajectories

were drawn from the pool of trajectories within each condition. Maximum likelihood

of A(cond)) were computed from the sampled trajectories to A(cond) distributions. In

comparing the cluster weights, 1000 bootstrapped samples of 50 trajectories were

drawn from the trajectories in each condition. The trajectories were assigned to one of

the five state transition dynamic clusters based on the relative Mahalonobis distances

of the trajectories to all the cluster centers. The cluster weights are computed for

each bootstrapped sample to form the distribution of cluster weights. In both of the

pairwise statistical comparison task, both the A(cond) distributions and cluster weight

distributions across conditions are compared using MLE Kolmogorov-Smirnov test

with the significance level of 0.05.

4.5.4 Semi supervised sessile vs. motile state classification

In our dataset, there are more than 500,000 contour instances that need to classified

into either sessile or motile state. To meet the challenge of this classification task,

we took a semi-supervised learning approach. First, 10 non-overlapped small training

sets (about 1-2%) of these instances were randomly sampled and clustered using

agglomerative hierarchical clustering algorithm based on Euclidean separation of the

contour instances in feature space. Individual instance in the training sets were

state-labeled based on the cluster assignment. This state-labeled training set is used

to train an ensemble of 25 or 50 base classifiers (decision stumps) using Adaptive

Boosting algorithm [, ]. As the number of base classifiers is comparable or larger
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than the dimension of contours feature space, the ensemble classifier is cross validated

on unseen set of contour instances. The cross validated ensemble classifier is used to

classify the rest of the contour instances and the classification results were visualized

against the contour traces to ensure that the classification result follow definitions of

sessile and migratory states.

4.6 Modeling single cell state trajectories as con-

tinuous time Markov chains (CTMCs)

In this work, we model individual cell as a decision making entity called Markov

agent that transition among a finite number of phenotypic states. As we follow in-

dividual agent over time, we can trace out a sequence of states through which the

agent traverses as well as the corresponding waiting times before each transition. We

refer to the observed sequence as a cell's state trajectory. In choosing a stochastic

model to describe the state transition of angiogenic endothelial cells, we showed that

state trajectories satisfy the two Markov criteria can be modeled as a continuous

time Markov chain: 1. memorylessness and 2. conditional independence properties

(Supplementary Figure 2). A continuous time Markov chain (CTMC) is defined by

the following descriptors: (1). a finite state set §, (2) initial (marginal) state proba-

bilities, (3) transition probabilities, and (4) state waiting time parameter. In the case

of angiogenic endothelial cells, the appropriate set of phenotypic states are sessile

(S), proliferative (P), migratory (M), and apoptotic (A). In the following section, we

construct the likelihood expression of a single cell state trajectories from which the

state transition rate parameters can be optimized.

4.6.1 Likelihood of one transition

To construct an analytical expression for the likelihood function, we first derive the

probability of an occurrence of a state transition. Consider a one step transition from
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s to a finite number of state reachable from s' shown below. The transition to state

s' f s happens at an exponentially distributed random time with rate parameter

p A 1 +... + AN.

At the transition time, the new state s' is chosen with the prob-

ability
P AS/ As/
S 1 + -, -..- + AN

s1 Given the transition rate parameter set A = {A} and the wait-

A ing time parameter p and assuming that the process is in state s
s2

A2  initially, the likelihood of the observing a transition ss' is given

s : by

f(sk+1 = SJSk = s; T = r; A,) = Pr(dwelling in si for ti) x
A

Pr(transitioning from s to s')

Ps

4.6.2 Likelihood of one state trajectory

As the next step, consider an experimentally observed single cell state trajectory as a

sequence of state transitions. Let U = (So, to, si, ti, ... , Sk-1, tk1, Sk) denotes the set

of random variables describing a CTMC of single cell state trajectory up to time t and

let £,' (t) represents the likelihood of ss' type transition at time t. Under the CTMC

assumption, individual transition are independent of one another and the likelihood

of a state trajectory U is simply the product of individual transition in the trajectory.

As such, the likelihood of a particular state trajectory with 7 transitions is given by:

f(UIsoI A) = P,, 80  iSi (ti),

i=1
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where P,, is the initial probability of finding the process in state s, initially.

We can further simplify the likelihood expression as follows. Let r/l,, be the total

number ss' type transitions in a trajectory and let H be the set of all transition

types. Since the transitions in a trajectory are independence, one can factorize the

above likelihood expression based on the transition types. The resulting likelihood

expression is given by

£(z4 so,A) = P,0 17H 171 f (8s' Th,))

= Ps fl exp(-ps rh>,)
ss'cH Ph,=1

To obtain the generalized likelihood expression for the entire observed population,

one assumes independence of state transition among cells in the population, in which

case the joint likelihood is simply the product of the likelihood of all trajectories

within the population.

4.6.3 Estimation of the transition rate parameters

To obtain the state transition rate estimates from the data, we rely on two parameter

estimation techniques: Maximum likelihood estimation, and Bayesian estimation.

Both of these estimation methods find parameter values (in MLE case) or posterior

rate distribution of the parameter (in BE case) that are most consistent with the

observation as described by the likelihood distribution.

4.6.4 Maximum Likelihood Estimation

Consider a set of state trajectories U = {'u = (so, Si, ti, . . . . _1, t?_1, s,)}. To find

the parameter set that is most consistent with the observed trajectories, we seek to

optimize the above likelihood function for a collection of state trajectories subject to
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the following constraints:

Ass = Ps, Vs and

Ass' > 0, Vss' E H.

Since it is more convenient to optimize the logarithm of likelihood, we set up the

optimization in term of log likelihood using the Lagrange's method:

argmax log(E(A))
(Ass')EA

= argmax L
(A,,,) EA

= argmax log(P 0 )
(A,,,) eA _

E> (s Es oss

where (ss, are the Lagrange's multiplers. For each of the rate parameter Ass,, we take

the derivatives of the log likelihood with respect to As,,, ps, and(ss, and set them to

zero. The resulting system of equations take the form:

OaS
a

8/Is

= 0

= 0

= 0

=- -/ss

/i~h 8 8 1=1

th,

- Ps-
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Assuming that As, > 0, we rearrange the above expression and to obtain the maxi-

mum likelihood estimates of the parameters:

A MLE _ liss' ( i ss'
SS Zh 8,, th, E Z lss' /

MLE __ sr ' (7 Tss'
s Ehs ths ES TIss'

ZhS8 , th 8 ,
1- 7788,

The above maximum likelihood estimators can be easily applied to multiple tra-

jectories (i.e. a subpopulation of multiple cells) by extending the summation of log

likelihood over all trajectories U = {'U}.

4.6.5 Bayesian estimation

To estimate the posterior distribution of the rate parameter we rely on the Bayes'

theorem which posits that the posterior distribution of the parameters given the evi-

dence (observed data) equals the likelihood of the observed data given the parameters

weighted by the evidence (marginal probability of the parameter), i.e.

P(AIJ={u) = P(U|A) x P(A)

P(U)
P(U|A) x P(A)

f P(U|A) x P(A)

4.7 Comparing the objective functions for the condition-

based vs. the cluster-based phenotypic transi-

tion rate estimates

In this section, we examine the difference in the objective functions used to derive the

condition based and the cluster based rate estimates. Starting with the likelihood ex-
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pression derived in section 2, for condition based estimates, we optimize the likelihood

function over the set of trajectories within one experimental treatment condition. Al-

ternatively, for cluster based estimates, we derive the maximum likelihood values after

clustering the trajectories.

Given a set of experimentally observed state trajectories collected under a set C

of \( cytokine conditions, let's assume that a set K of 9\(k clusters are detected, where

K is the set of all clusters and C is the set of all conditions. Let p"', denotes the total

number ss' type transitions observed in the single cell state trajectories of cells under

condition c and assigned to cluster k. (These subpopulations may be distinct in state

transition dynamics as consistent with the diverse population model for the sake of

model comparison.) Then, the log likelihood of observing just the trajectories within

cluster k under condition c is given by

(c, k)

L(c,k) log( (ck)) = 3 log(P 0 ) + ck)log - Ps .
q(c,k) h A=1

Let (dk) (Ass,, p,) be the derivative of log-likelihood with respect to Ass, evaluated on

the set of trajectories within condition c and condition k. From section 2, the this

derivative take the following form:

trajectories ( - P) trajectories h., =1

Under the uniform population model, we optimize the log likelihood on the set each

condition separate such that the derivative of likelihood for the subsets of trajectories

within each condition ne satisfy the following optimal condition

()= 0 i.e.,
kEK

(, k)

kc ck h

SS (cck 1 nc E 1 SA( i~~ keKh8 ,11 0Acnc) ()S -S ) .. 8 th
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Alternatively, under the diverse population model, the derivative of log-likelihood

follows the relation

CC
(c,k)

l sS/ (c,k) (1 k) - thr
cEC 8k8,l k, cEC h8 ,,=1

0-

=0.

In attempting to relate the condition and cluster based estimates, we introduce

A "?'nk) and [ts" '") which are the transition and total exit rate parameter sets opti-

mized over the single cell trajectories in the nk cluster within the ne condition. As

such, this set of parameter satisfy the following optimization condition:

(c~~~k) "c'"~k) (n~ k))

/S SS p 1

(k,c) --1h1
s f' PS h[ =1

- 0 i.e.

0.

The subcluster estimates A (nJk) can be related to the condition based Ac n, and

the cluster based estimates A as follow:

Eq (4.1) = Eq (4.1)
kEK

Eq (4.1) = Eq (4.1)
cCC

; - p(nck)

;- ) Zp(C ,nk)

CEC

kcK

cEC

A(nnk) (nc,nk) p
ss

,(nJ,nk) (n ,nk)
SS/ PS

We can expand the sum, divide through by the total number of trajectories within

a cluster (EkE p(nck)) for Eq (4.2) and the total number of trajectories within a

condition EcC P (c'k)) for Eq (4.3) to further simplify the above system of equations
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to obtain the following relationships:

1 1

1 1
Ak,r Pk,

pP(nc,n k)

IkEK P n~k

__ WC~

\(nc,nk) (nc,n)

Wk Wk

,\ -~n f lcfk)
cEC ss' As

P(nc,nk)

acEC p(ncnk)

and

, where

are the relative occurrence weights of ss' type jump across condition within a clus-

ter and the relative occurrence weights over cluster within a condition respectively.

Though these results do not directly relate the condition based estimates to the clus-

ter based estimates, they reveal that the condition based and cluster based estimates

importantly differ by the relative occurrence of the transition types within the set of

single cell trajectories over which the parameters are optimized.

4.8 Supplementary Figures
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Figure 4-1: Angiogenic human microvascular endothelial cells (hMVECs) cultured
on Collagen type I gel is capable of initiating angiogenic sprout. (a) Angiogenic
protrusions of hMVECs in the collagen gel observed as shadow (red arrowheads) in
phase contrast timelapse images. (b) Phalloidin staining of actin cytoskeleton showing
an angiogenic sprout tip invasion over the distance of 150 pm into the collagen gel
as observed in the confocal images. (c) Experimental setup for live cell imaging
experiments. First, a mixture of GFP-labeled, RFP-labeled, and unlabeled hMVECs
were seeded at an optimized seeding density (50,000 cells/cm2) to yield a confluent
monolayer after 24 hours of seeding (instant monolayer density). Cells are starved for
20 hrs under 5% fetal bovine serum (FBS) supplemented cytokine-free base medium,
then stimulated with angiogenic/angiostatic cytokines. After cytokine stimulation,
cells are imaged over 24 - 30 hour period. (d) Illustration of the data analysis.
From the fluorescent images, cell contours and centroids at each time point were
detected by a level set active contour algorithm. The detected cell contours and
centroids trajectories were classified into different phenotypic instances types: sessile,
proliferative, migration, and apoptotic.
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Feature Type Definition

step size (d) motility centroid-to-centroid distance
between subsequent time step

mean velocity autocorrelation motility Sample mean of dot products
function across N steps of N adjacent unit velocity vectors

(PVACFN)

variance velocity autocorrelation motility Sample variance of dot products
function across N time step of N adjacent unit velocity vectors

(uVACFN

cell size (A) morphology Area enclosed by cell contour

cell elongation (V) morphology Ratio between cell major
and minor axes

cell orientation (0) mixed Dot product of unit instantaneous
velocity vector and unit major axis

Table 1: Types and description of morphological and motility related features used
in classifying instances of cell tracks into sessile vs. migratory states. Morphological
features were computed based on the detected contour points of individual contour
instance. Motility related features were computed based on the detected centroid
across N intervals flanking the instance being feature computed. Step size is the one
time step equivalent of cell speed and velocity autocorrelation function is the one time
step equivalent of directional persistence.
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Figure 4-2: Timelapse imaging of hMVECs reveals four major phenotypes: prolifer-
ative, apoptotic, migratory, and sessile. (a) Example contours outlining hMVEC in
sessile, proliferative, migratory, and apoptotic states as detected by level set active
contour. Proliferative instances are characterized by contour splitting, while apop-
totic instances by contour collapsing and disappearance. Scale bar is 20 ?m. (b)
Semi-hierarchical scheme for state classification. Contour is first classified based on
change in contour topology. If topology is conserved, they are further classified into
sessile or migratory instances based on contour morphology, and centroid trajectory
features. (c) Two clusters of topology-conversed, non-proliferative, non-apoptotic in-
stances are identified by agglomerative clustering. The main discriminatory features
between the two subsets are the mean and variance of velocity autocorrelation func-
tions (VACFs) computed over 1 - 6 hour track intervals centered at the instance in
which the feature is being computed. (d) Three component PCA projection of the
motile vs. sessile instances as classified by an optimized ensemble of linear sessile vs.
motile base classifiers (details in Supplementary text). (e) Examples of state-labeled
contour and centroid trajectories (sessile in aqua, motile in orange). Contours labeled
in orange correspond to the instances in fch cells progress productively and persis-
tently, consistent with motile state description. On the other hand, contours labeled
in aqua correspond to instances of unproductive movement of cell centroid, consistent



1st transition if transition

f(u s, A) =Ps0 fi
ss EH

total number
of ss' jumps

total dwell
time in state s

Feature Notation Definition

ss' jump frequency
(length normalized fT 1

number of ss' jumps)

total jump frequency
(length normalized Ts,

number of any jumps)

Total dwell time in s Trt 1 Th8

mean dwell time in s (Tr) Es' Zh, Th

variance dwell time in s a Z.Th, - (Ts))

Table 2: A hypothetical state trajectory with 17 state transitions. States are color-
labeled. According to the continuous time Markov (CTM) model, the likelihood of a
given the transition rate parameter set A given the observed state trajectory 'U is a
product of the likelihoods of all individual transitions observed in the trajectory, and
the marginal probability of the first state S0 (Ps,). After an arithmetic manipulation,
the likelihood can be written as in Equation 1. The likelihood expression contains
two types of experimentally obtainable variables. The first is the total number of
transitions of certain type ss' (as'). Thygpcond set is total dwell time in a certain
state s (Eh th). Since these variables partly determines the likelihood, they are used
as features for classifying single state trajectories.

ti

Equation 1



LL

U)s-

U1i
20

40
- 3

U 6 0

80
8 8* 8 8D C

'r- V_

time (mins)

Sessile
Proliferative
Migratory
Apoptotic

3
I-
0n7

88 * 8

- Y

3.

-rn
10(

88888 -
88g"188

Q

Q 3

3 rm

0 0s,-n

t%)
0M

1<

-n

Increasing [VEGF]

Figure 4-3: State labeled cell trajectories under different concentrations of counter-
acting angiogenic and angiostatic cytokines (VEGF and PF4 respectively). In the
cell trajectory matrices, single cell state trajectories are plotted along rows.
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descriptor 1

Figure 4-4: Conceptual models to account for the individual-cell phenotypic state
transitions dynamics across an angiogenic population. (a) Uniform population model
(UPM) posits that endothelial population is homogeneous in state transition dynam-
ics and the population is unimodally distributed in transition rate parameter space
(middle). Under the control condition, the population assumes a unimodal distribu-
tion in state transition rate parameters. Treatments with cytokines (shown as dark
red arrows) cause individual cells to respond in a similar manner and the population
distribution to shift unidirectionally (left, right and middle shown as results of three
different stimulations). (b) Diverse population model (DPM) posits that endothelial
population is heterogeneous in state transition dynamics. Under the control condi-
tion, the population consists of multiple subpopulations (clusters) characterized by
different transition rate parameters. Treatments with cytokines cause changes in the
fractions of cells within subpopulations without shifting subpopulations centers.
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Figure 4-5: (a) Maximum likelihood estimates (MLEs) of transition rate matri-
ces under different angiogenic and angiostatic cytokine treatment conditions. Under
UPM, the condition base transition rate estimates (A(cond)) were computed from the
cell trajectories under each treatment condition separately. (b) Comparing A(cond) of
each transition types across cytokine conditions. Each subplot presents rate MLEs of
one transition types estimated from different cytokine conditions (labeled 1 - 5 and
specified as in the condition indicator box (beneath Figure 4-5a)). The fourth bar in
each subplot represents the no cytokine control condition. The effect of VEGF alone
can be seen by comparing the 3 rd to the 4 th bars; the effect of PF4 alone: 5th to 4 th

bars; and the dosage effect of PF4 in the presence of VEGF: 3rd, 2 "d, then 1 st bars.

Subplots are organized by the initial state of transition (row block) and the final state
of transition (column block). (c and d) Statistical comparisons of the distributions
of A(,cond). Pairwise Komolgorov-Smirnov test (with Bonferroni correction) results in-
dicate that in most cases, the cytokine-eigied changes are statistical significant. (c)
Log asymptotic p-value of the pairwise comparisons under the null hypothesis that
two distributions of A(cond) being compared are the same. (d) The hypothesis decision

2 0
.4

3 0

1 m

12345

2MS a
4 

45 B
12345

(b) MLE(cond) comparison
across conditions

6 X 10,5 x10
4  x10

S 40.5

12345 012345 12345

x10
4  

x10
4  

x104
2 2 2< 1 1 1
012345 012345 012345

x10 x10 00

12 3 45 12345 4 12 34 5
.04 X 1 4 X1 .

3 2

M2 1012 345 012 345 012 34 5

x10 X10 X10

12345 12345 12345

S P M A
to state of X



clustered clustered
features trajectories

(b)
X(cond)MLE

(c
Fraction of population

in different clusters
r~J

0.9-

S0.7-

.~0.4

.11111
t 00

*VEGF *PF4

Figure 4-6: Hierarchical clustering of cell trajectories in all cytokine conditions reveals
3-5 identifiable clusters. (a) Dendrogram of the clustereHierarchical clustering of all
cell trajectories in all cytokine conditions reveals 3-5 identifiable clusters. Hierarchical
clustering was performed based on the trajectory features described in Table 2. (a)
Dendrogram of the clustered features (left) and the corresponding clustered single
cell trajectories (right). Clusters color labels are consistent from (a - c). (b) The
corresponding transition rate MLEs computed from the single cell trajectories in
each cluster separately A(clust). The transition rates matrices in sessile, migratory
and switching clusters are qualitatively similar. Under DPM, the effect of cytokine
treatment can described as changes in the fraction of cells adopting different dynamic
phenotypic transition patterns (also referred to as cluster weights). The bar graph in
(c) presents the fraction of cells in the population that adopts the five different state
transition patterns identified by hierarchical clustering. The analysis consistent with
DPM framework reveals that VEGF and PF4 directionally shifts the cluster weights

(see text for details).
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Figure 4-7: A three component principle component projections of the cell trajec-
tories shows the separation of the endothelial subpopulations. The apoptotic and
proliferative clusters (1 and 2) are well separated in state transition dynamics from
each other and from the sessile, migratory, and switching clusters. Sessile, migra-
tory and switching clusters (3, 4, 5) consist of cells that transition between sessile vs.
motile states and are only differentiated by the frequencies of transition and the dwell
times within the sessile vs. motile states. (b) Hierarchical clustering of cell trajecto-
ries in each cytokine condition exhibits similar cluster pattern with 3 M 5 identifiable
clusters within each condition. Shown in each subfigures are clustered features with
dendrogram.(left) and clustered state labeled trajectories (right). The clustering pat-
tern across different angiogenic/angiostatic cytokine combinations is consistent with
the diverse population model (DPM).
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Figure 4-8: Statistical pairwise comparisons of the cluster weights across different

cytokine conditions show that most of the cytokine elicited difference in the clus-

ter weights are statistically significant. (d) Indicator matrix specifying the pairwise

comparison. For example, the first row of (d) are true (white) for the first two con-

ditions, indicating that the conditions being compared are conditions 1 and 2 (20

ng/mL VEGF with 500 ng/mL PF4 and 20 ng/mL VEGF with 50 ng/mL PF4, re-

spectively). (e) Log of the asymptotic p-value (probability of mistakenly rejecting the
null hypothesis). (f). The hypothesis decision based on the p-values indicating that
most of the cytokine elicited changes are statistically significant.
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Figure 4-9: Condition based and cluster based estimates are computed over different
sets of single cell trajectories. Condition based estimates are optimized over single cell
trajectories taken from the same cytokine conditions, while cluster based estimates
are optimized over trajectories taken from the same cluster.
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Supplementary Figure 1: Density of angiogenic sprout initiation (number of
sprout per unit area of gel interface) is modulated by angiogenic factor stimula-
tion and does not significantly change beyond 48 hrs of growth factor stimulation.
(a)Long term angiogenic sprout extension without changes in sprout density over 5
days of growth factor stimulation. (b). Sprout density measured at 72 hours after
stimulation with increasing concentration of VEGF1 6 5 .
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Supplementary Figure 2: State trajectory can be well approximated by the
CTMC. (a) State trajectory waiting time distribution fits well to exponential dis-
tribution. (a). The dwell time distribution of in all states (, P, M, A) can be well
described by an exponential distribution with the coefficient of determination (Rs)
of 0.90. (b) The distributions of dwell time in state S and M fit well to exponen-
tial distribution with R 2 of 0.73 and 0.97 respectively. Due to insufficient number of
proliferative and apoptotic instances, the dwell time distribution in P and A states
do not fit well to most well known statistical distributions. (b) Comparison of like-
lihood distributions under the one step condition independence assumption ()The
state trajectory follow the conditional independence assumption (left) and no con-
ditional independence assumption (right). Lack of significant difference between the
two distribution indicates that the single cell trajectories follows CTM's conditional
independence assumption.
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Chapter 5

Perspectives on Future Work

Angiogenesis is the emergent behavior of a collective of endothelial and mural cells

interacting with each other and with the extracellular matrix to produce vascular

growth. This coordinated behavior results from a multitude of intracellular and extra-

cellular signaling events, mechanical interactions, and mechanotransduction. These

intricate subcellular processes lead to individual phenotypic cell decisions (such as

whether to quiesce, migrate, proliferate, or apoptose) and to directed cell migration,

which combine to create coordinated angiogenic growth. A tissue level manifestation

of such cell decision process is the modulation of angiogenic sprouting in response to

inflammatory angiogenesis presented in Chapter 2.

Computational approaches to model angiogenic process often require a large num-

ber of model parameters. Among these, the parameters describing cellular behaviors

are the most difficult to infer from experimental data. Through the appreciation of

such technical difficulty, the methods of inferring single cell decision parameters from

aggregate headcount data in Chapter 3 and from full panel single cell trajectories

in Chapter 4 were designed and implemented. In the case of aggregate data, the

method was designed to be compatible with single cell markers of cellular states by

quantitative flow cytometry. The limitations of the aggregate headcount parameter

estimation method (especially in that the model relies on prior knowledge of how

the number of cell in the population changes over time) inspired the development
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of the live cell microscopy based method for full panel data collection in Chapter

4. From the live cell microscopic images, the full panel data collection method was

investigated resulting in an optimized and refined contour tracking and automated

state annotation. The contributions of this thesis to the field of single cell decision

in endothelial cell is discussed below:

5.1 Summary

In Chapter 2, I demonstrated a physiologically relevant example of the tissue level

changes in sprouting angiogenesis plausibly arising from changes in single cell decision.

The physiological concentrations of opposing inflammatory cytokines VEGF and PF4

cause the tissue level changes including the dose dependent increase in sprout density,

length, and diameter and cord dissociation in response to VEGF and the reversed

changes in response to addition of PF4. VEGF and PF4 treatment also cause other

dose dependent changes including VE-cadherin band thinning and cell shape. To this

end, I hypothesize two potential mechanisms of how PF4 may interfere with VEGF-

mediated sprouting angiogenesis and methods to test these hypotheses.

In Chapter 3, I discussed the development of algorithms for inferring single cell de-

cision parameters from aggregate measurements of proliferation and apoptotic mark-

ers. More specifically, I derived the formal expressions for the maximum likelihood

estimates (MLEs) and Bayesian inference (BI) of the single cell decision parameters

based on the flow cytometry measurements. The parameter inference methods are

applicable to the cases when the changes in number of cells over time is known.

To address the limitations of the aggregate data, I developed an experimental

method to acquire a full panel single cell trajectories of endothelial cell population

undergoing angiogenesis via live cell microscopy. Refinement of the method leads to

the development of contour tracking and automated state annotation. The single
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cell decisions in this dataset can be well model by a continuous time Markov chain

(CTMC) as the single cell trajectories satisfy the exponential waiting time and con-

ditional independence requirements. Based on CTMC, I formulated the inference

algorithms for computing the maximum likelihood estimates of single cell state tran-

sition parameters, a key set of parameters determining cell behavior in the hybrid

agent based model of sprouting angiogenesis developed in the Kamm lab.

This thesis offers an important stepping stone toward a more realistic integrative

effort of modeling angiogenesis. The works described in this thesis suggest multiple

improvements for the future directions in single cell decision and angiogenesis research,

some of which are discussed below.

5.1.1 Lesson in algorithm design

The choice of algorithms, in this case, parameter inference methodology should be

dictated by both the experimental methods and choice of single cell model in angio-

genesis simulation. For the work in this thesis, we realize an experimental method

and corresponding parameter inference algorithm is consistent with the continuous

time Markov model. This parameter inference is amenable to direct application to

the hybrid-agent based simulation developed in the Kamm lab.

The algorithm design based on these criteria is advantageous in many ways. First,

given a consistent definitions of phenotypic states in the model and experiment, the

cellular behavior in each phenotypic state in the simulations can be trained to rep-

resent the experimentally observed cell behaviors. For example, in experiment, the

proliferative state is characterized by mother's cell contour duplication followed by

antipodal movements of the daughther cell contours. This observation can be used

to define proliferative cells' behavior in the simulation.

Given the consistent state definitions, the inferred state transition probabilities can

be used directly in the agent based simulation. As such, experimental results specifi-
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cally indicate which aspect of model assumption is not consistent with the model, thus

providing specific suggestions of which model assumptions is inaccurate. In Chapter

4, we show that a population of ECs consists of subpopulations that adopt distinct

transition dynamics and these dynamics persist across different cytokine conditions.

These findings refute our original assumption that model parameters are unimodal

and that cytokines directionally affect phenotypic transition parameters. These find-

ings provide specific suggestion that the agent based simulations should be initialized

as a mixture population of distinct phenotypic transition dynamics drawn from the

experimentally observed mixture distribution.

5.2 Future outlook

The collaborative effort within the EFRI grant, of which this thesis is an integral part,

has been to develop quantitatively predictive models at multiple granularities ranging

cellular phenotypic response to signaling events, sprouting behaviors vs. phenotypic

distribution, and geometric (diameter) response to sprouting elongation rate, among

others. Development of a comprehensive modeling framework will be neither top-

down nor bottom-up, but will equally integrate individual models from multiple scales,

ranging from single cell signaling level to the level of multicellular sprouts. Models

from each scale should be designed and tuned based on input-output data available

for that scale. The behavior of higher scale models can be both interpreted in terms of

the constituent lower scale models and validated by the corresponding input/output

data. The validation of higher level model by the appropriate input/output data

should provide constraints on the behavior of the lower level constituents and help

address the potential mechanisms of the emerging patterns at least from a lower level

model to the subsequent higher level behavior.

This thesis offers an important link between the tissue level studies of angio-

genesis and the computational modeling. Angiogenesis modulators, be it cytokines,
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small molecular inhibitors or biomechanical forces and fields take effect at the cellu-

lar level through receptor-ligand binding and activations of specific molecules on the

cell membrane or inside the cells. Angiogenesis modulator-elicited signaling leads to

'emerging' changes at multicellular scale in angiogenesis. In the past decades, the

measurements of angiogenic modulators' effects have been performed across the en-

tire cell population in terms of signaling protein phosphorylation and transcriptional

changes. This is partly due to the ease of population-wide measurement over single

cell measurements. We observe from tissue level response in angiogenesis that cell

population is diverse. By following individual cells undergoing angiogenesis, we come

across another manifestation of population heterogeneity in angiogenic population.

By correlating the signaling measurements to phenotypic decision parameters instead

and utilizing the agent based simulation to produce an expected tissue level result, the

work in thesis provides a way of understanding the effects of angiogenesis modulators

that respect the heterogeneity of angiogenic cell population. Several improvements

can be made to enhance our understanding of angiogenesis. A few suggestions are

discussed in below.

5.2.1 Quantitative correlation analysis of signaling to pheno-

typic decision

Given the availability of the signaling dataset and phenotypic decision parameters, one

can build an empirical model to infer a relationship between the signaling dataset and

the phenotypic response set. In our collaborative research program, the signaling data

is acquired by quantitative mass spectrometry and phospho-protein luminex assays.

The advantage of these highly multiplex approach is that a large number of targets

can be detected all at once, turning the assay into a target discovery tool. Since the

measurements are taken from the collection of lysate from the entire cell population,

the signaling results may be useful mainly to narrow down the potential phospho-

protein targets the activation of which is important in regulating the phenotypic

143



transition.

5.2.2 Measuring single cell intracellular signaling by live cell

microscopy

The most optimal way to infer the influence of intracellular signaling on single cell

decision is to acquire the single cell dynamics of signaling during the cell decision

process. Signaling data in single cell along with morphology based phenotypic state

identification allows inference of causal and/or correlative relationship between molec-

ular changes some of which might govern the dynamics of single cell decision. Notably,

single cell signaling measurements are valuable especially in the case when the cell

population is heterogeneous.

In recent years, novel fluorescent resonant energy transfer (FRET) probes have

been developed for microscopically detecting kinase , 7, 7] and GTPase [\] activa-

tions during signal transduction events. Real time live cell imaging of cells expressing

these probes allows for simultaneous detection of selected signaling targets and phe-

notypic cell state. Since only a few differentially fluorescently labeled targets may

be imaged simultaneously, a crucial question for performing such experiments is:

what are the appropriate signaling targets governing the single cell decisions? To

appropriately draw the causal relationship from the signaling and phenotypic state

detection, one also need to ask what is the lag times between the signaling events

and the influence it has on single cell decisions? To answer these questions, dedi-

cated experiments may be for each of the selected signaling targets. To determine the

'appropriate' signaling targets, one may start with a collection drawn from existing

signaling databases of known signaling targets downstream of a signaling cue (growth

factor) or associated with the specific cellular phenotypes or both. Multiplex popu-

lation average signaling measurements (using phosphoproteomic techniques) can to

be used to narrow down the list of potential targets. After then appropriate probes

can be developed and tested for single cell imaging. To determine the lag time for
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each signaling target, unstimulated (serum starved) single cell expressing the FRET

probe can be imaged from prior to the signaling cue (stimulant) is added to after the

phenotypic transition is detected.

5.2.3 Recording spatial information of decision making en-

dothelial cells

The parameter estimation methods presented in this thesis assume that individual

cells make 'independent' decision, i.e., the state choice and the waiting time before

a transition of one cell does not influence those of other cells in the population and

vice versa. For the experiments reported in Chapter 4, endothelial cells are seeded as

mixture of fluorescent (trackable) cells in the background of non-fluorescent cells. As

such, the 'independent' agent assumption may apply among the 'tracked' cells in that

dataset. However, there is no evidence against the possibility that neighboring cells

surrounding a 'tracked' cells influence the phenotypic state transitions. To determine

whether there is such influence, one need to record the phenotypic state of individual

cells and their spatial relationship (whether tracked cells are nearest neighbors at

each time step) and how their phenotypic decisions are correlated.

5.2.4 Distinguishing tip and stalk cells and obtaining sepa-

rate single cell tracking datasets

The parameter inference method framework can be applied to a wide range of prob-

lem involving single cell decision. However, a major limitation of this thesis work is

that the collected single cell tracking dataset does not address how the 'tracked' cells'

phenotypic transitions maps to the tip vs. stalk states at the current or future time

points. As such, one can argue that the quantitative result drawn from the current

dataset does not directly enhance our understanding of sprouting angiogenesis.

To determine tip vs. stalk cell state, cells may be seeded in a 3D microfluidic

sprouting assay, treated with angiogenesis modulating cytokines and imaged over the
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period of sprout formation (at least 24 hours) by a confocal microscopy. To enhance

the tip vs. stalk cell state identification, a tip vs. stalk cell enriched protein-fluorescent

proteins (such as Delta-like 4 (DLL4), VEGFR3, and endothelial specific molecule-1

(ESM-1) [', 1Y2, 02, J ]) may be fused to flourescent protein and expressed in en-

dothelial cells. While this approach is viable, acquiring sufficient number of cell tracks

to build a dataset is technically challenging for two reasons. First, with the current

3D microfluidic design, the 3D confocal imaging of the device takes much longer scan

time per region than 2D fluorescent imaging. Thus, the imaging throughput in 3D

confocal based tracking might be significantly lower than 2D tracking. Second, small

change in medium volume in microfluidic devices can result in large changes in cy-

tokine concentration. Since microfluidic devices are designed to contain submilliliter

volume, when subjected to live cell imaging in large environmental chamber over

extended period of time, brief period of subsaturated vapor pressure causes evapo-

ration of medium within the device that can result in significant change in cytokine

concentrations.

5.2.5 Mapping stalk vs. tip state by modeling stalk-to-tip

cell transition

An alternative method to map the phenotypic transition results to stalk vs. tip state

of the cell are to acquire live cell imaging data of stalk and tip cell separately using

different imaging setup. Four-dimensional tip cell images can be acquired after the

tip cell selection and sprout tip invasion already begins, thereby reducing the number

of imaging time and potential imaging volumes. On the other hand, by assuming

that the stalk cell undergoes similar phenotypic decision as endothelial cells on Col-

lagen gel, stalk cell images can be acquired using the on-gel setup. To link the tip

to stalk cell state, one can model the tip-to-stalk transition as a stochastic process.

Assuming that the transition is irreversible, then the transition may be well approxi-

mated by the Poisson arrival process. Poisson process can be described as a stochastic

counting process in which the interval arrival times (the time between each pair of
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consecutive events) follow an exponential distribution (memoryless property) with a

rate parameter A and each of these inter-arrival times is assumed to be independent

of other inter-arrival times (independence property). The schematic of this alterna-

tive method of mapping tip and stalk cell state to phenotypic transition is shown in

Figure 5-1.
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Figure 5-1: A schematic diagram of a method to map tip vs. stalk state of the
cells to phenotypic transitions. Based on this method, tip and stalk cells are tracked
separately after the stalk-to-transition has occurred. Since the tip and the stalk cells
do not need to be imaged simultaneously, they can be tracked using appropriate
imaging modalities that not only allows the acquisition of phenotypic transitions
information, but also amenable to high throughput imaging. In this case, the tip
cell can be imaged in 4D in microfludic devices and the stalk cells can be imaged
using a on-gel invasion assay in which high throughput imaging can be performed.
Stalk-to-tip transition can be modeled as a Poisson process described by a stalk-to-
tip transition parameter (A). This parameter can be inferred from the end point
measurement of tip cell density in microfluidic device and on-gel sprouting assays.
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Appendix A

Contour tracking methods

Level set methods have been widely used in image processing and computer vision.

In this thesis the contour track methods are used in detecting the VECadherin bands

in Chapter 2 and in contour tracking of live cell microscopy data in Chapter 4. Chan-

vese algorithm is a region-based level set active contour algorithm for segmentation

of static images.

A. 1 Image preprocessing and time-series tracking

In contour tracking of the live cell images, the raw images are converted to from 16-bit

to 8-bit to enhance the processing speed, then minimally enhanced to even out the

cell-to-cell variations in brightness.

A.2 Contour initialization

The algorithm starts with the contour initialization the first image in the time-series

is initialized in two ways.

* Initialization using intensity of the image

" Initialization using non-informative mask
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Figure A-1: Schematic drawing of Chan-Vese two phase active contour algorithm.

In most cases, the two methods of contour initialization yields reasonably good agree-

ment (determined based on the square difference in the contour point coordinates). In

rare case when the two methods do not yield similar contours, the image is enhanced

and the contour is initialized using the intensity thresholded mask of the enhanced

image.

For subsequent images, the detected contour of the immediate prior image is use to

initialize contour in the contour finding routine. Given that in most of the time series

images cells do not drastically change shape and size over one imaging interval, the

detected contour from the prior image often serves as an appropriate initial contour.

A.3 Contour objective function and bias

In the traditional naive active contour algorithm, the objective function is defined by

the gradient in image intensity alone. For single cell tracking application, however,

the active contour's performance can be significantly improved by using the gradient

in intensity and the detected contour of the neighboring images in the time series to

bias the contour's objective function.
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(a)

(b)

(c)

Figure A-2: Convergence of contour finding algorithms using the two methods of
contour initialization. Evolution of the level set surfaces during the runs of level set
based contour finding algorithms (a) using the intensity of the image to initialize the
contour and (b) using randomly initialized contour.
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Appendix B

Microfluidic device protocol

B.1 High throughput microfluidic device (HTD)

preparation

Material

e PDMS Body liquid (10 parts)

e PDMS curing agent (1 part)

* Negative pattern wafer

* Microscope slides (1mm thick)

Procedure

PDMS Mixture Preparation

1. Pour body liquid in a plastic cup while measuring its weight (Make sure to cover

the balance with tissue)

2. Reset scale, pour curing agent while measuring its weight

3. Stir the mixture

153



medium
filling ports

extended
gel filling gel regions

port

medium filling/
cell seeding ports

Figure B-1:

top
channel

Y-junction
for equalizing

hydrostatic pressure
in top and bottom

bottom channels

channel

Schematic drawing of the high throughput microfluidic [?]

4. Remove the bubbles in the vacuum chamber

5. Turn on vacuum and close the valve for sustaining vacuum (Make sure to cover

the chamber with tissue)

6. Degas for 20 minutes

PDMS Pouring

1. Blow the wafers with air, clear of all debris

2. Pour the PDMS onto the wafers. Make sure there is enough PDMS to com-

pletely fill the hole cut in the old PDMS and does not form a meniscus. Note

that any devices that are not perfectly flat on top cannot be used with a syringe

pump.

3. Let PDMS on wafer stand for 15 - 30 minutes, then blow air bubbles that have

risen to the surface and put in oven. Do NOT degas wafer. This has lead to

cracking and we only have the one.
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PDMS Baking

1. Bake the poured wafers for 4-8 hours at 80'C (recommended: 24hours to cross-

link most of PDMS monomers)

2. Detach by cutting with razor (carefully and slowly peel it off, starting from the

edges and going in the circumferential direction, in order to avoid tearing posts

apart)

PDMS-Device punching

1. Cut devices apart using a razor and the outline on the mask. Punch 4 mm holes

in the cell seeding and reservoir ports, a 2 mm hole in the outlet port, and use

the syringe to punch the gel filling ports.

2. Clean devices with transparent tape. Its better to punch the devices off of the

paper covered acrylic because the paper makes the devices very dirty.

3. Put devices in beaker with DI water, autoclave (wet / dry, 20 / 10 minutes)

4. Remove devices from beaker and place devices in empty pipette tip box, up to

6 per box.

5. Autoclave again in box (switch setting to dry)

6. Dry in oven overnight at 80'C.

PDMS Device Bonding and PDL coating

1. Plasma treatment

2. Clean area and all tools with ethanol

3. Place one device and one coverslip per platform, up to 3 platforms

4. Close the door and valve, confirm seal, and turn on vacuum ("Pump switch)

for 20 seconds.

155



5. 1 minute and 40 second plasma treatment: Turn "Power switch on, turn

radiation dial to low, medium, then high. After observing a purple glow, slowly

open the valve (fractions of a turn!) until the glow becomes bright.

6. Bring the devices and glass into contact with tweezers. Apply firm pressure with

your fingers from one side to the other, avoiding air gaps between the coverslip

and the device. PDL coating

7. Fill the devices with PDL (100-150 pL/device)

8. Wash twice with water after 24 hours. Make sure that all regions are washed, in

order to avoid heterogeneous surface coating. If you get bubbles, try to remove

them by using the pipette applying suction.

B.2 ECM injection and cell seeding

Material

* PDL-coated microfluidic devices

* Collagen Gel

* Complete Medium

Procedure

1. After PDL coating/drying, let the devices cool down for 30 minutes-i hour at

room temperature.

2. Prepare collagen gel.

3. Draw 30pL of gel with the 200pL pipetter. Fill device from gel filling port. Fill

gel most of the way from one port, but not all the way to the other gel filling

port. Then, fill from the other port until gel interfaces merge. This will leave

an inconsistent gel interface, but we do not have an option at this point.
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4. Place each gel-filled device with the PDMS side facing up in the humidity box

after it has been filled to avoid dryout.

5. Leave all devices for 1 hour in the incubator (in the humidity box) for the gel

to polymerize.

6. Fill channels with medium from reservoir ports (50-100pL). Gently fill medium

until the channels have been filled to the cell seeding filling ports. Do NOT

fill all the way to the outlet port. Instead, be sure to leave air at the channel

intersection and in the outlet port. Place a droplet of medium over the outlet

port to trap the air inside. Place devices in incubator. They will be ready for

cell seeding in 24hours.

Cell Seeding

1. Gently aspirate medium from all reservoirs and cell seeding ports all the way

to the glass. Make sure that the suction tip is away from the channel, so that

the channel is not dried out.

2. Add 20 pL of medium to the reservoir and cell seeding ports on the top chan-

nel. (This reduces the interstitial flow rate so that not too many cells are bunched

up on the gel.)

3. Seed 40 pL of a 2 x 106 cells/mL cell suspension into the bottom channel.

4. Let cells adhere by placing devices in the incubator for 1.5 - 2 hours and then

gently aspirate medium from all reservoirs and cell seeding ports.

5. Place large droplets of medium on the reservoir ports. Return devices to incu-

bator.

6. Maintain devices with complete medium for 24 hours. After 24 hours, apply

condition medium.
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B.3 Immunofluorescent protocol for in situ stain-

ing and imaging

Material

" Microfluidic devices to be stained

* Fixative: 4% paraformaldehyde (PFA)

* Permeabilizing agent: 0.1% Triton-X/PBS

" Blocking buffer: 5% bovine serum albumin (BSA), 3% goat serum (gS) in PBS

" Wash buffer: 0.5% BSA in PBS

* Primary and secondary antibodies

" Counter stains: DAPI and Phalloidin

Sample Preparation and Fixation (20 minutes):

1. Wash live sample with sterile 1xPBS.

2. Fix sample by adding 4% PFA.

3. Incubate 15 minutes at room temperature (RT).

4. Wash with 1xPBS.

5. Fixed samples can be kept in PBS at 4'C for an extended period of time.

Staining: Day 1

Reagent preparation

1. Prepare blocking buffer(BB) and wash buffer(WB). Blocking buffer and wash

buffer can be prepared ahead of time and keep at 40 C for one week.
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2. Solubilize cells (10 mins)

3. Permeabiize sample by adding 0.1 % Triton-X

4. Incubate 10 minutes at RT

Blocking (> 1 hour)

1. Prepare blocking solution: 5% BSA/PBS + 3% goat serum.

2. Add 300 pL of blocking buffer to each device.

3. Let incubate at least 1 hour at RT

Primary antibody staining (overnight)

1. Prepare primary antibody solution by diluting in Wash buffer (0.5% BSA/PBS).

2. Add 300 pL primary antibody solution per device.

3. Incubate devices overnight at 4C in humidified dishes.

Staining: Day 2

Secondary Ab staining (> 2 hr)

1. Prepare secondary Ab, diluted in WB.

2. Wash 5 times with WB. Incubate 5 minutes each time.

3. Add secondary Ab solution.

4. Incubate at RT > 2 hours.

Counter staining (1 hour)

1. Prepare counter staining solution (DAPI + Phalloidin)

2. Wash 3 times with Wash buffer. Incubate 5 minutes each time.
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3. Add counter stain solution.

4. Incubate over night at 4'C or 30 - 60 minutes at RT.

5. Wash 3 times with Wash buffer. Incubate 5 minutes each time.

6. Rinse 2 times with PBS.

Sample Storage:

If not imaged immediately, samples should be kept in PBS and store at 4C and

protect from light. Stained samples should not be kept longer than 3 weeks.
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