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ABSTRACT

Tissue engineering is a potentially valuable tool for clinical treatment of diseases where host
tissues or organs need to be replaced. Progression of engineering metabolically complex organs
and tissues has been severely limited by the lack of established, functional vasculature. The
thesis work described herein focused on methods of establishing and studying specific
endothelial cell types in vitro for potential applications in establishing functional microvascular
architecture.
To achieve these objectives, a model system of primary liver sinusoidal endothelial cells (LSEC)
was initially studied due to the high metabolic requirements of the liver, as well as the unique
phenotype that they possess. We were able to demonstrate that free fatty acids were able to
rescue LSEC in culture, promote proliferation, and maintain their differentiated phenotype. Our
work with lipid supplementation in serum-free conditions provides flexibility in engineering
liver tissue with a functional vasculature comprised with relevant endothelial types encountered
in vivo.
Following up our work with LSEC, we explored the human dermal microvascular endothelial
cell (HDMVEC) system to understand the signaling mechanisms involved in sprouting
angiogenesis. Engineered tissues that are implanted will require integration with host
vasculature. We established a method to collect large signaling data sets from a physiologically
relevant in vitro culture system of HDMVEC that permitted angiogenic sprouting. We were able
to find statistically significant data regarding how angiostatic cues like Platelet Factor 4 can
modulate angiogenesis signaling pathways.
Our results from working with both types of endothelial cell systems provide insight into
potential methods for establishing specialized microvasculature for engineered tissues, both in
propagation of differentiated endothelial cells in vitro and promotion of tissue/organ survival
following their implantation.
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Chapter 1

Introduction and Background

This thesis is focused on establishing an understanding of cellular signaling mechanisms

involved in the function of liver sinusoidal and dermal microvascular endothelial cells. The

following chapter contains both background and rationale for the endothelial cell types and their

biological systems used in this thesis that will be helpful in understanding later chapters.

1.1. State of ex vivo tissue and organ engineering

In addition to blunt body trauma, there are a myriad of diseases that terminally end in organ

failures. For many patients, the only hope for survival lies with replacement of the lost organ(s).

Organ transplant methods have come a far ways from meager beginnings with poor survival and

host rejection. Rejection rates were significantly decreased after the 1980s, when

immunosuppressant drug cyclosporine was approved by the FDA for use following transplants

(129). These drugs were able to reduce rejection rates (e.g. cyclosporine inhibits calcineurin and

activation of T cells) and as a consequence increased survival rates of patients.

As the modem world has developed and improved methods to treat medical problems with

replacement organs and tissues, demand on these life-saving procedures have far outpaced the

supply. In the United States alone, there are currently over 100,000 people are on the waiting list

for organ transplants, with only a tenth of that number of donors (Based on OPTN/SRTR Data as

of May 2009). The number of people requiring transplants will continue to increase at a rate

much higher than the availability of organs (Figure 1-1), leading to higher number of patient

deaths that can be prevented if there were sufficient supply. Technological progress has

increased preservation and transport quality of organs, along with enabling multiple tissue and

organ harvests from a single donor. Despite these advancements, organ and tissue availability are

still limited by the number of donors.
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Figure 1-1. Rising discrepancy between transplants, donors, and waiting lists for organs in the US
(62). The need for organ transplants far exceeds the availability of viable organs. Approximately 7,000 of
those patients on waiting lists die before they receive a transplant (Based on OPTN/SRTR Data as of May
4 2009). Of those who survive who stay on the waiting list, receiving a transplant or tissue graft can
extend survival rates or significantly increasing quality of life. Tissue engineering can conceivably be
used to target the gap in supply for patients whom require replacement tissue and organs. From
http://www.organdonor.gov/aboutStatsFacts.asp. Data from http://optn.transplant.hrsa.gov and
OPTN/SRTR Annual Report.

In efforts to combat the scarcity and reduce mortality rates of those on organ waiting lists, tissue

engineering has attempted to try to satisfy some of the needs with in vitro and even synthetic

tissue constructs for non-organ replacements. Currently, innovative discoveries in tissue

engineering have enabled the successful construction of viable organs and tissues such as dermal

grafts (58, 104, 119, 143), bladders, urethras, kidney nephron units, and blood vessel valves (9,



43). Some of these tissue constructs are generated by using cell transplants from organs or use of

stem cells rather than whole organ transplants (143).

However, due to the difficulty of recapitulating and supporting organ structure ex vivo, current

tissue engineering faces severe limitations to helping cover the gap in supply to those who need

organs. It is acknowledged in regenerative medicine that pitfalls and limitations for many of

these organs are a result of the lack of a defined, stable vasculature (43, 69, 119, 127). Many

tissue grafts or synthetic tissues created with cellular seeding do not survive past the first stages

of integration into a host due to lack of proper vascularization. Furthermore, artificial tissues

cannot fully recapitulate functions of their in vivo equivalent. Thus, the limited success of tissue

engineered grafts hinder progress in covering this observed gap in demand.

Current technological developments for tissue engineering have simultaneously focused on

elucidating cellular interactions and mechanisms and establishing suitable environments for

developing vascularization. Microfabrication tools such as photolithography, soft lithography,

and substrate tuning have been used to understand how to construct tissues ex vivo by elucidating

cell-cell interactions (12, 44, 72). These methods can help ascertain scaffold structures and

specific combinations of extracellular matrix proteins that are necessary to help maintain cell

differentiation and survival for respective organ milieus.

In tandem with microfabrication techniques, creating scaffolds with proper three-dimensional

microarchitecture is also an important approach that has been taken to help improve tissue

engineering. Biodegradable scaffolds made from extracellular matrix (ECM) proteins collagen,

fibrin or degradable polymers have been utilized for creating ex vivo tissues that can be relatively

easily grafted and integrated into host tissues (80, 151). In addition to the use of ECM scaffolds,

other inorganic polymers such as chitosan, alginate, polyethylene glycol/ethylene oxide, and

polylactic-co-glycolic acid can be used to generate synthetic biodegradable scaffolds and

hydrogels that can be populated with cells and matrix proteins to generate de novo tissue (9, 71,

72, 90, 146). The versatility of these biomaterials and polymers has lent themselves to be applied

to various tissue engineering prospects, including cardiac, dermal, bone, and cartilage tissue

engineering.



Self-contained bioreactors that simulate flow and shear stress experienced in the in vivo fluidic

environment have been explored as an additional alternative for artificial organs. Microfluidic

bioreactors have been designed to mimic similar shear stress and oxygenation environments that

are observed in vivo either as a result of interstitial or blood flow, particularly with metabolically

active organs such as the liver (4, 5, 33). These bioreactors are designed to simulate cell and

tissue behavior response in the format of a "organ-on-a-chip" on a small scale for functional and

pharmaceutical evaluations (126). Bioreactors have also been used as a temporary replacement

for organ function, such as non-implanted bioartificial liver and kidney devices (9). The rates at

which these technologies are developed are promising for the progress in developing tissue and

organ replacements.

1.2. Overview of vasculature and endothelial cells

For multicellular aerobic organisms that achieve a certain mass, simple diffusion-based transport

of nutrients and wastes to and from cells are insufficient (3, 153). Evolutionary demands required

many of these organisms to adopt methods of transporting efficiently to and from each cell. In

vertebrates, a closed circulatory system provides both diffusion and convective based transport to

tissues (23).

Circulatory systems in humans essentially define the entire framework for nutrient and waste

exchange. In each of the specialized tissues in the body, the vascular network has differentiated

to cater to their specific metabolic needs. In general, blood vessels present in the adult human

body are segregated into three different Vypes: arteries, veins, and capillaries (153). Although

only 5% of the total amount of blood within the circulatory system is found in capillaries at any

given time, they are the most crucial blood vessels that perform the nutrient and waste transport

function of the vascular system (153).

A specific type of cell (sometimes mistaken as epithelial in origin) lines the interior of all these

types of blood vessels. These cells are known as endothelial cells and serve as a barrier between

blood cells and the tissues. Since endothelial cells regulate transport of nutrients and waste



between the blood and tissue, regulation of their phenotype and function is crucial for

homeostasis to occur. Endothelial cells and the vasculature are supported by mesenchymal cells

known as pericytes within microvascular beds. They are a heterogeneous population of cells that

differ dependent on the type of blood vessel that they support and as such serve distinct functions

for each type (47). Some speculation on the stabilization of mature vessels occurs as a result of

the presence of pericytes through paracrine signaling mechanisms (21, 114). Additionally, the

phenotype and function of capillary endothelial cells in various tissues and organs will be catered

to each of their specific functions.

Mechanisms to propagate blood vessel generation should be considered when observing the

development of a mature circulatory system. Vessel formation can occur via several different

methods; vasculogenesis, sprouting angiogenesis, and intussusception. Tumor vasculature can be

formed by additional methods of vessel co-option, vascular mimicry, or generation of their own

endothelium (21). Vasculogenesis is the process of blood vessel formation de novo, occurring

during embryonic development. Mesodermally derived angioblasts, vascular endothelial cells

which have not yet formed lumens, form a primitive vascular network (known commonly as a

vascular plexus) which serves as the basis for the circulatory system (113, 116). Angiogenesis

differs from vasculogenesis and defined as the formation of blood vessels from pre-existing

vasculature (1, 45). Intussusception is the generation of smaller vessels from the branching of a

precursor larger vessel (32). Following the construction of the vessel framework, most blood

vessel maturation occurs via sprouting angiogenesis or intussusception (116). A final mechanism

of angiogenesis can occur through the recruitment of endothelial progenitor cells. Endothelial

progenitor cells can differentiate into vascular endothelium and lead mobilization of the different

methods described above (61, 115).

The most physiologically relevant form of angiogenesis that occurs in the adult vascular system

is sprouting angiogenesis within the context of inflammation (8). In vivo, most angiogenesis or

formation of vasculature occurs either during the menstrual cycle (47, 116), wound healing (11,

13, 87), or rises out of pathological disease states such as rheumatoid arthritis, diabetic

retinopathy, endometriosis, and cancer (30, 47, 77, 116). Extensive work has been performed on

understanding inflammatory angiogenesis and how it is regulated. What is currently known is



that vessel structures are formed similar to processes observed in neuronal axon guidance (21,

109, 110, 120, 133, 150). Sprouting angiogenesis is a multistep process; breakdown of ECM and

basal lamina surrounding a leading cell (tip cell), migration and extension of a sprout into the

medium towards an angiogenic cue, encountering and connecting with other blood vessels,

followed by stabilization of the neovasculature (21, 109, 110, 120, 133, 150).

In a sprouting vessel, the cell types typically consist of a tip cell followed by stalk (or trunk)

cells. These endothelial cells undergo distinct morphology changes that are easily classified by

the behaviors that they undertake (150). The tip cell leads the migration of endothelial cells into

the extracellular matrix and does not undergo proliferation, serving as an analogous growth cone

in neural development by extending numerous filopodia that sense and respond to its local

environment (22, 48, 59). Furthermore, these sprout cells have a decreased sensitivity to anti-

angiogenic factors, such as the low expression of the thrombospondin- 1 receptor CD36 (6). Stalk

and trunk cells follow the tip cell and proliferate while migrating to permit extension of the blood

vessel. These new blood vesssels eventually encounter one another and create a closed

circulatory system in a process known as anastomosis (150). Interestingly, a previous study has

found that signaling by the main isoform of VEGF (VEGF-A) acts differentially on the sprout,

where VEGF distribution determines tip cell directionality and VEGF concentration influences

stalk and trunk cell proliferation (48).

1.3. Overview of the liver and its microvasculature

One of the central metabolic organs of the body, the liver is responsible for multiple functions

including but not limited to: lipid, protein, and carbohydrate metabolism, bile secretion,

detoxification, immune response, ECM protein synthesis, albumin secretion, lymph generation,

and erthyrocyte production (fetal liver) (39, 54, 80, 82, 111, 122, 139). In fact, there are so many

functions the liver provides that no single technology currently exists that can reproduce all of its

functions. Despite the availability and use of liver dialysis, long-term survival without the liver is

thus implausible since it can only replace some function. A host of different diseases and

afflictions can affect the function of the liver, including steatosis/hepatosteatosis, drug induced

liver injury, fatty liver disease, nonalcoholic fatty liver disease, hepatitis, or cancer, all of which



can lead to fibrosis, cirrhosis and ultimately liver failure (7, 28, 29, 41, 67, 89, 91, 93, 97, 138,

154, 155). Absence of the liver or its functions will eventually lead to death of the host (98).

The liver is situated in the upper abdomen underneath the diaphragm. While the general

architecture of the liver can differ among mammalian species, a majority of the structure is either

conserved or highly analogous (75, 122). For the purposes of this introduction, the human liver

anatomy will be of primary discussion. In humans, the nomenclature of the liver is split into 4

lobes; two main anatomical lobes known as the right and left, and two smaller lobes referred to

as the quadrate and caudate lobes. The right and left lobes are separated by the falciform

ligament, with the right lobe being six times the volume of the left lobe. The quadrate and

caudate lobes are much smaller than the left lobe. The quadrate lobe is located behind the right

and next to the gall bladder while the caudate lobe is situated behind and underneath the right

lobe and quadrate lobe respectively (82). The lobes of the liver can be further divided into 8

segments (I-VIII; 9 segments if IVa and IVb are considered separately) based on the main

vasculature using the Couinaud nomenclature (75, 82). Hepatic arteries and the portal vein

supply 25% and 75% of the blood respectively to the liver (54, 82), while blood leaves from the

liver into the vena cava via multiple hepatic veins. Although the rat liver differs in the

macroscopic appearance of the liver, its lobes and segments correspond to segments that are

found in the human liver (75).

The segments that are described in gross anatomy can be broken down and classified into smaller

functional units known as lobules (Figure 1-.2) (54, 82, 98). The hepatic arteries, lymph vessels,

and portal vein are collectively known as the portal triad. The hepatic artery and portal vein serve

as the input source of blood into the lobule, which percolates through the sinusoidal capillaries

before being collected and transported away through the central vein (82). Since the liver is

highly metabolic and supplied with a mixed pool of low oxygenated blood, the amount of

oxygen decreases dramatically traveling from the portal triad to the central vein. This gradation

in oxygenation influences the type of metabolic functions that occur within the lobule (4, 5, 98).

Gluconeogenesis, hormone secretion, urea oxidation, and lipid breakdown occur in the periportal

regions of the liver (60-70 mm Hg 02), while glycolysis, detoxification and lipid synthesis occur

in the perivenous regions of the liver (25-35 mm Hg 02) (4).



Numbering around 50,000 to 100,000 in the adult liver, the liver lobules are composed of

multiple cell types divided between the parenchymal cells and nonparenchymal cells.

Hepatocytes are the parenchymal cells that reside in the liver and compose about 60% of the total

cell population. Nonparenchymal cell types include large vessel and sinusoidal endothelial cells,

resident macrophages called Kupffer cells, and resident fibroblast-like cells known as stellate (or

Ito) cells. Of the remaining 40% known as the nonparenchymal cell population, sinusoidal

endothelial cells are the most numerous and comprise about half of the number cells. They are

followed in number by the Kupffer cells, which consist of roughly 15% of the nonparenchymal

population (131).

The functional structure and nomenclature associated with the liver lobule and sinusoid are still

greatly debated, particularly in regards to the microcirculation architecture (122). In general,

hepatocytes are organized into discrete sheets (plates) of cells which are separated by sinusoidal

capillaries that deliver nutrients and wastes between the parenchyma and the blood (54, 82, 98).

Sinusoidal capillaries are lined with discontinuous, fenestrated endothelial cells that serve to

filter macromolecule and particulate exchange between the hepatocytes and blood (40).

The space of Disse separates hepatocytes from the endothelial cells that line the sinusoidal

capillaries. Roughly about 1-1.5 pm in thickness (95), the Space of Disse is generally considered

to lack a true basement membrane despite the presence of many ECM proteins. It is lined mostly

with fibronectin and collagen IV. Collagens I and III, and laminin appear sparsely in normal

liver, but increase in abundance in fibrotic livers, along with the other ECM proteins (27, 52, 96).

While being the volume that physically separates liver sinusoidal endothelial cells (LSEC) and

hepatocytes, the Space of Disse also serves a crucial role in the lymphatic system. Lymph

secreted by hepatocytes and leaked from the sinusoids are collected in the Space of Disse. The

lymph then travels to the space of Mall, located between the stroma and outermost hepatocytes.

From here the lymph that was secreted is transferred into the lymphatic system through the portal

hepatis and the limiting plate surrounding the portal triad (54).
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Figure 1-2. Diagrammatic representation of important liver cell types and structure (98).
Reproduced with kind permission from Springer Science+Business Media: Michalopoulos GK,
DeFrances M. "Liver Regeneration." Adv Biochem Eng Biotechnol (2005). 93:101-34. Figure 1. C
Springer-Verlag Berlin Heidelberg 2005.

The parenchymal cells are primarily responsible for the metabolic and secretory functions

provided by the liver (54). The liver secretes bile to facilitate lipid digestion in the

gastrointestinal tract. Bile is secreted from hepatocytes into bile canaliculi and drained into the

interlobular bile duct. Two main bile ducts from the right and left lobes comprise the main

biliary system and collect bile from the ducts of the liver lobules before converging into the

common bile duct. The gall bladder serves as part of the auxiliary biliary system and

concentrates and stores bile delivered via the common duct (54, 82, 122).

Many types of model and culture systems have been employed to study and understand liver

physiology. A model of liver physiology that has been extensively studied is that of liver

regeneration after a partial hepatectomy (PHx) in rodents. Partial hepatectomies involve the



removal of approximately 70% of the liver mass (3 of 5 lobes) and observing the compensation

of liver mass by the remaining lobes over a span of a week (20, 42, 70, 98, 139). This

physiological model has elucidated a great detail of information on the cellular and molecular

processes involved in simultaneous proliferation and provision of metabolic functions by the

liver. Data from these models have had various applications, including clinical relevance and

treatment in understanding liver cirrhosis and failure (42, 57).

Another clinical model that is intensely studied involved the process of ischemia reperfusion

liver injury. During resection or transplantation, livers experience a reduction in blood flow

(ischemia) followed by restoration of blood flow (reperfusion) (53). Ischemia reperfusion can

elicit inflammatory responses in the liver and thereby damage it, reducing its functionality and

viability. Studies using this model have been performed and have helped garner an understanding

of methods to reduce the deleterious effects of this process (68, 134, 157, 159).

In vitro cultures have been utilized in addition to PHx and ischemia/reperfusion models to

understand the various metabolic functions that the liver carries out. The simplest culturing

method for hepatocytes has been to see hepatocytes on ECM-coated tissue culture polystyrene or

glass following mechanical disruption and purification of hepatocytes isolated from the liver.

Unfortunately, 2D monolayer hepatocyte cultures lose their differentiated phenotype relatively

quickly (83). Methods to improve hepatocyte differentiation maintenance for longer time

intervals in vitro incorporate biological hydrogels made from ECM proteins such as collagen or

Matrigel@, and additional steps of pre-assembling hepatocytes into cell clustered spheroids (83,
101, 126).

Biomaterials have also been used to maintain hepatocyte differentiation and function in cell

cultures. Use of biopolymers like polyethylene glycol with photopatterning technology can

generate three-dimensional scaffolds that can be created to the almost any specification (72, 86).

Polyelectrolyte scaffolds have been produced to create stratified three-dimensional architecture

to simulate in vivo conditions (112).



Previous work in the Griffith lab developed a perfused bioreactor system for three-dimensional

liver tissue culture (34). The bioreactor system was modified and updated to a 24-multiwell plate

system that allowed for cocultures of cells (hepatocytes, LSEC, and Kupffer cells) to be

sustained for 7 days in the fluidic system (33, 63). Other microfluidic bioreactors have been

constructed to study liver physiology in vitro, including those that can generate oxygen gradients

(4), highly controlled micropatterned architecture (72), or high throughput to study

pharmacological drug responses in the liver (46).

Majority of cellular studies in the liver have focused on the parenchymal population due to the

myriad of roles hepatocytes assume. Recently, the important role that nonparenchymal cells play

maintaining survival and differentiation of hepatocytes in vitro have come into the spotlight.

Furthermore, the inclusion of nonparenchymal cells provide a more accurate representation of

liver function. As the largest population of nonparenchymal cells, LSEC have been brought

forward as an additional focus in their roles and interactions with hepatocytes (73, 76, 92, 94,

101, 102, 121).

LSEC are different from the traditional definition of vascular endothelial cells in multiple ways.

First, they possess pores that span across the cell called fenestrae. These pores are 100-200 nm in

diameter and permit the transport and exchange of certain macromolecules and nutrients between

the blood and hepatocytes (19). Fenestrae are clustered on the surface of cells referred to as sieve

plates. Although most span across the cell to permit transport, about one third of the fenestrae are

terminal and prevent movement past the sinusoid (18). Second, LSEC do not typically express

the pan endothelial marker CD3 1/PECAM-1 on their surfaces. Rather, the antigen is expressed

only in the endosomes of the cell; CD31 is only expressed on LSEC surfaces once they

dedifferentiate and lose their unique phenotype. Third, these cells possess a surface antigen that

is known as SE-I in rats (142). This surface antigen is only expressed on LSEC and are not

found in any other tissue (40). A recent study found that the identity of SE-I in humans and mice

was known as CD32b and was found to be associated with endocytosis of immune complexes

(94).



Supplementary to their role as the arbiters between blood and parenchyma, LSEC have high

scavenger activity for multiple macromolecules. These include fatty acids (105, 142),
lipoproteins (64, 85, 100), proteoglycans such as hyaluronan (55), and immune/inflammatory

markers such as LPS (66, 78). Additionally, they serve as a major component along with

macrophages of the reticuloendothelial system for clearing waste from the liver (39). Finally,
unlike typical vascular endothelial cells, LSEC do not possess a basal lamina; LSEC attach to

ECM proteins that sparsely populate the space of Disse.

Current in vitro culturing methods have been developed that allow LSEC survival from 6 up to

30 days. These methods employ the use of hepatocyte conditioned medium or presence of

multiple growth factors (76), or utilize a "synthetic serum" that is made from non-animal sources

(15, 38).

1.4. Overview of inflammation and wound healing

Wound healing is a physiological process that occurs in the adult body in response to trauma or

injury to a localized area. Trauma and injury can be inflicted externally, through the introduction

of a foreign agent into the localized region (immune response), or be an absence of self-

recognition (autoimmune). Although quite complex in nature, steps in wound healing can be

categorized into five general steps following tissue damage (Figure 1-3): 1) blood clotting and

hemostasis; 2) inflammation and acute immune response; 3) granulation tissue formation; 4)

reepithelialization; 5) matrix formation and remodeling (152). Wound repair is orchestrated by a

multitude of cytokines, growth factors, and chemokines that are released simultaneously during

these stages (13). As a broad outline of a bodily response, these steps may include different

permutations resulting in how inflammation and immune response (step 2) are locally induced.

In conjunction with these molecules, ECM proteins play an important role in binding cytokines

and presenting cell adhesion sites, thereby facilitating cell-cell, cell-matrix, and cell-cytokine

interactions. Different ECM proteins are important for particular interactions to take place at

certain stages, and abnormalities in ECM proteins can prevent proper progression in wound

repair (24, 124). Thus, ECM proteins help facilitate paracrine and autocrine signaling of cells

within localized wound regions. Aberrations and disruptions in the healing process via changes



in ECM protein or cytokine expression can create sub-optimal, altered tissues such as scarring,

fibrosis, or metaplasia (128). The balance of these cytokines and cues are crucial to completing

the wound repair process.

Following stabilization and clotting of a wound directly after injury, the process of wound

healing continues, mainly directed by inflammatory response. Inflammation induces the release

of multiple cytokines from resident cells in damaged tissue (e.g. platelets in circulation,

keratinocytes in skin) that elicit immune responses and the rest of wound repair (13). Some of

the important immune response cues released during wound healing are members of chemokines.

Chemokines are a subset of cytokines that were first discovered and categorized as biomolecules

that induced chemotaxis of immune cells and initiate localized inflammation (49, 50). With

highly conserved amino structures, chemokines can be divided into two general sub-groups: one

group that has two cysteine residues (CC chemokines) and another group that has a non cysteine

residue that separates the two (CXC chemokines) (10). Within these two subgroups, chemokines

can potentially possess a N-terminal motif of Glutamate-Leucine-Arginine (ELR), which can

confer differential recruitment of cell types (88). Chemokines share a high degree of homology

among the different types and can exert their effects by binding to multiple ligands or receptors.

They can also bind to distinct chemokine receptors which are classified as canonical seven

transmembrane G-coupled protein receptors (88, 140).

Chemokines such as CXCR2, along with potent cytokines VEGF, PDGF, FGF, and many others,

elicit endothelial migration/recruitment and angiogenesis to restore homeostasis to the tissue. Of

particular note is that most of pro-angiogenic signaling is generated while many angiostatic

signals are simultaneously being elicited via inflammatory pathways. Interestingly, a majority of

the chemokines that have been reported to have a role in affecting angiogenesis are members of

the CXC chemokine family. Pro-angiogenic effects are conferred through the presence of the

ELR sequence while it is absent in angiostatic chemokines (ELR- chemokines) (117).



KEY

Keratinocyte
Blood vessel

Dermis

U
Fibroblast

Blood clot

Neutrophil

Platelet

-- Muscle

7 Macrophage

Wound matrix

- Myofibroblast

M Granulation
LLJ tissue

Figure 1-3. Schematic of wound repair process adapted from (152). Following wounding to tissue
(e.g. skin), a blood clot is formed by the aggregation of platelets creating a hemostatic plug (A). Shortly
after this, inflammation ensues and induces an immune response along with granulation tissue formation
(B). During this time, angiogenesis and recruitment of endothelial cells occur, facilitating re-
epithelialization, matrix formation, and remodeling by resident cell populations (e.g. keratinocytes) and
immune cells (C) until the original tissue status is re-established.

Following the introduction of trauma or injury to a site, platelet factor 4 (PF-4) is released in

large quantities from platelets into the damaged area of the tissue, where levels can reach up to

25 tM (2). In wound healing, platelets will release certain ECM proteins (e.g. fibrinogen,

fibronectin) that will generate a hemostatic plug to fill in the wounded tissue area. This process is

=,Few



immediately followed by inflammatory responses, where immune cells are recruited to the

localized area by resident cells (e.g. keratinocytes in dermal wounds). During inflammation,

several growth factors (e.g., FGF-2, TGF-p, PDGF, and VEGF) are released by various cells

participating in the response process (e.g., macrophages, neutrophils, platelets, smooth muscle

cells, mast cells, endothelial cells, fibroblasts, keratinocytes) that also affect the vascularization

of the wounded area to allow for granulation and re-epithelialization steps to occur (13).

Chronically elevated expression and levels of chemokines can prevent the progression of wound

healing (via chronic inflammation or incomplete recruitment of angiogenesis); expression of

these chemokines in circulating blood plasma can also serve as predictive indicators of diseases

such as atherosclerosis and lesion formation (135). Decreased or absence of chemokines during

wound healing can also prevent reformation of the tissue, creating a chronic inflammatory or

wound state, such as that observed in rheumatoid arthritis or ulcers (123, 136).

Much data have been revealed on chemokines and their angiostatic effect on endothelial cells,

particularly PF-4 (2, 117, 125, 137, 149). There are several mechanisms that PF-4 is speculated

to act on endothelial cells. PF-4 can either affect endothelial cells by interfering with the

VEGFR2 pathway by sequestering VEGF or heparan sulfate proteoglycans on the cell surface

used to assist in binding to VEGFR2. PF-4 can also bind to integrins and outcompete ECM

proteins that are used for cell migration (e.g., fibronectin). Finally, PF-4 can bind to and signal

through its own receptor, known as CXCR3/CXCR3B (2).

While the responses PF-4 elicits are well established, not much is known about the molecular

mechanisms employed to accomplish this. Currently, the only published literature on PF-4

induced signal pathways in endothelial cells indicate an increase in phospho-P38 MAPK levels

following activation of its receptor CXCR3 (106). Other literature indicate that PF-4 can affect

many multiple pathways including Akt, ERK, PKA, p2lwaf, and others, although the caveat

being in other cell types. A spliced variant of PF-4, CXCL4L 1, is also secreted by platelets. It is

more potent in its angiostatic activity, although does not seem to be directly involved in

inflammatory responses since it does not induce chemotactic responses by monocytes or

lymphocytes (36, 132, 147).



Although chemokines play a key role in facilitating the wound healing process, their role is more

expansive for inflammation and are involved with other physiological processes. Chemokines are

present in the liver normally as hepatocytes are the primary agents that remove chemokines from

the bloodstream (118). Furthermore, CXC chemokines (including PF-4) have been implicated in

promoting liver regeneration and inducing dysfunction (35, 56, 145, 158). PF-4 may not only

have angiostatic effects on endothelial cells, but also promote angiogenesis through other

mechanisms, such as its pleiotropic effects on pericytes, which are known to assist in

neovascular capillary stabilization (79, 81, 106).

Thus, endothelial cells induce the process of angiogenesis following the inflammation stage in

wound healing. However, they also perform other important duties such as the recruitment of key

immune cell populations to inflamed tissue. As such, endothelial cells are important for most

inflammatory events that occur as a response mechanism to prevent further injury or infection

(74, 107). Evidence supports that angiogenesis and inflammation are closely intertwined;

angiogenesis in the adult body may not occur without the presence of inflammation, such as the

recruitment of immune cells and the secretion of chemokines (51, 107). For complete restoration

of wounded or inflamed tissue, endothelial cells play critical roles by generating functional

vasculature, participating in wound closure, generating granulation tissue immediately after

inflammatory immune responses, and even secreting inflammatory cytokines of their own to

recruit additional immune cells (11, 16, 49, 107, 152). Angiogenesis therefore is a particularly

important area of focus and study to understand wound healing and its potential applications,

including the role it plays in cancer (30, 103, 148).

Many links are being established between cancer development, inflammation, and angiogenesis.

Prolonged inflammation has been associated with approximately 25% of the types of known

cancers (77). Angiogenesis has even been considered one of the critical links between

inflammation and the development of cancer due to a positive feedback role it takes on;

inflammation induces angiogenesis, and angiogenesis induces migration of immune cells that

secrete inflammatory cytokines and growth factors further exacerbating inflammation (8, 74).

This can prime the environment for tumor initiation due to high levels of inflammatory



byproducts such as reactive oxygen species and DNA damage promoting agents (30, 77).

Furthermore, tumor growth has been found to be dependent on angiogenesis. Tumors can hijack

the angiogenic vessel formation processes in order to propagate its growth, whether it arises from

avascular origin or is a metastatic offshoot of a malignant tumor (14, 21, 45, 156). It is evident

that inflammation has many implications in both normal and pathological angiogenesis.

1.5. Physiologically relevant models of angiogenesis for vascular regulation

There is currently no gold standard for angiogenesis assays. Many different types of assays are

utilized to quantify and study the various aspects of endothelial behavior. Commonly used in

vivo angiogenesis assays exist, including sponge implantation, chick chorioallantoic membrane

assay, corneal micropocket assay, dorsal air sac model, and rabbit ear chamber model (26, 108,

130).

Classical in vitro assays are more varied and focus on different facets of endothelial cell

phenotype and behavior. MTT, BrdU, cell cycle analysis, and tritatied thymidine assays are used

to assess proliferation, while phagokinetic track, wound healing models, and Boyden chambers

are used to measure migratory behavior of endothelial cells (130, 144). The process of

angiogenesis and differentiation in endothelial cells can be measured using various matrix-coated

assays (e.g. collagen, Matrigel@) or 3D gels (using the same matrix or synthetic polymers such

as peptide gels) (32, 71, 130).

Modem in vitro assays incorporate engineering aspects into the classical culturing assays to

provide model systems where all different endothelial phenotypes can be potentially measured.

These include the use of microfluidic systems that can simulate fluid flow that endothelial cells

experience in vivo. Microfluidic bioreactors were used to simulate interstitial flow experienced

by endothelial cells in vivo. Previous work demonstrated that sprouting angiogenesis was

induced in the direction of fluid flow (although the number of sprouts were independent of flow

velocity) (60). A follow-up with more elaborate work in the Kamm Laboratory at MIT has gone

into designing a high throughput microfluidic device to be used to study proliferation, migration,

and angiogenic sprouting (Figure 1-4) (25, 65).
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Figure 1-4. Microfluidic device incorporating fluid flow for studying angiogenesis (25). Reproduced
with kind permission from John Wiley & Sons: Chung S., Sudo R., Zervantonakis K, Rimchala T, Kamm
RD. "Surface-Treatment-Induced Three-Dimensional Capillary Morphogenesis in a Microfluidic
Platform." Adv Mater (2009). 21(47): 4863-4867, © WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim 2009.

Computational techniques can be applied to the angiogenic process to simulate and predict their

behavior in these in vitro model systems. However, angiogenesis is complex and difficult to

model in silico. Computational work has been completed on transport mechanisms that are

associated with capillary morphogenesis and vasculature, such as oxygen transport (37). Multiple

methods, including the use of ordinary and partial differential equations, have been used to

model the process of angiogenic sprouting although may not be completely accurate due to the

deterministic nature of those equations (84). More recently, approaches have focused on hybrid

modeling techniques in order to capture as much of the biological phenomena reflected in

experimental observations in vitro and in vivo (31, 99, 109, 110, 141). The hybrid techniques

utilize an agent-based model approach to simulate sprouting angiogenesis, where each cell or cell

population (serving as the "agent") behaves following a described set of rules. The rule sets can

describe how these cells act in paracrine or autocrine fashion, and in the case of angiogenesis, the

decision for sprouting to occur (17, 31, 141). As such, a combination of these computational

techniques with experimental models can provide a wealth of data and insight into potential

clinical therapies involving angiogenesis or anti-angiogenic treatments.



1.6. Thesis overview

Tissue engineering has made giant advances towards synthesizing organs and tissues in efforts to

combat the rapidly rising needs and medical shortages that currently exist. However, it is very

clear that current limitations seen by the field of tissue engineering prevent maximization of its

potential and progress in applications towards treatments. Thus this work focuses on studying

methods that can potentially advance the field forward by providing a platform and mechanistic

insight into providing and sustaining a functional vasculature for ex vivo tissue constructs.

In rationalizing our work, we focused on the liver due to its complex metabolic functions and

demands, making it ideal for consideration as an ex vivo engineered tissue. This lead to our work

on culturing LSEC in vitro; our work focused on extending their survival in culture (beyond

current means) and understanding their physiology and role in maintaining their own and

parenchymal function. If LSEC die ex vivo, the microvasculature dies with them, essentially

killing off the tissue.

Once engineered tissue is successfully generated with functional microvasculature, there is a

need to ensure that the tissue integrates with the host following implantation. In order for this to

occur, angiogenesis must happen between the host's pre-existing circulatory system and the new

tissue surrogate. Thus the second component of this work entails studies on how the integrative

angiogenesis will happen, as the implantation process of the tissue will induce inflammation

(similar to that observed with wound healing). The work is then focused on understanding the

signaling pathways/cues involved in inducing angiogenesis to occur and permit successful fusion

of the tissue into the host body's vasculature. Unfortunately, since this is difficult to do with

LSEC in ex vivo constructs, a commercially available, robust model of adult human dermal

microvascular endothelial cells (HDMVEC) was used as a replacement.

Obtaining large collections of data is a nontrivial obstacle when working with primary cells,

especially LSEC as they are not as abundant, cannot be expanded, and require very high seeding

densities for survival due to their reliance on cell-cell contacts. As such, the secondary, more

amenable HDMVEC system was introduced to help generate and optimize protocols for

exploring signaling pathways. In addition to the development of signaling assay applications for



LSEC, the HDMVEC system could be used to directly address questions about physiological

phenomena that occur during inflammation that is conducive to angiogenesis, which can be

applicable to the liver system as well. Signaling data sets from HDMVEC culture system and

their conclusions may also allow us to infer behavior of LSEC.

Thus, the overall objective of this work is to generate in vitro frameworks to understand

microvascular endothelial cells in response to inflammatory signaling cues, thereby providing

insight on host responses to implanted tissues or physiological surrogates. The underlying

hypothesis is that a balance of both positive and negative cues simultaneously regulates

microvascular endothelial cell function by providing differential spatial and temporal signaling

activation. Although microvessel endothelial cells possess unique characteristics, traits, and

responses dependent on their localized milieu, cue-signal relationships are still highly conserved

among cell types. Thereby it is possible to infer signaling pathways crucial for specialized

behaviors across different endothelial archetypes.

Chapter 2 covers the development of in vitro culture techniques for sustaining LSEC phenotype,

function, and proliferation via lipid supplementation. Chapter 3 covers protocol development for

collecting signaling data in the HDMVEC system from angiostatic and angiogenic conditions

streamlined with the microfluidic system developed in the Kamm lab (Figure 1-4). Chapter 4

presents the data sets collected on signaling pathways involved with angiogenic signaling.

There are multiple implications in findings of this thesis work as a result. Lipids are seemingly

required for LSEC survival and phenotype maintenance; they may play an important role during

this process as hepatocytes release a large concentration of lipids during liver tissue injury. This

can thus provide insight both into inflammatory injury responses, as well as fatty liver disease

physiological responses (along with cirrhosis/fibrosis and other liver dysfunctions). Second, the

liver is one of the central regulators for clearance of inflammatory factors within the

bloodstream. As sinusoidal endothelial cells are the filters between hepatocytes and the blood,

they will be the first to see these molecules (such as PF-4, which is primarily cleared in the liver)

before they are processed and removed by hepatocytes. Third, the study of angiogenesis in

context of inflammation is very important, as most adult angiogenesis occurs in this



environment, pathological and physiological. This study can elucidate how angiogenesis is

induced during this process, and perhaps how to manipulate it on a cellular basis via signaling

cues in cases where angiogenesis is needed. Finally, this can provide insight into how certain

vascular diseases occur as a result of inflammation - such as rheumatoid arthritis or the

formation of myeloid bodies due to under and over vascularization (and chronic wounds), also

the formation and onset of cancer.
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Chapter 2

Lipids promote survival, proliferation, and maintenance of

differentiation of rat liver sinusoidal endothelial cells in vitro

NOTE: The content of this chapter is based on published article: Hang TC, Lauffenburger DA,

Griffith LG, Stolz DB. Am JPhysiol (2011 Nov 10). The article is C 2011

2.1. INTRODUCTION

2.1.1. Role of fatty acids and lipids in liver function and metabolism

Cells are composed of biomolecules that can be classified into four fundamental categories of

building blocks: sugars, amino acids, nucleotides, and fatty acids (1). Of these, fatty acids play

important roles in various aspects of cell function, ranging from energy storage as fat to

membrane structure as phospholipids (9, 69).

As basic building blocks, fatty acids can exist in multiple forms and require processing and

metabolizing to be properly generated. The liver serves as a nexus for lipid metabolism (Figure

2-1), and transforming fatty acids between storage, functional, and energy forms (91).

Furthermore, lipid metabolism in the liver is deeply intertwined with other processes for

maintaining glucose homeostasis (14, 82, 91). This is especially evident in liver injury, where

fatty acids released into the circulation by adipocytes and taken up by the liver parenchyma (9,

36). Gluconeogenesis is upregulated in regenerating cells, which can be brought upon by free

fatty acid stimulation (14, 67, 82).
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Figure 2-1. Lipid metabolism during liver regeneration (9). Fatty acids and lipids play multiple
different roles in cell by providing energy basis for proliferation, lipids as structural components, and
storage of fat in triglyceride form for later use. Destabilization of these processes can be symptomatic or
the result of diseases that cause hepatocytes to behave abnormally (e.g. steatosis, fatty liver disease).

When hepatocytes lose their function, problematic symptoms arise which include the

accumulation of fat in the liver in the form of triglyceride droplets known as steatosis (11, 84,

90). Further increase in steatosis can eventually lead to irreversible fat deposition and liver

disease. The imbalance of lipids in the liver can also be indicative of other diseases; a prevalent

example is the causative link found between obesity/fatty acid increase and diabetes (46, 66).

2.1.2. Lipids signal through a variety of pathways

The vast library of literature on lipids and their ability to affect cellular mechanisms is a

testament to their prominence in signaling. Lipids in their different moieties can influence

signaling by participating in crosstalk, as well as being in diametric opposition due to the many

forms in which lipids can exist.

One of the main questions posed on how lipids and fatty acids can affect signaling depends on

how it is taken into the cell. Although lipid transport can be facilitated by binding proteins and

receptors such as fatty acid G-protein coupled receptors (GPCR), CD36 and fatty acid binding
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protein (FABP) (3, 22, 28, 29, 32, 55, 65, 72, 84, 86, 87, 89), lipids can easily move across cell

membranes directly into the cytosol and nucleus (39, 76)(72). Lipid uptake has also been

reported to be taken in by endocytosis, by the process of utilizing caveolae on cell surfaces (62)

as well as through the cotransport of albumin (5, 34, 64, 74, 75).

As such, signaling activation of cells in response to fatty acids can occur at the receptor level,

through binding with fatty acid receptors (55) or crosstalk with other phospho-signaling

receptors such as EGFR (23, 81, 83). Bio-active phospholipids such as lysophosphatidylcholine

or lysophosphatidic acid have been shown to directly activate Src and protein kinase C (PKC)

downstream of EGFR or selective activation of Akt respectively (4, 42). Fatty acids and lipids

can activate Akt, ERKl/2, P38 MAP kinase, PKC, JNK, and many others along with lipid

metabolism cycle stages (14, 31, 40, 50, 92). Additionally, free fatty acids have been found to

influence phosphatase activity, such as downregulation of PTEN, a phosphatase that inhibits the

PI3K/Akt signaling pathway (84). As they can freely pass through lipid membranes of the cell,

fatty acids and lipids can also move directly into the nucleus and bind to nuclear receptors to

induce signaling pathways (15, 47, 56, 76, 79, 90).

It is unknown whether fatty acids directly act upon cytosolic proteins to induce their activation,

or whether adaptor or binding proteins are required in order to facilitate this process (63, 86, 89).

Despite the data that already exist on lipids and their mechanisms of actions, there is still a great

deal of mystery involved in the processes in which they influence cellular behavior.

2.1.3. Chapter overview

Liver sinusoidal endothelial cells (LSEC) play important roles in regulating liver function.

LSEC line capillaries of the microvasculature and possess fenestrae to facilitate filtration

between the liver parenchyma and sinusoid by serving as a selectively permeable barrier (8, 27).

This role is augmented by high endocytic uptake rates, making LSEC effective scavengers for

molecules such albumin, acetylated low density lipoproteins, hyaluronan and antigens in the

bloodstream (26, 27, 35, 48, 57, 61). Furthermore, LSEC have a phenotype unique from

traditional vascular endothelial cells, such as pan-endothelial marker CD31 localized only to

endosomes in differentiated, unstimulated LSEC (19). Differentiated LSEC are capable of



affecting resident liver cell proliferation, survival, or maintaining their quiescence. As such, loss

of function may underlie various hepatic pathologies (8, 20, 30, 46, 77, 93).

LSEC are also targets or facilitators of infection and toxicological damage to liver (7). In

addition to intrinsically vital contributions they make to proper liver tissue function in vivo,

cultured LSEC are important to consider as essential non-parenchymal components of ex vivo

tissue engineered models of liver physiology, which are of emerging importance in drug

discovery and development (21, 41, 70, 80).

Despite this importance, much of LSEC biology remains unknown because they are difficult to

maintain in a differentiated state for prolonged periods in vitro. Conventional endothelial

culturing techniques are not as successful with LSEC; low serum concentrations (5%) can be

toxic and cells die within 48 to 72 hours in serum-free monocultures even in the presence of

VEGF (25, 44)(24)(24). Previously, attempts at serum-free LSEC culture resulted in cell

viability maintenance from 6 up to 30 days with surviving cells maintaining endocytic uptake

(24, 25, 44). Receptor mediated endocytic uptake is a characteristic feature of endothelial

phenotype, but is insufficient for specific characterization of LSEC differentiation as large

venule endothelial cells in the liver, as well as several vascular endothelial cells also exhibit this

function (25, 38, 57, 59, 85). Another rat study was also able to prolong cell survival in vitro

with use of multiple growth factors such as FGF, hepatocyte growth factor, and PMA within the

context of hepatocyte-conditioned medium (44). Human LSEC cultures have been reported to be

sustained for long periods, however, these LSEC were positively selected for, or had a higher

expression of CD3 1, a marker of LSEC dedifferentiation (16, 45). There are also controversies

regarding phenotyping human LSEC, as there are reports of heterogeneous expression of surface

markers used to characterize LSEC, such as von Willebrand Factor and immunological markers

(25).

This study tested the hypothesis that an alternative approach emphasizing non-protein

components could be beneficial in maintaining LSEC function in culture. Due to the location of

the liver downstream of the intestinal tract and a center for lipid metabolism (10), we

hypothesized that LSEC require lipids to maintain cell viability. We found that even in serum-



free, minimal growth factor (i.e., solely VEGF) media, free fatty acids (FFAs) were able to

sustain LSEC culture. The addition of lipid supplements to serum-free media with 50 ng/mL

VEGF allowed us to bypass the critical time point between 48 and 72 hours when most

differentiated LSEC die in vitro. We identified oleic acid (OA) as a major contributing agent

responsible for enhancing this survival. OA and lipids in culture could also eventually induce

proliferation of cells with LSEC phenotype to confluency, although OA alone was insufficient

for maintaining long-term confluent cultures. Furthermore, our results indicate that OA and

lipids can maintain multiple LSEC phenotype markers simultaneously for at least 5 days in

culture. Our findings indicate that OA and lipids influence early Akt/PKB signaling to mediate

cell survival, while late ERK signaling is necessary in culture for viability and proliferation to

persist.

2.2. EXPERIMENTAL PROCEDURES

For more details on culture media composition and primary LSEC isolation protocols please

refer to Appendix B.

2.2.1. Chemically Defined Culture Media

Serum/growth factor-free base medium was made as described with modifications (37, 44). Low

glucose DMEM (Invitrogen, Carlsbad, CA) was supplemented with 0.03g/L L-proline, 0.1 0g/L

L-ornithine, 0.305 g/L niacinamide, 1 g/L glucose, 2 g/L galactose, 2 g/L BSA, 50 pg/mL

gentamicin (Sigma-Aldrich, St. Louis, MO), 1 mM L-glutamine (Invitrogen), 5 pg/mL insulin-5

gg/mL transferrin-5 ng/mL sodium selenite (Roche Applied Science, Mannheim, Germany).

"Modified hepatocyte growth medium" (HGM) included 200 pM ethanolamine and

phosphoethanolamine, 100 nM ascorbic acid, 110 nM hydrocortisone (Sigma-Aldrich), 20

pg/mL heparin (Celsus Laboratories, Cincinnati, OH) and 50 ng/mL VEGF (R&D Systems,

Minneapolis, MN). Additional treatments included 1% Chemically Defined Lipid Concentrate

(~8pM final concentration) (Invitrogen 11905031) or 50 JM OA, FFA-free BSA,

phosphatidylcholine (PC, 50 [tM), and lysophosphatidylcholine (LPC 50 [tM) (Sigma-Aldrich).

For signaling studies, P13K inhibitor LY294002 and MEKl/2 inhibitor PD0325901 (EMD

Calbiochem, Gibbstown, NJ) were added to LSEC cultures 4 hours following seeding and

maintained throughout the experiment. Inhibitors were reconstituted in DMSO (Sigma-Aldrich)



to 20 mM. LY294002 was dosed at concentrations of 10 tM and 3 VM, while PD0325901 was

used at 1 pM and 0.3 pM. Inhibitors were replenished once a day with fresh medium changes.

2.2.2. Primary LSEC Isolation and Culture

Livers from approximately 180 to 250 gram male Fisher rats (Taconic, Hudson, NY) were used

under the guidelines set forth by Massachusetts Institute of Technology's Committee on Animal

Care. Cells were isolated using a two-step collagenase perfusion (37, 70) using Liberase

Blendzyme (Roche Applied Science) in place of collagenase. The liver was perfused initially at

25 mL/min and reduced down to 15 mL/min flow rates in calcium free 10 mM HEPES (Sigma-

Aldrich) buffer followed by 10 mM HEPES buffer with Blendzyme for cell isolation. The

supernatant cell suspension from the perfusion was used to isolate LSEC at room temperature (6,

27). Very briefly, supernatant suspensions were spun down at 50 x g for 3 minutes.

Supernatants were spun at 100 x g for 4 minutes. Supernatants following the spin were pelleted

at 350 x g for 10 minutes and resuspended in 20 mL modified HGM without VEGF. The

suspension was loaded over 25%/50% Percoll (Sigma-Aldrich)/PBS layers and centrifuged at

900 x g for 20 minutes. The interface between the Percoll layers were taken and resuspended

with 1:1 modified HGM without VEGF before being spun down at 950 x g for 12 minutes. This

LSEC enriched pellet was then resuspended into modified HGM with 25 ng/mL VEGF and 2%

FBS (Hyclone/Thermo Fisher Scientific, South Logan, UT). Cells were counted using Sytox

Orange exclusion and Hoechst 33342 (Invitrogen) staining on disposable hemacytometers

(inCyto, Seoul, Korea). LSEC were then seeded onto 10 gg/mL fibronectin (Sigma-Aldrich)

coated tissue culture plates at 400,000 cells/cm2. Four to six hours following seeding, culture

media were changed with serum-free modified HGM supplemented with VEGF. Additional

conditions included supplementing 50 pM OA, 50 ptM LPC, 50 pM PC, and 1% lipid concentrate

to the culture over the course of 5 days at 37 'C and 5% CO2 . Media for all cultures were

changed on a daily basis for all experiments.

2.2.3. Live/Dead Assay

LSEC viability was assessed using the Live/Dead Assay kit (Invitrogen L3224). LSEC were

incubated for 1 hour with 2 pM Calcein AM and 4 pM Ethidium Bromide Homodimer in

modified HGM. Cultures were washed with warm media prior to imaging.



2.2.4. Alamar Blue Metabolic Assay

Metabolic activity of LSEC was assessed over the time period of 5 days using Alamar Blue

(Invitrogen) reduction assays. Positive reference standards were first made by heating base

modified HGM at 125 *C with 10% Alamar Blue until the entire reagent was oxidized and

converted to a bright shade of red. On the days of analysis, 10% Alamar Blue reagent was

introduced to each well and allowed to incubate at 37 'C, 5% CO 2 for 6 hours prior to screening

in a SpectraMax E2 (MDS Analytical Technologies, Sunnyvale, CA) fluorescent plate reader.

Reference standards were included on each plate as positive controls and served as a point of

reference in interpreting results. Fluorescent measurements were read by exciting the samples at

530 nm and reading the emission wavelengths at 590 nm. Samples were pooled across 3

biological replicates (5 technical replicates) for a total of 15 data points. All data points were

normalized to blank readings prior to relative comparison to control samples.

2.2.5. Acetylated-LDL Uptake Assay

LSEC were grown on Thermanox coverslips (Nalgene Nunc, Rochester, NY) coated with 10

pg/mL fibronectin. On day 5, SECs were incubated for four hours with 10 ptg/mL 1,1'

dioctadecyl 3,3,3',3' tetramethylindo carbocyanine perchlorate labeled acetylated LDL (Di-I-Ac-

LDL) (Biomedical Technologies, Inc., Stoughton, MA). Cells were washed several times with

probe free modified HGM then rinsed with PBS. LSEC were fixed for 30 minutes in 3%

paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA), rinsed with PBS, mounted on

glass slides with Fluormount (Sigma-Aldrich), and sealed with nail polish. Samples were

compared with positive controls using human dermal microvascular endothelial cells

(HDMVEC) (Lonza Inc., Allendale, NJ).

2.2.6. Immunofluorescence Microscopy

LSEC were cultured for up to 5 days on Thermanox coverslips coated with 10 pg/mL

fibronectin. Samples were rinsed with PBS and fixed in 3% paraformaldehyde in PBS for 30

minutes. Following fixation, samples were rinsed three times with PBS and permeabilized with

0.1% Triton X- 100 (Sigma-Aldrich) for one hour, excluding samples immunostained for CD31

which were not permeablized so as to evaluate only surface expression. Following



permeabilization, samples were rinsed three times with 2% BSA in 0.1% Tween-20 in PBS

(PBS-T). Samples were blocked with 5% goat or donkey serum (Jackson ImmunoResearch,

West Grove, PA) in 2% BSA PBS-T for 1 hour before overnight incubation at 4 *C with primary

antibodies for anti-rat CD32b/SE- 1 (IBL America, Inc., Minneapolis, MN) at 1:100,

CD3 1/PECAM-1 (Chemicon/Millipore, Temecula, CA) at 1:100, and PCNA (Abcam,

Cambridge, MA) at 1:600. The following day, samples were rinsed 3 times in 2% BSA PBS-T

before a 1 hour incubation step with secondary AlexaFluor 488/555 (Invitrogen) antibodies at

1:250. Coverslips were then rinsed in 2% BSA PBS-T and stained with 1:500 Hoechst.

Following incubation with secondary antibodies, samples were rinsed once in 2% BSA PBS-T

prior to being treated briefly with nuclear Hoechst staining for 1 minute. Following Hoechst

staining, samples were rinsed twice in normal PBS before being mounted onto glass slides with

Fluormount and sealed with nail polish.

2.2.7. Scanning Electron Microscopy (SEM)

LSEC were grown on fibronectin-coated Thermanox coverslips. On days 3-5, LSEC were

rinsed with PBS and fixed in 2.5% glutaraldehyde (Electron Microscopy Sciences) for 30

minutes. Samples were prepared following previously established protocols (37).

2.2.8. Flow Cytometry Analysis of Phenotype and Proliferation

Twenty-four hours before harvesting, 10 pM of 5-ethynyl-2'-deoxyuridine (EdU) (Invitrogen)

was added to all conditions. Samples were detached with 0.025% Trypsin (Invitrogen) the

following day, quenched with media containing 10% FBS, and immediately spun down at 1,600

rpm for 5 minutes. Cells were washed in PBS before being fixed in 2% paraformaldehyde in

PBS for 15-30 minutes at room temperature. LSEC were centrifuged and resuspended in 1%

BSA in PBS and incubated with primary CD32b antibody (1:100) prior to use of the Click-iT

EdU kit, following manufacturer's instructions. Samples were analyzed on an Accuri-C6

(Accuri Cytometers, Inc., Ann Arbor, MI) flow cytometer and processed using FlowJo software

(FlowJo, Ashland, OR). HDMVEC were used as a negative control population. Total and

cellular events were captured with gates created using forward and side scatter data from

HDMVEC populations. Following this, CD32b and EdU gates were designated using the double

negative HDMVEC population.



2.2.9. Phenotype and Phospho-protein Western Blotting

LSEC were harvested on day 5 of culture by incubating with cell lysis buffer (68) for 30 minutes.

Cell lysis buffer consisted of 1% Triton X-100, 50mM p-glycerophosphate, 10 mM sodium

pyrophosphate, 30 mM sodium fluoride (Sigma-Aldrich), 50 mM Tris (Roche Applied Science),

150 mM sodium chloride, 2 mM EGTA, 1 mM DTT, 1 mM PMSF, 1% Protease Inhibitor

Cocktail and 1% Phosphatase Inhibitor Cocktails (Sigma-Aldrich). Samples were spun down at

12,000 rpm for 12 minutes at 4 'C and supernatants were reserved. Total protein content of

sample lysates was determined using micro bicinchoninic acid kits (Thermo Fisher Scientific,

Rockford, IL) before being loaded onto the NuPage Novex system (Invitrogen). Lysates were

loaded with 6X reducing buffer (Boston BioProducts, Worcester, MA) in 4%-12% Bis-Tris gels

(Invitrogen) and transferred to polyvinylidene fluoride membranes (Bio-Rad, Hercules, CA).

Membranes were blocked with 5% BSA in PBS-T and incubated with antibodies for p-actin
(1:5000), phosphoERK1/2 (1:5000), ERK1/2 (1:5000), phosphoAkt (1:1000), and Akt (1:5000)

(Cell Signaling Technology, Beverly, MA) overnight at 4 'C. Membranes washed and then

incubated for 1 hour with horseradish peroxidase conjugated anti-mouse and anti-rabbit

antibodies (Amersham/GE Healthcare Biosciences, Pittsburgh, PA) at 1:10,000 dilution in PBS-

T with 5% blotting grade nonfat dry milk (Bio-Rad). Membranes were subsequently visualized

using chemiluminescent ECL kits (Amersham/GE Healthcare Biosciences) on a Kodak Image

Station (Perkin Elmer, Waltham, MA).

2.2.10. Image and Statistical Data Analysis

All experiments were repeated a minimum of three times with duplicate or triplicate samples.

Fluorescent images were analyzed using Cell Profiler (Broad Institute, Cambridge, MA) and

ImageJ (NIH, Bethesda, MD). Intact cell body counts from phase contrast were assessed at 1 OOX

magnification. Cells from a camera area of 1360 by 900 pm were counted from three biological

replicates across seven days. Statistical significance was determined using ANOVA and

Student's t-test (Microsoft Excel).



2.3. RESULTS

2.3.1. FFA lipids support cell survival past the first 48 hours in serum free media

Regular BSA
Control 50 M OA

C
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Acid Free BSA
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D
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Figure 2-2. Lipids in FFA form sustain long-term culture. Phase contrast images of LSEC were taken
at day 5 of culture in serum-free medium (modified HGM) with regular BSA (A,B) or fatty acid (FFA)-
free BSA (C,D). LSEC were cultured with 50 ng/mL VEGF (control), plus 50 pM oleic acid (50 pM
OA), or 1% chemically defined lipid concentrate (1% lipid). Only conditions with OA or lipid appeared
favorable for persistence of cell culture. Higher magnification images indicate a pronounced change in
morphology in lipid treated conditions compared to untreated control cells which appeared more granular
(B,D). Scale bars = 50 pm (A,C), 20 pm (B,D).

Isolated LSEC were plated and cultured using different lipid supplements of 50 RM OA or 1%

lipid (a cocktail of saturated and unsaturated fatty acids) (Figure 2-2). Immunofluorescence

staining of LSEC 24 hours after isolation indicated high purity of LSEC (Figure 2-6C). Distinct

morphological changes were observed starting on day 3 in cultures with 50 [LM OA or 1% lipid

supplement, compared to control cultures (Figure 2-2A,B). Notably, LSEC cultured with 1%

lipid underwent proliferation, and by day 5, the culture was at or near confluency. Both regular

and FFA-free BSA were evaluated to account for potential variability of BSA-bound lipids.

Medium supplemented with 50 pM OA yielded similar results as 1% lipid at day 5 in regular

A
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BSA. When FFA-free BSA was used, cells treated with 50 gM OA died after day 4 of culture

(Figure 2-2C,D), although this was not observed with regular BSA. Untreated cells took on a

granular appearance indicating that lipid moiety is a critical component for LSEC viability

(Figure 2-2B,D). Granular morphology was also observed in LSEC cultured with PC and LPC

(data not shown).

Live/Dead images of LSEC across conditions in both regular and FFA-free BSA were taken

during five days of culture (Figure 2-3A, B). Massive cell death observed in the control concur

with previously reported observations of LSEC demise beyond 48 hours in culture. While all

conditions experienced cell number decline between days 2 and 3, lipid and OA cultures

recovered and proliferated in both types of BSA, with statistically significant differences in

population after day 3 compared to control (p<5E-4). (Figure 2-3C, D). Phase and live/dead

staining indicate pronounced and distinct morphological changes for surviving LSEC. Lipid

supplementation maintained LSEC to day 5. Cells grown with OA in normal BSA were viable

after 4 days after isolation; however, FFA-free BSA did not synergize with OA to maintain cell

viability. Lipid and OA conditions had persistently higher total live cell percentages compared

to control, PC, and LPC conditions; PC and LPC did not offer any growth advantage for LSEC

relative to control (p>0.24) (Figure 2-3). Live/Dead assay confirmed that LSEC with unhealthy

granular appearance were dead and positive for ethidium bromide. PC and LPC cell cultures did

not survive past day 2 in regular BSA (data not shown).
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Figure 2-3. LSEC death at 48 hours is abrogated following treatment with FFA. Live/Dead assays
were performed on LSEC culture across several conditions (A,B), with cell number quantification by Cell
Profiler (C,D). Samples were treated with calcein AM (green) for live cells and ethidium bromide
homodimer (red) for dead cells. While all conditions experienced steep drops in total population by day
3, only OA or lipid treatments had significant live cell numbers (p<5E-4 compared to control), indicating
lipid type importance. Abbreviations: PC = phosphatidylcholine, LPC = lysophosphatidylcholine, OA =

oleic acid. Scale bar = 100 m.
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2.3.2. FFAs support metabolic and endocytic functionality in LSEC past day 3

OA and lipid supplement supported significantly higher Alamar Blue reduction relative to

control, in agreement with live/dead stain results (Figure 2-4A). These trends were also

observed in FFA-free BSA cultures (Figure 2-4B). Endocytic capacity was measured using Di-I-

Ac-LDL uptake as a functional assay for endothelial phenotype (Figure 2-4C). OA and lipid

treatments sustained high endocytic uptake at day 5; cells positive for nuclear Hoechst were also

strongly positive for Di-I-Ac-LDL. Many cells in the control did not remain after fixation; those

that did remain stained positive for Hoechst but were negative for Di-L-Ac-LDL.

2.3.3. LSEC phenotype and proliferation are maintained with lipids in growth factor-

reduced, serum-free media

Following cell number reduction at day 3, LSEC phenotype was assessed. A crucial LSEC

marker is the presence of fenestrae on cell surfaces. Using scanning electron microscopy, we

found both 50 pM OA and 1% lipid treated LSEC expressed numerous fenestrae at day 5 of

culture (Figure 2-5), while control cells did not maintain fenestrae. Only about 5% of all FFA-

treated cells expressed fenestrations in sieve plates. A larger percentage (10-15%) expressed

large holes (Figure 2-5H, I) that are suspected to be sieve plate remnants. When the population

was taken as a whole, porosity was well below the 10% observed for healthy LSEC in vivo (8),

indicating that FFA alone does not maintain fenestrations at normal levels.

Figure 2-4. OA and lipid supplement support phenotype and function in LSEC cultures. Alamar
Blue measurements were statistically higher at days 3 (p<0.05) and 5 (p<0.005) in 50 pLM OA and 1%
lipid supplement treatments over control for LSEC in regular BSA (A). Similar trends were also
observed in FFA free BSA cultures (B). Alamar Blue reduction was statistically higher at day 3 for 50
pM OA and 1% lipid supplement treatments over control, PC, and LPC. At day 5, only 1% lipid
supplement treatment was statistically significant over control, PC, and LPC, indicating that the 50 pM
OA condition was insufficient to sustain long term cultures without the presence of other fatty acids.
Most cells in the control condition did not survive past day 3; remaining cells did not co-stain for Hoechst
(blue) and Di-I-Ac-LDL (red), while OA and lipid conditions consistently co-stained for both on day 5
(C). Contrast and brightness were adjusted for the entire image for Hoechst staining due to background
fluorescence arising from the Thermanox coverslips. Abbreviations: PC = phosphatidylcholine, LPC =
lysophosphatidylcholine, OA = oleic acid. Scale bars = 100 pm (C), 2.5 pm (D).
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Figure 2-5. Maintenance of fenestrations in FFA cultures. LSEC cultures were evaluated for
fenestrations at 3, 4, and 5 days following isolation in the presence or absence of lipid supplementation.
At day 3 most cells in the control condition were dead (arrows) or had no visible fenestrations (A, D, G,
J) while OA (B, E, H, K) and lipid (C, F, I, L) treated cultures displayed some cells with fenestrations
arranged in sieve plates (arrowheads). Some cells displayed very large transcytotic pores (arrows). These
fenestrations (arrowhead) and large pores (arrows) were maintained in a fraction of the treated cells until
day 5. Magnifications: Scale bar in L represents 1 pm for panels B-F and J-L. Scale bar in I represents 10
pm panels A, G-I.



Another characteristic LSEC marker, CD32b, was used to corroborate phenotype.

Immunostained coverslips revealed that cells treated with FFAs maintained CD32b expression at

day 5 (Figure 2-6A). Control cells remaining in culture did not have colocalization of CD32b
surface expression with nuclei; CD32b appeared as punctate staining which were most likely

dead cell remnants. Non-viable adherent cells appeared less frequently in protocols with

multiple rinse steps (e.g., Di-I-Ac-LDL uptake, Figure 2-4C; co-immunostaining, Figure 2-6;

flow cytometry, Figure 2-7B). Although we stained for CD3 1, we did not observe CD31

expression on the cell surfaces of LSEC in FFA-treated conditions or remaining adherent cells in

the control unless samples were permeabilized prior to staining (Figure 5B). CD32b* cells

comprised a greater proportion of total cell populations in lipid treated LSEC in flow cytometry

compared to controls (Figure 2-7C). The enhanced presence of CD32b* cells in OA and lipid is

consistent with immunostaining results. CD32b staining was still present on day 5 cultures

treated with lipid (Figure 2-6C) and OA (not shown), but signal intensity was diminished

compared to LSEC evaluation on day 1 following isolation.

Proliferative capabilities were measured using PCNA and EdU (a BrdU analog) incorporation.

OA and lipid treated cells stained positive for both PCNA and CD32b expression at day 5 while

untreated cells did not (Figure 5A). Most cells were PCNA- in the control; those that were

PCNA* were CD32b-. Day 5 cells had higher proportions CD32b*/ EdU* cells in OA compared

to control (Figure 2-7A, C). 1% lipid treated LSEC did not have statistically significant

CD32b*/EdU+ populations over the control. However, this is likely attributed to the culture

achieving confluency by days 4 and 5 relative to the OA condition; we were able to obtain a

greater number of overall and CD32b* events for 1% lipid samples than with any other

condition. Even when debris is included we have statistically significant larger populations of

distinct double positive cells following treatment. Combined with immunostaining observations,
we can state that PCNA observed in untreated conditions most likely stems from contaminating

cell types and/or dedifferentiated LSEC.
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Figure 2-6. LSEC differentiation marker CD32b, proliferation marker PCNA, and nuclear
Hoechst co-localize to same cells in FFA cultures. 5-day-old LSEC cultures were imaged for CD32b
(green), nuclear PCNA antigen (red), and nuclear Hoechst dye (blue) (A). Punctate CD32b staining was

observed in the control and did not co-localize with Hoechst. Broad, diffuse CD32b staining was

observed in OA and lipid cultures on cells positive for PCNA and Hoechst, demonstrating that

differentiated LSEC undergo proliferation at day 5 in vitro. . Immunostaining controls for absence of

CD31 (B) and CD32b (C) signal degradation were performed. LSEC were cultured for 24 hours prior to

being stained with CD31 and Hoechst (B). Samples that were permeabilized were positive for CD31
while non-permeabilized LSEC did not stain positive for CD3 1. LSEC culture were highly pure in LSEC
population after 24 hours using CD32b staining (C). After several days in culture, LSEC increase in

surface area while CD32b staining appears to have decreased in overall intensity as compared to freshly

isolated cells. This may indicate that LSEC no longer are actively synthesizing new CD32b antigen.

Contrast and brightness were adjusted for the entire image due to background fluorescence arising from

the Thermanox coverslips. Scale bar = 100 pm.
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Figure 2-7. OA and lipid supplement help promote proliferation and maintain differentiation in
long term LSEC culture. Day 5 total events were captured by flow cytometry and gated for CD32b and
EdU using a double negative HDMVEC (A). Total event (cellular + debris) and cellular event counts
were tallied and presented as fold number over control, showing consistently 5-20 fold greater number of
cellular events in OA and lipid conditions (B). OA and lipid conditions maintained CD32b and were also
EdU*. LSEC with OA or lipid had statistically significant larger percentages of total events for CD32b*,
EdU*, and dual CD32b*/EdU* populations compared to control (C). Overall CD32b expression in OA
and lipid conditions were statistically significant from untreated cells (p<0.01, p<0.001).

2.3.4. Temporal dependence of LSEC on P13K and MAPK pathways observed at Days 3

and 5 in FFA-treated cultures

Akt and ERK1/2 proteins were probed on days 3 and 5 by Western blotting, as significant

phenotypic changes occurred at these times (Figure 2-8A, B). Signaling trends observed for Akt

and ERKl/2 were consistent across biological replicates. Phospho-Akt/Akt ratios decreased

dramatically by day 5 in OA and lipid treated LSEC. Day 3 total and phospho-ERK1/2 levels

were similar for all conditions but increased by day 5 in OA and lipid treated LSEC. Phospho-

ERK/ERK ratios remained relatively unchanged for ERK2 but increased by day 5 for ERKI,
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indicating ERKi as the primary contributor to overall phospho-ERK/ERK in OA and lipid

cultures. Despite no observable statistical significance for phospho-protein signals in Western

blots, we found a temporal significance with regard to total signaling proteins present at days 3

and 5 compared to control conditions. Total Akt was statistically significant at days 3 (p<0.05)

and 5 for OA (p<0.05) and day 5 lipid (p<0.05) conditions, while total ERKI (p44) was

statistically significant at day 5 (p<0.05) compared to control. Phospho-Akt levels remained

relatively constant across all conditions and times, while total Akt increased in treated conditions

compared to control through day 5.

Inhibition studies were performed using P13K inhibitor LY294002 and MEKl/2 inhibitor

PD0325901. Inhibitors did not affect LSEC for the first 24 hours of incubation (Figure 2-9A, 2-

10A) despite lower concentrations effectively reducing downstream Akt and ERK1/2

phosphorylation (Figure 2- 1OD). By day 2, 10 pM P13K inhibitor had adverse effects despite

addition of OA or lipid (Figure 2-9B, 2-10A-C). Lower P13K inhibitor concentrations (3 pM)

showed similar effects in unsupplemented medium, but cultures with OA or lipid survived while

only the lipid condition continued to proliferate (Figure 2-9B, 2-10B, C). High MEKl/2

inhibitor concentrations only slightly affected OA conditions at day 2 by reducing attached cell

number, although culture quality appeared similar to treatments without inhibitor. Lipid cultures

did not appear to be perturbed by 1 pM MEKl/2 inhibitor by day 2. MEKl/2 inhibition

prevented culture survival after day 4 (Figure 2-9C,D, 2-10C). Lower MEK1/2 inhibitor

concentration (0.3 pM) did not vary from the high dose used (p>>0.05 between all MEKl/2

inhibitor conditions at every time point), indicating LSEC may be more sensitive to changes

downstream of MEKl/2 versus P13K later in culture.
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Figure 2-8. Lipid and oleic acid treated LSEC had higher phospho-ERK and phospho-Akt activity.
Phospho- and total protein blots were performed for Akt and ERK at days 3 and 5 (representative shown
(A)). Signaling trends observed for Akt and ERK1/2 were consistent across biological replicates.
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Figure 2-9. Oleic acid and lipid supplement support cultures through early maintenance of low threshold
of phospho-Akt followed by late phosho-ERK signaling. Cells were cultured in identical conditions with

P13K inhibitor (LY294002 1 or 10 pM) or MEKl/2 inhibitor (PD0325901 0.3 or 1 pM) for 7 days. Drug

inhibitors had no significant effects on cell cultures following the first day of drug inhibitor treatment (A).

Significant cell integrity loss was observed in LSECs with 10 pM P13K inhibitor, with less pronounced

effects in 1 pM P13K inhibitor by day 2, while MEKl/2 inhibitor started to affect oleic acid cultures but
not 1% lipid treated SECs (B). SECs in oleic acid or 1% lipid were able to maintain culture viability by
days 4 and beyond in culture despite low P13K inhibitor concentrations (C,D). MEKl/2 inhibitor did
eventually affect lipid treated SECs by day 4 (C), although many cells managed to survive in low
MEKl/2 inhibitor concentrations. No SECs remained by day 7 of culture with MEK1/2 inhibitor, while

low P13K inhibited SECs treated with either oleic acid or 1% lipid recovered (D). Scale bar = 100 pm.
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Figure 2-10. OA and lipid supplement support cultures through early maintenance of low
threshold of phospho-Akt followed by late phospho-ERK signaling. Intact cell body counts show
temporal difference in Akt and ERK signaling (A-C). Low P13K inhibitor delayed LSEC recovery in OA
and lipid conditions while high concentrations prevented culture recovery as early as day 2. Following
P13K inhibition, OA condition was eventually unable to rescue the culture entirely, as the culture decline
after day 5. Delays in intact cell loss were observed for low and high MEK inhibition until day 3 in lipid
conditions, and LSEC did not recover at later times following MEK inhibition. Although control
conditions contained many intact cell bodies, cells had granular morphology of dead cells observed in
Figure 2. Western blots show P13K and MEKl/2 inhibitors effectively reduce phosphoprotein signals
within the first 24 hours of treatment (D). Abbreviations: C = Control, OA = 50 pM oleic acid, L = 1%
lipid, MEKi = MEKl/2 inhibitor PD0325901, PI3Ki = P13K inhibitor LY294002.



2.4. DISCUSSION

2.4.1. Lipids and FFA support LSEC survival and function

To test our hypothesis on the requirement of lipids to maintain LSEC viability, we evaluated

several different types of lipids in both regular and FFA-free BSA. FFA-free BSA permitted

individual testing of lipids for effects on LSEC culture, since native albumin exists bound to a

variety of FFAs (5, 6). By day 5, we observed that LSEC cultured with FFAs maintained

metabolic and endocytic activity, and proliferated to confluency. The particular form of lipids

delivered to LSEC was important, since membrane lipids PC and LPC did not maintain viability.

PC and LPC can facilitate cell signaling and stimulate proliferation in many cell types (4, 60),

but did not maintain LSEC in culture. We observed that OA alone was insufficient for

supporting long-term culture in FFA-free BSA, although OA could recapitulate the lipid

supplement effects in regular BSA. In comparison, the 1% lipid supplement, a cocktail of

saturated and unsaturated FFAs, was able to support LSEC viability regardless of the BSA used,

affirming the necessity for a variety of FFAs to sustain survival and proliferation.

A hallmark of LSEC is the presence of fenestrae, which were maintained in both OA and lipid

samples on day 5. Of the few living cells remaining in the control, none were found to possess

fenestrae, consistent with previous findings that fenestrae disappear within the first 48 hours of

culture (8). Additional evaluation with CD32b phenotype marker validated findings that

surviving LSEC in lipid or OA maintained differentiation, by expressing this marker, one

specific to liver sinusoidal endothelium (52). Along with CD32b expression, we also looked at

the proliferative capacity of LSEC, since no previous studies have explicitly reported that

differentiated rat LSEC can simultaneously undergo proliferation. We successfully

demonstrated that differentiated LSEC undergo proliferation, via nuclear PCNA expression and

EdU incorporation, when treated with FFAs, which to our knowledge is the first explicit

evidence reported (58). Despite maintenance of several phenotypic characteristics in prolonged

cultures, we did observe slight degradation of some markers. Although fenestrae arranged in

sieve plates were observed, they were not abundant in OA and lipid treated cultures, and a large

percentage of these LSEC no longer exhibited fenestrae by day 5. Many cells in the FFA-treated

conditions possessed large transcytotic pores greater than 1 ptm in diameter. These may be the

remnants of sieve plates that have degraded or fenestrae that have fused. We noticed that



although LSEC still expressed CD32b, the presence was diffuse and overall fluorescent intensity

was lower than for freshly isolated LSEC (Figure 2-6C). Other studies have reported sharper

declines in specific LSEC phenotype markers during culture, mostly associated with the

dedifferentiation process, recently reported to involve Leda-1 (30, 52). We suspect that lipid-

treated LSEC maintain a state of differentiation that allows them to persist and proliferate in

vitro, but do not maintain physiological levels of CD32b antigen.

2.4.2. FFA influence on phosphoprotein signaling pathways

In LSEC we observed phospho-Akt/Akt levels decreased in FFA conditions as time progressed,

while the inverse occurred with phospho-ERK/ERK, primarily by ERKI. From these

observations and inhibitor studies, we believe low threshold levels of phospho-Akt are required

for cell survival between days 2 and 3. At this point, high concentrations of P13K inhibitor

LY294002 abolished the beneficial effects that OA and 1% lipid have on LSECs, while lower

concentrations did not affect cultures. Beyond 3 days, cells in low P13K inhibitor could

proliferate and recover albeit not to the level seen in uninhibited samples. Granular morphology

appeared earlier at day 2 (as opposed to day 3 in control samples without inhibitor) in untreated

samples with P13K inhibitor. This may indicate that downstream signals of P13K are closely

associated with cell survival during this time. Past day 3, MEK1/2 inhibition was fatal to

cultures, as LSEC did not survive or proliferate regardless of the concentration of MEK1/2

inhibitor PD0325901 added to cultures. Interestingly, OA and lipid-treated cultured LSEC did

not have a significant dependence on MAPK before this time, as 10 pM inhibitor only slightly

affected the number of cells in culture. At early time points, MEKl/2 inhibition also prevented

LSECs from undergoing increased spreading seen with FFA treatments. As such, MAPK

signaling may be partially responsible for the morphology change induced by FFAs before day 3,

but required'afterward for survival and proliferation.

2.4.3. Diametric effects emphasize need of lipid balance for optimal function

While it is understood that ECM, cell-cell contacts (52), and paracrine/autocrine signaling (18)

are absolutely vital to achieve functional LSEC, consideration of the role of lipids is important

given the results of this study. Effects of FFAs on LSEC can have several implications on liver

pathophysiology. In general, lipids are crucial for survival for all mammalian cells as energy



substrates, membrane lipid bases, and influencing cell signal processes (9). Concentrations of

FFAs in circulation can vary dramatically depending on the metabolic state, but have been

reported to be anywhere between 10 tM to 1 mM in human plasma, though generally within

the range of 200 to 600 [M (33, 64, 66). Approximately 150 [tM total plasma FFA is taken up in

the liver, of which about 50 [tM is comprised of OA (and is recapitulated in our experimental

conditions) (33, 43). The liver is the primary organ responsible for lipid metabolism as 75% of

the blood that enters into the liver arrives from the intestine which absorbs lipids from the gut or

lipolysis from adipose tissue (11). Thus, FFAs are likely to have a profound influence on LSEC.

Past studies have shown that polyunsaturated FFAs can protect hepatocytes from superoxide

radicals (73), while bioactive lipids like sphingosine 1-phosphate provide oxidative protection to

LSEC following liver injury (93). In contrast, studies also argue for the presence of lipids as

precursors to chronic disease, apoptosis, steatosis, and insulin resistance/diabetes (2, 46, 49, 51).

For example, caveolin-I is important to lipid metabolism during liver regeneration, but may also

implicate a role of pathogenesis in LSEC since it is upregulated in dedifferentiating cells (9, 11,

78). Moreover, we observed that cocultures of hepatocytes and LSEC induce hepatic cell death

in lipid conditions, suggesting concentrations beneficial to LSECs can be lipotoxic for

hepatocytes (data not shown).

OA and other unsaturated FFAs have been reported to have numerous effects on metabolically

active cells although the main mechanisms of OA and other FFA incorporation are still not fully

understood. OA has been found to participate in crosstalk with EGFR and other pathways by

affecting MAPK and P13K (13, 14, 83, 84, 88, 92). However, much of the data from previous

studies are contradictory in either stimulating or inhibiting these pathways dependent on the

system being studied.

Unsaturated FFAs have been found to be able to protect against oxidative stress by reducing lipid

peroxidation and inhibiting the inflammatory pathway NF-KB which can lead to endothelial cell

activation (10, 12, 17, 54). Thus, OA may prevent oxidative stress in LSEC that decreases

ERKl/2 activity (53, 71), thereby allowing cells to resume cell survival and proliferation after

day 3. This would be in agreement with the results we observed in increased phospho-ERK1/2

activity. Furthermore, increased saturated to unsaturated fatty acid levels are strongly correlated



with insulin resistance and decreased glucose production in the liver (46, 51). The introduction of

more unsaturated FA into the system may facilitate insulin signaling and activation of phospho-

Akt for cell survival in our early time points. While it is most likely that FFAs indirectly

modulate proteomic responses via metabolic pathways, we observed distinct changes in

phospho-protein signaling pathways. We could directly influence viability in OA and lipid

treated LSEC by inhibiting P13K and MAPK pathways, showing a temporal shift in phospho-

protein signaling dependence from P13K to MAPK.

2.4.4. Consideration of lipids in liver and LSEC biology

Our results implicate the underlying importance of FFAs in the basic function of LSEC, as FFA

modulate LSEC phenotype, survival, and proliferation in the absence of serum. Changes in the

FFA profile due to shifts in systemic or dietary delivery to the liver can potentially result in

LSEC dysfunction, leading to oxidative stress and activation of inflammatory pathways.

Additionally, decreases in unsaturated FFA (and increase in saturated FFA) could lead to

steatosis and insulin resistance. As such, lipid balance in the liver is required to prevent onset of

disease. We demonstrated that LSEC monocultures can maintain their unique phenotype in

culture through at least 5 days of culture and were concomitantly proliferating. Our chemically

defined media system provides an in vitro platform to effectively move forward in understanding

the phenomena involved in LSEC biology.
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Chapter 3

Development of cell signaling protocols for human dermal

microvascular endothelial cells cultured on 3D collagen gels

3.1 INTRODUCTION

3.1.1. Background and motivation for the study of angiogenesis

Angiogenesis is an important foundation to functions of organ and tissue regeneration to re-

establish homeostasis. A great deal of work has been done in focus on understanding this

phenomenon as it occurs in vivo. Angiogenesis, the formation of blood vessels from pre-existing

blood vessels, is absolutely essential for regenerating tissue that has been injured or growing

tissue mass by providing a system for nutrient and waste transport (Figure 3-lA) (1). The process

is also critical in creating specialized vascular structures, such as veins, arteries, or capillaries,

for supporting metabolic processes that may be unique to the tissue (12). Furthermore, pro-

angiogenic proteins such as VEGF could not sustain stable structures by itself and required other

proteins such as angiopoietins 1 and 2 to assist in vessel pruning and stabilization in embryonic

angiogenesis (31, 34, 46), demonstrating the need for both positive and negative regulating

signals for vessel stabilization and maturation.

Figure 3-1. Angiogenesis during wound healing process and vessel sprouting to support metabolic
demands of tissues (44, 46). Following a wound, platelets release coagulation and growth factors to form
a hemostatic clot plug (A). Following the hemostatic plug, inflammation occurs and signals for
restoration of injured tissue area. Granulation tissue is formed and blood vessel structures begin to
innervate healing wound (B). Following vascularization, re-epithelialization, matrix formation, and
remodeling of the tissue occur as the milieu is returned to homeostatic conditions (C). Angiogenesis is a
complicated process of vessel sprouting from pre-existing blood vessels to help support metabolic needs
of complex tissue. Vessel sprouting into a tumor is shown as a model of angiogenesis in adult vascular
system (D). (A,B,C) Adapted with permission from The American Physiological Society: Physiological
Reviews. Werner S, Grose R. "Regulation of wound healing by growth factors and cytokines." Physiol
Rev (2003). 83(3):835-870. © 2003. (D) Adapted with permission from MacMillan Publishers Ltd:
Nature. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. "Vascular-specific
growth factors blood vessel formation." Nature (2000). 407(6801):242-248. 0 2000.



KEY

fJBlood wa=W

Blood clot

=B- Muacle

e Marphg

nWound atn

-dkb MfwbbM

D Artery Vein

C

Ang2
F

Ang2
EphrinB2

On the opposite spectrum to embryonic development, adult angiogenesis and inflammation are

closely related processes that occur in the body. Following the hemostatic response to tissue

injury or trauma, inflammation signals for the initiation of processes to return tissues to their



original state (Figure 3-1A). In order to facilitate this, microarchitecture must be restored by the

vasculature (4, 14, 15). As major players in wound healing and inflammation (in the recruitment

of immune cells), recent studies have shed light on the role that chemokines can also take on in

angiogenesis (5, 19, 22, 30).

3.1.2. Inflammatory chemokines can influence outcomes of angiogenesis

Chemokine molecular weight can range between approximately 8 to 12 kDa (22, 26). There is a

large amount of conserved structure between the different chemokines, where charge, or a very

few number of key amino acid placement confer their different behavior. Chemokine receptors

have a conserved structure among the different classes with their specificity localized to the

extracellular carboxyl terminus (30, 39, 41). There are 4 classes of chemokines; the two largest

are CC which possess a double cysteine motif, and the other is CXC, which have two cysteines

separated by an amino acid (30)., CXC family chemokines tend to have a larger role in

angiogenesis, in both promotion and inhibition of capillary vessel sprouting. Angiogenic and

angiostatic abilities of CXC chemokines are conferred by the presence or absence of a three

sequence peptide motif of Glu-Leu-Arg (ELR) preceding the first cysteine residue respectively

(3, 5, 30, 39).

The majority of the ELR- chemokines with angiostatic activity bind the GPCR CXCR3. The

chemokines include platelet factor-4 (PF-4/CXCL4), Mig (CXCL9), interferon-y inducible

protein 10 (IP-10/CXCL10),and I-TAC (CXCL 11). These chemokines, such as IP-10, have been

shown to have strong angiostatic effects, to the point of preventing endothelial cord assembly of

HDMVEC cultured on Matrigel (6, 7). A spliced variant of the CXCR3 receptor is also

expressed on endothelial cells. It is speculated to be responsible for the angiostatic behavior and

signaling facilitated by PF-4 (21). PF-4 is one of the first chemokines released in response to

tissue injury, and can be found in concentrations up to 25 pM in wound sites (2). Primarily

synthesized by megakaryocytes and platelets, PF-4 can be found in plasma levels at roughly 2-10

ng/mL and is ubiquitous in the body (35). Imbalances in PF-4 concentrations can be correlated

with many disorders and diseases not just limited to chronic wound and inflammation (43). A

spliced variant of PF-4, CXCL4L1, is a more potent angiostatic factor, although does not play a

role in inflammation as it does not recruit monocyte or lymphocytes. CXCL4L1 can also



influence similar angiogenesis pathways as it has a near identical structure as PF-4 (19, 37, 42,

43).

Data are scarce for signaling dynamics of PF-4 in endothelial cells; a great deal exist for the

immune cell counterparts, but only a few studies have published on PF-4 signaling mechanisms.

One of the few studies have found that PF-4 inhibits angiogenesis by activation of P38 MAPK

through CXCR3-B/CXCR3 (28) . PF-4 can also inhibit angiogenic signaling cascades by directly

interfering with the VEGF signaling pathway rather than through its own receptor

CXCR3/CXCR3B, either through antagonistic binding of VEGFR2, sequestration of heparan

sulfate, or binding to the heparin-binding domains of VEGF ligands (2, 38, 40).

3.1.3. Chapter overview

A great deal of research involved in understanding angiogenesis for tissue regeneration or

engineering tissues have focused primarily on positive, pro-angiogenic growth factor rich

environments such as VEGF, angiopoietins, ephrins, and FGFs (8). However, physiologically

this never exists without the presence angiostatic molecules. In the adult vascular system, we

hypothesize that both pro-angiogenic (e.g. VEGF) and anti-angiogenic (e.g. PF-4) cues are

required in concert to help coordinate stable blood vessel growth in an inflammatory

environment.

Our hypothesis would be evaluated in a more physiologically relevant microfluidic system

(Figure 3-2). Although there are clear benefits to the high throughput microfluidic device,

obstacles were encountered in attempts to further assess intracellular mechanisms. Due to the

size of the microfluidic device, it is quite difficult to obtain large samples of cellular lysate for

use in phosphoproteomic analyses (9, 18). There is a need to step down some of the need for

complete physiological relevance and use methods that can provide vital information about the

system, such as the use of collagen gels instead of tissue culture polystyrene. Despite a lack of

shear stress and other signals, cell cultures on and in collagen gels are considered more

physiologically relevant than cultures on tissue culture plastic (1). However, the extraction of

cells from these systems for high throughput intracellular measurements is more difficult to



execute (20, 45). The focus of this work will be to collect signaling data that can be streamlined

with experimental work performed in parallel with the angiogenesis microfluidic system.

The following protocols described were developed in an effort to reduce extracellular matrix

contamination and consequent overestimation of total protein in samples. We were successfully

able to use a surface lysis technique using detergent based lysis buffer to obtain samples in a

manner compatible with mass spectrometry (MS) specifications. We are able to show that

phospho-protein signaling data can be collected within a system that utilizes monlayer seeding

on a 3D gel with Western blotting, Luminex bead kits, and MS. Our work provides a step

forward in applying high throughput phosphoproteomics data collection to more physiologically

relevant experimental conditions.

Figure 3-2. Microfluidic device and collagen gel setup (18). Cells were cultured on collagen gels to
obtain phosphoprotein signaling data to inform microfluidic device. Protocols were streamlined between
the two collaborating labs in order to minimize differences in experimental setup. Computational models
would use input from collagen gel lysates to infer intracellular behavior of HDMVEC within the
microfluidic device. Adapted with permission from Jeong GS, Han S, Shin Y, Kwon GH, Kamm RD, Lee
SH, Chung S. "Sprouting angiogenesis under a chemical gradient regulated by interaction with
endothelial monolayer in microfluidic platform." Anal Chem (2011). In press. © 2011 American
Chemical Society.

3.2 EXPERIMENTAL PROCEDURES

3.2.1. Cell culture

Adult human dermal microvascular endothelial cells (HDMVEC) were commercially purchased

at passage 4 (Lonza, Allendale, NJ). Cells were cultured in EGM-2MV (Lonza) media until near



confluency. Once near confluency, cells were rinsed with IX PBS (Invitrogen, Carlsbad, CA)

and detached by incubating with 0.05% Trypsin-EDTA (Invitrogen) for 3-5 minutes at 37'C and

5% CO 2. Once cells were detached, they were neutralized with EBM-2 (Lonza) with 5% FBS

(Thermo Fisher Scientific/Hyclone, Logan, UT) and 50 pg/mL gentamicin (Sigma-Aldrich, St.

Louis, MO) and spun down at 1600 rpm (-450 g) for 5 minutes. Cells were resuspended in

EGM-2MV and seeded on 50 [tg/mL rat tail collagen I (BD Biosciences, Bedford, MA) coated

tissue culture flasks at a minimum of 5,000 cells/cm2 . Medium was changed 24 hours following

seeding. After initial media change, EGM-2MV was replaced for cells once every 48 hours until

nearing confluency. Cells were expanded to passages 6 and 7 and frozen for cryogenic storage at

-196 0C in 80% EGM-2MV, 10% FBS, and 10% DMSO (Sigma-Aldrich). Ligands used on

HDMVEC included VEGF, I-TAC (CXCL 11), monokine induced by interferon-y

(Mig/CXCL9), interferon-y inducible protein 10 (IP- 10/CXCL10), and platelet factor 4 (PF-

4/CXCL4) (Peprotech, Rocky Hill, NJ).

3.2.2. Three-dimensional collagen gel sprouting system

Collagen gels were used as part of the system to study capillary sprouting. Collagen gel solutions

were made using lOX PBS (10%), rat tail collagen I solution stock, and 1N NaOH (Sigma-

Aldrich) added at 2.3% of the collagen stock solution volume used. 1 mL of collagen gel solution

(pH 7.4) was added to each well in 6 well plates (9.6 cm2 per well). MilliQ purified water was

added to reach the desired total volume / dilution and kept on ice until use. Gels were formed at a

density of 2.0 mg/mL, and allowed to set at 37 *C for 2 hours before being rinsed with 1X PBS.

Gels were then preconditioned with EBM-2 + 5% FBS over the course of two days to minimize

background changes and nonspecific ligand binding when dosing conditions were introduced to

cells seeded on the gels.

HDMVEC were thawed and grown on 50 [tg/mL collagen I coated tissue culture flasks up to

passage 9. Cells were trypsinized with 0.05% Trypsin-EDTA for 5 minutes before being

neutralized with EBM-2 + 5% FBS and gentamicin. Cells were spun down at 1600 rpm for 5

minutes before being resuspended in EGM-2MV. Cells were counted using Neubauer-improved

disposable C-Chip hemocytometers (INCYTO, Seoul, Korea) and subsequently seeded onto

collagen gels at 50,000 cells/cm 2. Cells were allowed to adhere for 4-6 hours at 37*C in 5% CO2



prior to rinsing with PBS and replacing the media with EBM-02 + 5% FBS. HDMVEC were

allowed to incubate overnight. Following 24 hours after seeding, plates of HDMVEC were dosed

with or without 500 ng/mL PF-4 and/or 20 ng/mL VEGF across for designated time intervals.

For optimization protocols, 15 and 30 min dosing time points with treatments of 20 ng/mL

VEGF and 20 ng/mL VEGF with PF-4 were used for collecting lysates for MS and Luminex

xMAP bead kits.

3.2.3. Cell Lysis Protocols Established for Mass Spectrometry Preparation

3.2.3.1. Direct Urea Lysis

Plates were placed on ice and rinsed with chilled PBS. 3 mL of 8M urea buffer with 1 mM

activated sodium orthovanadate (Sigma-Aldrich) were added to each well to achieve a minimum

concentration of 6M. The solutions were mixed vigorously with cell scrapers in order to ensure

complete denaturation of HDMVEC and collagen. Samples from each plate were consolidated

and spun down using a high speed centrifuge at 25,000 g for 3 minutes. Centrifugation generated

a faint line towards the bottom of the tubes; supernatant from above the line was collected and

snap frozen in liquid nitrogen before placing into storage at -80'C.

3.2.3.2. Urea Surface Lysis

Following rinsing with chilled PBS, sample plates were immediate snap frozen by pouring liquid

nitrogen directly onto the gels. Once the collagen gels had solidified, 1 mL of 8M urea buffer

were added to each well. Cell scrapers were used to remove the top layer of HDMVEC on the

frozen collagen gel before the lysate was pooled and collected.

3.2.3.3. Sample harvesting with collagenase cocktails followed by urea lysis

HDMVEC were detached from collagen gels using a slightly modified version of previously

established protocols (11). Prior to Liberase TM harvesting, gels were rinsed with IX PBS to

wash off potentially dead, floating cells. 500 p.L of Liberase TM (at 100 [tg/mL) were added to

each well of samples in a 6 well plate before returning to the incubator. Samples were incubated

for 3-5 minutes at 37'C before the gel and cells were gently broken and mixed using a cell

scraper. The suspension was consolidated from all the wells into a pre-chilled 15 mL Falcon tube



and spun at 1600 rpm (-450 g) at 4*C for 5 minutes. Once the spin was completed, samples were

placed back on ice. The supernatant was then aspirated, making sure the pellet remained

undisturbed. 8M urea was added to the pellet. To help facilitate lysis, the tube was vortexed to

help dissipate the pellet. Once samples were completely processed, the lysates were stored at -

80*C prior to chemical modification and digestion.

A second protocol involving Liberase TM treatment uses modified steps in the protocol to obtain

cells without harvesting the collagen gel. Following the PBS rinse, 500 [LL of Liberase TM (at

100 [tg/mL) were added to each well using wide orifice micropipette tips to reduce disruption of

the collagen gel. The solution was gently pipetted across the surface of the gel before being

placed into the incubator for 3 minutes at 37'C. Following 3 minutes of incubation, the Liberase

solution in each well was gently pipetted across the surface of the gel with wide orifice tips to

help facilitate detachment without compromising collagen gel integrity. The plate is tapped

against the hand to help facilitate additional detachment before returned to the incubator for

another minute. The liquid from the top of the gels are collected from the six well plate and

consolidated into a 15 mL Falcon tube and spun at 1600 rpm at 44C for 5 minutes. The

supernatant was aspirated and the pellet was resuspended in 8M urea. Again, the pellets were

vortexed until they were completely dissolved into the buffer prior to storage at -80 0C.

3.2.3.4. Detergent Surface Lysis with Subsequent Urea Lysis

Detergent based lysis buffer was made following previously established protocols(33). Slight

modifications were made to the base protocol in order to maintain compatibility with MS lysate

preparation protocols. Cell lysis buffer consisted of 1% Triton X-100, 50mM p-
glycerophosphate, 10 mM sodium pyrophosphate, 30 mM sodium fluoride (Sigma-Aldrich), 50

mM Tris (Roche Applied Science), 150 mM sodium chloride, 2 mM EGTA, 1% Protease

Inhibitor Cocktail (Sigma-Aldrich) and 1% Phosphatase Inhibitor Cocktail Sets I and II (EMD

Calbiochem, Gibbstown, NJ).

Following rinse with PBS on ice, 200 pL of cold lysis buffer was gently added to the top of each

gel. Plates were then quickly transferred to a Model 1000 standard orbital shaker (VWR

International) set at approximately 185 rpm for 15 minutes at 4*C. Following lysis, lysate from



the 6 well plate was consolidated into one biological sample replicate at approximately 1.2 mL

volume and mixed with 3.6 mL of 8M urea to achieve a final concentration of 6M urea. Samples

were then immediately snap frozen in liquid nitrogen before placing into storage at -80 0C.

To reduce potential detergent concentration and prevent iTRAQ ligand depletion, detergent

absorbent microsphere Bio-Beads (Bio-Rad, Hercules, CA) could be used following 8M urea

addition. Pooled samples were combined with absorbent beads (minimum 50 mg/mL final

concentration) were returned to the shaker and vigorously nutated for about 5 minutes (up to 2

hours) to allow detergent penetration into the microspheres. Samples were then passed through

0.2 gm pore-sized syringe filters (Pall, Ann Arbor, MI) and subsequently flash frozen and stored

at -80'C.

3.2.4. Total protein determination assay

Total protein assay was executed several times during different stages of sample preparation. The

bicinchoninic acid (BCA) kits (Thermo Fisher Scientific/Pierce, Rockford, IL) were used

following manufacturer's instructions. Samples directly following detergent lysis and/or urea

lysis were collected at approximately 50-75 gL aliquots and frozen at -20*C until running the

assay. Aliquots were also collected after chemical processing for MS. Sample dilutions for the

kit were run at 1:5, 1:10, 1:20 and 1:50, well below maximum compatibility concentrations

described per manufacturer instructions. Absorbance measurements were read using Spectramax

M2e plate reader (MDS Analytical Technologies, Sunnyvale, CA) set at 562 nm.

3.2.5. Western Blotting

Signaling in HDMVEC seeded on collagen gels were assessed by dosing with around 1-10 pM

doses, concentrations at least 2 orders of magnitude above those used in previously reported

literature (29), and comparable to experiments performed to assess endothelial cord disassembly

(6, 7). Samples were lysed using the detergent-based lysis buffer described above for MS sample

preparation. In addition to the components listed above, 1 mM DTT and 1 mM PMSF were

included to prevent phosphatase activity and protein degradation (33). 6 well plates were placed

on ice and rinsed with cold PBS prior to the addition of 200 pL of lysis buffer to each well. Cell

scrapers were used to break up the collagen gel and facilitate lysis of cells. Samples were

collected and spun down in an ultracentrifuge at 14,000 rpm (-16,000 g) for 12-15 minutes until



debris was pelleted from the supernatant. The supernatant was collected into eppendorf tubes at

approximately 1.2 mL each and stored at -80'C while the pellet was discarded. The NuPage

Novex System (Invitrogen) was used to run the gel electrophoresis. Lysates were loaded with 6X

reducing buffer (Boston BioProducts, Worcester, MA) in 4%-12% Bis-Tris gels (Invitrogen) and

transferred to polyvinylidene fluoride membranes (Bio-Rad, Hercules, CA). Membranes were

blocked with 5% BSA in PBS-T and incubated with antibodies for p-actin (1:5000), a/s tubulin

(1:5000), phospho-ERKl/2 (1:5000), ERKl/2 (1:5000), phospho-Akt (1:1000), Akt (1:5000),

phospho-P38 (1:1000), P38 (1:1000), catalytic phospho-PKA-Ca, and catalytic PKA-Ca (Cell

Signaling Technology, Beverly, MA) overnight at 4 'C. Membranes washed and then incubated

for 1 hour with horseradish peroxidase conjugated anti-mouse and/or anti-rabbit antibodies

(Amersham/GE Healthcare Biosciences, Pittsburgh, PA) at 1:10,000 dilution in PBS-T with 5%

blotting grade nonfat dry milk (Bio-Rad). Membranes were subsequently visualized using

chemiluminescent ECL kits (Amersham/GE Healthcare Biosciences) on a Kodak Image Station

(Perkin Elmer, Waltham, MA).

3.2.6. Phosphotyrosine mass spectrometry

After frozen lysates were thawed, sample processing followed protocols for chemical reduction,

alkylation, trypsin digestion, and fractionation as previously described (36, 47). Samples were

labeled with labeled with either four or eight isotopic iTRAQ reagents (Applied Biosystems,

Carlsbad, CA) for 1 or 2 hours at room temperature respectively. Samples were then combined

and concentrated before immunoprecipitated with a mixture of anti-phosphotyrosine antibodies

(4G10 (Millipore, Billerica, MA), pTyrlO0 (Cell Signaling), and PT-66 (Sigma)) immobilized

onto protein G agarose beads (Calbiochem) in iTRAQ IP buffer (100 mM Tris, 100 mM NaCl,

1% NP-40, ph 7.4) overnight at 4'C. Enrichment of phosphotyrosine peptides, analysis, and

quantification were conducted on an LTQ-Orbitrap vs ESI LC/MS/MS (Thermo Fisher

Scientific/Scherf Praezision Europa GmbH, Meiningen-Dreissigacker, Germany). Raw files were

processed with MSQuant software and DTASupercharge (23) before phosphopeptides were

identified using Mascot analysis software (Matrix Science, Boston, MA). Spectra were manually

validated(24). Phosphopeptide scores and signals were thresholded for significant hits and values

were normalized to a master lysate or control before normalized to total protein values obtained

from the supernatant. See Appendix C for more details on MS protocol.



3.2.7. Luminex xMAP bead based signaling assays

Various xMAP bead kits were used to assess phospho-protein signaling pathways, following

previously established protocols (10). Pan phospho-VEGFR2, total VEGFR2 (Novagen/EMD

Calbiochem), phospho-ERK1/2 (Thr202/Tyr204,Thrl85/Tyr18 7), phospho-Akt (Ser 473), phospho-P38

(Thr180/Tyr18 2), phospho-JNK (Thr 83/Tyr185), phospho-Hsp27 (Ser7 8), phospho-Src (Tyr416),

phospho-GSK3a/p (Ser 21/Ser9), phospho-P70S6K (Thr421/Ser 424) (Bio-Rad), p-actin

(Procarta/Affymetrix, Santa Clara, CA), GAPDH, phospho-ERK1/2 (Thr 8'/Tyr187 ), phospho-

Akt (Ser 473), phospho-Hsp27 (Ser78 ), and phospho-P70S6K (Thr4 ) (Millipore) were assessed

and optimized for characterization of the HDMVEC sprout system. HDMVEC lysis was

performed using respective lysis buffer kits from each of the vendors using complete gel

harvesting or surface lysis protocols outlined above. For phospho-VEGFR2 and total VEGFR2,

the Novagen widescreen reagent kit was used for quantifying protein abundance (Appendix G).

Millipore kits were developed using the Millipore detection reagent kit, while all Bio-plex kits

obtained from Bio-Rad were quantified using the phospho-protein detection reagent kit. The p-
actin kit from Procarta/Affymetrix provided the lysis and detection reagents with the beads.

Following quantification with kits, all samples were analyzed on the Bio-plex 200 platform (Bio-

Rad). For optimization of loading curves, 50 ng/mL VEGF and 20 ng/mL VEGF + 500 ng/mL

PF-4 were used along with the control (no treatment) conditions to test the potential signaling

landscape used by HDMVEC within the system. For a broad coverage of potentially interesting

signaling pathways, 1 pM NaCl was added as a condition to induce stress response pathways P38

and JNK in the case where PF-4 did not (27). HDMVEC were dosed with respective conditions

for 15 minutes prior to their lysis using the detergent surface lysis technique. Samples were then

immediately frozen in liquid nitrogen and placed into -80*C storage until Luminex assays were

performed.

3.3 RESULTS

3.3.1. Protein signaling dynamics from HDMVEC on collagen gels are observably different

using Western blotting

The system was first initially surveyed to determine whether HDMVECs would truly respond to

angiostatic cues. Of particular interest were the CXCR3 family ligands, as they were chemokines



with angiostatic properties. All CXCR3 family ligands that were examined demonstrated a

decrease in phospho-ERK activity following dosing with 50 nM of chemokine for 30 minutes

(Figure 3-3A), including I-TAC/CXCLll (data not shown). We observed the sharpest decrease

in phospho-ERK intensity from PF-4 treatment and went forward to evaluate the system for

phosphorylation data collection. The angiostatic properties of CXCR3 ligand IP-10 has been

previously reported to be mediated by p-calpain (6). We examined Protein Kinase A (PKA)

catalytic subunit phosphorylation as a negative regulator of calpain (Figure 3-3B) and did not see

any noticeable differences, which agree with previous research on PKA and IP-10 signaling (32).

However, we did not notice a change in PKA catalytic subunit phosphorylation in the presence

of VEGF, nor with the presence of heparin, a proteoglycan known for facilitating binding

kinetics of VEGF and PF-4 with cell surface receptors (2, 13, 25).

A B C
C IP-10 Mig PF-4 VEGF C X V15 V34"4kt C V1 5 V3042 kDa 42 kDa 55kDa v

45 kDa owin 44 wf.la 44 kDa
45 kDa 4% 4%* M 42 kDa

Figure 3-3. Initial Western blots on signaling activity in HDMVEC at early time points. 12 hour
serum starved HDMVEC on tissue culture plastic were evaluated for phospho-ERK1/2 signaling with
different CXCR3 ligands at 50 nM (435 ng/mL IP-10, 585 ng/mL Mig, 390 ng/mL PF-4 respectively) or
VEGF at 50 ng/mL for 30 minutes (A). Phospho-ERKl/2 activity decreases more with PF-4 compared to
other CXCR3 family ligands on tissue culture plastic. The phosphorylation of Protein Kinase A catalytic
subunits do not significantly change when 500 ng/mL PF-4 or 50 ng/mL VEGF are added to cultures with
complete medium for 30 minutes on tissue culture plastic (B). The presence of heparin (Hep), which has
been reported to help facilitate PF-4 and VEGF binding to the cells, did not significantly alter PKA
catalytic activity either. Examination of surface lysing technique upon phospho-ERKl/2 detection via
Western blot (C). Surface lysed HDMVEC on collagen gels were tested for phospho-ERK detection via
Western blotting in EBM + 5% FBS. Samples were dosed with 20 ng/mL VEGF for 15 (V15) or 30
(V30) minutes before undergoing lysing protocol. Western results indicate that surface lysis can
successfully obtain cellular protein while reducing collagen contribution. p-actin (45 kDa) and a/p-tubulin
were (55 kDa) were run as standards for A,B and C respectively.

Western blots were also used as an initial assay to confirm that signaling dynamics could still be

captured when the cell culture was moved onto collagen gels, particularly the detergent surface



lysis technique, as the majority of MS sample processing would use these lysates (Figure 3-3C).

We were able to still detect the presence of phospho-ERKl/2 after HDMVEC stimulation on

collagen gels for 15 and 30 minutes in base medium with 5% FBS. Furthermore, we were still

able to discern a noticeable difference in band intensity between VEGF stimulation and control,

where no additional factors were added on top of the FBS.

3.3.2. Collagen contribution is reduced when using surface detergent lysis method

Method (n samples) % Collagen Contribution

Urea Lysis (n=6) 124.1* 29.1%
Urea Lysis + Spin (n=6) 95.4 7.3%

Urea Lysis + Freeze/Thaw + Spin (n=6) 100.4* 10.6%
Liberase Detachment + Urea Lysis (n=4) 88.8 19.7%

Detergent Surface Lysis + Urea Lysis (n=4) 74.9 i 4.0%
Table 3-1. Percentage of collagen contribution to cell lysates collected using different methods
(select methods and representative values shown). Total BCA values were calculated for samples
collected using each method and compared between two conditions - empty collagen gels or collagen
gels with cells seeded (50,000 cells/cm 2). Methods represented above for sample processing were either:
1) directly lysed with urea; 2) lysed with urea followed by an ultracentrifuge spin (25,000 g for 3
minutes); 3) Snap frozen and thawed prior to ultracentrifuge spin; 4) cells detached with liberase and
lysed with urea; or 5) detergent surface lysis on an orbital shaker before lysing with urea. Percentages
show the amount of collagen present in the lysate when normalized to the empty collagen gel from that
comparison. * Indicates that empty gel lysates had higher total protein reading output from the BCA than
lysis performed on gels with cells, which would account for a >100% output.

Direct urea lysis with inclusion of collagen gels ran consistently high in BCA assays for total

protein (Table 3-1). Following normalization of samples with respect to blank collagen gels,

cellular contribution to protein values were negligible or not significantly different, and in some

cases were higher due to variability of collagen contribution to samples. To reduce collagen gel

protein values, samples were spun down using an ultracentrifuge at a high speed of 25,000 g. A

decrease in the amount of collagen contribution was observed, although significant amounts of

collagen still persisted in the samples. Other attempts to help assist breakdown and removal of

collagen gel from urea-lysed samples included a snap freeze and immediate thaw prior to

ultracentrifuge spin. The thaw step did not provide a decrease in collagen contribution in BCA

readings. To optimize lysate to collagen contribution in the lysates, Liberase TM collagenase

cocktail was effective for detaching cells in the first set of samples run (Figure 3-4). However,



after time being kept at 37*C, Liberase became progressively less effective at detaching

HDMVEC from the collagen gel (Figure 3-4C). Despite vigorous pipetting and tapping force

applied to the plate, cells would not detach to the same extent within 5 minutes of Liberase

treatment. Collagen contribution to total protein was decreased by roughly 10% further with

Liberase detachment compared to strict urea lysis (Table 3-1). Use of detergent adsorbent beads

was deemed an unnecessary step and discontinued (data not shown).

A B C
HDMVEC Lysis (t<O) HDMVEC Lysis (t=5 min) HDMVEC Lysis* (t=5 min)

Figure 3-4. Liberase TM harvesting and cell detachment protocol to reduce collagen contamination.
HDMVEC cultured on collagen gels (A) were treated with 500 pL of 100 pg/mL Liberase TM in order to
detach the cells. With freshly prepared Liberase TM solution, HDMVEC were easily detached from the
collagen gel within 5 minutes of treatment (B). Liberase needed to be used as soon as possible, as the
solution lost efficacy about 15 minutes after being initially prepared (C) and cells were not efficiently
detached from the collagen gel surface. Scale bar = 100 pn.

Detergent lysis of HDMVEC gels on their surface gave a reduced collagen contribution to the

lysates (Table 3-1), the lowest amount of contamination achieved with the different protocols

that were applied. We were able to consistently have a yield of approximately 25-30% cellular

protein contribution to the lysate collected. Surface lysing technique left what appeared to be

small, dark nuclear bodies on the surface of the gels after lysate was collected (Figure 3-5). We

speculate that these nuclear bodies are remnants of nuclei or potentially structural proteins that

were left due to the high salt concentration in the lysis buffer. HDMVEC samples used for

phosphoproteomic data analysis from here on were generated using the surface lysis technique.



HDMVEC (t<O) 15 min Surface Lysis

Figure 3-5. Surface lysis of HDMVEC seeded on collagen gels. Following 24 hours after seeding,
confluent monolayers of HDMVEC (A) underwent 15 minute incubation with detergent based lysis buffer
(B). Imaging of post surface lysis protocol indicate that the majority of cells were successfully lysed, with
remnants of cell bodies and nuclei as dark bodies. Scale bar = 100 pm.

3.3.3. Mass spectrometry detection of phosphorylation sites increases following reduction of

collagen contribution to cell lysates

Initial MS attempts on samples dosed with VEGF and PF-4 yielded low phosphoproteomic data

when collected with direct urea lysis protocols due to the high abundance of collagen in the

samples (Table 3-2). Following surface lysis protocol, we observed a significant increase in

number of phosphosites identified through MASCOT. Using very stringent threshold parameters,

we were able to find enough phosphosites that covered 36 different proteins with quantifiable

values across different dosing conditions. There appeared to only be a partial overlap of proteins

between the two protocols; the loss of proteins observed by surface lysis samples may be

inherent in error and variation from day to day use of the LTQ-Orbitrap, as well as the

abundance of other proteins saturating out signals from those originally observed now that

collagen gel contribution is reduced.
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Protein Direct Urea Surface Lysis*
Lysis*

Albumin precursor -_pY162

ATPase, class I, type 8B, member 1 -_pY 1217

BMP-2 inducible kinase isoform b pS649 -

BCAR1 pY410 pY249; pY410
Caveolin1 - pYl4

Coiled-coil domain containing 123 -_pY157

Collagen, type XX, al pT398
Connexin 43 (Gap Junction al) -_pY313

Cortactin isoform a pS447 pS 3 8 0

Dachsous 1 precursor pS2884
DYRK1B isoform a - pY273

EphA2 receptor - pY575; pY772
EphB 1 receptor precursor - pT429/pS435

ErbB2 interacting protein isoform 2 - pYl 107

EBP41L2 - pY263

FGD5 - pY563; pY820
GSK3p pS215; pY216 pS215; pY216
Microtubule-associated protein 1 B -pY1062

ERK2 (MAPK1) - pT185; pY187;
pT185/pY187

P38a (MAPK14 isoform 1) -_pY182

ERKI (MAPK3 isoform 2) - pT202; pY204;
pT202/pY204

Myelin protein zero-like 1 isoform a pY263 pY263
Paxillin -_pY 118
P13K p850 (regulatory subunit 2) -_pY464

PLCy 1 isoform b pY771
PECAM-1/CD31 pY713 pY713
Polymerase I and transcript release factor pY308
Pragmin -_pY411

PTPN1 l/SHP2 pT59
Fyn isoform a pY420; pT421 pY420; pT421
PTK2 isoform a/FAK1 pT575; pY576 pY576
SATB homeobox 2 pS5/pS7
Serine/threonine-protein kinase PRP4K pT847 pY849
SH2 domain containing 3C isoform 1 pS492
SHC transforming protein 1 isoform p52Shc pS180; pY181 pY181
Solute carrier family 15, member 3 - pY177

Src homology 2 domain containing adaptor protein - pY423
B

Talin 1 - pY26

TYK2 - pY292

Vinculin isoform VCL - pY822

Wiskott-Aldrich syndrome gene-like protein - pY256

Lyn isoform A - pY397; pT398



Table 3-2. Significant targets identified by phospho-tyrosine enriched mass spectrometry increases
with surface lysis technique. HDMVEC were dosed with 20 ng/mL VEGF with and without the addition
of 500 ng/mL PF-4 at either 15 or 30 minutes of treatment. MS runs were performed on HDMVEC and
gels directly lysed with urea (using 4-plex iTRAQ) versus gels which were surface lysed first (using 8-
plex iTRAQ). Samples were consolidated after labeling with iTRAQ reporter group. Reported samples
values were identified by MASCOT and thresholded above background noise signal before normalization
to their supernatant values. Only phosphosite peptide scores above 20 were considered true significant
hits with quantifiable values. The different phosphosites that were identified from direct urea lysis
covered 15 unique proteins while using direct surface lysis increased coverage to 36 unique proteins, with
an overlap of 9 proteins across all signaling and time conditions used. Coverage changes between MS
runs vary slightly and explain the differences observed between the two lysis techniques. *Notes that
different iTRAQ labeling procedures can affect phosphosite detection; however, surface lysing provides a
greater number of initial sites by MASCOT and overall significant proteins that have quantifiable values.

3.3.4. Luminex normalization and subsequent time course analysis reveal difficulty in

phosphoproteomic data from typical analytic procedures.

Samples for optimizing Luminex bead kits were generated from the treatment conditions being

considered along with a stress condition to have maximal coverage at 15 minutes. From the

previous expectation of inaccurate protein concentrations, sample loading curves were tested for

each xMAP bead kit considered (Figure 3-6). Instead of using inaccurate total protein values

obtained from BCA (inflated due to collagen contribution), sample loading curves were based on

serial dilutions of the total lysate (from 100% down to 10%). Generally, samples appeared to

have maximal signaling across different treatment conditions and control within the 75% and

45% dilutions (25%, 55% lysate loaded respectively) with highest peak signaling trends for

phospho-Akt, phospho-Hsp27, and phospho-P70S6K for conditions that included VEGF.

Saturating lysate concentrations in phospho-ERKI/2, Akt, and P70S6k experienced a drop in

signal past 60% lysate loading (Figure 3-6A,B,C) which was not observed for the other bead kits.

No signal was captured for phospho-JNK or phospho-P38 using the HDMVEC cell system and

dosing conditions, despite previous literature reports (27, 28) though may be due to short

incubation times or insufficient protein concentration.

A different normalization parameter was required for the use of Luminex assays, as the total

protein value obtained via BCA for normalizing signaling data was compromised by the

presence of collagen. Since there existed such a large discrepancy between samples and empty

collagen gels from both comparisons as well as plate-to-plate variation, internal normalization
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Figure 3-6. Luminex xMAP bead kit optimization curves. Different percentages of lysates were loaded
to assess optimal detection by bead kits. Four treatments were used in order to cover a broad range of
expected signaling pathways, both expected for the conditions of interest (PF-4 and VEGF), and broad
coverage including stress pathways JNK and P38 (27). Samples were collected following 15 minutes
after dosing. Phospho-ERKl/2, phospho-Akt, and phospho-P70S6K had optimal signal peaks between
25% and 55% lysate loading (A, B, C). Phospho-GSK3a/s, phospho-Src, and phospho-Hsp27 had linear
ranges for signaling between approximately 25% and 55%, where optimal signals were observed around
40% to 55% (D, E, F). Phospho-JNK and phospho-P38 were not detectable in the sample treatment
conditions (G, H). A noticeable occurrence of attenuated fluorescence occurred in Phospho-ERKl/2,
phospho-Akt, and phospho-P70S6k loading curves at lysate loading above 70%.

was required beyond that of a master lysate. A housekeeping protein, GAPDH, was also

measured in each sample condition for normalization purposes. Sample loading curves were
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tested in order to assess the linear range of the GAPDH sample, and whether it could be used at

multiple dilutions for the different bead kits and their loading requirements (Figure 3-7). The

linear range for the GAPDH kit went from 5% up to 55% lysate loaded, compatible with the

ranges for a majority of the proteins examined using Luminex.
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Figure 3-7. GAPDH curves for loading surface lysed samples. Detergent based surface lysates were

run using the xMAP Luminex kit from Millipore. Samples were loaded at 100% or diluted down to 5%
(n=6). Signal intensity for samples loaded saturated at approximately 60% lysate, and linear range was
observed for signals between 10% and 55%.

Following optimization of sample loading for both phosphoprotein and GAPDH detection,

identical treatment and time courses were collected for 500 ng/mL PF-4, 20 ng/mL VEGF, and

500 ng/mL and 20 ng/mL VEGF using Luminex bead kits (Figure 3-8) as for MS analysis (see

Chapter IV for more detail about MS data). Signals were observed at 15 and 30 minutes for

phospho-Akt, and P70S6K (Figure 3-8A, B, C). In conditions that were treated with VEGF, a

late signaling trend was observed at 48 hours of dosing for phospho-Akt. Almost no signaling
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Figure 3-8. Phospho-protein signal is mainly captured at early time points for Luminex xMAP bead
kits. Low detection of phosphoprotein activity was observed for all conditions (500 ng/mL PF-4, 20
ng/mL VEGF, 500 ng/mL PF-4 + 20 ng/mLVEGF) after 60 min (A,B,C respectively). Maximal signal
detection occurred at around 15-30 min, with Akt, Hsp27, and P70S6K phosphoproteins having
significantly higher values. Other phosphoprotein levels for ERK1/2 and Src were only slightly above
background; JNK, P38, and GSK3a/P were consistently below background signal for all time points
measured. Initial time point at 0 minutes was control condition. Trends observed among raw fluorescence
were conserved following normalization to GAPDH. Representative phospho-Akt time course is shown to
indicate phospho-signaling drops off rapidly after 30 minutes, with a small spike in activity towards 48
hours (D).
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was detected at any of the other time points. Following GAPDH normalization, most signals

were still below background thresholds, and observed signaling trends for proteins such as Akt

were conserved (Figure 3-8D). Additional Luminex data regarding phospho-VEGFR2 activity

are included in Appendix G.

3.4 DISCUSSION

3.4.1. PF-4 influences endothelial signaling pathways.

Our Western blots indicated that there were discernible differences in signaling following

treatment with PF-4. Since not much data exist on PF-4 signaling pathways in endothelial cells,

our focus was to try and elucidate the potential signaling crosstalk and landscape of PF-4 and

VEGF. We found that CXCR3 binding chemokines could reduce phospho-ERKl/2 levels of

HDMVEC seeded on tissue culture plastic, including PF-4 treatment. This agrees with previous

work with human umbilical vein endothelial cells that PF-4 can block MAP kinase signaling,

albeit the mechanism is uncertain (38). Western blotting of PKA catalytic subunit

phosphorylation did not show changes when dosed with PF-4 or VEGF. Previous research has

indicated that PKA phosphorylation can inhibit downstream signaling of chemokines and our

results do not disagree with previous findings (32). VEGF stimulation does not induce PKA

phosphorylation either, as VEGF has not been previously reported to activate the adenylyl

cyclase/cyclic AMP signaling pathway. Our initial Western blotting also demonstrated that it

was possible to collect signaling data from HDMVEC seeded on collagen gels following VEGF

treatment and could move forward with optimizing MS sample lysis methods. We were also able

to conclude that PF-4 most likely does not prevent VEGF and VEGFR2 binding to inhibit

angiogenesis signaling pathways (Appendix Figure G-1).

3.4.2. Lysate collection from 3D collagen gels is nontrivial

Despite the large data set yields that MS provides, MS requires significantly more sample than

other assays such as Western blots or Luminex bead assays. Generally, MS samples are collected

from 15 cm 2 dishes which can provide enough cellular lysate for two technical replicates.

Collagen gels formed on 10 or 15 cm2 would have very sharp meniscuses that would affect the

overall spreading of collagen on the plastic surface. We observed that sprouting does not occur
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on collagen gels less than 0.5 mm thick, as the rigidity of the polystyrene is transferred to the gel

and more so than 1 mm thick gels (data not shown). To reduce the potential effect of meniscuses

and reduce collagen gel consumption, technical and biological replicates were collected as whole

6 well plates where all the wells were pooled and consolidated into one sample.

Initial attempts at cell lysate preparation for MS analysis involved directly adding 8M urea buffer

to the cell cultures on collagen gels. However, this proved inefficient as BCA analysis indicated

that more than 95% total contribution of protein came from collagen rather than HDMVECs. To

reduce collagen contamination, samples were spun down using a high speed elutriation

centrifuge at 25,000 g for 3 minutes. Unlike typical detergent lysis protocols where

centrifugation of samples allowed the sedimentation of collagen, we observed that the collagen

did not separate very easily from the solution when urea was used instead. We speculate that

since urea buffer is a very strong denaturing agent, the collagen gels were denatured by the

disruption of noncovalent hydrogen bonds and could not be separated from the lysate solution as

the proteins had dissolved into the buffer. The collagen contamination in these samples proved to

be too high for sufficient phosphoprotein coverage by MS.

Many efforts were invested in methods to reduce collagen contribution to samples being

collected by directly harvesting both cells and gels. This included snap freezing and surface

scraping gels lysed with urea, along with cell detachments and harvesting prior to urea lysis.

However, these attempts also proved to be inefficient. Other methods utilized involved

harvesting cells using the base collagenase protocol outlined by Cosgrove et al. using Liberase

TM (11). Despite being able to pellet out collagen gels, the amount of time required to treat with

Liberase made its use less than desirable. HDMVECs would be lysed at least 10 minutes after

removal of dosing conditions from the samples strictly from Liberase incubation and

centrifugation. The amount of time that this process takes could contribute significant

background to the samples and skew output measurements, especially for those within the range

of early time points (e.g. 15, 30, 60 minutes), as the delay could range anywhere from 15% to

67% of desired dosing times. We also noticed that in a short amount of time, Liberase TM lost its

efficacy in detaching cells. Following thawing and preparation of Liberase TM for use, Liberase

was unable to efficiently detach cells from collagen gels as soon as use on the second plate.
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The best method that compromised between expense, time, effort, and output that we were able

to utilize was the use of a detergent-based lysis buffer for surface lysing. By lysing the surface of

the gels, we were able to reduce collagen contribution, since most of the collagen remained

behind following the lysis procedure. There were significant number of dark nucleated bodies

remaining; we suspect that these may be nuclei or cell bodies that remained following the lysis

buffer treatment.

In parallel to MS protocol development for this system, we explored Luminex bead kits as a

means to assess signaling pathways complementary to phospho-tyrosine MS. The low

phosphoprotein detection in our data reflect the difficulty in obtaining more physiologically

relevant data; the use of primary cells on a three-dimensional gel substrate has very low

signaling. Most data that are collected on tissue culture plastic are potentially artefactual to strain

placed on the cells from a rigid substrate (i.e. strain increases tyrosine phosphorylation and

migration behavior of cells) (16, 17). The difficulty in obtaining signaling data is also reflected

in the MS outputs. Typical MS data from cell lines cultured on tissue culture plastic yield 100-

200 unique proteins, with 200-300 significant phosphosites detected.

We observed most of our signaling to occur at early time points for only some bead kits; proteins

such as phospho-JNK, phospho-P38 were not detectable at all, despite previously reported

findings about phospho-P38 mediating PF-4 signaling in HDMVEC (28). We suspect that this

may primarily be a result of different culturing methods, as we collected lysate from cultures on

collagen gels rather than cells seeded on polystyrene. This difference results in a two-fold

difference due to protein concentration as well as substrate rigidity. Furthermore, Petrai et al.

enriched for P38 MAPK protein with an immunoprecipitation step, which likely enhanced

capture of phosphorylated proteins.

3.4.3. Summary

Regardless of which protocol was implemented, it was acknowledged that collagen would be a

considerable contributor to the total protein of collected lysates. The final decision made for the

sample lysis protocol was made with the conscious effort to minimize collagen contamination
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and overall sample volume to help expedite processing as well as making samples physically

more manageable.
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Chapter 4

Angiostatic Platelet Factor 4 cues modulate distinct phosphoprotein

signaling pathways involved with migration and sprouting in

endothelial cells

4.1. INTRODUCTION

4.1.1. Inflammation and angiogenesis in tissue engineering

Angiogenesis, the formation of blood vessels from pre-existing blood vessels, is a complex

process essential for repairing injured tissue or supporting tissue growth (1, 12). As such, a great

deal of work has been done to focus on understanding this phenomenon as it occurs in vivo, in

particular its roles in embryonic angiogenesis and development (60, 65, 84). On the opposite

spectrum to embryonic development, adult angiogenesis and inflammation are closely related

phenomena that occur in vivo in a number of physiologically relevant processes. Inflammation

lies at the crux of multiple physiological events in biological systems that precede the induction

of angiogenesis: wound healing (6, 20, 81), chronic wounds (81), inflammatory disorders (32,

71), and the development of cancer (32, 33).

Tissue engineering of implantable three-dimensional constructs provides an innovative

perspective on clinical treatments of various diseases and injuries (5, 17, 24, 61, 63). As complex

tissues become developed for applications in clinical trials, tissue vascularization for constructs

of considerable size and volume is required for their survival(28, 67). Once implanted, these

constructs will also experience significant inflammatory responses within their host's local

milieu (31, 39). These circumstances demonstrate the necessity for understanding the

interactions between inflammation and angiogenesis. Elucidating specific intracellular

mechanisms can provide insight for novel approaches in treatment of diseases as well as

predicting responses to artificially engineered tissues.



4.1.2. Chemokines induce inflammatory, angiogenic, and angiostatic responses

Recently, studies have shown that chemokines, which play a central role in inflammation, can

influence the outcomes of angiogenesis (7, 29, 38, 58) by promoting new blood vessel growth

(e.g. CXCLl-3, CXCL5-8, CXCL12) or inhibiting its formation altogether (e.g. CXCL4,

CXCL9- 11, CXCL 13) (58). In particular, a large body of information is available on platelet

factor 4 (PF-4/CXCL4) and its ability to inhibit angiogenesis. PF-4 is found throughout the adult

body, with roughly 0.25-1.25 nM (2-10 ng/mL) in blood plasma, but can be present as high as 25

pM in localized areas during wound healing (2, 66). PF-4 half-life in circulation is 1-2 minutes

(fast components) and 60-80 minutes (slow components) with clearance mediated by the liver

and kidney (59). Its ubiquitous presence, implication in cancer and vascular diseases, and use as

a potential drug therapy have made PF-4 a key point of interest in influencing angiogenesis in

vivo (2, 66, 76, 77). In addition to inducing angiostasis, PF-4 can inhibit cell proliferation

(halting S phase progression) and reduce endothelial cell migration (2, 21, 38, 62, 76). Despite

the wealth of information on PF-4 and its mechanistic effects on immune cells, scarce literature

exists on the nature of the molecular signaling that it exerts on endothelial cells to inhibit

angiogenesis. The complexity of PF-4 and its potential to interact through multiple binding

mechanisms makes it difficult to determine how PF-4 can interfere with angiogenesis (2, 70, 72,

77). It can interfere with angiogenic signal network induction by sequestering growth factors and

proteoglycans, antagonize integrin-mediated signaling, or directly signal through its chemokine

receptor CXCR3 (2). One study found that PF-4 can activate P38 MAPK via CXCR3 on human

microvascular endothelial cells cultured on tissue culture plastic (52) and suggested this as a

potential anti-angiogenic perturbation of cell signaling.

4.1.3. Chapter overview

In an effort to understand how pro-angiogenic and anti-angiogenic cues can simultaneously

coordinate stable blood vessel growth in an inflammatory environment, we investigated the role

that PF-4 may play in regulating angiogenesis. The objective of this work was to determine early

signaling cues and mechanisms that are necessary to induce angiogenesis following

inflammation in both acute and chronic states. The underlying premise is that angiostatic factors

such as PF-4 may act in concert with pro-angiogenic growth factors to provide a balance of

signals that mediate precision and coordinate stable blood vessel formation.
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Obtaining physiologically relevant data for angiogenic signaling is a nontrivial matter; it is

difficult to extract signaling data from primary endothelial cells grown on three dimensional

collagen gels. However, studying cell signaling and phenotypic outcomes in these more

challenging culture systems is highly important, in recapitulating relevant physiological

complexity and coordinated cell behaviors that are not observed in traditional two-dimensional

cell cultures on tissue culture plastic. In our work here, we successfully captured phosphoprotein

signaling data from quantitative mass spectrometry-based analysis of HDMVECs grown on

three-dimensional constructs. We found statistically significant differences in phosphoprotein

signaling when HDMVECs were dosed with VEGF with PF-4 as opposed to only VEGF.

Following data validation, we were able to detect 95 phosphosites across 64 proteins in our

system. We were able to find statistically significant changes in phosphoprotein signaling time

courses in 11 out of 13 proteins for which we were able to obtain full time course data. Our

preliminary data show that PF-4 primarily exerts its inhibitory effect on angiogenesis by

modulating pathways associated with cell migration such as P38a MAPK, EphA2, FAK, and Src

family kinases. From our correlation network models, we have found evidence that EphA2

activation serves to negatively regulate rather than promote angiogenesis as seen in previous

studies. To our knowledge, this is the first successful attempt in developing protocols to capture

protein signaling pathway dynamics from primary human endothelial cells cultured on collagen

gels using mass spectrometry (MS).

4.2. EXPERIMENTAL PROCEDURES

4.2.1. Cell culture

Adult HDMVECs were cells commercially purchased at passage 4 (Lonza, Walkersville, MD).

Cells were cultured in EGM-2MV (Lonza) media until near confluency. Once near confluency,
cells were rinsed with IX PBS (Invitrogen, Carlsbad, CA) and detached by incubating with

0.05% Trypsin-EDTA (Invitrogen) for 3-5 minutes at 37*C and 5% CO2 followed by addition of

EBM-2 (Lonza) with 5% FBS (Thermo Fisher Scientific/Hyclone, Logan, UT) and 50 pg/mL

gentamicin (Sigma-Aldrich, St. Louis, MO) and pelleting at 1600 rpm (-450 g) for 5 minutes.

Cells were resuspended in EGM-2MV and seeded on 50 [tg/mL rat tail collagen I (BD
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Biosciences, Bedford, MA) coated tissue culture flasks at a minimum of 5,000 cells/cm 2.

Medium was changed 24 hours following seeding and replaced once every 48 hours until nearing

confluency. Cells were expanded to passages 6 and 7 and frozen for cryogenic storage at -196'C

in 80% EGM-2MV, 10% FBS, and 10% DMSO (Sigma-Aldrich). CXCR3 ligands IP-10, Mig,

and PF-4 were evaluated on HDMVEC seeded on collagen coated tissue culture plastic

(Peprotech, Rocky Hill, NJ).

4.2.2.Three-dimensional collagen gel cultures

Collagen gels cultures were used to study capillary sprouting. Collagen gel solutions were made

using loX PBS (10%), rat tail collagen I solution stock, and IN NaOH (Sigma-Aldrich) added at

2.3% of the collagen stock solution volume used. 1 mL of collagen gel solution was added to

each well in 6 well plates (9.6 cm2 per well). Streile MilliQ purified water was added to reach the

desired total volume and kept on ice until use. Gels were formed at a density of 2.0 mg/mL at

approximately a pH of 7.2, and allowed to set at 37 *C for 2 hours before being rinsed with 1X

PBS. Gels were then preconditioned with EBM-2 with 5% FBS and 50 pg/mL gentamicin for

two days to minimize background changes and nonspecific ligand binding when dosing

conditions were introduced to cells seeded on the gels.

HDMVEC were thawed and grown on 50 jig/mL collagen I coated tissue culture flasks up to

passage 9 collected as above and counted using Neubauer-improved disposable C-Chip

hemocytometers (INCYTO, Seoul, Korea) and seeded onto collagen gels at 50,000 cells/cm2 .

Cells were allowed to adhere for 4-6 hours at 37*C in 5% CO2 prior to rinsing with PBS and

replacing the media with EBM-2 + 5% FBS and gentamicin. HDMVEC were allowed to

incubate overnight. 24 hours after seeding, plates of HDMVEC were dosed with 20 ng/mL

vascular endothelial growth factor (VEGF) 165 and with or without 500 ng/mL platelet factor 4

(PF-4) across designated time intervals (0 minutes, 15 minutes, 30 minutes, 60 minutes, 6 hours,

24 hours, and 48 hours) (Peprotech).

4.2.3. Confocal microscopy

Collagen gels were formed on 24 well glass slide bottom MatTek plates (MatTek Corporation,

Ashland, MA) and HDMVEC were seeded following the protocol described above. Four hours

115



after seeding, media were replaced with EGM-2MV and allowed to equilibrate for 24 hours
before imaging. Samples were fixed with 4% paraformaldehyde (Electron Microscopy Sciences,

Hatfield, PA) for 30 minutes and rinsed gently with PBS before being permeabilized with

0.1% Triton-X in PBS. The fixed samples were incubated with 1 ptM phalloidin conjugated

with fluorescein isothiocyanate (Sigma-Aldrich) for 1 hour before being rinsed with PBS.

Samples were then stained with 1:500 Hoechst (Invitrogen). Samples were then imaged on a

confocal Zeiss Axio Observer.A 1 microscope with Metamorph software (Molecular Devices,
Sunnyvale, CA).

4.2.4. Detergent surface lysis with subsequent urea lysis

Detergent based lysis buffer was made following previously established protocols (64). Slight

modifications were made to the base protocol in order to maintain compatibility with MS lysate

preparation protocols. Cell lysis buffer consisted of 1% Triton X-100, 50mM p-glycerophosphate,
10 mM sodium pyrophosphate, 30 mM sodium fluoride (Sigma-Aldrich), 50 mM Tris (Roche

Applied Science), 150 mM sodium chloride, 2 mM EGTA, 1% Protease Inhibitor Cocktail

(Sigma-Aldrich) and 1% Phosphatase Inhibitor Cocktail Sets I and II (EMD Calbiochem,

Gibbstown, NJ).

Following a rinse with cold PBS on ice, 200 gL of cold lysis buffer were gently added to the top

of each gel. Plates were then quickly transferred to a Model 1000 standard orbital shaker (VWR

International) set at approximately 185 rpm for 15 minutes at 4*C. Following lysis, lysate from

each well of a 6 well plate was consolidated into one biological sample replicate at

approximately 1.2 mL volume and mixed with 3.6 mL of 8M urea with 1 mM activated sodium

orthovanadate (Sigma-Aldrich) to a final urea concentration of 6M. Samples were then

immediately snap frozen in liquid nitrogen before placing into storage at -80 0C.

4.2.5. Phosphotyrosine mass spectrometry

Sample processing followed protocols for chemical reduction, alkylation, trypsin digestion, and

fractionation as previously described (69, 86). Groups of eight samples were labeled with eight

unique isobaric iTRAQ reagents (Applied Biosystems, Carlsbad, CA) for 2 hours at room

temperature and then combined and concentrated before immunoprecipitation with a mixture of
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anti-phosphotyrosine antibodies (4GlO (Millipore, Billerica, MA), pTyr100 (Cell Signaling), and

PT-66 (Sigma)) immobilized onto protein G agarose beads (Calbiochem) in iTRAQ IP buffer

[100 mM Tris, 100 mM NaCl, 1% NP-40, ph 7.4] (Sigma-Aldrich) overnight at 4*C. Beads were

washed four times in rinse buffer (IP buffer without NP-40) and phosphotyrosine-containing

peptides were eluted into glycine buffer (100 mM, pH=2) at room temperature for 30 minutes on

a rotator. Phosphopeptides were further enriched by immobilized metal affinity chromatography.

Analysis and quantification of eluted peptides were conducted on an LTQ-Orbitrap via nano-ESI

LC/MS/MS (Thermo Fisher Scientific/Scherf Praezision Europa GmbH, Meiningen-

Dreissigacker, Germany). Raw files were processed with MSQuant software and

DTASupercharge (42), followed by peptide sequence and protein identification with Mascot

(Matrix Science, Boston, MA) (50). For details on MS, please see Appendix C.

4.2.6. Manual validation of mass spectra fragments

Phosphopeptide scores and signals were thresholded for significant hits and values were

normalized to a master lysate (50 ng/mL VEGF treatment for 15 minutes) and normalized

to total protein values obtained from an LC/MS/MS analysis of iTRAQ channel intensities of

the IP supernatant. Each nonzero normalized mass spectra output was manually validated

by hand following previously described guidelines to ensure correct sequence

identification and phosphosite assignment (44). Peaks were compared with theoretical

values for each of the peptides assigned by Mascot using the MS-Product component of

Protein Prospector (Baker, P.R. and Clauser, K.R. http://prospector.ucsf.edu). For a detailed

protocol, please refer to Appendix D.

4.2.7. Data processing and statistical analysis

After data were collected and processed, further analysis and biological hypothesis generation

were performed using PTMScout (http://ptmscout.mit.edu) (43). Gene ontologies and

phosphorylation predictions were queried through Gene Ontology and Scansite 2.0 (4, 48). Data

from two biological replicates (with two technical replicates) were consolidated into one data set

for assessing phosphoprotein levels. Statistical analysis of time course data was performed using

Student's t test (Microsoft Excel).
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4.2.8. Correlation network modeling

Methods to quantify signaling node relatedness follow those previously described (30). At every

time point, geometric means of the phosphorylation fold change relative to a master lysate were

calculated for each protein that had at least two nonzero measurements across two biological

replicates (two technical replicates each). For time points and proteins where only one

measurable replicate was collected, the single replicate value was used as a measure of best

estimate of phosphorylation. Geometric means were then normalized to the control (t<O) to

provide a fold change in phosphorylation. Of the resulting MS data, 21 phosphosites fulfilled

these the full time course criterion for initial modeling setup. Pearson correlation coefficients

were calculated between each pair of phosphosites using the 2 1x6 data matrix. Statistical

significance of pairwise correlation coefficients was assessed using the permutation test by

shuffling time course data (n=100,000). This provided 21 x 20/2 = 210 unique pairwise

correlation coefficients andp values (self-correlations ignored). The Benjamini method for

multiple hypothesis correction was used to account for multiple hypothesis testing and assigning

statistical significance. Please refer to Appendix F for scripts and functions used to implement

correlation network modeling and statistical analysis.

4.3. RESULTS

4.3.1.Optimization of collagen gel culture system for collection of cue, signal, and response

data

The signaling effects of a selection of chemokines that could bind to the CXCR3 receptor were

initially observed to see whether there were distinguishable changes in phosphoprotein levels

(see Figure 3-3). Cells plated on collagen-coated tissue culture plastic were serum starved for 12

hours before being dosed with 50 nM of PF-4/CXCL4, Mig/CXCL9, or IP-10/CXCL10 for 30

minutes in the absence of VEGF. Phospho-ERKl/2 levels were assessed from these samples,

with an observable decrease of phospho-protein levels in PF-4 treatments (Figure 3-3A).

HDMVEC seeded on collagen gels had the capability to undergo sprouting (Figure 4-1).

Although the occurrence of sprouting events are generally uncommon (as only a few cells
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eventually break away from the bulk), the collagen gel culture system provided us with both a

system that could provide quantitative intracellular signaling analysis and the future potential to

capture extracellular endothelial response behaviors associated with angiogenesis. Lysis

procedures of samples grown on collagen gels were assessed by visualizing phospho- and total

ERK1/2 levels of lysates collected via surface lysis protocols (see Figure 3-3C), validating the

use of the system in conjunction with surface lysing protocols. A decrease of sprouting

occurrence was observed with increasing concentrations of PF-4 (data not shown).

Figure 4-1. 3D collagen gel culture enables endothelial sprout initiation. Sprouting events could be
observed 24 hours after HDMVEC seeding on collagen gels. Actin filaments were stained with phalloidin
(red) and cell nuclei were stained with Hoechst (blue). The orthogonal Z projections of the initiated sprout
(red circle) into the collagen gel are shown to the right and bottom of the main image. The collagen gel
cultures are more physiologically representative of the environment that endothelial cells observe in vivo,
as opposed to strictly culturing on tissue culture plastic which do not allow angiogenic behavior to be
simulated or observed. Scale bar = 100 pm.
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4.3.2. PTMScout Outputs and Predictions

Following manual validation of spectra outputs, 95 phosphorylation sites across 64 proteins were

observed in our data set. The biological processes, molecular functions, and

compartmentalization of the signaling proteins from Gene Ontology were procured by

PTMScout. Since signaling proteins are not mutually exclusive of their roles and location, only

the top 10 of each category were listed (Figure 4-2). Biological processes involved in the VEGF

± PF-4 treatment systems agree with those that are generally found in association with

endothelial cell phenotype and inflammatory response (e.g., blood coagulation, platelet

activation, leukocyte migration) (Figure 4-2A). Molecular functions reflect kinase activity

occurring in our system (Figure 4-2B), confirming the relevance of measuring signaling and

inferring crosstalk pathways. The localization of these signaling proteins are spread throughout

the cell, and include those that are mostly expected, such as membrane-restricted signaling and

cytosolic/cytoplasmic signaling (Figure 4-2C). The top listings do not necessarily cover all the

processes and functions that these signaling proteins are involved; the top 10 biological

processes represent only 15% of the total (106/683 reported biological processes), molecular

functions represent only 40% of the total identified (92/233) (Figure 4-2B), and region

compartmentalization is covered by 50% of the total (117/244 cellular regions) (Figure 4-2C).

The full list of procured ontologies are available online through PTMScout.
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A B C
Top Biological Processes Involved in Top Molecular Functions Involved in Top Cellular Components Categories for
PF-4 &VEGF Signaling (15% of Total) PF-4 &VEGF Signaling (40% of Total) PF-4 &VEGF Signaling (48% of Total)

" Blood coagulation * Protein Binding M Cytosol
" Signal Transduction 0 Protein Tyrosine Kinase Activity * Cytoplasm

Axon Guidance - Protein Serine/Threonine Kinase Activity Plasma Membrane
Protein Amino Acid Phosphorylation a Structural Molecule Activity 5 Nucleus
Leukocyte Migration *Protein Kinase Activity "Integral to Plasma Membrane
Platelet Activation "Protein Phosphatase Binding Cell-Cell Junction
NGFR Signaling Pathway Protein Kinase Binding Focal Adhesion
Cell Adhesion Receptor Binding Ruffle
EGFR Signaling Pathway Cadherin Binding Extracellular Region
Insulin Receptor Signaling Pathway Kinase Activity Intracellular Membrane-bounded Organelle

Figure 4-2. PTMScout gene ontology outputs of processes, functions, and compartmentalization of
phosphoprotein signal measurements. The top 10 contributors to each of the different categories were
selected and plotted to provide an overall sense of signaling dynamics and behavior. Biological processes
involved included blood coagulation and inflammatory response (A) in agreement with our system.
Molecular functions that were reported to be involved include kinase activity, especially that of tyrosine
kinases, agreeing with our method of tyrosine enriched quantitative MS (B). Finally, the distribution of
the signaling pathways through the cell indicate most to occur in the cytosol/cytoplasm and the membrane,
again as what we would expect from the PF-4 and VEGF dosing treatments combined (C).

Predicted binding sites and potential kinase activity data were pulled from Scansite through

PTMScout (Table 4-1). The procured list of predicting binding sites largely reflect interactions

with SH2 domains, which are modulators of nonreceptor tyrosine kinase activity (18). Predicted

kinase activity includes many receptor tyrosine kinases (RTKs) (e.g. EGFR, PDGFRB, INSR),

as well as non-RTKs (Lck, Src, ITK, and Abli). Caution must be exercised in the use of these

predicted sites and activities; as the culture system requires the presence of serum for endothelial

cell sprouting, these events may potentially be attributed to background signaling and thus may

not be relevant to the differences in treatment conditions. Nonetheless, acute stimulations with

VEGF and PF-4 should sufficiently perturb the system and contribute to these predictions.
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Predicted Binding Sites

ITK to SH2

FGR to SH2

Fyn to SH2

Lck to SH2

Abil to SH2

NCK1 to SH2

SHC1 to SH2

SHC1 to PTB

Grb2 to SH2

Crk to SH2

Src to SH2

PLCy to SH2

INPP5D to SH2

p85a (PI3KR1) to SH2

Predicted Kinase Activity

Src(Tyr)
Lck(Tyr)

FGR(Tyr)

EGFR(Tyr)

PDGFRB(Tyr)

INSR(Tyr)

Abll(Tyr)

ITK(Tyr)

PRKDC DNA Damage Kinase

PKCc(Ser/Thr)

Table 4-1. Predicted binding sites and kinase activity. The majority of predicted binding sites were to
that of SH2 (Src homology 2) binding domains, with the exception of SHC 1 having a binding prediction
to PTB (phosphotyrosine-binding) domains. These predictions reflect mostly signal transduction pathway
interactions and provide verification of some reported binding interactions in previous literature. The list
of potential kinase activity is also suggestive of the various signaling pathways that are involved.
However, a precautionary note should be considered that these predictions are based in a system
supplemented with 5% serum, and therefore the data itself must be quantified for potential differences.

4.3.3. Time-resolved tyrosine phosphorylation measure by quantitative mass spectrometry

indicate statistically significant differences over the course of stimulation

Out of the 64 unique proteins identified by PTMScout, only 13 had a minimum of two replicate

measurements for each phosphosite at each time point, due to the unbiased, discovery-mode MS

data acquisition across the different 8-plex iTRAQ sample sets in each individual MS run (Table

4-2). Of the 13 proteins, only 11 had statistically significant differences (p <0.05) in signaling

between VEGF and VEGF with PF-4 at any of the times compared (Figure 4-3). Comparisons of

signaling data to PF-4 were excluded from these analyses due to physiological relevance and

reduced quantitative signaling detection (due to lower levels of signaling). Their measurements

and are included in Appendix E.
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Protein Phosphosite Reported roles
Annexin I Tyr2l EGFR binding, mitogenic response (54)
cdc2/cdkl Thrl4/Tyrl5 Inhibition of cell cycle progression (46)

DYRKIB Tyr273 MAPK substrate; autophosphorylation activation (35)
EphA2 Tyr772 No obvious phenotype; cell-cell interactions (16)
GSK3@ Tyr216 Wnt signaling; Kinase activity (14)

P38a MAPK Tyr182 Inflammatory, stress response (55)
MPZL1 Tyr263 Scaffold protein, Shp2 docking (15)
Shp2 Tyr62 Uncharacterized (26)

PTPRA Tyr798 Src dephosphorylation (activation) (73)
Fyn Tyr420 Activation, kinase activity (47)
FAK Tyr576 Kinase activity (9)

SHC1 Tyr318 Adaptor protein, ras activation (49)
Lyn Tyr397 Autophosphorylation, activation (68)

Table 4-2. Full time course phosphoproteomic coverage, respective phosphosite, and functions
reported in literature. Of the 64 proteins and their 95 phosphosites detected, we found 13 proteins to
have complete coverage across the 6 time points of interest with at least 2 replicate measurements found
for each time point. The proteins and the location of the phosphorylated residue were provided as an
output from PTMScout.

Statistical significance was not found for all time points between VEGF and VEGF with PF-4,

although different dynamics were observed for each of the 11 proteins. Annexin I experienced an

early attenuation of signal intensity at 15 minutes when PF-4 was present, although signaling

became indistinct from conditions where PF-4 was absent (Figure 4-3A). In PF-4 conditions, cell

division control protein 2 (cdc2, or cyclin dependent kinase 1 (cdkl)) and ephrin receptor A2

(EphA2) appeared to have an initial decrease in signal followed by a delayed response in

activation levels (Figure 4-3B, D). Focal adhesion kinase (FAK) decreased in the presence of PF-

4 at the mid signaling time interval (60 minutes), however, increased above that of VEGF levels

at 24 and 48 hours (Figure 4-3E). Src family tyrosine kinases Fyn and Lyn also increased in

signal at early times before becoming similar to signaling observed in the VEGF only conditions,

although Lyn experienced a decline during mid signaling (Figure 4-3F, H). P38a MAPK

increased in early and late time points when PF-4 was introduced (Figure 4-3J). DYRKlB,

GSK3p3, MPZll, and SHC 1 were observed to be significant at a single time point, at either mid

(GSK3p0) or late (DYRKIB, MPZL1, SHC1) signaling. With the exception of GSK3 P and SHC 1,

PF-4 introduction attenuated the signaling intensity (Figure 4-3C, G, I, K). Error from the pooled
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data is higher in the culture system used due lower signaling intensities, collagen contamination,

and inclusion of 5% serum to enable sprouting response.
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Figure 4-3. Graphs of statistically significant time course data from time resolved tyrosine
phosphorylation measurements by quantitative mass spectrometry. Of 96 phosphorylation sites
deemed significant, 11 different sites on unique proteins were found to have a full time course with
statistics. Raw signal measurements were normalized to total protein from supernatants and a master
lysate. Of these different proteins, several had statistical significance (p<0.05) at one or more time points
between 20 ng/mL VEGF (VEGF) treatment and 20 ng/mL VEGF with 500 ng/mL PF-4 (VEGF+PF-4)
treatment. Notable temporal increases in signaling dynamics following PF-4 co-treatment were observed
for Fyn/Tyr420 (F), GSK3p/Tyr2l6 (G), Lyn/Tyr397 (H), P38a MAPK/Tyrl82 (J), and SHCl/Tyr318
(K). Attenuations in signaling were noticed for Annexin I/Tyr21 (A), dual specificity tyrosine-
phosphorylation-regulated kinase lB (DYRK1B/Tyr273) (C), and focal adhesion kinase (FAK/Tyr576)
(E). In addition to these changes in dynamics, more complex signaling patterns were observed for some of
these proteins as well, where both increases and decreases in phosphoprotein levels were observed at
different time points (cdc2/Thrl4/Tyrl5 (B), Lyn/Tyr397 (H), and MPZLl/Tyr263 (I). These complex
patterns also included delayed activation (EphA2/Tyr772 (D)).
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4.3.4. Correlation network modeling reveals significant changes in protein interactions

involved in cell migration mechanisms.

With a relatively large data set, it is difficult to infer the exact mechanisms in how the

introduction PF-4 changes the overall signaling landscape in HDMVEC angiogenesis. In order to

make sense of the time course data, a network correlation model was employed to evaluate the

topology changes in signaling pathways between the two treatment conditions. Pearson's

pairwise linear correlation coefficients were evaluated and compared for differences between the

two conditions (Figure 4-4). We included some proteins even though they did not possess a

minimum of two replicates at each time point. In these cases, we used the single replicate as a

representation of what signaling intensities were expected in order to provide an initial breadth of

coverage when generating correlations in the signaling network.

We saw that the addition of PF-4 inverted many of the protein correlations. While ERBB2IP was

positively correlated with all but GSK3 P, pragmin, and BCAR-1 in VEGF treatments, these

positive correlations all became inversely correlated or reduced in strength. Shp2, PLCy, MPZL1,

and P38a had very strong negative correlations with ERBB2IP. These similar trends were

observed for most of EphA2 and FAK interactions (Figure 4-4A,B, inset). DYRKIB had the

opposite correlations with BCAR- 1; while they are negatively correlated in VEGF conditions,

they become positively correlated in the presence of PF-4. These trends are also emphasized by

examining the magnitude of the difference in value between correlation coefficients of the two

conditions (Figure 4-4C).

The correlation values obtained for the full data sets were compared to a distribution of expected

values generated from randomizing the original data set. These returned our p values, of which

we considered those that appeared withp <0.05 as significant (Figure 4-4, Figure 4-5). Although

there were relatively fewer overlaps of correlational changes, the most interesting observation of

the changes in correlation coefficients were those following PF-4 treatment. While many

correlations were expected to be lost following PF-4 treatment (inhibition of angiogenesis), the

increase in number of positive correlations was surprising (Figure 4-4).
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Figure 4-4. Heatmaps of statistically significant pairwise correlation in both VEGF with and
without PF-4 treatments. Pairwise correlations for VEGF with and without PF-4 were calculated
through phosphorylation fold changes measured for each time course (A,B, insets) and the magnitude of
the differences in correlation coefficients were evaluated between the two treatments (C, inset). Although
general trends in pairwise correlations were similar, there were noticeable differences that occur between
the two treatments. Generally, correlation value trends appeared to become more strongly negative
following the introduction of PF-4. Following significance evaluation with permutation tests, the majority
of the pairwise correlations with statistically significant p values (p <0.05) varied between VEGF and
VEGF with PF-4. These pairwise correlations between proteins were almost always strongly positive in
both conditions; from correlations centered though EphA2 and P38a MAPK in VEGF treatments, with
more statistically significant correlations appearing more focused around BCAR-1, cdc2, and DYRKI B
when PF-4 was included (A,B). Correlational changes between proteins were largely different for
ERBB2IP followed by DYRKIB and FAK (C) Statistically significant shifts in correlations were
observed for ERBB2IP and DYRKlB interactions.

For a more intuitive understanding of the correlations p <0.05, signaling diagrams were plotted

to assist in data interpretation, where non-directional edges were representative of pairwise

correlations (Figure 4-5). P38a MAPK, Fyn, Lyn, PLCy, EphA2, MPZL1 and Annexin were

consistently correlated with a large number of other proteins (>4 edges) in both conditions

(Figure 4-5A,B). Notably, ERBB2IP lost all of its edges with PF-4 treatment while TYK2 gained

2 correlation edges (Figure 4-5B). In comparing edges of when observing the magnitude in

correlation coefficient differences (p <0.05), DYRK IB and ERBB2IP were at the center of

correlative changes (Figure 4-5C).

While modeling and conceptualizing the general trends occurring in our VEGF ± PF-4

treatments, statistical significance threshold needs to be corrected to reduce the rate of finding

false positives and increase confidence in our observations. Following the application of

Benjamini correction, only 3 correlation coefficients for each of the treatments were found to

meet the criterion. With the q < 0.3 (p<0.004) and the expected discovery rate of one false edge,

the correlations were mapped out onto flow charts (Figure 4-6).

All of the statistically significant correlations were strong positive correlations, as was observed

with the broader set of correlation coefficients with p <0.05 they were selected from (Figure 4-

4A,B). While the correlations are positive, the overall signaling dynamics are not. While

Annexin I and SHC 1 are positively correlated with VEGF treatment, their statistical significance

changes between PF-4 and VEGF occur at different stages of time (Annexin I is higher at early
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times, SHC1 is lower at late times), although the signaling trends across all 6 time points

remained relatively consistent (Figure 4-6A). Both EphA2 and P38a are positively correlated; in

the VEGF condition they both decrease over time following an initial activation (Figure 4-3D,J).

ERBB2IP and PTPRA dropped well below initial signaling at 6 hours (t<0) before gradually

increasing again.
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Figure 4-5. Diagrams of signaling pathways involved and changes in crosstalk when PF-4 is
introduced. The topology of the signaling pathways from the proteins measured are displayed for VEGF
dosing alone (A) and VEGF with the introduction of PF-4 (B). While several interactions are maintained,
a majority of interactions, particular those with P38a MAPK appear to have lost statistically significant
correlations when PF-4 is present. Additionally, correlation between Lyn and FAK are lost with the
addition of PF-4 indicating potential changes in migratory capacity. No changes were observed with cdc2;
PF-4 most likely does not exert its effects on proliferative mechanisms in endothelial cells. Shp2 and
PTPRA had at most one correlative edge, agreeing with findings of no statistical significance in the time
course data.

While the significant edges in the VEGF + PF-4 model portray PLCy as downstream of BCAR-I

correlation, we observed that all 3 follow an early increase (15-60 minutes) in signal, all of these

signals decline in later signaling (6 - 48 hours) (Figure 4-6B). The significant edge between
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EphA and P38a MAPK disappeared following with PF-4, although a correlation arose between

EphA and Fyn, where both appear to increase in levels following dosing with PF-4. While these

correlations accounted for the false discovery rate, edges radiating from ERBB2IP, PTPRA,

BCAR- 1 and PLCy were more cautiously considered over the EphA2 edges since these proteins

did not possess either statistical significance or full time course coverage.
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AN 
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BCAR-I(Tyr410) Fyn
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Figure 4-6. Multiple hypothesis testing correction of statistically significant correlations returns a
smaller subset with some overlap. With FDR set to 0.3 (p<.005), only three edges in each of the
conditions were statistically significant. Annexin and SHC 1, EphA2 and P38a, ERBB2IP and PTPRA
(PTPa) possessed strong positive correlations in the presence of VEGF (A). In the additional presence of
PF-4 the previous correlations in VEGF only treatments did not pass statistical significance and
Benjamini correction. Annexin and BCAR-1, BCAR- 1 and PLCy, Epha2 and Fyn possessed strong
positive correlations when PF-4 was also included in the treatment. Annexin I and EphA2 were the two
proteins to retain statistically significant correlative connections of all the proteins analyzed. No edges in
the difference magnitude correlations were statistically significant.

4.4. DISCUSSION

We have shown that we could successfully extract information about how PF-4 alters angiogenic

signaling pathways utilized by HDMVECs, particularly those involved with cell migration and
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subsequent sprout formation. Relatively few studies have been performed in the past on how this

chemokine specifically affects intracellular signaling in endothelial cells. To our knowledge, this

is the first large phosphoproteomic signaling data set collected from primary microvascular

endothelial cells cultured in a three-dimensional gel system. These signaling data are more

reflective of the physiological responses that are observed in vivo as opposed to the standard

two-dimensional cultures performed in the past. In all, development of these protocols provides

foundation for future studies of the molecular interplay involved in inflammation and

angiogenesis.

4.4.1. Increased P38a MAPK activity agrees with previously reported results

Similar to previous findings, we found that P38a MAPK activity increased following PF-4

dosing (52). P38a MAPK activity has been found to suppress endothelial cell migration capacity

and may have similar anti-migratory effects in our system (27). This potentially agrees with

previous data on PF-4 signaling through P38a to exert its angiostatic activity (52). However,

consideration of the different experimental approaches should be emphasized in comparison

between the two studies; we used HDMVEC cultured on 3D gels (providing sprouting potential)

while previous studies cultured microvascular endothelial cells directly on tissue culture plastic.

We can conclude that our results do not disagree in the potential importance of P38a MAPK

signaling in mediating response effects of PF-4 on endothelial cells.

4.4.2. PF-4 modulates phosphorylations of proteins involved with cell migration

In addition, we observed an initial decrease followed by an increase in later times for FAK

signaling. These phosphoprotein level changes and protein interactions may reflect PF-4's

regulatory influence on reducing endothelial migration (38, 76). The modulations in Fyn and Lyn

also lend credence to PF-4 influencing VEGF mediated signaling. While Fyn has been found to

inhibit cell migration following VEGF stimulation, Lyn promotes it as a positive regulator (80).

Both are increased when PF-4 is introduced, albeit Lyn has decreased signaling at 60 minutes,

possibly contributing to PF-4's ability to inhibit cell migration. FAK promotes angiogenesis and

cell migration in a Src dependent manner in which PF-4 may interfere (87). This is also

supported by the phosphorylation levels we observe for Tyr576 on FAK, as it is a result of being

in proximity to Src family kinases, such as Fyn and Lyn (9).

130



4.4.3. Other observed protein phosphorylation are delayed or attenuated

Ephrin and its class of RTK receptors have been recognized as important regulators of

embryonic vascular development (class B) and vascular remodeling of mature tissues (class A)

(8, 11). Deficient ephrin signaling has lead to embryonic lethality due to cardiovascular defects

and prevented endothelial tube assembly. Following PF-4 treatment, it appears that EphA2

phosphorylation dynamics were delayed behind those of VEGF treatment. However,

phosphorylation levels dipped below that of VEGF at 60 minutes. These changes in signaling

dynamics occur at similar times to those observed for FAK, Fyn, Lyn, and P38a. PF-4 may also

exert its angiostatic effects by delaying and decreasing EphA2 phosphorylation; decrease of

EphA2 leads to reduced cell migration and vascular remodeling.

As Annexin I has anti-inflammatory effects, it would be logical inflammatory chemokine would

decrease its phosphorylation (51). Annexin I has also been positively linked upstream to the

MAPK pathway, with its phosphorylations associated with cell proliferation and survival (36).

The observed downregulation of phospho-activity at 15 minutes relative to VEGF stimulation

may explain the decreases in phosphoERKl/2 levels measured in our initial Western blots

(Figure 3-3), and may contribute to the halt of cell proliferation in presence of PF-4 (21).

Annexin I has also been found to be pro-angiogenic in its ability to rescue angiogenic sprouts,

although its definitive role is still unclear (85). While we found statistical significance in

cdc2/cdkl dynamics, there appeared to be no correlation with the other proteins in our data set.

The differences in phosphorylation are most likely cyclic and may be due to asynchronous

phases of HDMVECs between treatments (3, 25).

4.4.4. Implications from late time point data and integration with full time course signaling

dynamics

It is difficult to assess the implications involved with the late time point increase in adaptor

protein SHC 1 phosphorylation, as this family of proteins is implicated in many mechanisms

including MAPK/ERK activation (56, 78). While a slight but statistically significant increase

was observed for GSK3p at 60 minutes following PF-4 treatment, it is uncertain what particular

role this may have, as GSK3p is a near ubiquitous protein that has been implicated in many
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processes including inflammation (14, 82). Other proteins that appeared to have decreased

phosphorylation levels include DYRK1 B (Mirk), a dual specificity tyrosine kinase that is

associated with cell survival (40). MPZL1 has statistical significance at late time points, and may

be associated with Shp2 activity. In our preliminary findings, we did not find any statistical

significance in Shp2 activity between PF-4 and VEGF. Further characterization of the phospho-

Tyr62 on Shp2 has yet to be reported in literature, although Shp2 appears to play important roles

in activating substrates which are negatively regulated by phosphorylation (37). Our data

indicate that MPZL1 may reduce docking sites with Shp2 and hence reduce certain kinase

activities.

4.4.5. Correlation network models predict positive role of Annexin I but potentially

negative regulatory role of EphA2 in angiogenesis

With a small subset of proteins such as ours, it is difficult to generate a relevant model of

pathways as these proteins may not have any true correlation to each other in the cell. The use of

a computational model such can provide some insight about how these proteins might interact

they do exist. Our correlation network model demonstrated P38a, Fyn, and EphA2 to be central

nodes in both signaling environments to the changes in protein interactions following PF-4

treatment. While PF-4 attenuated many of the signals observed following VEGF treatment, the

signals that increased in correlation strength were of particular interest. In fact, our significant

correlations with p <0.05 indicate positive correlations of multiple signaling; no negative

correlations were found. Coupling the presence of P38a, Fyn, and EphA2 as central nodes with

the time course data collected in Figure 4-3, this seems to suggest that VEGF with PF-4 tends to

generally increase phosphorylation levels while they decrease over time in VEGF only

conditions. ERBB2IP and DYRKIB had a large number of associations and edges in the change

of correlation and edges. Not much literature currently exists on their roles in endothelial cells

and angiogenesis. As such, these proteins may be of interest to investigate further in PF-4

signaling mechanisms.

In order to the gain confidence in the correlations we obtained, we applied multiple hypothesis

testing to our system of 210 unique correlations and their p-values. However, using the step-

down false discovery rate (FDR) method proposed by Benjamini et al., the restrictions on p
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values for significance tests here were perhaps too conservative. This is due to the theory of false

discovery rate, and the threshold values being for accepting p values in our system are very small

due to the number of unique pairwise correlations (n=210 p values and respective hypotheses

tests). Permutation tests are exact values rather than estimated statistics, and do not fare well

using methods for estimated FDR (10, 45, 83). The incorporation of resampling methods like

Westfall and Young procedures for permutation adjusted FDR may be less stringent and provide

more confidence in our results (45, 57, 75). These methods would allow us to gate out

interactions we have strong confidence in as true positives, and perform the step-down FDR

method (adjusted for permutations) on the remaining data to identify the false positive rate and

family wise error (FWE).

An alternative interpretation for these data (from that of threshold stringency) is that the low

level of statistical significance following adjustments for multiple hypothesis testing may also be

reflective of the proteins we are evaluating in this network. Simply, there may be little to no

correlation between the set of proteins in our data. The lack of correlation does not necessitate a

lack of connections or importance in signaling; their dynamics may very well be intimately

linked. Thus, the type of model to optimally represent signaling crosstalk must be considered

carefully. Some cases may even require hybrid or multiple models to fully capture significance

in signaling events. With more in-depth analysis and application of data processing methods, we

will be able to extract additional information about the signaling topology changes by PF-4.

We can infer some critical information from the remaining correlative edges after applying the

Benjamini method, particularly for Annexin I and EphA2 nodes that remained relevant in both

conditions treatment conditions. Annexin I has been found to be involved in many cellular

mechanisms responses, making it difficult to speculate on its specific function here in this system.

Annexin I has been indicated in anti-inflammatory roles and is pro-angiogenic for endothelial

cells (85). However, scarce data exist on Annexin I's interaction with BCAR-1 or SHC1. The

indirect positive correlation of Annexin I and PLCy may agree with previous findings. In our

data, Annexin signaling is attenuated and dampened with the introduction of PF-4.

Downregulation of annexin can lead to down regulation of PLC group signaling and is

recapitulated here in our data (19). Phospho Tyr77l levels we observed here on PLCy have not

133



been reported to affect PLCy activity, although a nearby Tyr783 residue is implicated in integrin-

mediated adhesion (74). Thus, the decrease in Annexin signaling, might be indicative of a

decrease in PLCy. However, this needs to be validated with more information on the role of

Tyr77 1. In General PLCy activation is required for endothelial cell migration mechanisms and

this could be be inferred to provide the same role in our data (79).

EphA2 is associated with mediating vascular remodeling promoting cell migration and sprouting

(53). From the significant correlations provided by Benjamini testing, both Fyn and EphA2 have

statistically significant increases in activity when PF-4 is introduced, while both EphA2 and

P38a MAPK are attenuated in its absence (e.g., only treated with VEGF). EphA2 Tyr772

phosphorylation is implicated in mediating cell-cell interactions, and from initial analysis of the

time course data in context of previous studies, is required for progression of angiogenesis (8,

13).

When considering the positive correlation of EphA2 with Fyn and P38a inhibiting cell migration,

we speculate that PF-4 stimulates EphA2's regulatory role on cell-cell interactions to reduce the

sprouting capacity of endothelial cells, or even implicate its role in ensuring only the most robust

sprouts form by preventing bulk cell invasion. This behavior has been speculated previously for

initiation of tumor metastasis and that EphA2 expression in tumor cells inhibits their propensity

to migrate (34). Tumor malignancy occurs when these cells overcome this ligand inhibition.

EphA2 has also been implicated in inhibiting integrin-mediated adhesion, migration, and

signaling, thereby contributing to a potential role in negative regulation following PF-4 treatment

(41). This would also agree with what we observe for signaling involved in migration; FAK

decreases over time in the presence of PF-4 and is negatively regulated by EphA2. VE-cadherin

and EphA2 crosstalk has been found in melanoma vasculogenic mimicry where EphA2

colocalizes with VE-cadherin (22, 23). This previous study found absence or downregulation of

VE-cadherin caused dephosphorylation of EphA2. While we did not have a full time course data

for VE-cadherin, we were able to detect a significant decrease in VE-cadherin levels following

PF-4 treatment. In corresponding confocal microscopy PF-4 caused more diffuse localization of

VE-cadherin at the membranes between adjacent HDMVECs, which may suggest an additional

interaction with EphA2 may be involved (data not shown). Thus, the analysis of the EphA2 time
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course data in the context of our correlation network model warrants re-evaluation of EphA2 as a

positive signal requirement in angiogenesis.

4.4.6. Caveats to signaling data

We also collected signaling data on culture treatments dosed only with 500 ng/mL PF-4.

Although we observed statistically significant changes due solely to the presence of PF-4 across

dosing times, the measurements were not considered here for a number of reasons. Despite the

interesting effects of PF-4 signaling, we deemed that it was physiologically irrelevant in the case

of angiogenesis, as we are interested in the dynamic changes of HDMVEC signaling in the

presence of simultaneous pro- and anti-angiogenic cues. Furthermore, PF-4 signaling was much

lower in intensity than treatment conditions that included VEGF; it was difficult to resolve much

of the quantify differences of PF-4 signaling for most phosphoproteins detected. For most data

observed, PF-4 only dosed conditions were not statistically significant from control. Those that

had statistically significant differences from the control were not statistically significant from

treatment conditions that had VEGF and PF-4 together. From this statistical analysis observation,

the effect of PF-4 may be additive to that of VEGF when the two are present together. This does

not necessarily rule out the importance of independent signaling by PF-4; signaling cascades

utilized by endothelial cells during inflammatory angiogenesis may become primed for certain

responses due to the presence of this inflammatory cytokine (e.g., PF-4 is present at high

concentrations during wound healing). Again, for the reader's reference, PF-4 data have been

included in Appendix E.

Despite our success, we realize that a majority of signaling data was lost due to the inherent

difficulties working with our system; a low signaling primary cell type in conjunction with a

highly concentrated matrix scaffold can drown out low level signaling. This was apparent in our

original captured list of phosphoproteomic data; we observed over 400 different phosphorylation

sites across 350 unique proteins that were significant hits and matches via Mascot. However,

there was insufficient quantitation in many of these measurements due to very low level

signaling. The presence of a high concentration of serum (5%) also introduces a high proportion

of background noise into our measurements (as is observed in some of the measurements shown

in Figure 4-3). To recover some of the lost quantitation, we attempted to pool time points into
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early, mid, and late signaling increases our phosphoprotein coverage from 13 proteins to 26 at

the expense of statistical power. Although total coverage expanded from 13 to 26 proteins, we

were only able to obtain statistical significance of time course data for 13 of the 26 proteins

versus 11 of the 13 nonpooled time courses (data not shown). We believe that some of our

signaling measurements may also be lost due to the preparation of samples for MS; we

randomized loading and combination of samples across both conditions and all time points so

that one iTRAQ run contained both early and late signaling. We expect to rescue more signaling

dynamics by separate evaluation and capture of earlier (15 min, 30 min, 60 min) and later (6 hrs,

24 hrs, 48 hrs) signaling events via MS, as earlier time point signaling may drown out our

quantitation of late signaling.

Obtaining signaling data from three-dimensional collagen gels is a nontrivial matter. The

presence of the collagen gel substrate introduces multiple challenges to collecting signaling data;

the first is the dilution of cell lysate collected while the second is the enormous contribution of

the substrate protein to the overall protein concentration in the collected lysate. Collagen

contamination invalidates most total protein assays used to determine sample-loading volumes

for assays such as Westerns and ELISAs making normalization of some data difficult or

implausible. We also investigated the use of the Luminex xMAP bead platform for assessing

phosphoprotein signaling dynamics. Unfortunately, due to the nature of the collagen gel system

we were unable to obtain significant signaling data for most assays. For the most abundant

phosphoproteins we were unable to obtain signal above background past 30-60 minutes (data not

shown).

Another caveat of our signaling data is the representation of unique signaling events in individual

cells through the overall population. Relative to the number of cells present, sprouting is an

uncommon event that occurs in our system. As such, the signaling data collected does not

accurately represent the signaling that is observed when endothelial cells decide to initiate

invasion into the extracellular matrix. However, this is encountered with almost all standard

protocols. The importance of late time point signaling within these data may not be

representative of the true sprouting population. For the most part, our consideration has focused

on early signaling time points around 30-60 minutes as this appears to be where most of the
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angiostatic influence of PF-4 has been exerted in our data and would likely be less affected by

the separation into subpopulation of sprouting cells.

Thus, with additional data collection from quantitative MS we will be able to expand the time

course set of data and increase coverage of the signaling network, including many that were not

(but should be) considered in the correlational network model. Our predictions and observations

of differential signaling dynamics with PF-4 will improve and flesh out the intracellular

mechanisms involved in its ability to inhibit angiogenesis. The larger data set will also improve

PTMScout predictions and outputs, and will its full utility in assessing differences in VEGF

PF-4 conditions and with the potential to discover new signal dynamics. Future work can be

applied to creating a more complete picture by incorporating cue-response data.

4.4.7. Summary

We have developed new methods to explore pro- and anti-angiogenic Our preliminary data

indicate that PF-4 primarily induces its angiostatic effects on microvascular endothelial cells via

pathways that control cell migration which precede sprouting/invasion phenotype. Thus, by

modulating these protein interactions of P38, FAK, EphA2 ,and Src family kinases Fyn and Lyn,

we can potentially increase how we can affect angiogenesis in the adult body, both in promoting

tissue and graft vascularization, to inhibiting the progression of tumor growth. From both

assessment of the time course data and correlation network modeling, we have found substantial

implications of EphA2 signaling dynamics in negatively regulating cell migration and

angiogenesis following stimulation, contrary to previous reports of its role in promoting cell

migration and sprouting. Our work indicates EphA2 signaling as an area of interest and future

focus for understanding angiostatic mechanisms.
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Chapter 5

Concluding Remarks

5.1.1. Microvascular physiology and the future of tissue engineering

The fundamental need to integrate microvascular research into artificial tissue development is

increasingly apparent as tissue engineering itself advances. Tissue engineering is currently

limited by the ability to emulate complex processes present in highly metabolic organs such as

the liver (3). Thus, establishing the microvascular architecture as the foundation of these tissues

will help maintain their survival and function. Already, recent studies have found that lung tissue

regeneration requires endothelial cells for initiating signaling pathways for reconstructing

alveolar tissue (2). By understanding endothelial cell roles in aiding regeneration of complex

organs by vascular remodeling or eliciting start cues, we can advance the field of tissue

engineering and perhaps eventually recapitulate full functions of other metabolically demanding

organs.

5.1.2. Applications, limitations, and future work with primary differentiated LSEC

cultures in vitro

In Chapter 2, our work with liver SEC investigates methods to meet these goals. The use of

differentiated endothelial cell types inherent in organs versus generic vascular endothelial cells

must be emphasized here; the use of endothelial cells not indigenous to the organs being

constructed can be detrimental by issuing the wrong cues and interactions with the parenchymal

cells. Serum-free culture medium for LSEC maintenance is an important finding, particular in

applications towards tissue engineering. Serum itself present many unknown and uncontrollable

variables such as levels of growth factors and molecules that could elicit negative responses or

tissue rejection if it is not completely cleared from a tissue prior to grafting or implantation. The

discovery that FFAs can support LSEC biology simplifies some of the potential clinical pitfalls

that many engineered tissues encounter with biocompatibility.
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The lipid supplementation to LSEC cultures however, is not without its limitations. For example,

although lipids help sustain LSEC, we have found that the same concentrations are toxic to

hepatocytes. This may limit the integration of LSEC monocultures in vitro into a structured

vasculature for hepatocytes, as the survival of LSEC impinge on that of hepatocytes (4). The

issue of lipotoxicity (or metabolic syndrome) can be encountered in tissues other than liver, such

as the heart or pancreas (6-8). These limitations themselves are an interesting area of study, and

can these culture techniques can be applied to studying the pathological phenomena as it occurs

in vivo, such as fatty liver disease and steatosis (1, 5).

5.1.3. Applications, limitations, and future work of molecular pathways for inflammatory

angiogenesis

In Chapter 3, we explored different methods to obtain physiologically relevant signaling data

regarding angiogenesis. Previous work and literature have explored intracellular mechanisms of

angiogenesis with a small sampling and focus of proteins. Those that have attempted to survey

the signaling topology have utilized two-dimensional cultures on very stiff substrates. To our

knowledge, no previous literature exists on exploring broad coverage of signaling pathways in

collagen gel cell cultures. We have successfully developed protocols to obtain measurable

lysates from three-dimensional culture systems.

In Chapter 4, optimization of lysate collection from collagen gels enabled us to capture a glimpse

of how a large number of proteins in intracellular signaling pathways are modulated in

angiogenesis and its inhibition by PF-4. The data that we have collected can be instrumental in

decoding how angiogenesis occurs in inflammatory environments, as no in vivo vascular

remodeling system occurs with strictly pro-angiogenic cues. Our conclusions on how PF-4 affect

angiogenesis by modulating cell migration pathways can be applied to deriving a detailed

mechanistic understanding of inflammatory angiogenesis in wound healing. These data and

conclusions can also be applied to predictions on how vascularized, artificial tissues will respond

once they are implanted into a host.

We have acquired expansive coverage of signaling cascades and crosstalks involved with

angiogenesis using mass spectrometry. We have only analyzed a small subset of the data that we
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obtained; further analysis and modeling will unquestionably provide more understanding to the
intracellular pathways and crosstalk involved in angiogenesis. Even though signaling data is
missing from certain time points, computation models and simulations have the ability to help
fill in gaps and provide more in-depth analyses and predictions. Linking these cue-signal data
with appropriate cue-response data in the endothelial sprouting assay will also help flesh out PF-
4 and VEGF interactions. In broader perspectives, the protocols that we generated can be
applied to study intracellular mechanisms in other systems where three-dimensional scaffolds are
crucial for phenotypic behaviors, such as in vitro invasion assays to study tumor metastasis in a
controlled environment.

While we overcame obstacles dealt with using more physiologically relevant culturing

conditions in mass spectrometry, we did so at the expense of signal quality and resolution. With
the bread of coverage that mass spectrometry provides when sampling the phosphoprotein

signaling landscape, our initial cellular protein concentrations available for assaying are much
lower than typical samples. Most of the signaling data we acquired for protein identification and
validation were only one or two orders of magnitude higher than background signal.

Thresholding of real signals was exacerbated by the process of lysate collection from collagen
gels, as both dilution and collagen contamination contribute to this loss. The presence of serum
in our cultures also increases the background signal, decreasing our signal resolution when
validating peaks in our samples. We do not obtain the same volume of data that is collected from
samples grown on tissue culture plastic; indeed, we observe almost a three-fold reduction in
phosphoprotein coverage to keep our level of physiological relevance.

5.1.4. Conclusion

In the end, the work here explores and reveals more of the foundations for incorporating

microvasculature into tissue engineering. We first enable the culture of differentiated endothelial

cells inherent to the liver, a complex metabolic organ. Second, we developed protocols for

examining signal transduction pathways necessary for angiogenesis as well as potential proteins

of interest to modulate their behavior. These studies help elucidate mechanisms for maintaining

and promoting endothelial cells phenotypes in vitro, and its applications can propel the field of

tissue engineering further.
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Appendix A

Abbreviations

AA
Abl1
AMP
ANOVA
ANXAl
BCA
BCAR-1
BrdU
BSA
cdc2/cdkl
CID
Crk
CXCL4L1
CXCR3
Dex
Di-I-Ac-LDL
DMEM
DMSO
DNA
DTT
DYRKlB/Mirk
EBM-2
ECL
ECM
EDTA
EdU
EGFR
EGM-2MV
EGTA
EphA2
ERBB2IP
ERK
ESI
FABP
FAK

amino acid
v-abl Abelson murine leukemia viral oncogene homolog 1
adenosine monophosphate
analysis of variance
annexin I
bicinchoninic acid
breast cancer anti estrogen resistance 1
5-bromo-2'-deoxyuridine
bovine serum albumin
cell division cycle 2 protein/cyclin dependent kinase 1
collision induced dissociation
proto-oncogene c-Crk
platelet factor 4 variant 1
CXC Receptor 3
dexamethasone
dioctadecyl 3,3,3',3' tetramethylindo carbocyanine perchlorate labeled acetylated LDL
Dulbecoo's modified essential medium
dimethyl sulfoxide
deoxyribonuleic acid
dithiothrietol
dual-specificty tyrosine-(Y)-phosphorylation regulated kinase
endothelial basal medium 2
enhanced chemiluminescence
extracellular Matrix
ethylenediaminetetraacetic acid
5-ethynyl-2'-deoxyuridine
epidermal growth factor receptor
endothelial growth medium 2 (microvascular)
ethylene glycol tetraacetic acid
ephrin receptor A2
ERBB2 interacting protein
extracellular-signal-regulated kinase
electrospray ionization
fatty acid binding protein
focal adhesion kinase
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FBS
FDA
FDR
FFA
FGF
FGR
FWE
Fyn
GAPDH
GPCR
Grb2
GSK
HCD
HDMVEC
HEPES
HGM
Hsp
Hyd
I-TAC
INPP5D
INSR
IP
IP-10
ITK
JNK
LC/MS/MS
Lck
LDL
LPC
LSEC
Lyn
m/z
MEK1/2
Mig
MPZL1
MS
MTT
MW
NaOH
NCK1
OA

OPTN/SRTR

fetal bovine serum
Food and Drug Administration
false discovery rate
free fatty acids
fibroblast growth factor
Gardner-Rasheed felinse viral oncogene homolog
family wise error
protein-tyrosine kinase fyn
glyceraldehyde 3-phosphate dehydrogenase
G-protein coupled receptors
growth factor receptor-bound protein 2
glycogen synthase kinase
higher-energy collisional dissociation
human dermal microvascular endothelial cell
4-(2-hydroxyethyl)- 1-piperazineethanesulfonic acid
hepatocyte growth medium
heat shock protein
hydrocortisone
CXCLI1
phosphatidylinositol-3,4,5-triphosphate 5 phosphatase 1
insulin receptor
immunoprecipitation
interferon-y inducible protein 10
IL2-inducible T-cell kinase
c-Jun N-terminal kinase
liquid chromatography tandem mass spectrometry
lymphocyte-specific protein tyrosine kinase
low density lipoprotein
lysophosphatidylcholine
liver sinusoidal endothelial cell
Yamaguchi sarcomal viral oncogene homolog (v-yes-1)
mass to charge ratio
mitogen-activated protein kinase kinase
CXCL9
myelin protein zero-like 1 isoform a
mass spectrometry
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
molecular weight
sodium hydroxide
non-catalytic region of tyrosine kinase adaptor protein 1
oleic acid
Organ Procurement and Transplantation Network/ Scientific Registry of Transplant
Recipients



PBS phosphate buffered saline
PBS-T 0.1% Tween-20 in PBS
PC phosphatidylcholine
PCNA proliferating cell nuclear antigen
PDGF platelet derived growth factor
PDGFRB PDGF receptor, beta-type
PECAM-
1/CD31 platelet endothelial cell adhesion molecule 1/Cluster of Differentiation 31
PF-4 platelet Factor 4
PHx partial hepatectomy
P13K phosphatidylinositol 3-kinase
PKA protein kinase A
PKB/Akt protein kinase B
PKC protein kinase C
PLCy phospholipase C y
PMA phorbol myristate acetate
PMSF phenylmethanesulfonylfluoride
PRAG pragmin
PRKDC protein kinase, DNA-activated, catalytic polypeptide
PTB phosphotyrosine-binding domain
PTEN phosphatase and tensin homolog
PTPRA protein tyrosine phosphatase, receptor type A (PTPa)
SE-1 sinusoidal endothelial 1 antigen
SEM scanning electron microscopy
SH2 Src homology 2
SHC1 SHC transforming protein 1
SHP2 tyrosine phosphatase non-receptor type 11
TGF-p transforming growth factor p
Thr threonine
TYK2 tyrosine kinase 2
Tyr tyrosine
VEGF vascular endothelial growth factor
VEGFR VEGF receptor
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Appendix B: Modified HGM and primary LSEC isolation protocol

B.1. Preparation of Hepatocyte Growth Medium (HGM) for primary rat sinusoidal

endothelial cultures

Reagents

Media

DMEM Gibco # 11054-020, 500 ml,low glucose, pyridoxine HCl,

sodium pyruvate, no glutamine, no phenol red

Dry supplements

L-Proline

L-Ornithine

Niacinamide (Nicotinamide)

D-(+)-Glucose

D-(+)-Galactose

Bovine Serum Albumin, Fraction V

Phosphoethanolamine

Heparin*

L-Ascorbic Acid

Glycine

EDTA (for use in isolation)

Liquid supplements

Ethanolamine

Heparin

Sterile liquid supplements

L-Glutamine

Sigma # P-4655

Sigma # 0-6503

Sigma # N-0636

Sigma # G-7021

Sigma # G-5388

Sigma # A-9647 (Sigma # A-6003 is fatty acid free)

Sigma # P-0503

Celsus # PH-0300

Sigma # A-4034

Mallinckrodt # 7728

Sigma # E-6758

Sigma # E-0135 (16.6 M stock solution)

Celsus # PH-0300

Gibco # 25030-081

Purchase 100 ml 200 mM solution

Make 3.0 ml aliquots
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Store aliquots at -20 0C

Sodium selenite

Insulin, human

Dexamethasone

(Dex MW = 392.47)

Hydrocortisone

(Hyd MW = 362.46 g/mol)

Gentamicin

Sigma # S-9133

Purchase 1.0 mg

Reconstitute in 50 ml sterile MilliQ water to 20 ug/ml

Make 200 ul aliquots

Store aliquots at -20*C

Sigma # 1-9278

Purchase 10 ml 10 mg/ml solution

Make 300 ul aliquots

Store aliquots at -20*C

Sigma # D-8893

Purchase 1.0 mg

Reconstitute in 1 ml EtOH using sterile syringe and needle

to fully dissolve powder, add 19 ml sterile PBS to 50 ug/ml

(127 uM)

Make 450 ul aliquots

Store aliquots at -20'C

Sigma # H-0 135

Purchase 1.0 mg

Reconstitute in 1 ml EtOH using sterile syring and needle

to fully dissolve powder, add 19 ml sterile PBS to 50

ug/mL (138 uM)

Make 450 uL aliquots

Store aliquots at -20'C

Sigma # G-1397

Purchase 100 ml 50 mg/ml solution
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Make 550 ul aliquots

Store aliquots at 4*C

Transferrin, from human serum

VEGF-165, recombinant human

L-Ascorbic Acid

Lipid Concentrate

Fetal Bovine Serum

Roche # 10652202001

Purchase 20ml 30 mg/ml solution

Dilute 20 ml in 100 ml sterile MilliQ water to 5 mg/ml

Make 550 ul aliquots

Store aliquots at -20'C

R&D Systems #293-VE/CF

Purchase 10 or 50 ug (293-VE-10 or 293-VE-50)

Dilute 10 ug in 200 uL of 0.1% BSA lx PBS or

50 ug in 1000 uL of 0.1% BSA 1x PBS to 50 ug/mL stock

Make 28 uL aliquots

Store aliquots at -20'C

Dilute 50 mg in 1 mL milliQ water to 50 mg/mL

Sterile filter and make into 12 uL aliquots (250 mM stock

concentration)

Take 1 aliquot - add 10 uL to 10 mL sterile PBS

Make 200 uL aliquots (250 uM stock concentration)

Store aliquots at -20'C

Gibco # 11905 100 mL

Make 1.5 mL aliquots

Store aliquots at 4*C under head of nitrogen gas

Hyclone #SV-30014.03

Make 1 mL aliquots

Store aliquots at -20'C
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Protocol

Add dry, weighed supplements to

L-Proline 0.015 g

L-Ornithine 0.050 g

Niacinamide 0.153 g

D-(+)-Glucose 0.500 g

D-(+)-Galactose 1.000 g

BSA 1.000 g

Phosphoethanolamine 0.0 141 g

Heparin 0.010 g

500 ml DMEM.

0.030 mg/ml fi

0.100 mg/ml fi

0.305 mg/ml fi

2.250 mg/ml fi

2.000 mg/ml fi

2.000 mg/ml fi

0.2 mM final

20 ug/mL final

nal

nal

nal

rial (base DMEM has 1.0 mg/ml)

nal

rial

Add non-sterile liquid supplements

Ethanolamine 6 ul 0.2 mM final

Allow supplements to fully dissolve into media for 10-30 min. Use 4 degrees C nutator to help

expedite the process.

Sterile filter media in tissue culture hood. Thaw and add sterile aliquots to sterile-filtered media.

L-glutamine

Sodium selenite

Insulin

Dexamethasone

Hydrocortisone

Gentamicin

Transferrin

Centrifugation media

EDTA

2.5 ml

125 ul

250 ul

400 ul

400 ul

500 ul

500 ul

(Percoll

40 ul

1.0 mM final

5.0 ng/ml final

5.0 ug/ml final

0.1 uM final

~0.110 uM final

50 ug/mL final

5.0 ug/ml final

1:200 dilution

1:4000 dilution

1:2000 dilution

1:1250 dilution or

1:1250 dilution

1:1000 dilution

1:1000 dilution

isolation) (40 mL)

1 pM final
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100 nM final 1:2500 dilution

Seeding media (10 mL)

rhVEGF-165 5 uL 25 ng/mL final 1:1000 dilution

L-Ascorbic Acid 4 uL 100 nM final 1:2500 dilution

FBS 200 uL 2% final 1:100 dilution

Right before use of culture media, to smaller media aliquots of 10 mL add:

rhVEGF-165 10 uL 50 ng/mL final 1:1000 dilution

CD Lipid Concentrate 10 uL 0.1% solution 1:1000 dilution

L-Ascorbic Acid 4 uL 100 nM final 1:2500 dilution

Storage:

Base media can be kept for up to 4 weeks.

Following addition of lipids and ascorbic acid, best to use media within 3-4 days, as half-life of

ascorbic acid is 7 days at 4'C.

B.2. Primary Liver Sinusoidal Endothelial Cell Isolation

Adapted from protocols by Albert Hwa (2005), Ajit Dash (2007), and Braet et al. Lab Inv. 70(6):

944-952 (1994).

Materials: Calcium and magnesium free PBS (Gibco 10010-031); 2X PBS (diluted from 10X);

Percoll (Sigma-Aldrich P-4937); modified HGM; EGM-2 (Lonza CC-3162); Hoechst 33342

(Molecular Probes / Invitrogen H-3570); Sytox Orange (Molecular Probes / Invitrogen S 11368);

EDTA (Sigma E6758) cell culture tested; Fetal Bovine Serum (Hyclone #SV-30014.03)

*Perfusion can be performed with Blendzyme flow at 15 mL/min or at 25 mL/min; the lower

flow rate can potentially give higher yields (25 to 60E6 cells) than the faster flow rate (15 to
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40E6 cells).

**Addition of 1 pM EDTA to PBS and base medium may increase potential yields, however do

note that pH change can drastically affect cell numbers and viability.

1. While the perfusion occurs, create 30 mL of 25% and 50% Percoll solutions. The 25% Percoll

solution is made by using 7.5 mL Percoll + 7.5 ml 2X PBS + 15 mL 1X PBS with EDTA. The

30% Percoll solution is made with 15 mL Percoll + 15 mL 2X PBS with EDTA.

2. Following the perfusion, spin down the cells for 3 minutes at 50 x g at 4 degrees Celsius.

Repeat twice. Save the supernatant from both spins. If being assisted, Percoll layering can be

initiated at this time (or at the time the liver is removed during the perfusion). This will allow

reduction in waiting times between steps.

3. Equally split the 25% Percoll solution into two 50 mL centrifuge tubes. Use a 1 OmL pipette

and draw up to the red line with 50% Percoll solution. This should be approximately 14.5 mL.

Do not wet the cotton inside the pipette tip. Taking the 10 mL pipette, lower the tip slowly to the

bottom of the centrifuge tube. Raise the tip a bit from the bottom so that flow will not be

blocked. [Lay the tip of the pipette a little above the v-rise at the bottom of the tube]

4. Slowly load the 50% Percoll underneath the 25% Percoll to obtain two distinct layers.

Approximate unloading of the pipette should be about 1 mL every 10-15 seconds.

5. Spin the supernatant following the two 50 x g spins again at 50 x g for 3 minutes, but at room

temperature. Take the supernatant and discard the pellet.

6. Spin the supernatants at 100 x g for 5 minutes to remove the rest of the parenchymal cells. All

centrifugation from here on should be performed at room temperature to optimize cell viability

(reduce thermal shock). Reserve the supernatant and discard the pellets.

6. Spin the remaining supernatant at 350 x g for 10 minutes. The supernatant is discarded.

Resuspend the pellet of enriched endothelial cells in 20 mL of modified HGM or EGM-2 with 1
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pM EDTA.

7. Slowly load the 10 mL of cell suspension into both Percoll layered tubes, on top of the 25%

Percoll. This can be done by wetting the wall and moving the pipette alongside the wall to

release the liquid so that it slowly trickles down the wall from different points, reducing the

interruption and break to the surface tension. Rate can be done at about 1 mL every 10-15

seconds.

8. Gently load the tubes into the centrifuge without disturbing the Percoll layers. Set brake to 0

and acceleration to 1. Spin at 900 x g for 20 minutes (can range from 18-22 minutes; note that

the longer it spins, the more likely endothelial cells will move into the 50% Percoll layer).

9. The intermediate zone should be collected (5 ml above and below the layer line), which should

be rich in LECs. Aspirate off the layers until liquid measures at 20 mL in the tube. Collect the

cell layer and liquid until 10 mL is left.

10. Add equal amount of base modified HGM (or EGM-2) to the tube (20 mL to 20 mL). Set

brake to 6 and acceleration to 9 (as we do not need to worry about disturbing Percoll layers

anymore). Spin the suspensions at 950 x g for 15 minutes.

11. Aspirate the supernatant, break-up the pellet and resuspend in 10 mL of modified HGM (or

EGM-2) with 2% FBS. If higher cell density is desired, resuspend in 5 mL of media.

12. Take 900 uL of modified HGM (or EGM-2), 2 uL Hoechst, 2 uL Sytox Orange, and 100 uL

of cell suspension and count in Hemacytometer using DAPI filter (Hoechst 33342) and

rhodamine filter (Sytox Orange). Nucleic acids of dead cells fluoresce bright orange while

Hoechst nuclei show up as blue. Sytox Orange/Nuclei complexes have absorption and

fluorescence emission maxima of 547 nm and 570 nm respectively.

OPTIONAL:

13. Pipette the suspension into a 6 well plate (-1.75 mL each well) or into a large Petri dish and
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let cells sit for 10-20 minutes inside an incubator to allow selective attachment of Kupffer cells.

14. Remove the supernatant from the wells and mix thoroughly. Repeat cell count if desired.

15. Cells are ready for use.
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Appendix C

Phosphotyrosine enriched mass spectrometry protocol

Adapted from White Lab protocols.

C.1. Buffer solutions

Ammonium acetate buffer: 100 mM ammonium acetate (pH to 8.9 with ammonium hydroxide)

Elution buffer: 250 mM monosodium phosphate (NaH2PO4) buffer (pH to 8.0)

EDTA solution: 100 mM EDTA (pH to 8.9)

Acetonitrile solutions: 100%, 80% acetonitrile/20% isopropanol

Iron(III) Chloride: 100 mM (162.2 g/mol) in milliQ H2 0

Organic rinse: 100 mM sodium chloride, 25% acetonitrile, 1% acetic acid

IP buffer: 100 mM Tris (pH 7.4), 0.3% NP-40

iTRAQ IP buffer: 100 mM Tris (pH 7.4), 1% NP-40

IP Rinse buffer: 100 mM Tris (pH 7.4)

IP Elution buffer: 100 mM glycine (pH 2-2.5)

C.2. Chemical modification and digestion

1. Make a fresh solution of 1M DTT (Sigma D0632) in 100 mM ammonium acetate buffer (pH =

8.9). Use at 1:100 to get final concentration of 10 mM DTT.

2. Vortex samples and incubate in 56'C water bath for 1 hour.

3. Prepare a fresh solution of 800 mM iodoacetamide (Sigma 11144) in ammonium acetate buffer

(pH = 8.9). Use at 1:14.5 to get final concentration of 55 mM iodoacetamide.

4. Incubate at room temperature, with tubes wrapped in foil (to protect from light) on a nutator

for 1 hour.

5. Add sequence grade trypsin (Promega V5113) at 1:50 to 100 mM ammonium acetate buffer

(pH = 8.9). Buffer volume should be around two times the sample volume when at step 4 (e.g. 5

mL, add 10 mL).

6. Incubate at room temperature on the nutator overnight, making sure to protect from light.
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7. End digestion by adding 1 mL of glacial acetic acid.

8. Samples are frozen at -800C.

C.3. Sep-Pak, Speed-Vac, and lyophilization

1. Thaw out samples from above steps. Centrifuge samples for 5 minutes to pellet particulates

which might clog Sep-Pak columns.

2. Precondition the Sep-Pak columns with solutions in the following order:

10 mL 0.1% acetic acid at a rate of 2 mL/min

10 mL of 90% acetonitrile and 0.1% acetic acid at a rate of 2 mL/min

10 mL of 0.1% acetic acid at a rate of 2 mL/min

*Wet the Sep-paks before placing back on the syringe (reduces introduction of air

bubbles)

3. Load sample on Sep-Pak columns at a flow rate of 1 mL/min

4. Rinse column with 10 mL acetic acid at a flow rate of 2 mL/min

5. Elute and collect peptides with acetonitrile. Do not wet before this step; wetting will change

solvent concentration and loss of sample may occur.

a. Elute the first fraction with 25% acetonitrile in 0.1% acetic acid at a flow rate of 0.1

mL/min.

b. Elute the second fraction with 40% acetonitrile in 0.1% acetic acid at a flow rate of 0.1

mL/min.

6. Speed-Vac samples to reduce volume. This will take roughly 4 or 5 hours until volume is

about 3-4 mL.

7. Split samples into two aliquots. Speed-Vac for 1 hour.

8. Snap freeze samples in liquid nitrogen or freeze the samples at -80'C for at least two hours. It

does not matter as long as samples are solidly frozen.

9. Make sure sample tubes are opened slightly and place into lyophilizing chamber. Leave

sample to lyophilize overnight.

10. Store lyophilized samples at -80*C.
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C.4. 8-plex iTRAQ labeling

1. Dissolve lyophilized samples in 60 pL dissolution buffer (iTRAQ kit, also known as 0.5 M

triethylammonium bicarbonate (TEAB, N(Et)3HC0 3). Samples should turn light pink.

2. Vortex each sample for 1 minute and spin at 13,400 rpm for 1 minute.

3. Add 70 pL isopropanol to each iTRAQ vial. Vortex each vial for 1 minute and spin at 13,400

rpm for 1 minute. Since there is high collagen content in samples, use two iTRAQ vials for each

sample.

4. Transfer iTRAQ reagents to appropriate sample tubes. Vortex each sample for 1 minute and

spin at 13,400 rpm for 1 minute.

5. Incubate samples at room temperature for 2 hours.

6. Speed-Vac samples to 30 pL. This should take roughly 20-30 minutes.

7. Aliquot 560 pL of 25% acetonitrile with 0.1% acetic acid solution into an eppendorf tube.

8. Combine all samples into a single tube. Use a single pipette tip to avoid sample loss.

9. Add 40 pL 25% acetonitrile with 0.1% acetic acid solution to each empty tube, vortex for 1

minute and spin at 13,400 rpm for 1 minute. Add the rinses to each sample. Again, use a single

pipette tip to avoid sample loss.

10. Repeat rinse step.

11. Speed-Vac the samples until they are dry (6-8 hours or overnight). Samples can be stored at -

80*C, or immediately processed for phosphotyrosine IP.

C.5. Phosphotyrosine peptide IP

1. Use 20 p.L protein G agarose beads per 12 pg antibody

2. Wash 60 pL protein G agarose (calbiochem IP08) with 300 pL IP buffer (100 mM Tris-HCl,

0.3% NP-40, pH 7.4)

3. Combine in an eppendorf tube and centrifuge for 5 minutes at 6500 rpm.

4. Remove supernatant and add 300 pL IP buffer.

5. Add 12 pL 4G10 (Millipore), 12 pL PYlO (CST), and 12 pL PT66 (Sigma-Aldrich) to

protein G agarose.

6. Allow mixture to incubate at 4*C on a rotor for 6-8 hours.

7. Spin down the mixture at 6500 rpm for 5 minu at 4'C.

8. Remove and discard the supernatant.
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9. Wash the beads with 400 jiL IP buffer. Let them sit in buffer for 5 minutes on rotor.

10. Spin down the beads at 6500 rpm for 5 minutes.

11. Resuspend Speed-Vac pellets in 150 pL iTRAQ IP buffer (100 mM Tris-HCL, 1% NP-40,

pH 7.4) and 400 ptL iTRAQ IP buffer. Vortex until all of the sample is dissolved.

12. Spin down the sample to ensure all are in the solution

13. Check to pH to see if it is close to 7.4 and compare with IP buffer. If pH is slightly lower,

add -5 piL of Tris buffer (pH 8.5, 500 mM). iTRAQ labeled samples tend to be lower in pH.

14. Remove supernatant from beads and add samples.

15. Incubate the sample with beads overnight on the rotor at 40C.

16. Centrifuge at 6500 rpm for 5 minutes at 40C.

17. Save supernatant for total protein normalization and store at -80'C.

18. Wash the beads with 400 pL iTRAQ IP buffer and then 400 pL rinse buffer (100 mM Tris

HCl, pH 7.4) for 5 minutes on the rotor.

19. Centrifuge at 6500 rpm for 5 minutes at 4*C.

20. Discard supernatant.

21. Repeat 2 more times (total of 4 times with 1" time using iTRAQ IP buffer).

22. Add 70 pL IP elution buffer (100 mM glycine, pH 2-2.5) with 10 pL acetonitrile and

incubate on a rotor for 30 minutes at room temperature.

23. Prepare eluate for loading onto IMAC column.

C.6. IMAC enrichment of phosphotyrosine peptides using Ni-NTA agarose conjugates

1.Rinse 100 pL Ni-NTA slurry (50 pL resin) (Qiagen 30410) with 800 pL MilliQ H20. 25 PL of

NTA resin enriches a total of 200 ptg cell lysate.

2. Centrifuge at 6500 rpm for 1 minute.

3. Remove supernatant.

4. Repeat two more times.

5. Strip nickel from the resin with 800 pL 100 mM EDTA (pH 8.0). Incubate for 30 minutes at

room temperature on a nutator.

6. Rinse residual nickel away with 800 uL milliQ H20.

7. Repeat two more times.

8. Apply 800 pL of 100 mM iron chloride solution and incubate for 30-45 minutes.
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9. Wash beads with 800 pL MilliQ H20 three times.

10. Wash beads with 800 pL 0.1% trifluoroacetic acid (TFA).

11. Resuspend beads in 50 pL 0.1% TFA

12. Acidify the phosphotyrosine eluate (70 pL) with 10 ptL 10% TFA before adding to the iron

chelated resin. Incubate for 30-60 minutes at room temperature on a nutator.

13. Wash twice with 400 pL 0.1% TFA

14. Wash twice with 400 pL 0.1% acetic acid. This will remove TFA before MS analysis.

15. Elute into 40 pL 250 mM sodium phosphate buffer (pH 8.0)

16. Incubate at room temperature for 30 minutes prior to directly loading eluate onto acidified

precolumn.
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Appendix D

LTQ Orbitrap MS Spectra Validation Protocol

These protocol require Xcalibur and Mascot software.

D.1. Spectra Validation Set-Up

1) Pull up Xcalibur and Qual Browser

2) Make sure the green tack is on the bottom window, jump to the scan number of interest.

3) Print out the spectra, write the name and sequence on the spectra printout.

a. Check to see if the spectra was collected in CID or HCD.

i. CID will have more background/lower resolution as it is collected via

quadrupole MS away from the C-trap while HCD is collected on the Orbi

magnet near the C-trap and will have higher resolution but more

background in higher m/z. Make note of CID or HCD

b. Check the NL value: if it is E2 or higher, proceed. If below E2, discard to due to

high background.

c. You can also print out the peaks that are above 10% for that spectra. On the

toolbar, there is a button to "View Spectrum List." Click that and then go to

Display options and set for viewing between 10 and 100% of highest peak.

4) Go to corresponding Mascot search. Match Query to Scan number. Scan number will be

listed in the Query as "Finnegan Scan Number"

a. Take note of the Molecular Weight and reported molecular weight and charge

(m/z, z) next to the full MW.

b. In the Select Summary Report tab, place the mouse cursor over the specific query

that matches the Finnegan Scan number. Observe all significant underlined amino

acids - these should also be underlined (use notation to dictate rank) in the

sequence written on the spectra printout.

i. There may be more than one phospho-site present on that peptide

sequence.
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ii. Neutral loss of a phosphate group may be important in matching y and b

ions, as values will be shifted as a result, especially if MS-Product is used

to find theoretical peaks.

5) Go back to Qual Browser

6) Check preceding survey scan of full MS at the specific m/z point. Make sure that there

are clean peaks and that only one peak lies within 0.5 Da (m/z) of that point.

a. If there are other peaks, they are only acceptable if they are l/z distance away.

These are part of the isotope series. For example, if z is +3, than the peaks will be

0.33 separated, +4 will be 0.25, etc. If peaks are exactly 1 away, they are junk, as

are most likely charge from amino acids (like Arg, Lys).

b. If this is a peptide that has been assigned a pY, check the full MS scan for a peak

at ~216.04 m/z. This is a pY ammonium ion and is present if you truly have

phospho-tyrosine in samples.

c. In the case that there are other peaks within the 0.5 Da range, they can be ignored

if they are <<10% of the peak that is being taken for analysis.

7) Start assigning y and b ions (use MASCOT query to do initial assignments).

a. The MASCOT query will give a good assessment of whether the assignment is

real or not; if the y and b ions are consistently in bold red (not too many gaps in

the sequence), then it is highly likely that the peptide is correctly assigned.
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Figure D-1. Sample spectra of GSK3P. Peak values in spectra are normalized to most abundant ion
(here, the y, ion). b, y, and a ions are assigned to peaks that have above 10% of the intensity of the largest
peak. An isotopic shift of 1 m/z is observed for the alo ion.

D.2. RULES FOR ASSIGNING PEAKS

1) CARDINAL RULE: MUST ASSIGN ALL PEAKS THAT ARE ABOVE 10% OF THE

MAXIMUM PEAK MEASURED.

a. The cardinal rule can be relaxed for spectra that have a lower NL (5E3). If spectra

around the 10% cutoff for these cannot be assigned, they can potentially be

ignored (as long as the higher intensity peaks are all assigned). GSK3p spectra is

included as an example (Figure D-1).

2) Resolution of peaks may be off from reported peaks for y and b ions. Use personal

judgement to assign peaks.

a. If collected on CID, the mass may not be as accurate, and can be off slightly.

b. If collected on HCD, the peaks must be accurate and easily assigned (above 121

m/z). If the m/z values are not, toss this spectra immediately.
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c. If the peak on the spectra being evaluated is low and close to the 10% cutoff,

there will potentially be increased error and less resolution (up to 1 Da)

d. Spectra error should be within 10 ppm. However, due to the lower resolution of

CID, as well as lower signal from these samples (primary HDMVEC on collagen

gels), some samples may be off by more than 10 ppm (Sometimes up to 100-200

ppm).

e. The peaks may also be up to 1 Da off from the reported table of values. This may

be a result if you observed some of the isotope series being within the 0.5 Da

range on the full MS precursor survey scan (step 6a of the validation set-up).

i. The reasoning is that although we see peaks in QualBrowser, they are

actually Gaussian curves with the average represented by the peak. Thus,

there may be error due to centroid smearing of the peaks.

f. MASCOT searches have been set up with an error tolerance of 0.8 Da. If,

combined with everything else mentioned above, the peak lies within 1 Da of the

reported value, then it can generally be assigned to that y or b (or a) ion. Again,

use personal judgement in assigning peaks.

3) If y and b ion values are not present in the MASCOT query output, can be attributed to

neutral loss.

a. Loss of Y: - 80 Da

b. Loss of S/T: -98 Da

c. Loss of water: -18 Da (yo)

d. Loss of ammonia: -17 Da (y*)

e. Loss of carboxyl (CO): -28 Da

4) Some peptide sequences will have more than one phosphosite reported in the MASCOT

query. The presence of these phosphates may shift peak values for y and b ions and

should not be omitted (see set-up step 4b).

5) Also note, sometimes y and b ions are doubly charged (b**, y**). In these cases, the actual

neutral loss is HALF of the values listed in 2) (e.g., loss of S/T is -49 Da, loss of CO is -

14 Da). In some cases, there can be triple and quadruple charge. Divide the neutral loss

values in similar fashion.
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6) Do not use more than 3 distinct losses per peptide. If these are needed, the value

assignment is not real and should not be considered.

7) IF there are multiple neutral losses that are the same (e.g., 3H 20), these are potentially

real observations, particularly for larger peptides, as may be inherent in the

equipment/machinery. Make note of the intensities of the peaks for mid to low NL = E3

to see if there is a pattern.

8) If not assignable to y and b ions, peaks can be assigned to a ions. Use judgement and

discretion for this.

a. If none of these work, the parent ion (MH) can be considered, especially if the

spectra was picked up in the CID. These values can be found using Protein

Prospector. Further neutral losses can be applied to the parent ion than are listed

in Protein Prospector.

9) If a proline (P) is present in the peptide sequence, there may be internal fragments present

in the spectra. This is due to proline's resistance to electron transfers and will create

internal fragments rather than the typical y and b ions. For more information on assigning

internal fragment peaks, see http://www.matrixscience.com/help/fragmentation-help.html

10) For other non-matching y and b ions, they may be due to oxidation during the preparation

process, and the presence of a methionine may change the m/z.

11) If you are at a loss of potential peaks and fragmentations and have unassigned peaks, you

can use Protein Prospector to provide all the potential fragmentations and peaks that

would be encountered with a specific peptide sequence. Use MS-Product to find all

possible assignments. http://prospector.ucsf.edu/prospector/cgi-

bin/msform.cgi?form=msproduct

a. Be aware of the potential peaks that are being assigned and use personal

judgement on what seems plausible.

b. For the blanks in the form, fill out the following

i. N term: iTRAQ8plex

ii. Sequence: peptide sequence of interest

1. If Lysine or Arginine present (K or R), can be modified by

iTRAQ8plex. Simply adjust MW by placing K(iTRAQ8plex) or

R(iTRAQ8plex)

170



2. For phosphorylation or oxidation, use lower case (e.g. phospho-Y

is y, phospho-S/T is s/t, oxidation of M is m)

3. Since samples were reduced and alkylated, the cysteines (C) are

heavier. Adjust MW by using C(57.03), or C(carbamidomethyl)

iii. AA sequence: checkmark i and m

iv. N-term sequence: checkmark a and b

v. C-term sequence: checkmark y

vi. Internal fragment: checkmark if you suspect internal fragmentation

vii. Satellite sequence: checkmark d,v,w

viii. Neutral loss sequence: checkmark all

ix. Max charge: Whatever charge was listed in the MASCOT query and

ignore basic AA

x. Max losses: 3

xi. Masses are: monoisotopic

xii. Frag tol: 10 ppm

xiii. Instrument: ESI-FT-ICR-CID

xiv. Data format: PP M/Z Charge

12) In the MASCOT query, if there are additional S,T, or Y's in the sequence, there is a

potential for more 'noise' to occur. Add these additional sequences to MS-Product (under

the reported main sequence) to get potential values.

13) Sometimes there may be unexplained mass shifts due to amino acid mutations. For afull

list, see: http://prospector.ucsf edu/prospector/html/misc/mutation.htm.

14) Since trypsin was used to cleave peptides, there is a potential for it to appear in the

sample. If there are more unexplained peaks, refer to the list of masses and autolysis

products here: http://prospector.ucsf edu/prospector/html/misc/trypsin.htm

15) There appears to be a potential issue with 8-plex and mass shifts in the spectra, primarily

on the b ions on the largest N Terminal. There is a shift in mass that is not exactly the

mass of the balance group (-300 for 8 plex); the shift may be lower because of internal

fragmentation of the balance group. Flag this offset for now and place aside for later

evaluation.

171



a. Example: the Y14 of a 14-mer peptide has loss of terminal Y ion in precursor. If

charge = +1, loss of 86; +2, loss of 43

16) Finally, take note of the iTRAQ quantitation. Even if the protein assignment for the

peptide is correct, the scan will be thrown out pending iTRAQ intensity. If the iTRAQ

peak for the value that everything is being normalized to (e.g., the master) is missing, it

will skew the overall values and increase the error in the output.

D.3. BRIEF OUTLINE OF STEPS

1. Identify scan number. Pull up scan in Qual Browser.

2. Find equivalent query in MASCOT. May be easier to search for ion score following selection

by gi accession number if there are multiple queries listed.

3. Print peak list and scan from Qual Browser. Label properly.

4. Check preceding HCD - make sure iTRAQ for normalization is present

5. Check full MS scan to make sure no precursor contamination

6. Check MASCOT list

7. Use Protein Prospector list
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Appendix E

Platelet Factor 4 Time Course Data
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Figure E-1. Time course of PF-4 dosing. Sample treatment conditions were run in parallel with
the VEGF ± PF-4 dosing treatments and were normalized to the same master lysate. Most PF-4
only dosing were not statistically significant from the control (p > 0.05). In cases where PF-4 was
statistically significant (p < 0.05), these phosphoprotein measurements were not statistically
significant from the VEGF with PF-4 condition (p > 0.05).
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Appendix F

Correlation network model code and script

importmatrix.m

clear all; close all;
clc;

%% Call file and place into array

VEGFfilename = 'Vindnorm.txt';
PF4VEGFfilename = 'PVindnorm.txt';
Labelfilename = 'labelsind.txt';
% PF4filename = input('Input filename #3 of interest (PF-4 matrix) ','s')
%these matrice have the phosphosites as rows, and time course as columns
%V is VEGF, PV is PF-4 + VEGF, and P is PF-4 only
Vdata = dlmread(VEGFfilename);
PVdata = dlmread(PF4VEGFfilename);
% Pgeo = dlmread(PF4filename);

%% Create axes labels (for phosphoproteins)
fid=fopen(Labelfilename);
C=textscan(fid,'%q');
ProteinLabel = C{1};

% %% Generate heat map of differences
% % This is different than the others because what I'm comparing is the
% % correlation of Annexin I time course in VEGF to Annexin I time course in
% % PF-4 + VEGF. This is most likely not to mean anything, as I want to see
% % how things are changing within the system between proteins and this
% % doesn't do that; more like an incorrect comparison.
% [corrcompare, pval] = corr(Vgeo',PVgeo');
% difference = HeatMap(corrcompare, 'colormap', redbluecmap, 'RowLabels',
ProteinLabel, 'ColumnLabels', ProteinLabel);

%% Generate correlation heatmap for V and PV data difference
corrV= corr(Vdata');
corrPV = corr(PVdata');

absdifference = abs(corrV - corrPV);
absdifferencel = tril(absdifference);

% visualize = HeatMap(absdifference, 'colormap', redbluecmap, 'RowLabels',
ProteinLabel, 'ColumnLabels', ProteinLabel, 'Annotate', true, 'AnnotColor',
'k');
% addTitle(visualize, 'Absolute difference of pairwise correlation between
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VEGF and PF-4 + VEGF treatments');

visualize = HeatMap(absdifferencel, 'colormap', redbluecmap, 'RowLabels',
ProteinLabel, 'ColumnLabels', ProteinLabel, 'AnnotColor', 'k');
addTitle(visualize, 'Absolute difference of pairwise correlation between VEGF
and PF-4 + VEGF treatments');

% %% Generates correlation heatmap for pairwise correlation of each treatment
condition

% mapVgeo = HeatMap(corrVgeo, 'colormap', redbluecmap, 'RowLabels',
ProteinLabel, 'ColumnLabels', ProteinLabel);
% addTitle(mapVgeo, 'Pairwise correlation of VEGF treatment');

% mapPVgeo = HeatMap(corrPVgeo, 'colormap', redbluecmap, 'RowLabels',
ProteinLabel, 'ColumnLabels', ProteinLabel);

corrV1 = tril(corrV);
corrPV1 = tril(corrPV);

mapV = HeatMap(corrVl, 'colormap', redbluecmap, 'RowLabels', ProteinLabel,
'ColumnLabels', ProteinLabel);
addTitle(mapV, 'Pairwise correlation of VEGF treatment');

mapPV = HeatMap(corrPV1, 'colormap', redbluecmap, 'RowLabels', ProteinLabel,
'ColumnLabels', ProteinLabel);
addTitle(mapPV, 'Pairwise correlation of PF-4 + VEGF treatment');

shufflematrix.m

%%%generate random data files from shuffled data
rng('shuffle'); %run this once at the beginning
%%% Call file and place into array
% VEGFfilename = input('Input filename #1 of interest (VEGF matrix) ','s');
% PF4VEGFfilename = input('Input filename #2 of interest (VEGF + PF-4 matrix)

, I's );

% Labelfilename = input('Input filename for phosphoprotein list , 's');
% Timefilename = input('Input filename for time course ','s');
% PF4filename = input('Input filename #3 of interest (PF-4 matrix) ','s')
%these matrice have the phosphosites as rows, and time course as columns
%V is VEGF, PV is PF-4 + VEGF, and P is PF-4 only

numiter = 50000; %number of iterations to collect data from

% Vdata = dlmread('Vind.txt');% Vgeo = dlmread(VEGFfilename);
% PVdata = dlmread('PVind.txt');% PVgeo = dlmread(PF4VEGFfilename);
% Pgeo = dlmread(PF4filename);
clear TotalMshuffle Vdatashuffle PVdatashuffle corrVpermute corrPVpermute
rowcol = size(Vdata,1);
timepts = size(Vdata,2);

%% Create structure array to store all permutation values
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storageV = zeros(rowcol,rowcol,numiter);
storagePV = zeros(rowcol,rowcol,numiter);
storageVpval = storageV;
storagePVpval = storagePV;
% storagediff = storageV;
% storagediffpval = storageV;

%% Randomly shuffle
for i = 1:numiter

%Randomly shuffles each of the matrices by the columns (by time)
%This is done by *first* horizontally concatenating the two data sets
%This is because the permutation/exact test pools observations of
%BOTH groups being compared. Since correlation is being compared
%between VEGF and PF-4+VEGF, time points are pooled together from
%the two treatments, and randomized, while keeping the data
%conserved for each protein measured
TotalM = horzcat(Vdata,PVdata);
%Then the matrices are shuffled
TotalMshuffle = shake(TotalM,2);
%Then the matrices are separated
Vdatashuffle = TotalMshuffle(1:end,1:timepts);
PVdatashuffle = TotalMshuffle(1:end,(timepts+1):(2*timepts));

%% Find pairwise correlations and permuted p values
[corrVpermute,pvalVpermute] = corr(Vdatashuffle');
[corrPVpermute, pvalPVpermute] = corr(PVdatashuffle');
[corr_diffpermute, pvaldiffpermute] = corr( abs(Vdatashuffle-
PVdatashuffle)');
storageV(:,:,i) = corrVpermute;
storagePV(:,:,i) = corrPVpermute;
storageVpval(:,:,i) = pvalVpermute;
storagePVpval(:,:,i) = pvalPVpermute;
% storagediff(:,:,i) = corr diffpermute;
% storagediffpval(:,:,i) = pvaldiffpermute;
end

%% test statistic difference - absolute value - this does the two tailed test

instead of one tailed
storagediffstat = abs(storageV-storagePV);

%These three matrix are stored in the 'ind permutation distribution.mat' or

%eml permutation distribution.mat'

pvaldiscmatrix.m

%generate p values in matrix format corresponding to the correlation
%coefficient matrix (absolute differences)

% %%Phosphoprotein label

% fidl=fopen('labelsind.txt');% fidl=fopen(Labelfilename);
% C=textscan(fidl,'%q');
% ProteinLabel = C{l};
% fclose all;
% clear C;
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% syssize = size(storage,1); %size of correlation matrix, 26 for EML
% pval = zeros(syssize,syssize);
% for j = 1:syssize
% for k = 1:syssize
% corrval = absdifference(j,k);
% vectorl = storage(j,k,:);
% vectorl = squeeze(vectorl);
% clear output
% output = ge(vectorl,corrval);
% numeratorpval = sum(output);
% pval(j,k) = numeratorpval/size(vectorl,1);
% end
% end

syssize = size(storage-diffstat,1); %size of correlation matrix
%storageV and storagePV and storagediff
pvalV = zeros(syssize,syssize);
pvalPV = zeros(syssize,syssize);
pvaldiff = zeros(syssize,syssize);
%test the distribution at each position in the matrix
for j = 1:syssize

for k = 1:syssize
corrvalV = corrV(j,k);
corrvalPV = corrPV(j,k);
corrvaldiff = absdifference(j,k);

%obtaining all possible distributed values from storage at position
%(j,k) for testing
vectorV = storageV(j,k,:);
vectorV = squeeze(vectorV);
vectorPV = storagePV(j,k,:);
vectorPV = squeeze(vectorPV);
vectordiff = storage_diffstat(j,k,:);
vectordiff = squeeze(vector-diff);

%Testing where the corrvalues lies, how many in the distribution
%are greater than that correlation value?
clear outputV outputPV outputdiff
outputV = ge(vectorV,corrvalv);
outputPV = ge(vectorPV,corrvalPV);
outputdiff = ge(vectordiff,corrvaldiff);

numeratorpvalV = sum(outputV);
numeratorpvalPV = sum(outputPV);
numeratorpvaldiff = sum(output-diff);

%getting the probability out of the total discrete points in the
%distribution
pvalV(j,k) = numeratorpvalV/size(vectorV,1);
pvalPV(j,k) = numeratorpvalPV/size(vectorPV,1);
pval-diff(j,k) = numeratorpvaldiff/size(vectordiff,1);

end
end
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significantmatrix.m

%%Run this after running importing matrix and pvaldiscovery matrix
%%Such that we have corrVgeo, corrPVgeo, pvalV, and pvalPV

%%%%%%%%%%%%%%%%%%%
%%Make sure that these corrVgeo, corrPVgeo, pvalV, and pvalPV are from the
%%original matrices and NOT from the random ones generated from
%%genshuffleVPV.
%%%%%%%%%%%%%%%%%%%%%

%Find the most significant edges, say pvalue <0.05

pvalue = 0.05;

%returns matrix with l's where the pvalue is less than or equal to 0.05 -
%these are our significant edges
% nonzeroV = le(pvalV,pvalue);
% nonzeroPV = le(pvalPV,pvalue);
%try with pvalues returned from corr function
nonzeroV = le(pvalV,pvalue);
nonzeroPV = le(pvalPV,pvalue);
nonzerodiff = le(pval-diff,pvalue);

%pull out only half the matrix - since these are symmetric matrices
nonzeroV = tril(nonzeroV);
nonzeroPV = tril(nonzeroPV);
nonzerodiff = tril(nonzero-diff);

Vsend = nonzeroV.*corrV;
PVsend = nonzeroPV.*corrPV;
diffsend = nonzerodiff.*absdifference;

graphtodot(Vsend,'filename','corrV.dot', 'nodelabel',ProteinLabel,
'directed',0);
graphtodot(PVsend,'filename','corrPV.dot', 'nodelabel',ProteinLabel,
'directed',O);
graphtodot(diffsend, 'filename', 'corrdiff.dot','node_label' ,ProteinLabel,'
directed',0);

Vsig = HeatMap(Vsend, 'Colormap', redbluecmap, 'RowLabels', ProteinLabel,
'ColumnLabels', ProteinLabel)
addTitle(Vsig, 'Statistically Significant Pairwise Correlation Coefficients
for VEGF treatment (p<0.05)');
PVsig = HeatMap(PVsend, 'Colormap', redbluecmap, 'RowLabels', ProteinLabel,
'ColumnLabels', ProteinLabel)
addTitle(PVsig, 'Statistically Significant Pairwise Correlation Coefficients
for PF-4 + VEGF treatment (p<0.05)');
diffsig =
HeatMap(diffsend,'Colormap',redbluecmap,'RowLabels',ProteinLabel,'ColumnLabe
is',ProteinLabel);
addTitle(diffsig,'Statistically significant absdifferences');

falsediscover.m
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%%Run this after running importing matrix and pvaldiscovery matrix
%%Such that we have corrVgeo, corrPVgeo, pvalV, and pvalPV

%% Determine false discovery rate of the pvalues output by corr function

%Convert symmetrix matrix into a vector of p values to be sorted
%Determine size of matrix.
matrixedge = size(pvalV,1); %doesn't matter which, they're symmetric
vectorpvalueV = [];%initialize pvalue vector
vectorpvaluePV = [];%initialize pvalue vector
vectorpvaluediff = [];

indexcount = zeros(matrixedge,matrixedge); %initialize vector with index
numbers to find position of pvalues
numbering = 1:matrixedge;
clear i
for i = 1:(matrixedge-1)

vectorpvalueV = horzcat(vectorpvalueV,pvalV(i,(i+1):end));
vectorpvaluePV = horzcat(vectorpvaluePV,pvalPV(i,(i+1):end));
vectorpvaluediff = horzcat(vectorpvaluediff,pval diff(i,(i+1:end)));

indexcount(i,(i+1):end) = numbering(1:matrixedge-i);
if ne(i,1);

indexcount(i,(i+1):end) = indexcount(i,(i+1):end) + indexcount(i-
1,end);

end
end

alphaV= .33; % our q value
alphaPV = .3;
alpha-diff = .5;

[sortedV, indexV] = sort(vectorpvalueV,'ascend');
[sortedPV, indexPV] = sort(vectorpvaluePV,'ascend');
[sorteddiff, indexdiff] = sort(vectorpvaluediff, 'ascend');

%%Check to see how many p values can be accepted
checkV = le(sortedV,(1:length(sortedV)).*alphaV./length(sortedV));
checkPV = le(sortedPV,(1:length(sortedPV)).*alphaPV./length(sortedPV));
checkdiff =
le(sorteddiff,(1:length(sorteddiff)).*alpha diff./length(sorteddiff));

sigV = sum(sum(checkV));
sigPV = sum(sum(checkPV));
sigdiff = sum(sum(checkdiff));
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Appendix G

pVEGFR2 Luminex data
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Figure G-1. pVEGFR2 activation levels do not change significantly when stimulated in presence of
PF-4. PF-4 is speculated to induce angiostasis in vascular endothelial cells through several complex
pathways, of which one includes interfering with the VEGF/VEGFR2 pathway. It is speculated to either
sequester VEGF or bind heparin sulfates to reduce receptor binding, consequently decreasing
phosphotyrosine activity of VEGFR2. Phospho-Tyr levels following stimulation with VEGF in both
conditions were statistically significant (p <0.025 for VEGF, p <0.005 for VEGF+PF-4), the addition of
PF-4 to VEGF did not deviate from significantly from that of VEGF dosing only. PF-4 dosing by itself
did not induce any phosphorylation of VEGFR2. Thus, the influence of PF-4 on angiogenesis must utilize
other mechanisms in our system.
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