
Decentralized Task Allocation for Dynamic

Environments

by

Luke B. Johnson

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Feb 2012

@ Massachusetts Institute of Technology 2012.

AP II
^APR 1 1 2

ARCHIVES

All rights reserved.

/1

De prment of Aeronautics and Astronautics
Feb 2, 2012

Certified by
Jonathan P. How

Richard C. Maclaurin Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted byModiano

1 ofessor'Eytan H. Modiano
Professor of Aeronautics and Astronautics

Chair, Graduate Program Committee

A uthor..............

Decentralized Task Allocation for Dynamic Environments

by
Luke B. Johnson

Submitted to the Department of Aeronautics and Astronautics
on Feb 2, 2012, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

This thesis presents an overview of the design process for creating greedy decentral-
ized task allocation algorithms and outlines the main decisions that progressed the
algorithm through three different forms. The first form was called the Sequential
Greedy Algorithm (SGA). This algorithm, although fast, relied on a large number
of iterations to converge, which slowed convergence in decentralized environments.
The second form was called the Consensus Based Bundle Algorithm (CBBA). CBBA
required significantly fewer iterations than SGA but it is noted that both still rely on
global synchronization mechanisms. These synchronization mechanisms end up be-
ing difficult to enforce in decentralized environments. The main result of this thesis
is the creation of the Asynchronous Consensus Based Bundle Algorithm (ACBBA).
ACBBA broke the global synchronous assumptions of CBBA and SGA to allow each
agent more autonomy and thus provided more robustness to the task allocation so-
lutions in these decentralized environments.

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics

4

Acknowledgments

I would like to thank my advisor, Prof. Jonathan How, for his infinite patience

and guidance throughout the past two and a half years. I would also like to thank

Prof. Han-Lim Choi for his invaluable technical advice and guidance throughout my

masters work. To my colleagues at the Aerospace Controls Lab, especially Sameera

Ponda, Andrew Kopein, Andrew Whitten, Dan Levine, Buddy Michini, Josh Redding,

Mark Cutler, Kemal Ure, Alborz Geramifard, Tuna Toksoz and Trevor Campbell, you

have been irreplaceable as inspiration for my research and as friends throughout my

graduate work.

Finally I would like to thank my friends and family for all of their support in

the few waking hours a day I was able spend away from MIT, especially to Aaron

Blankstein who joined me on excellent adventures throughout the Boston area, and

to my parents who have always encouraged me to do what I love.

This work was sponsored (in part) by the AFOSR and USAF under grant FA9550-

08-1-0086 and by Aurora Flight Sciences under SBIR - FA8750-10-C-0107. The views

and conclusions contained herein are those of the authors and should not be in-

terpreted as necessarily representing the official policies or endorsements, either ex-

pressed or implied, of the Air Force Office of Scientific Research or the U.S. Govern-

ment.

6

Contents

1 Background Information on Decentralized Planners 13

1.1 Introduction . 13

1.2 Literature Review . 25

1.3 Thesis Contributions . 27

2 Task Assignment Problem 29

2.1 General Problem Statement . 29

2.2 Algorithmic Design Goals . 34

3 Planning Approaches 37

3.1 Coupled Elem ent 37

3.2 The Algorithmic Decisions . 40

3.3 Sequential Greedy . 46

3.4 Consensus-Based Bundle Algorithm (CBBA) 52

3.5 CBBA Analysis . 60

4 The Asynchronous Consensus Based Bundle Algorithm 67

4.1 Asynchronous CBBA (ACBBA) . 68

4.2 Asynchronous Replan . 83

4.3 The future of ACBBA . 85

A Improving the convergence speed of the CBBA algorithm. 87

A.1 Implementation Details . 88

A.2 Results and what they mean for performance 88

References 98

8

List of Figures

3-1 Three difficulties with decentralized synchronization. The width of the

boxes (labeled as agents 1-3) represents the computation time for the

bundle building phase. The black bar above these agents represents

the globally set heartbeat time. 61

4-1 Agent decision architecture: Each agent runs two main threads, Lis-

tener and BundleBuilder; these two threads interface via the Incoming

Buffers - there are two buffers to avoid unexpected message overrid-

ing; outgoing buffers manage rebroadcasting of information, triggered

by the completion of the BundleBuilder thread. 69

4-2 Message profile for a convergence iteration where all the tasks are re-

leased at the start of the program . 80

4-3 Message profile for a convergence sequence when 10 tasks seed the

environment and pop-up tasks are released every 0.2s after 81

4-4 Message profile for a convergence sequence when 10 tasks seed the

environment and pop-up tasks are released every 0.05s after 82

4-5 Monte Carlo simulation results showing comparisons between number

of messages, and convergence times 84

A-1 This Plot shows the number of total conflicts as a function of the

percentage of the fleet planned for. 89

A-2 This Plot shows the number of total conflicts as a function of the

percentage of the fleet planned for. 90

A-3 This Plot shows the number of final conflicts as a function of the per-

centage of the fleet planned for. 91

10

List of Tables

3.1 CBBA Action rules for agent i based on communication with agent k

regarding task j . 57

4.1 ACBBA decision rules for agent i based on communication with agent

k regarding task j (zey: winning agent for task j from agent u's per-

spective; yuj: winning bid on task j from agent u's perspective; tuj:

timestamp of the message agent u received associated with the current

zuj and yuj) . 75

12

Chapter 1

Background Information on

Decentralized Planners

1.1 Introduction

The multi-agent planning problem in its most basic form is the process of making

decisions. Humans solve planning problems continuously, having to make decisions

about how and when their day should progress. At some point you have to decide

where you are going to send your body (can be thought of as an agent), and what

you are going to do when you get there (often can be quantized into tasks.) This

process happens continually and is driven by the maximization of some cost function,

and, if you are very lucky, you are maximizing some measure of happiness for your-

self. Unfortunately, the decisions we make in our daily lives are not constraint free,

otherwise, I would choose to be an alien that gains superpowers from exposure to a

yellow sun. We have physical constraints (I can't be in 2 places at once), resource

constraints (I have to eat every so often to continue function), capability constraints

(no matter how hard I try I can't solve abstract algebra problems), and various other

constraints (I need money to do almost everything). This process of making decisions

about how to plan for agents is the basic process that researchers and engineers in

task planning are working to automate. The solutions to these planning problems

are useful in many aspects of our lives: from how airliners are routed at airports,

to the order in which processes are being scheduled for execution on my cpu as this

document is written. The majority of this research has been focused on agents that

are robotic vehicles moving around in the world, so much of the jargon in this docu-

ment will revolve around that, but it's notable that this research can provide insights

outside of its directed domain.

In the robotic planning domain, teams of heterogeneous agents are often used in

complex missions including, but not limited to, intelligence, surveillance and recon-

naissance operations [1-3]. Successful mission operations require precise coordination

throughout a fleet of agents. For small teams of agents, humans are relatively good at

coordinating behaviors given limited autonomy [4]. As the sizes of these teams grow,

the difficulty of solving the planning problem grows dramatically. This motivates

the development of autonomous algorithms that are capable of allocating resources

in an intelligent way. The process of automating the planning problem frees human

operators up to pay closer attention to the things that they do well: interpretation

of information and overall strategy specification and oversight [4]. All autonomous

algorithms in the foreseeable future will require humans to specify some amount of

problem specific information that quantizes the relationship between the different

mission objectives and the rigidity of constraints. From this point, autonomous al-

gorithms can take this information and turn it into a plan that agents can execute

efficiently.

1.1.1 Definitions

This section will introduce some of the basic vocabulary used in the decentralized

planning community. Many of these terms mean something very specific in our field

so this section will formalize some ambiguous terms. More advanced readers may skip

this section as these are only the most basic definitions for the field of decentralized

task allocation.

Task allocations algorithms were introduced as a tool to allocate resources during

complex missions with a possibly non-trivial set of goals. These missions may require

significant resources to complete, so the objective of task allocation algorithms is to

distribute available resources as efficiently as possible. As a computational tool, these

missions are often broken up into pieces called tasks. Tasks can take many forms but

on their most basic level they specify an indivisible objective of a mission. In more

advanced mission scenarios we might also introduce task constraints between the

tasks that specify some interaction between a pair of tasks. More formally we can

redefine a mission as the Cartesian product of a set of tasks and a set of constraints

between these tasks.

We use the term agent to refer to an entity that has capabilities to service indi-

vidual tasks (or sets of tasks.) Often multiple agents are able to coordinate on which

tasks of a mission they are most suitable to service. The research in this thesis was

developed primarily thinking about agents as unmanned aerial vehicles (UAVs), but

in general, any entity with the ability to service a task is what we define as an agent.

In other related research, these agents may take the form of unmanned ground ve-

hicles (UGVs), unmanned sea vehicles (USVs), any human operated vehicle, or even

human operators sitting in front of a mission control terminal.

In order for fleets of agents to coordinate their efforts, there must be some interac-

tion between the individual agents. All of this information that is shared between the

agents during a mission is called communication. As would be expected, holding

all other things constant, less communication is better. However, given the fact that

these algorithms operate in dynamic environments, there will always be a minimum

amount of communication needed to effectively allocate tasks to a fleet of agents. A

common tool to evaluate how different an algorithm performs is to count the number

of messages shared. (A parallel way to measure communication is to talk about

bandwidth. The problem with using bandwidth as a measure for task allocation al-

gorithms is that we have to worry about how messages are encoded, error correction,

encryption methods, and other complexities to really talk about bandwidth. For

this reason it's just more straight forward to count messages and assume that this

is roughly proportional to bandwidth.) Messages in this thesis are defined as the

number of outgoing broadcasts from a given agent. This implicitly assumes that it's

possible for multiple agents to hear the messages broadcast from a single agent.

An agent's current knowledge of the world plus knowledge of all other agents'

states is referred to as situational awareness. In practice, the situational aware-

ness of each agent in a fleet will be different and is the driving force behind why

coordination is needed between the agents (and thus why the agents usually cannot

plan independently of each other.) The potential uses for varying degrees of this

situational awareness will be discussed throughout the thesis.

The term consensus refers to the process by which agents come into agreement

over variables relevant to the problem. In this thesis we will specifically address

two different kinds of consensus. The first is task consensus, which is the consensus

process where agents specifically agree on what agents will be performing which tasks.

The other type of consensus discussed in this thesis is referred to as situational

awareness consensus. In some of the literature, situational awareness consensus

has an exact definition, but in this thesis we will just use it to refer to the consensus

process for all the variables not defined in the task consensus solution.

When evaluating how an algorithm will perform in an environment we talk about

the algorithm's convergence by specifying how long it will take until the algorithm

has completed all of the relevant computation for creating the task assignment. Con-

vergence can be difficult (or in some cases impossible) to determine in general networks

and more on this will be addressed later in the thesis.

The following 5 terms describe different modes of algorithmic operation. They will

be defined briefly here but a more involved and complete discussion will be introduced

later in this chapter.

An important aspect of a task allocation algorithm is where the plans are com-

puted. When we say that the algorithm is centralized, we are saying that all com-

putation relevant to task allocation is being done on one machine and is then passed

back out to all the agents after the allocation is complete. These algorithms are often

implemented as centralized parallel and are often quite fast because they can utilize

the fact that modern processors can compute multiple threads at the same time.

When the computational power of multiple machines is used and the connection be-

tween the machines is assumed to be strong, we call these algorithms distributed.

The definition of strong is fairly loose but generally refers to reliable communication

without message dropping and relatively low latency. If the communication between

these machines is assumed to be weak or unreliable we typically refer to the resulting

algorithms as decentralized. This distinction is important because in much of the

literature of this field, distributed and decentralized are treated as synonyms but in

this thesis we will define them to be different and explore how the different assump-

tions propagate into the resulting algorithms designed to operate in each respective

communication environment.

Another important aspect of algorithmic operation can be described with the

term synchronous. When we talk about synchronous algorithmic operations we are

specifically referring to constraints placed on the relative timing of computational

events in the execution of this algorithm. These constraints can be both intra-agent

and inter-agent. In most iterative algorithms, parallel structures need to be synchro-

nized every iteration to maintain the proper flow of the algorithm. In some cases this

synchronization may have side effects that are undesirable or synchronization may

actually turn out to be impossible. For this type of behavior we refer to resulting

algorithms as asynchronous. Asynchronous timing does not have hard constraints

between the timing of events and utilizing asynchronous computation can be a very

powerful tool, especially in decentralized applications.

1.1.2 Types of Planning Algorithms

There are many important decisions to be made when deciding what type of planning

algorithm to use. This first decision is usually to accept that the planner will have to

be an approximate answer to the problem statement. Sometimes mission designers

talk about "optimal" task allocation. Most of the time this goal is inadvisable because

1) for any significant problem size, optimality is computationally infeasible even in

the most efficient computation structures and 2) the allocation will only be optimal

with respect to the cost function created and the situational awareness available, of-

ten times these cost functions are approximate and being optimal to an approximate

cost function is by definition an approximate solution. Because of this, most planning

problems are solved using approximate methods. These solutions vary from approx-

imate Mixed Integer Linear Program solutions, to game theoretic optimization, to

greedy based approaches. While all of these methods are valid solutions to certain

problem statements, this thesis specifically focuses on greedy based algorithms. It

will become clear all of the useful reasons behind this, but that is not to say that

other solutions are not worth attention for specific problem domains.

Another significant decision to make is where the computation will actually hap-

pen. The jargon describing the computational methodology is often very loose in

the literature so this section will attempt to create 3 specific paradigms for where

computation can be executed, 1) centralized, 2) distributed, and 3) decentralized. In

addition to these 3 computation structures, the designer also needs to choose when in-

formation is shared and computed: these protocols can range from forced synchronous

to partially asynchronous to totally asynchronous.

Centralized

A centralized computation model refers to when the algorithm is running on a single

machine, and information passing between different components of the algorithm

is done through shared memory. Fast centralized algorithms are often implemented

using parallelized computation structures and can take advantage of the large number

of cores in modern computer systems. An important note here is that centralized

implementations have an unfair stigma of being slow. From a computation perspective

this is absolutely false, in fact, in most environments the truth is that these algorithms

can be quite fast. For algorithms that are significantly parallelizable, computation

can be fast because all pieces can have access to the current global algorithmic state

almost instantaneously. This means that there is very little communication cost

between the modules unlike the other paradigms listed below. Another common

argument against centralized algorithms is that they create a single point of failure.

This also has nothing to do with a good centralized algorithm, and since it only

requires computational hardware, the computation can happen anywhere, (2 or 3

backup sites can be dedicated) and we no longer have a single point of failure, but

we still retain the properties of a centralized algorithm.

There are significant drawbacks to centralized approaches in some scenarios and

these are listed below.

1. Large amounts of data in general may need to be transmitted to the central-

ized solver's location, whereas the processing of the data could have occurred

remotely to identify the "usefulness" of information before it is sent. This re-

mote computation can involve anything from processing video feeds or images

to creating localized task allocations. Once relevant decisions are being made

elsewhere we cannot really consider the planner as centralized any more.

2. The solution speed of centralized solvers are throttled by the rate at which the

important information reaches the computation structure(s). If communications

are slow, unreliable, or expensive, it makes sense to do as much computation

as possible before moving important information through these communication

links.

3. If all (or most) information needed by each agent to create its task alloca-

tion is local, much faster reaction times can be obtained by keeping all of the

computation local and sharing only the results with other agents through com-

munication.

4. In an abstract sense, distributing the computation on multiple machines might

also be preferred if there are very different types of calculations that need to

be performed. If, for example, the computation has large portions that can

be sped up using a different computational structure such as a GPU, it would

be desirable to let some computation happen in more optimized locations for

certain calculations.

If the above criteria are not a concern for a particular application, centralized

parallel algorithms are likely a great computational choice.

Distributed

Distributed systems can be implemented on a single machine or on separate machines.

What really defines distributed algorithms is the fundamental assumption of reliable

message passing between the distributed modules. In a distributed system this com-

munication between the agents can be either passed over a network or implemented

as internal memory passing, but the aspect that defines the algorithm as distributed

computation as opposed to centralized computation is that it utilizes separate memory

partitions between the distributed pieces. This introduces an extra layer of complex-

ity over centralized solutions because when information about distributed pieces of

the algorithm is needed, it must be transmitted through a communication channel.

To hammer this point home a bit more, the defining characteristic of algorithms

that are designed to operate in distributed environment is the guarantee of strong

connections. When we say strong connections we mean that each distributed node

knows which other modules they are communicating with, how to get a hold of them,

low message latency between each of these nodes, and that messages are guaranteed

to arrive reliably. These assumptions propagate all of the assumptions of synchro-

nization and information sharing capabilities that permeate the algorithms. A perfect

application of a distributed algorithm is if domain requirements are such that a sin-

gle machine does not have the capabilities necessary, one would probably move to a

distributed system, that utilizes some number of machines communicating through

messages in a locally, reliable way. The trade-off made when distributing computation

in this way, is that time lost in the message communication must be offset by the extra

computation available by utilizing multiple machines. Distributed systems also shine

when information is being acquired separately and external processing can be utilized

before meta-data is transmitted to other modules. (In the task assignment problem

this can involve agents observing local events, then changing their plan based on this

new information, then reliably communicating this information to the rest of the dis-

tributed modules.) Again, the most important aspect of these distributed algorithms

is that they rely on stable communications and depend on getting information from

other modules reliably. If communication links are non-ideal then serious issues arise

under this paradigm, and decentralized algorithms may be more appropriate.

Decentralized

Decentralized algorithms in general can be implemented on a single machine or mul-

tiple, but if on a single machine, the algorithm will likely be taking a performance

hit. These systems are most useful in multi-module systems where communications

are done exclusively via messages. Decentralized algorithms are designed for environ-

ments where there are no constraints placed on message delays, network connectivity,

program execution rates, and message arrival reliability. This means that decentral-

ized algorithms are the most robust to catastrophic changes in the communication

environment. The price of this robustness may be conservative performance when

communication conditions are actually favorable, but for truly decentralized envi-

ronments, this trade-off is absolutely necessary. Fully decentralized algorithms are

often necessary when it is desirable to have a large degree of autonomy on remote

agents. Given that communications may be weak with other agents, decentralized

algorithms can allow large fleets to interact without bogging the entire network down

in constricting infrastructure.

1.1.3 Synchronous vs Asynchronous

In much of the task allocation world parallelized computation is used heavily. This

parallelization can be happening on a single machine in a centralized architecture or

on several machines in distributed and decentralized architectures. The algorithmic

designer now has an extra degree of freedom to choose; when computation happens

and what assumptions it makes during this computation.

Synchronous

When we think about synchronous computation, we are thinking about a fairly rigid

structure that defines when certain information can be computed. Often synchoniza-

tion takes the form of holding off computation until a certain event happens, then

releasing a set of threads to perform computation simultaneously. This idea is heavily

utilized in iterative algorithms. Typically a set of agents make parallel decisions then

come back together to agree on whose choices were best. This notion of modules

waiting and releasing computation decisions based on the state of other computa-

tional structures is an example of synchronization. It can be a very powerful tool in

many cases because it enables the algorithm to make assumptions about the informa-

tion state of other modules (because, for example, they may have just agreed upon

state variables). Unfortunately, in most cases it takes significant effort to enforce

this synchronous behavior, often requiring that non-local constraints be placed on

the algorithm's execution to force this synchronization. In the literature, this is often

referred to as the synchronization penalty[5]. For computation threads running on a

single machine this is usually not a significant slowdown to performance, but when

information is being shared across a network, and algorithms spend time waiting

for messages to arrive from physically separated machines, this penalty can become

severe.

Asynchronous

The other end of the spectrum is to make the parallelized pieces of the algorithm

run utilizing asynchronous computation. This is typically useful when the separate

modules of the algorithm can run relatively independent of one another. This allows

each of the modules to run its computation on its own schedule. It works well in de-

centralized algorithms because as a result of communication never being guaranteed,

the algorithm can utilize information whenever available and not on a rigid sched-

ule. There are some performance hits that are implied by asynchronous computation

because assumptions about the information state of other agents break down. The

information state of all the agents in the network is not known like it would have

been had all of the agents communicated at the end of a synchronization effort. This

introduces a fundamental trade-off between the rigidity of forcing an algorithm to

run on a synchronous schedule versus allowing the algorithm to run asynchronously

but take a performance hit for losing information assumptions about the state of the

other modules.

1.1.4 Performance Metrics

Once the computational structures of the algorithm are chosen, there are several

metrics that the designer will care about when the program is executed. Depending on

the relative importance of each of the following metrics, different types of algorithms

may be preferred.

" Score performance specifically refers to how important it is that the final solu-

tion optimizes the global cost function. There can be cases where there is a lot

of coupling in the score so it is a desired trait for the algorithm to be a good

task allocator in terms of score, as opposed to, in other scenarios it's easy to

get close to optimal to other considerations may be more important.

" Run time specifically refers to how much computational time the entire algo-

rithms takes to complete, as will be contrasted below, this is typically thought

of as a global measure for the entire fleet. For off-line solutions, acceptable

measures of run time can be in the hours. When algorithms are run in the

field, run time is typically thought of in the seconds range. Depending on the

environment, the requirements for run time can be different.

" Convergence detection can be a difficult thing to quantify in general. It is usually

trivial to post process when convergence occurred, but in some cases (especially

decentralized implementations) it may be difficult to determine if the algorithm

has actually converged. This leads to different definitions of what convergence

should be. Does the algorithm require global convergence? Does it just require

local convergence (only the individual module)? Does the algorithm only require

partial convergence (in some cases being sure about the next task to be executed

is enough)? The answer to this question will change what type of information

is communicated as well as how much total communication is actually needed.

" Convergence time is typically identical to run time in global convergence met-

rics but in local convergence or partial convergence metrics it measures the time

until this convergence detection. With this number typically smaller is better,

and the smaller this number is, the faster the planner can react to dynamic

changes in the environment. Because of this, in a fairly static environment, sac-

rifices may be made in terms of convergence time. Conversely, in very dynamic

environments, convergence time may be one of the most important metrics of

the algorithm.

" Reaction time to situational awareness is closely related to convergence time but

is slightly different. It looks specifically at the turn around between situational

awareness changes and how fast this information can make it into the plan

cycle. In some algorithms, you cannot add information in mid-convergence

(while others you can.) Different choices about reaction time will introduce

different types of algorithms that are good at handling them.

Given the relative importance of these metrics, one can augment the task allocator

design to make trade-offs over which criteria are more important. It will be introduced

more formally in the next few chapters but in this thesis we are looking to develop

an asynchronous decentralized task allocation algorithm. We are partly concerned

with score, but given the communication constraints, we accept that we shouldn't be

too picky over score. The algorithm will be run in real time in the field so we are

looking at convergence times in the seconds. Since we are operating in decentralized

environments (where decentralized is defined in the previous section) we can really

only hope to hold on to local convergence. Global convergence would be nice, but

we will show in a later chapter that in decentralized algorithms, it may actually be

impossible to reach global consensus. The last goal is to hope to react as fast as

possible to changes in situational awareness without sacrificing our convergence time

constraints.

1.2 Literature Review

Centralized planners, which rely on agents communicating their state to a central

server, are useful since they place much of the heavy processing requirements safely

on the ground, making robots smaller and cheaper to build [6-12]. Ideally, the com-

munication links between all elements of the system (command station, autonomous

vehicles, manned vehicles, etc.) are high bandwidth, low latency, low cost, and highly

reliable. However, even the most modern communication infrastructures do not pos-

sess all of these characteristics. If the inter-agent communication mechanism has a

more favorable combination of these characteristics compared to agent-to-base com-

munication, then a distributed planning architecture offers performance and robust-

ness advantages. In particular, response times to changes in situational awareness

can be made significantly faster via distributed control than those achieved under a

purely centralized planner. As a result, distributed planning methods which elimi-

nate the need for a central server have been explored [13-16]. Many of these methods

often assume perfect communication links with infinite bandwidth in order to ensure

that agents have the same situational awareness before planning. In the presence

of inconsistencies in situational awareness, these distributed tasking algorithms can

be augmented with consensus algorithms [17-26] to converge on a consistent state

before performing the task allocation. Although consensus algorithms guarantee con-

vergence on information, they may take a significant amount of time and often require

transmitting large amounts of data [27].

Other popular task allocation methods involve using distributed auction algo-

rithms [28-31], which have been shown to efficiently produce sub-optimal solutions.

One such algorithm is the Consensus-Based Bundle Algorithm (CBBA) [32-34], a

multi-assignment distributed auction approach with a consensus protocol that guar-

antees a conflict-free solution despite possible inconsistencies in situational awareness.

The baseline CBBA is guaranteed to achieve at least 50% optimality [32], although

empirically its performance is usually better given cost functions that are relevant to

mobile robotics [35]. The bidding process runs in polynomial time, demonstrating

good scalability with increasing numbers of agents and tasks, making it well suited

to real-time dynamic environments with solid communication links. Although the

CBBA algorithm allows for asynchronous bidding at each iteration of the algorithm,

the consensus phase relies on synchronized communication between all agents. In or-

der to operate in a decentralized synchronous environment, artificial delays and extra

communication must be built into algorithms to ensure agents remain in sync. These

delays and extra messages reduce mission performance and may even be unrealis-

able in physical systems. This problem has been explored in [36] where the authors

recognized that synchronization is not always feasible in distributed/decentralized

applications. Although they are looking at the typical problem in the consensus liter-

ature of purely a parameter value, they identify the same questions we have to answer

in task allocation: When can we safely say a state is converged? How do we construct

the protocol to reduce convergence time as much as possible? Can we even guarantee

that consensus is reachable? That last question is important and is handled in this

thesis, if we provably can't reach consensus, what is the next step?

Extending these ideas, there has been significant work in the field of linear asyn-

chronous consensus [17, 37-39]. The asynchronous decentralized task allocation prob-

lem is further complicated because the consensus state spaces are often extremely

non-linear. Unfortunately because of this, much of the theoretical work in terms of

convergence analysis breaks down. The asynchronous task assignment problem has

also been approached in other domains, such as game theory [40]. Unfortunately the

nature of the some of the guarantees in this work rely on continuous, convex and

twice differentiable score functions. None of these properties hold for the general-

ized cost functions we hope to capture in the algorithms presented in this thesis.

Other works have helped to identify the added complexity introduced by working

with asynchronous environments [41]. Ref. [42] introduces that it is often desirable to

remove all global mechanism in decentralized environments. In [43, 44] the authors

used the powerful ideas of decentralized control to assign single tasks to agents in a

greedy way. Their paper highlights the power of using local behaviors to govern a

fleet globally with task allocation. Unfortunately the structures used in these papers

is only applicable to the matching problem, which is different than the multi-task

assignment problem and not directly applicable because of the added complexity of

allocating multiple tasks to each agent.

The work in this thesis extends CBBA for networked agents communicating

through a distributed, asynchronous channel. The algorithmic extensions proposed

in this paper allow the Asynchronous Consensus-Based Bundle Algorithm (ACBBA)

to operate in real-time dynamic tasking environments with a poor communication

network. As previous work has shown [45], ACBBA can provide the task space con-

vergence properties of nominal CBBA [32], while maintaining a relatively low message

bandwidth. The power of asynchronous algorithms emerges when distributed meth-

ods are implemented in real time. ACBBA applies a set of local deconfliction rules

that do not require access to the global information state, consistently handle out-of-

order messages and detect redundant information.

1.3 Thesis Contributions

The main contributions of this thesis are as follows:

1. (Chapter 1) Provided consistent and explicit classification of the centralized,

distributed, decentralized, synchronous and asynchronous algorithmic domains

when applied to task allocation.

2. (Chapter 2)Detailed task allocation problem specification for decentralized

algorithms.

3. (Chapter 3)Provided motivation behind choices of task consensus, bundle con-

struction and task bidding in distributed and decentralized task allocation.

4. (Chapter 4)Developed an algorithm called the asynchronous consensus based

bundle algorithm (ACBBA) and a discussion of how the algorithm performs as

a decentralized task allocation algorithm.

5. (Chapter 4)Defined and demonstrated the importance of local convergence in

decentralized applications.

Chapter 2

Task Assignment Problem

2.1 General Problem Statement

Given a set of Nt tasks and a set of Na agents, the goal of a task allocation algorithm

is to find an allocation that maximizes a global reward function while enforcing all of

the problem and domain specific constraints.

This generalized task assignment problem can be written as:

Nt

argmax ZRj (s, x, r) (2.1)
S'X'Tj=1

subject to: s E S(x, t)

x E X

-r E T

In formulation 2.1, Ry(s, x, r) represents the score achieved by the fleet for task j.

This score is a function of s, representing the state trajectories for all agents; of x, a

matrix of decision variables (specifically where xij is a binary decision variable equal

to 1 if task j is assigned to agent i and 0 otherwise); and rij is a variable representing

the time at which agent i services task j if xij = 1 and is undefined otherwise. The

index set that iterates over agents i, is defined as 1 A {1, . . . , Na} and the index

set that iterates over tasks j, is defined as J {1,... , Nt}. S(x, -r) defines the

set of possible trajectories that satisfy both vehicle and environmental constraints as

a function of x and -r, X defines the set of all feasible task allocations taking into

account agent capability constraints and constraints between tasks, and T defines

the set of all feasible task servicing times, taking into account possibly complicated

temporal constraints between these tasks. In general, the full constraint space of

the task allocation environment is defined by the triple of (S x X x T). This state

space has the power to specify most task allocation and motion planning problems.

Because of this extreme generality, the size of the state space is uncountably infinite

and thus is a very difficult space to search, even approximately. In this thesis, a series

of simplifying assumptions are made to make this space searchable. Each of these

assumptions will be outlined below.

Task Servicing Uniqueness

One of the first assumptions made in the task allocation literature is that every task

may be assigned to at most one agent. Roughly speaking this means that two agents

are not allowed to service the same task. This assumption dramatically reduces the

cardinality of X. This task servicing uniqueness constraint is formalized below as

equation 2.2.

Na

Zi < 1 (2.2)
i=:1

Xij C {O, 1}, V(i, j) E J x 7

Even though this constraint explicitly prohibits multiple agents from performing the

same task, it still allows for cooperation given some creative task construction. Some

approaches like posting multiple tasks at the same location and time (implying some

sort of cooperation will take place) are a brute force way to establish cooperation at a

task location. Other more explicit approaches were introduced by Whitten in [46]. His

approach was to create sets of tasks with constraints between them and, by enforcing

these constraints, he enables cooperation. Approaches using constraints between tasks

will not explicitly be addressed in this thesis, but none of the assumptions made in

the problem statement presented in this chapter prohibit Whitten's unique constraint

structures.

Task Independence

Another simplifying assumption is that the score achieved for each task, is indepen-

dent of the completion of all other tasks and locations of all other agents. This allows

us to significantly decouple the reward function so that the only two things that affect

the score of the task are: the capabilities of the agent servicing the task, and what

time the task is actually serviced. The form of the reward function in equation 2.1

then simplifies below in equation 2.3.

Nt Nt

E Rj (s, Ix, -r) -+ Rj (xy, -ry) (2.3)
j=1 j=1

where x3 A {x1j, . . . ,xNj I is a vector indicating which agent i (if any) will be ser-

vicing task j, and Tr A {rij,..., TNj} is the corresponding vector that indicates

the service time of task j (this will have at least Na undefined values and at most

1 defined value that specifies the service time). It is worth noting that Whitten[46]

also addressed the problem of introducing more complicated task dependencies con-

sistent with equation 2.3 above. The solution he proposed was to add constraints that

make the task selection infeasible if certain constraints were not met. This introduces

coupling in the task constraints instead of in the score function. Searching over the

coupling in the constraints as opposed to coupling in the cost function turns out to be

an easier space to search over. These additional task constraints are not explored in

this thesis, but the important take away is that the above assumptions still allow for

significant task coupling through constraints in environments where this is needed.

Decouple path planning solution

Another aspect of our problem formulation is that we avoid explicitly solving for s,

the actual dynamic paths that every agent must follow to service its assigned tasks.

In our problem formulation, we only guarantee that given a feasible task allocation

x, and a set of service times r, there exists some s E S(x, t). The problem of

actually optimizing s is deferred to the field of path planning. Typically a conservative

estimate of the maneuvering capabilities of the agent are used and Euclidean paths

are assumed. In some of our recent work we have looked a bit more closely at the

possible trajectories for s for better estimates of ri, but we still only must guarantee

that a feasible trajectory exists.

2.1.1 Full problem description

At this point we have completed the description of our problem statement as shown

below in equation 2.4.

Nt

argmax ERj (xj, tj) (2.4)
xj 1

Na

subject to: zij < 1,Vi E I
i=1

S C S(x,t)

x E X

r E T

Xij C {O, 1}, V(i, j) C I X 7

2.1.2 An alternate algorithmic friendly problem statement

This formulation, although complete mathematically, still isn't structured in a con-

venient form to explain the algorithmic tools we use to solve it. The following section

will introduce a bit more notation to illuminate where the problem can be decoupled,

what pieces can be solved separately, and introduce some of the data structures used

to keep track of the relevant information.

1. For each agent we define an ordered data structure called a path, pi A {pii, ... ,pi}

whose elements are defined by pin E J for n = 1, ... ,pil. The path contains

the information representing what tasks are assigned to agent i. Their order

in the path data structure represents the relative order in which they will be

serviced.

2. The score function matrix c(t) is constructed of elements cij that represent the

score that agent i would receive by servicing task j at time t.

3. For each agent i we define a maximum path length Li representing the maximum

number of tasks that the agent may be assigned. This is an artificial constraint

placed on the problem to help with computation and communication efficiency.

As will be discussed with the algorithms later, this constraint is often paired

with an implicit receding time horizon to guarantee an agent doesn't commit

to tasks too far in the future and exhaust its bundle length.

Given these new definitions we may augment the problem definition as follows:

Na Nt

argmax 1:I cig(-rig (pi(xi)))xij (2.5)
x,-r i=1 (j=1

Nt

subject to: ZXij < Li, Vi E I
j=1

Na

ZXij 1 Vj I J
i=1

S E S(x, t)

X E X

-r c T

xij E {0, 1}, V(i, j) C E IX

Given this new formulation specified in equation 2.5, we start to see how we can

distribute computations across the agents. At this point, given x, the matrix -r can

be determined by each agent independently. Furthermore, with x, each individual

agent can find its own contribution to the full matrix -r by solving equation 2.6.

Nt

max cij (r-ig (pi (Xi))) Xij (2.6)E1

j=T

The first thing we can note about equation 2.6, is that each agent i will first have

to optimize its own path pi if it is given what tasks it has a responsibility to service

xi subject to the path planning feasibility constraint s E S(x, r) and the feasibility

of arrival times constraint -r E T. During the path optimization, optimal values for

-r will also be determined. Then from this optimization, the agent's individual score

for each assigned task will then also be fully defined. The main takeaway from this

point is that the main source of distributed coupling in the path assignment problem

is restricted to the choice of the assignment vector x. Given this, once all agents

agree on a value for x then the distributed task assignment problem has been solved.

The next two chapters in this thesis will be focused on ways of solving the problem

of finding a consistent value of x across all agents.

2.2 Algorithmic Design Goals

The specific task allocation environment explored in this thesis places some con-

straints on the form of c(t) and also how the agents are able to interact and com-

municate with each other. The following section will outline the extent of the other

constraints that are placed on the task allocation environment.

Score functions

In this thesis the functional form for the reward received for the completion of a task

will be of the form of a time windowed exponential decay function.

0 for t < tstart

r(t) eY(ttstart for tstart <_ t <_ tend (2.7)

0 for t > tstart

In equation 2.7, in the task definition, we define rii(t) to be the reward received

for agent i completing task j at time t. We can also define intrinsic variables that

specify task properties: tstart represents the beginning of the time window for the

task, tend represents the end of the time window for the task, and -Y is the discount

factor for servicing the task late in the available time window.

In addition to the reward for servicing a task, we also introduce a penalty of

moving around in the environment into the overall score function. This cost can take

many forms, in this thesis, specifically, we just talk about the cost being the distance

penalty of moving around in the environment. The physical realization of this cost is

equivalent to a fuel penalty when we are dealing with ground vehicles. Unfortunately

it is not a direct parallel when considering air vehicles. This is because it does not

explicitly account for fuel burned while loitering.1 Since the penalty is coupled to

other tasks that an individual agent services during its assigned mission, we can

understand why we have been writing the score of an individual task as a function of

the entire path that the agent actually traverses. For algorithmic convergence reasons

the way that this penalty is introduced into the full score function is dependent on

the particular algorithmic implementation. This then creates the total score function

for agent i servicing task j at time Tij that is described in equation 2.8.

ci (rij (pi(xi))) = rij - penalty (2.8)

A more formal treatment of this score function will be introduced when it is bound to

a specific algorithm but equation 2.8 gives the basic form of all score functions that

will be considered in this thesis.

Communication Environment

The algorithm developed later in Chapter 4 of this thesis envisions that we are oper-

ating in a truly decentralized environment. As a reminder, operating in decentralized

environments implies that network connectivity is never guaranteed to exist between

any 2 nodes; agents may enter and leave the network (through geometry or comm

drop out); when agents are actually connected to each other, there are no guarantees

to how often they are able to communicate, or what the message latencies will be

'With small vertical take off and landing we could think about landing temporarily instead of

loitering and the penalty becomes much closer to an actual algorithmic penalty.

when they decide to communicate. There is also an assumption that communication

is so sparse that the agents have basically no situational awareness about the other

agents and only have the bandwidth to perform task consensus. Since communication

is regulated so heavily, a goal of the task allocation algorithm will be to reduce the

number of messages as much as possible with the information available to utilize the

bandwidth as efficiently as possible. A final goal of the task algorithm operating in

this communication environment is that even in the absence of interaction with any

peers, agents must be able to do something reasonable.

Tasking Environment

In this thesis we assume that the tasking environment will be very dynamic. This

means that not only will off-line task allocation solutions be unable to predict the

conditions that the agents will encounter in the field, but these environmental con-

ditions may change significantly during the mission execution itself. Because of this,

the algorithm must be robust to handle constant changes in situational awareness

in the environment. This includes significant position changes of the vehicles in the

environment, teammate agents coming off-line and on-line mid-convergence, as well

as tasks appearing and disappearing during the convergence process.

The constraints outlined in this chapter through the formal problem specifica-

tion, and the description of the communication and task environments, all combine

to create a problem statement that was not solvable before the author's proposed

solution.

Chapter 3

Planning Approaches

The following section outlines the progression of algorithms that created the frame-

work for the main result of this thesis, the Asynchronous Consensus Based Bun-

dle Algorithm (ACBBA). This chapter will highlight and explain the decisions that

were made during the algorithmic development process and show how these decisions

shaped the overall class of algorithms that were created.

3.1 Coupled Element

As was pointed out in Chapter 2, the only coupled variable in a distributed problem

statement is the assignment matrix x. Since this coupling exists, the agents need

some way of agreeing on consistent values for x in a distributed way. To create

this consistency, there are three types of coordination techniques: 1) create an a

priori partition in the task space such that the task sets each agent can service are

disjoint; 2) perform situational awareness consensus (consensus on all variables that

are not x) and hope that agents independently create allocations that satisfy all of

the relevant constraints on x; or 3) directly incorporate the constraint feasibility of x

during the convergence of the planning algorithm using communication and consensus

algorithms.

1) Creating an a priori partition in the task environment effectively chops up the task

space and only allows each agent to bid on a subset of the overall task set. Given

a higher-level task allocation or a human operator, it may be reasonable to use this

method for small teams in relatively static environments. This is because for some

environments it may be obvious what agents should be servicing which tasks. How-

ever, typically in environments with large numbers of relatively homogeneous agents,

or dynamic environments it becomes non-obvious which agents can best service which

tasks. Effectively by creating this partition, the algorithm is placing artificial con-

straints on what allocations are available and may lead to poor task assignments.

Therefore, it's noted that partitioning the task space can be an effective technique

in some task environments, but for the environments explored in this thesis, more

elaborate techniques are needed.

2) The technique to create a consistent assignment matrix has been referred to as

implicit coordination. The main emphasis of this method is to arrive at situational

awareness consensus1 before starting the planning algorithm, then run effectively

centralized planners on each agent independently with the idea that if each agent

started with the identical information then each agent will produce consistent plans.

This method has been explored in the literature [17-26] and was popular as a relatively

straight forward way to decentralize a task allocation algorithm. The benefit of

using implicit coordination over that of task space partitioning described above is

that by not limiting the assignment space a priori, more dynamic reaction to tasks

in the field are enabled. Implicit coordination also has the added benefit that if

the task environment is highly coupled (with many agent-to-agent and task-to-task

constraints), then the plans produced are able to recognize and exploit this structure.

It then becomes possible to find task allocations that include highly coordinated

behaviors between the agents.

All of these benefits come with the caveat that the initial situational awareness consen-

sus must happen before the planner can start producing plans. In order to guarantee

that agents produce the same assignments x, this situational awareness consensus

process may require large amounts of bandwidth [27]. The problem here is that

'Situational awareness consensus is the state where all agents agree on all variables relevant to
the initial conditions of the task allocation problem.

there are many types of variables involved in the situational awareness consensus

process. Some variables in the situational awareness consensus problem are easy to

find because the information creator is a trusted source. Variables like an agent's

location or the agent capabilities can be trusted as fact when they are shared by

that agent. Agreeing on more dynamic variables like task positions, or task scores

may be a tougher problem because each of the agents may know different informa-

tion about the world around them. To get accurate information about these more

dynamic variables, it may require a significant consensus effort. The major drawback

to using implicit coordination ends up being that the significant consensus effort only

indirectly affects the actual constraints on x. If the final estimates of the situational

awareness variables do not converge to within arbitrarily tight bounds there is no

guarantee of conflict free assignments.

3) The third solution completely ignores learning anything about the situational

awareness of the other agents, and only requires that x remain consistent according

to the constraints described in the problem statement (equation 2.5). The power of

this solution is that all of the consensus effort is spent on maintaining a consistent

value for x. This solution is preferable if there are few inter-agent constraints and

inter-task constraints (the more coupled the task environment becomes, the more

difficult the task consensus problem becomes) or if the communication environment

is not necessarily reliable such that it would be difficult to reach complete fleet-wide

consistent situational awareness. In decentralized environments, we are often not

worried about intense cooperation (just a conflict free distribution of tasks.) Given

that in these environments the communication links are often non-robust, especially

across larger distances, only broadcasting the information directly relating to the

constraints on x is preferable.

There is a trade-off between implicit coordination and algorithms using task consen-

sus. The choice is deciding if it is easier to converge on a consistent assignment vector

x, or converge to arbitrarily tight bounds on all other significant variables. Typically

in our research we assume that the size and static nature of x is much easier to con-

verge on than the dynamic values of all the worldly variables; however, occasionally

this is not the case and an implicit coordination approach may be appropriate. In

this thesis we assume that situational awareness consensus would take too long in dy-

namic environments and thus pure implicit coordination techniques are unavailable

for use.

In this thesis the third solution for handling the inter-agent constraints is used2 .

3.2 The Algorithmic Decisions

Up to this point we still have significant flexibility on how we construct each agent's

assignment and how the agents are able to come to consensus on a final value for

x. This section will help to introduce some more of the details about the class of

algorithms that will be used in this thesis.

3.2.1 Plan horizon

The simplest decision is how far into the future are we going to plan. Options in-

clude, agents only deciding on their next task, their next n tasks, some planning

time horizon, some combination of n tasks and time, etc. We typically implement a

combination of n tasks and a time horizon. However, each can be useful in its own

environment, so the section below will describe the fundamental trade-offs that need

to be made.

o If the plan horizon is only to bid on the next task for each agent to perform simple

planning algorithms are available for use. Many of the distributed planning complex-

ities are introduced when agents are assigned multiple tasks simultaneously. Algo-

rithms that only need to assign a single task to each agent will also have relatively

short convergence times because there is relatively little information that needs to be
2Appendix A of this thesis discusses the idea of merging all three solutions in order to retain the

complexity reduction of a priori partitioning, and the convergence robustness of the task consensus,
while gaining the increase in performance in highly coupled environments that implicit coordination
allows.

agreed upon, compared to other approaches. The problems with this type of plan-

ning approach lie in performance of the actual fleet at plan execution time. The

most basic trouble with only bidding on the first task is that it may be impossible to

pick what the next best thing to do is without knowing what everyone else is going

to do, well into the future. In worst case, the resulting mission score can become

arbitrarily bad if agents are only able to look at the next best task into the future.

An example of when this worst case behavior can arise is if there is a fast agent that

can get some small non-zero score for performing tasks; this agent could finish a large

number of tasks before more specialized agents are available. In this scenario all of

the more specialized tasks will have the have completed poorly and the mission score

would end up being much lower than it could have been. Although this is an extreme

example, lesser degrees of this worst case behavior will often happen when agents

move around in the world in a strict greedy sense. Also, this type of architecture can

create situations where every time a task is completed, a new planning exercise will

commence, and agents en-route to their next task may be outbid and will have spent

significant amounts of time travelling to tasks they will not end up servicing. The

overall behavior of these planners in general will seem very short-sighted and it will

not be lead to the desired performance for most environments.

9 If the algorithmic choice is to bid in the next n tasks, much more intelligent looking

plans can be produced than when n = 1. Planners that assign multiple tasks to each

agent tend to be much more complicated because typically these extra assignments

introduces more coupling in the task environment. If an agent is responsible for

servicing multiple tasks, both the scores on these tasks and the feasibility of actually

completing them are highly dependent on which other tasks the agent is assigned.

In this thesis we call these sets that each agent plans on servicing a bundle. This

bundle is ordered such that the tasks that are chosen first are placed earlier in the

bundle. In this structure we are able to preserve a hierarchy of dependence for the

scores (and feasibility constraints) because the score for each task will only depend

on tasks located earlier in the bundle. An important thing that we have to watch

out for with this type of planner is to not plan too far into the future, such that

some tasks go unassigned while some agents idle, waiting for higher value tasks in the

future to become active. This can easily happen if there are are time periods where

large numbers of high value tasks available surrounded by other significant time with

only low value tasks.

9 The next possible planning methodology would be to only bid on tasks within some

time horizon. This ends up fixing the problem of planning on servicing tasks that are

unnecessarily far into the future and allowing more immediate tasks to go unserviced.

One problem that arises from planning with a time horizon is that the length of the

planning horizon needs to be tuned to be long enough to capture relevant aggregate

behaviors from the agents' plans without planning too far into the future such that

the planning problem is unnecessarily complex. Other problems with this solution is

that it is possible for agents to have no assignment during the specified time horizon,

but it may make sense for agents to start travelling to a task "hub". This myopic

behavior can produce catastrophic results if it takes agents longer than the planning

horizon to travel between tasking areas. The resulting behavior will be that agents

will never end up adding tasks to their bundles.

* Typically, the combination of using a time horizon and an n task look ahead is

preferred. The two strategies end up complimenting each other well. The introduction

of the n task look ahead makes tuning the plan horizon much simpler. This is because

since only a maximum of n tasks will be added, an over estimate of this time horizon

can be used without fear of creating too much computational complexity. There is

some art in choosing the time horizon and n and they will usually be problem specific,

but by considering both algorithms can produce desirable plans over a large spectrum

of missions.

3.2.2 Bundles vs. Tasks

Given the discussion above, the algorithms produced in this thesis will be assigning

multiple tasks per agent. With this decision, there are two choices on how to handle

multiple tasks: 1) bids can be made on entire bundles at a time (recall that a bundle

is an ordered vector of all the tasks assigned a given agent), or 2) bids can be placed

on individual tasks then bundles can be built sequentially one task at a time.

1) First consider looking at bidding on entire bundles of tasks. Given the problem

formulation in Chapter 2 there may be (N)Li! possible bundles for the agents to

choose from, where as a reminder, Li is the maximum allowable length for a bundle.

Enumerating all possible bundles has been explored significantly in the literature [47-

49]. Bidding on bundles will usually result in a higher score because the agents are

able to explicitly account for the unavoidable coupling that exists between tasks

serviced by the same agent. This includes everything from travel time to clusters of

similar tasks to coupling between the tasks themselves (although this thesis does not

consider explicit task coupling, it is a very relevant problem in some domains.)

The downside to bidding on entire bundles though is that it makes for an incredibly

complicated consensus space. The space then consists of every possible bundle where

the actual feasible space becomes extremely sparse because any two bundles with just

one of the same tasks becomes infeasible. Both the size of the space and the number

of constraints grows exponentially in the size of the bundle length Lt. Although

this space still remains finite and is computable, the problem becomes exponentially

harder to both solve and perform consensus on and its generally preferable to avoid

this extra complication.

2) The natural result is then to bid on the tasks independently. This still allows for

the decision of either constructing entire bundles all at once or sequentially adding

tasks to construct bundles. If bundles are created all at once then there is an extra bit

of effort in parsing up the bids on each individual task. This can be difficult at times

because in general there can be significant coupling that exists between the tasks so it

may be difficult accurately partition the bundle score. When adding a single task at a

time, it is very easy to assign scores to each marginal contribution for each task, but

it also might produced suboptimal bundles because of the myopic nature of greedily

adding one task at a time. The trade-offs between these two methods are outlined in

the section below.

3.2.3 Assigning Scores to Tasks

The class of algorithms addressed in this thesis has now been narrowed to consider

iteration through task consensus, assigning tasks to agents for only n tasks at a time

and not looking past some time horizon, then making these bids on individual tasks

instead of bundles as a whole. There next algorithmic refinement is to decided if

bundles should be built all at once then decide the value of each task in the bundle,

or if bundles should be built up incrementally, one task at a time.

1) The first possible implementation involves constructing bundles all at once then

assigning scores to each task, identifying how much each task contributed to the

score of the overall bundle. This type of structure can explicitly account for all of the

coupling between tasks in a given agent's bundle (especially travel times and favorable

environmental geometries.) This method, however, has a few difficulties. The first

one is determining how to actually assign a score to each individual task. This is a

difficult problem because the marginal score for adding a task to a bundle can depend

on every other task that was previously in the bundle. The problem then becomes

how to assign values to each of these tasks given the strong coupling between them.

Should a task that increases the marginal score of every other task in the bundle be

allowed to share some of the score that it is enabling? The second difficulty with

this approach is the total number of bundles that can be considered.The number of

possible bundles at each iteration with this method grows as O(Na (i)). The third

major issue with this formulation arises by creating task scores that are completely

dependent on the rest of the tasks in the bundle also being assigned. This makes

the consensus problem much more difficult because very few bids end up staying the

same between iterations. It leads to much more chaos during the consensus problem

which decreases the rate of convergence.

2) An alternative to the above approach is to build up bundles incrementally, one

task at a time. In this case the score for adding a task to the bundle is simply

the incremental cost for adding that particular task to the bundle. This method is

essentially a greedy search through the bundle space that ends up reducing the size

of the search space to O(NaNtLi). Another benefit of this search space is that clear

dependencies are defined for which bids depend on each other. A bid added to the

bundle is only dependent on bids that were already located in the bundle, which

means that the value of a bid is independent of all of the bids made after it. What

this ends up doing is that it adds some stability to the consensus space because bids

have reduced their number of dependencies, and thus convergence rates increase.

This section has further defined which types of algorithms will be addressed in

this thesis. These decisions were:

1. Plan with a fairly long time horizon but only allow at most n tasks to be added

to an agents bundle at a time.

2. The bids for the algorithms should be placed on tasks instead of bundles.

3. The scores for each of the tasks should be computed incrementally as bundles

are built up.

3.2.4 Distributed notation

A slight complication is introduced when the problem is decentralized in this manner

because it creates an environment where during the execution of the algorithm, agents

may have a different view of the task consensus space from each other. For this reason

we will define a few new data structures to help with keeping track of this possibly

inconsistent information. These definitions will be referred to throughout this chapter.

1. A winning agent list ze - {z 1, ... , ziN,}, of size Nt, where each element zij E

{I U 0} for j = 1,... , Nt indicates who agent i believes is the current winner

for task j. Specifically, the value in element zij is the index of the agent who is

currently winning task j according to agent i, and is zi = 0 if agent i believes

that there is no current winner.

2. A winning bid list yj A {Yil, ... ,YiNtl, also of size Nt, where the elements

yij c [0, oo) represent the corresponding winners' bids and take the value of 0

if there is no winner for the task.

3. A vector of decision timestamps si A {sai, .. . ,sNa}, of size Na, where each

element sik E [0, oo) for k = 1, . . . , Na represents the time stamp of the last

information update agent i received about agent k, either directly or through a

neighboring agent.

4. A bundle, bi A {b, ... , bibi 1}, of variable length whose elements are defined

by bin E j for n= 1,..., bil. The current length of the bundle is denoted

by |bil, which cannot exceed the maximum length Lt, and an empty bundle is

represented by bi = 0 and |bil = 0. The bundle represents the tasks that agent

i has selected to do, and is ordered chronologically with respect to when the

tasks were added (i.e. task bin was added before task bi(,±i)).

Using the refinement of the planning problem introduced in the previous two sections,

the simplest task allocation framework that attempts to solve this problem, called the

sequential greedy algorithm, will be introduced. This algorithm has been called many

other things in the literature when applied in different domains but at its most basic

form it is a centralized greedy auction.

3.3 Sequential Greedy

Given our problem formulation up to this point we have decided that we want to

decouple the computation into individual agents deciding what tasks optimize their

personal score, then use a consensus protocol to guarantee consistency in the x con-

straints. In this environment, there are still 2 key decisions to make: 1) how are each

of the agents going to decide which tasks they would like to perform; and 2) how do

we get all agents to agree on who services each task. The first algorithm that was

created for this problem is called the sequential greedy algorithm, and it solves both

of these problems posed above. It will consist of an algorithm that alternates between

2 phases: 1) a bundle building phase and 2) a consensus phase. The algorithm will

be described in its entirety, and then we will go back and explain what decisions were

made, why they were made, and ultimately why this algorithm was not sufficient for

the problem statement posed in this thesis.

3.3.1 The Algorithmic Description

Phase 1: Bundle Building Phase

The first phase of the algorithm runs on each agent independently. In this phase each

agent produces a candidate bid, that if they win in phase 2, they will be responsible

for servicing. The process begins by each agent looking through all available tasks

and computing a score on each of these available tasks. The set of available tasks is

defined as any task that has not been assigned by phase 2, the Consensus Phase (what

it means for a task to be assigned will be introduced in the next section.) For each

task j in this available list of tasks, each agent i computes a score, ci (pi) for each

task. The form for this score function will also be described below but it is a function

of all of the other tasks the agent is already responsible for servicing. When a score

is computed for all available tasks for a given agent, the largest score is chosen as the

candidate bid that is made up of the pair of task and score. If the agent cannot find a

bid with a positive score (due to capability reasons, bundle length restrictions or lack

of available tasks) then we say this agent has "converged" and is just an observer for

the rest of the algorithm. Every agent with a valid bid then moves to a phase 2, if 0

agents have been able to create a bid then we say that the algorithm has converged.

Phase 2: Consensus Phase

At the start of the consensus phase all of the agents have created a bid and have

shared these bids with each other. This sharing can be done through a centralized

auctioneer or it can be done via a fully connected network by every agent sharing

their bids with every other agent. All of the bids are then compared and the single

bid with the absolute highest score is chosen as the winner. The winning task j* is

then placed at the end of the bundle for the winning agent i*, at the appropriate

location in the winning agent i's path, the jth row in the servicing time matrix is

populated, and all of the agents' winning agent and bid lists are updated. In the

notation presented this includes the following:

xer 1 (3.1)

zij = 0, Vi 4 i*

b - (bi* eendjP)

pi* +- (pi* e, j*)

Ter = Ti**j* (Pi @nj* j*)

ri = 0, Vi # i*

zig = i*, Vi

yi, =Ci*j* (P), Vi

After this task is assigned it is removed from all of the agents' list of available tasks,

and then the algorithm moves back into Phase 1.

Cost Function

Computing the score for a task is dependent on the tasks already in the agent's path

(or equivalently bundle). This means that given a task j and a path for agent i, pi

there is an optimal projected service time for the task. This optimization consists

of maximizing the incremental score of adding the task to the path, while satisfying

all of the constraints imposed by equation 2.5. This process can be described in 2

main steps: 1) Agent i attempts to insert task j in between some elements in the

path, and 2) given this location in the path, the agent computes the optimal service

time and produces an estimate marginal score for adding this task to its path. This

process is then repeated for every available location in the path and the maximum

marginal score is chosen as agent i's candidate bid for task j (in the full algorithm

described above in Phase 1, this candidate bid for task j is then compared with the

bids of all other available tasks and the largest of the candidate bids is then agent i's

bid for that iteration). A more formal description of this process is outlined below

using precise notation and language.

This process outlines the sequence of steps for agent i to compute a candidate bid

on task j, given that agent i already has a path defined as pi (this can be trivially

applied to an empty path by letting pi = 0).

1) Task j is "inserted" in the path at a location n. We will define a new notation as

the pair (PiEnj, j), where this notation signifies inserting task j at location n in path

pi. The process of inserting task j into the path at location nj involves incrementing

the locations of all of the previous path elements in pi from n : |pil up by one and

changing path element at location n to be task j (i.e (pi(neonl,j) = Pin, Vn > n

and (pin, E,) = j).

2) After a candidate location in the path is chosen for inserting task j, the problem

becomes choosing the optimal service time ri*(piEDn, j). This notation can be read

as the optimal service time for agent i of task j when task j has been inserted in the

path at location nj. This problem can be posed as the following optimization:

Ti*j (pio(Dn, j) = argmax cij (t) (3.2)
tE[O,oo)

subject to: r,*(Pienj, j) = Tr*(pi), Vk E pi

si E S

where k is an index for all tasks already in pi and si E S is the path feasibility

constraint introduced in Chapter 2. Here we are optimizing the servicing time given

two main constraints. The first is that we cannot change the service times for tasks

that are already located in the path. This is a choice that we made with the algorithm

because alternatively we could have allowed for all of the times to be shifting around.

As long as the marginal score of introducing that task into the path is higher than

any other consideration (including shifting the times around) it would be allowed to

be the bid. We chose not to allow the shifting of times for a few reasons involving

convergence and cooperation. Without the constraint posed above in equation 3.2

the agent could choose to just not do a task in its path (by effectively shifting the

completion time of it to infinity) because the task it is trying to add has a higher score.

This leads to problems when agents start depending on other tasks actually being

serviced when they were told they would be serviced. For this reason we sometimes

see lower scores than possible but we gain bid credibility and agent accountability for

servicing tasks they bid on. The second constraint is the path feasibility constraint.

As was mentioned before, we are not explicitly ever solving for si, but we must

guarantee that a feasible si exists, and thus it can be found at a later time by more

specialized algorithms. In practice this is relatively easy to do with a small buffer on

vehicle speed. This allows us to conservatively estimate locations an agent can likely

reach given the time constraints.

Note that the optimization defined in equation 3.2 is a continuous time problem,

which, for the general case, involves a significant amount of computation. The opti-

mal score associated with inserting the task at location n is then given trivially by

computing cj(ri*(pion,, j)). This process is repeated for all n = 1 : |pil by inserting

task j at every possible location in the path. The optimal location is then given by,

nj* = argma cj (r,* (pieD,, j)A) (3.3)
ni

and the final score for task j is cij(pi) = cj(Ti*(pien*, j)). As was stated above this

optimization can be difficult to solve for arbitrarily complicated cost functions, but

typically in practice we use slight time decay cost functions. With this algorithm,

the cost function of choice is usually of the form specified in equation 2.8. In this

particular function the role of the penalty takes on the form of a fuel estimate along

the path chosen. The complete form for this cost function then becomes

0 for t < tstart

rij (t) e--t-ta for tstart < t <_ tend (3.4)

0 for t > tstart

cij (t) = ri (t) - fi (d (pi E,, j) - d (pi))

where fi is the fuel cost for agent i, and d is a function computing the added length

of the path traversed by agent i when task j is inserted into its path. Since the

score function has an exponential decay, between any 2 tasks usually the earliest

possible time is chosen (that satisfies si E S) and therefore there is no need for a full

optimization. With different cost functions more elaborate methods for determining

this servicing time may be necessary. An example of a more complicated cost function

is one proposed by Ponda [50]. If the score has any stochastic elements, picking the

times becomes a robustness operation and is not as straight forward as sooner is

better. In this environment, a more complete optimization is chosen for picking the

servicing times.

This algorithm is guaranteed to converge in polynomial time, assuming

Nt < oo (3.5)

or Na < oo and |LI < oo

at a rate that grows in worst case as 8(min(N, NaLi)NtNaLi).

3.3.2 Where Sequential Greedy Fails For Our Problem State-

ment

The main problem with this algorithm in decentralized environments is that it takes

E(min(N, NaLi)D) fleet-wide synchronized iterations to converge. In this equation,

D represents the network diameter (intuitively we need to add D because as the

network diameter grows, it takes more time for information to propagate throughout

the network, and it slows the overall convergence down). When we are operating in

environments where we do not have a very strong network architecture, reaching a

fleet-wide synchronous state repeatedly is very difficult, if not impossible. The algo-

rithm presented here cannot progress without all of the agents meeting together at

each iteration to agree on the next best task. For this reason, this algorithm breaks

down in large distributed architectures and any sort of decentralized architecture.

In other communication structures not explicitly considered by this thesis, such as

centralized, this algorithm turns out to be especially fast because the computation

is very efficient. Additionally in centralized architectures there is no worry about

the delays introduced from synchronizing spatially separated agents. For this reason,

the sequential greedy algorithm makes a very good centralized greedy task alloca-

tion solver, but a relatively poor distributed and decentralized algorithm. The goal

of the next algorithm presented is to reduce the total number of iterations the al-

gorithm needs in order to converge, and thus allow a more efficient distribution of

computation.

3.4 Consensus-Based Bundle Algorithm (CBBA)

The development of the Consensus-Based Bundle Algorithm (CBBA) was based

around the idea that the sequential greedy algorithm was a good idea but it took

too many synchronous iterations to converge. The observation was made that it

should be possible to converge, or at least attempt to converge on multiple tasks per

iteration. Out of this idea we discovered that a naive approach would not suffice and

produced a non-trivial distributed extension of the sequential greedy algorithm called

CBBA.

3.4.1 Algorithmic Description

Although CBBA is very similar to the sequential greedy algorithm, we will give a

complete description of the algorithm, and we will attempt to highlight the location

of the differences between CBBA and the sequential greedy algorithm. CBBA retains

the 2 phase structure of a bundle building phase and a consensus phase.

Phase 1: Bundle Construction

During this phase of the algorithm, each agent will be acting independently of one

another. The main form of this phase will be that each agent is continuously adding

tasks to its bundle in a greedy fashion until it is incapable of adding any others (either

due to lack of doable tasks or reaching the bundle limit Lt). The algorithm progresses

by looking through the set of available tasks(an available task is a task that is not

completed and is not already in the agent's bundle), computes a score for each task

then checks this score against a list of the the current winning bids. The bid is kept

as a candidate next best bid if it is greater than the current best bid for that task.

After this process has been completed for all of the available tasks, the agent selects

the bid with the highest score and adds that bid to the end of its bundle and its

appropriate location in the path.This process then repeats until either the bundle is

full or no bids can beat the current best bid proposed by other agents. A more formal

description of this process is outlined below.

Computing the score for a task is a complex process which is dependent on the

tasks already in the agent's path (and/or bundle). Selecting the best score for task j

can be performed using the following two steps. First, task j is "inserted" in the path

at some location n (the new path becomes (pi oDri j), where e, signifies inserting

the task at location n)3. The score for each task cj(T) is dependent on the time at

which it is executed, motivating the second step, which consists of finding the optimal

execution time given the new path, r,* (pi eJDL, j). This can be found by solving the

following optimization problem:

* (pi e, j) = argmax cj (rij)
Tij E[0,00)

subject to: 'ripi o, j) = r*(pi), Vk E pi. (3.6)

3 The notion of inserting task j into the path at location n involves shifting all path elements from

n onwards by one and changing path element at location nj to be task j (i.e Pi(n+1) = Pin > nj

and pin, = j)

The constraints state that the insertion of the new task j into path pi cannot impact

the current times (and corresponding scores) for the tasks already in the path [51].
Note that this is a continuous time optimization, which, for the general case, involves

a significant amount of computation. The optimal score associated with inserting the

task at location nj is then given by cj (-ri*(pi nj j)). This process is repeated for all

n by inserting task j at every possible location in the path. The optimal location is

then given by,

nj* = argmax cj(T (pi on, j)) (3.7)
nj Z

and the final score for task j is cij(pi) = cj(r*Tj(p ep * j)).
Once the scores for all possible tasks are computed (cij(pi) for all j V pi)), the

scores need to be checked against the winning bid list, yi, to see if any other agent

has a higher bid for the task. We define the variable hij = l(ci (pi) > yij), where II(-)

denotes the indicator function that equals unity if the argument is true and zero if

it is false, so that cij(pi)hij will be nonzero only for viable bids. The final step is to

select the highest scoring task to add to the bundle:

arg maxc(pi)hij (3.8)
j~pi

The bundle, path, times, winning agents and winning bids vectors are then updated

to include the new task:

b + (bi send P)

Pi +-(Pi eni *)

r +-('ri eni r,*,(pi onj* j*))(39

zij = z

yin ci u(pi)

The bundle building recursion continues until either the bundle is full (the limit Lt is

reached), or no tasks can be added for which the agent is not outbid by some other

agent (hij = 0 for all j g pi). Notice that with Equation (4.4), a path is uniquely

defined for a given bundle, while multiple bundles might result in the same path.

Phase 2: Consensus

Once agents created their bundles, they need to communicate with all of the other

tasks in order to resolve conflicting assignments amongst the team. This communi-

cation takes the form of each agent broadcasting its current values for zi,yi and si.

After each agent receives this information from its neighboring agents, each agent can

determine if it has been outbid for any task in its bundle. Since the bundle building

recursion, described in the previous section, depends at each iteration upon the tasks

in the bundle up to that point, if an agent is outbid for a task, it must release it

and all subsequent tasks from its bundle. If the subsequent tasks are not released,

then the current best scores computed for those tasks would be overly conservative,

possibly leading to a degradation in performance. It is better, therefore, to release all

tasks after the outbid task and redo the bundle building recursion process to re-add

these tasks with more accurate bids (or possibly better ones) back into the bundle.

This consensus phase assumes that each pair of neighboring agents synchronously

shares the following information vectors: the winning agent list zi, the winning bids

list yi, and the vector of timestamps si representing the time stamps of the last

information updates received about all the other agents. The timestamp vector for

any agent i is updated using the following equation,

sik Tr, ifgik=1 (3.10)

max{smk mE I, gim, 1} otherwise,

which states that the timestamp sik that agent i has about agent k is equal to the

message reception time Tr if there is a direct link between agents i and k (i.e. gik = 1

in the network graph), and is otherwise determined by taking the latest timestamp

about agent k from the set of agent i's neighboring agents.

For each message that is passed between a sender k and a receiver i, a set of

actions is executed by agent i to update its information vectors using the received

information. These actions involve comparing its vectors zi, yi, and si to those of

agent k to determine which agent's information is the most up-to-date for each task.

There are three possible actions that agent i can take for each task j:

1. Update: zi =z, Yij = Ykj

2. Reset: zij = 0, yij = 0

3. Leave: zij = zij, yij = yij.

The decision rules for this synchronous communication protocol were originally pre-

sented in [32] and are provided below in in Table 3.1 . The first two columns of

the table indicate the agent that each of the sender k and receiver i believes to be

the current winner for a given task; the third column indicates the action that the

receiver should take, where the default action is "Leave". In Section 4.1 we present

a revised communication protocol to handle asynchronous communication.

If either of the winning agent or winning bid information vectors (zi or yi) are

changed as an outcome of the communication, the agent must check if any of the

updated or reset tasks were in its bundle. If so, those tasks, along with all others

added to the bundle after them, are released. Thus if n is the location of the first

outbid task in the bundle (ii = min{n I Zi(bi,) -f i} with bin denoting the nth entry of

the bundle), then for all bundle locations n > h, with corresponding task indices bij,

the following updates are made:

Zi(bin) 0 (3.11)

Yi(bi,) 0,

The bundle is then truncated to remove these tasks,

bi +- { bi, . .. , bi(n-_1)} (3.12)

Table 3.1: CBBA Action rules for agent i
regarding task j

based on communication with agent k

Agent k (sender) Agent i (receiver) Receiver's Action

thinks Zkj is thinks zij is (default: leave)

i if Ykj > yij -* update

k k update
m V {i, k} if Skm > Sim or Ykj > yij - update

none update

i leave

k reset

m {i, k} if skm > sim -+ reset

none leave

i if skm > sim and Ykj > yij - update

k if Skm > sim -+ update

else -+ reset

m {skm > sim -+ update

if skm > sim and skn > sin --+ update

n ({i, k, m} if skm > sim and yki > yij -+ update

if skn > sin and sim > skm -+ reset

none if skm > sim -+ update

i leave

k update
none

m V {i, k} if skm > sim -+ update

none leave

and the corresponding entries are removed from the path and times vectors as well.

From here, the algorithm returns to the first phase where new tasks can be added

to the bundle. CBBA iterates between these two phases until no changes to the

information vectors occur anymore.

Scoring Functions

It has previously been shown that if the scoring function satisfies a certain condition,

called diminishing marginal gain (DMG), CBBA is guaranteed to produce a conflict-

free assignment and converge in at most max{N, LtNa}D iterations, where D is the

network diameter (always less than Na) [32]. The DMG property states that the score

for a task cannot increase as other elements are added to the set before it. In other

words,

Ci (Pi) 2 cij(pi eD, m) (3.13)

for all pi, n, m, and j, where m #4 j and m, j V pi.

Many reward functions in search and exploration problems for UAVs satisfy the

DMG condition. The present authors have shown in [32, 51] that DMG is satisfied

for the following two cases: (a) time-discounted rewards, and (b) more generally

time-windowed rewards.

Time-Discounted Reward Consider the following time-discounted reward [12, 52,

53] that has been commonly used for UAV task allocation problems:

cij(pi) = A Rj (3.14)

where A3 < 1 is the discount factor for task j, rij(pi) is the estimated time agent i

will take to arrive at task location j by following path pi, and Rj is a static reward

associated with performing task j. The time-discounted reward can model search

scenarios in which uncertainty growth with time causes degradation of the expected

reward for visiting a certain location. Equation 3.14 could also be used to model

planning of service routes in which client satisfaction diminishes with time. Since the

triangular inequality holds for the actual distance between task locations,

rij (Pi en mn) >_ rij (Pi) (3.15)

for all n and all m #4 j, m (pi. In other words, if an agent moves along a longer

path, it arrives at each of the task locations at a later time than if it had moved along

a shorter path, resulting in a further discounted score value. Therefore, assuming the

task rewards Rj are nonnegative for all j, the score function in Equation 3.14 satisfies

DMG.

Time-Windowed Reward To incorporating scoring functions with more compli-

cated temporal dependencies we break the score function into two parts:

1. Time Window, wj(r): The time window of validity for a task represents the

time in which the task is allowed to be started. For task j this window is defined

as

{W3 (T)start < T7- < lend (-6
mW (r) =<' " (3.16)

0, otherwise

2. Score Profile, sj (r): The score profile s3 (r) represents the reward an agent

receives from task j when it arrives at the task at time T. This score is based

on the reward for the task, Rj. For example, for the time-discounted case

described above this quantity is sj(T) = A4TRj, where AT = max{0, T - Tjart }

is the difference between the task start time and the agent arrival time, and

Aj < 1 is the discount factor to penalize late arrivals. Without time discounting

s(Tr) = R3.

The score an agent receives for a task is a function of his arrival time at the task

location, rij, and can be computed as cj(rij) = sj(Tj)wj(-rFi). The arrival time, rij, is

in turn a function of the path the agent has taken before reaching task j, as described

in the previous sections, and can be optimized as in Equation 4.1. Using time windows

for tasks provides a framework to penalize early arrivals as well as late arrivals and

accelerates the computation of the optimal task execution time by restricting the

range of values that the arrival time can take.

To verify that the time-windows framework satisfies the DMG property we want

to ensure that for all j V pi,

cij (pi) > cij(p's),

where p' = {pi e* m} such that n* is the optimal location in the path for task

m (pi, m f j, with a corresponding optimal time of r*m. Note that the constraint

set 'ri*(p') = r *(pr), Vk E pi is assumed to be satisfied during the addition of task m

as described in Equation 4.1. For a new task j V p', the problem of computing r,*

given the new path p' becomes,

r2*(p' ®n, j) = argmax cj (rij)
Tj Pi -TijE([0,o00)

subject to: T*(p' En j) = Tr*(p'), Vk E p'. (3.17)

for each insertion location n. The constraint set for this optimization can be rewritten

as the following set of constraints,

rik((pi en, m) EDj j) 'r*(pi En m) = T*(Pi), Vk E pi (3.18)

Tim ((Pi (Dn* M) oni j)=ri*,(pi oo- M) (3.19)

Note that the second equality represents an additional constraint to the original set

corresponding to inserting task j in path pi. In fact, with each new task that is

inserted into the path one additional constraint must be satisfied. Since at each

iteration of the bundle building process we are solving a more constrained problem

than we would have with a shorter bundle, the optimal score for tasks can only

decrease, thus satisfying DMG.

3.5 CBBA Analysis

The following section will give some insight into the limitations of the CBBA algo-

rithm in the environments considered in this thesis.

3.5.1 Synchronous Nature of CBBA

CBBA was originally designed to be decentralized. During the design process, an

effort was made to allow agents as much autonomy in creating bids as possible but

the final algorithm was tightly synchronized. During experimental testing it became

obvious that there are many logistical challenges to implementing synchronization in

decentralized algorithms. This process involved creating many candidate solutions

for implementing this decentralized synchronization. Figure 3-1 highlights the three

main challenges associated with this decentralized synchronization.

Conservative Plan Time Empty plan window Closed Loop plan window

Plan Time Dead Time

Agent 1Age Agent 1

Agent 2 Agent 2 Agent 2

Agent 3 Agent 3 Agent 3 Out of range

Figure 3-1: Three difficulties with decentralized synchronization. The width of the
boxes (labeled as agents 1-3) represents the computation time for the bundle building
phase. The black bar above these agents represents the globally set heartbeat time.

One set of candidate solutions for synchronization in a decentralized environment

is the idea of a global heartbeat. In this environment, all of the decentralized agents

would observe this global heartbeat to synchronize every consensus step in CBBA.

As can be seen in the "conservative plan time" block, if the heartbeat is set for too

long, then computation time is wasted by forcing all agents that have finished early

to idle. On the other hand, as can be seen in the "empty plan window block", if the

heartbeat time is set too short, then agents may not have finished their computation

in time to join every iteration. In this situation, the agents create what is effectively

an artificial dynamic network, where only a subset of the agents communicate at

every iteration. When implemented in practice, both the problems of "conservative

plan time" and "empty plan windows" are seen at every single iteration for different

sets of agents. Another solution was introduced in which all agents wait for all

other agents to return with assignments, then only advance once they had heard

from everyone. This fixed the problem with creating an artificial dynamic network,

but introduced a severe problem if the network actually was dynamic. In that case

the algorithm would never converge because agents would be "stuck" waiting for a

message that was not going to arrive. It was unclear how to scale this method to

handle dynamic networks with possible dropped connectivity in a fast reliable way.

It turned out that these synchronous effects were crippling the convergence of the

algorithm when communication was anything other than perfect. Only in a very

reliable communication environments would CBBA perform as had been expected.

Given these observations, it was clear that robust decentralized algorithms couldn't

heavily rely on global synchronization.

3.5.2 Information Incorporated During the Plan Cycle

One important consideration was to define where in the plan cycle new information

was allowed to be introduced. This choice is a direct trade-off between faster response

times to changes in situational awareness and convergence stability. Traditionally,

real-time planners utilize the notion of a replan to deal with changes in the situational

awareness of the fleet. This consisted of creating some global heartbeat where the

fleet completely rebuilt its task allocation at every one of these replan iterations.

There are two implicit assumptions with this methodology: 1) The time that it

takes the planner to replan is relatively short; and 2) the replan iterations can be

scheduled frequently enough such that there are no significant delays in situational

awareness propagation into the plan. In decentralized architectures assumption 1 is

usually a non-negligible time. In addition, assumption 2 that replans can be run

arbitrarily often is broken when assumption 1 breaks because the new replan will be

throttled by how long it takes for the first plan to converge (and more importantly

how long it takes the fleet to realize that it has converged). It becomes clear in real-

time environments that the ability to include information mid-plan cycle is extremely

beneficial for adaptation to changes in situational awareness as long as this effort

does not significantly affect convergence. CBBA was burdened by the constraint of

global replans, and long decentralized convergence rates. This observation made it

clear that robust decentralized algorithms needed much faster tools for incorporating

changes in situational awareness into plans. A good way to accomplish this seemed

to allow more local replan decisions over the global replans that CBBA requires.

3.5.3 Message Passing

The ways that messages are bundled and propagated defines the complexity of the

consensus protocol needed to interpret the information. The simplest approach is to

just forward every single packet so that information is always propagating directly

from the source. This forms artificially strongly-connected networks with the side

effect of propagating redundant, and at times, incorrect information around the net-

work. To counter this effect, planners like CBBA use a consensus protocol. It allows

each agent to look at the information it is receiving from other agents in the network

and combine it into self-consistent bundles of information, without having to repeat

old information or forward information that it already knows to be incorrect. This

consensus process does, at times, also lead to tricky problems where information can

confuse the consensus algorithm. This forces these consensus algorithms to be overly

conservative and require more total information to enter the network (but often sig-

nificantly fewer actual messages) than would have been needed to propagate every

message to all agents.

3.5.4 Convergence Definition

The definition of convergence has a very natural meaning when we are talking about

global convergence in a static environment, but this notion breaks down in decen-

tralized or dynamic environments. This has lead to distinctions in how to quantify

and correctly identify convergence. The most robust way to handle convergence in

static environments is to create a convergence "handshake" so every agent is able to

confirm that they have converged with every other agent. This solution becomes more

difficult in dynamic networks because agents are entering and leaving the network,

making it difficult to tell the difference between communication drops and just long

series of computations. Thus, on a global setting, convergence becomes very difficult

to verify in decentralized applications. In fact it will be shown in Chapter 4 that in

some cases (very large, or highly dynamic environments), global convergence does not

even ever exist.

This observation that there may not even exist a notion of global convergence

motivates the need for some type of local convergence. Local convergence can be

defined as recognizing when all local computations and decisions have come to their

final values. However, even local convergence suffers from additional complications.

When agents are interacting with each other, local convergence may often only be

temporary. Local convergence metrics are much less robust at identifying algorithm

completion than global convergence but most of the time they allow the agents to

make productive decisions while they are waiting for actual global convergence (if

global convergence even exists for the particular environment). This lead to another

realization that any truly decentralized planner would have to recognize some notion

of local convergence to operate in dynamic environments.

3.5.5 When to Start Executing a Plan?

When we start dealing with local convergence instead of global convergence (because

global convergence is either hard to detect or never occurs) a decision needs to made

about when a stable plan has been generated and can safely start being executed. This

is different from determining local or even global convergence because this decision

only focuses on minimizing wasted effort by the agent. This means that even if a

particular agent is going to change its world belief, as long as its plan (or just the

first item in its plan) doesn't change it can safely execute it. This is a very difficult

question to robustly answer before a global convergent state. If reliable methods

to determine the answer to this question are obtained, the notion of convergence

becomes less central. In our ACBBA work that will be described in Chapter 4, we

have determined a parameter, called separation time, that does a reasonably good

job of estimating when a plan is executable, but more robust ways are still needed.

If we could create a process of determining when to start executing plans based on

bid logic or using other information in bids that is currently discarded, it would be

tremendously beneficial for our decentralized planning approaches.

3.5.6 Algorithmic Implications

The five considerations listed above translate almost directly into a set of features

that a decentralized task planning algorithm with our domain constraints will need

to have. These are:

1. There cannot be a strong notion of global synchronization needed for algorithmic

convergence

2. There should be a way for local changes in situational awareness to enter the

plan cycle without requiring a global replan

3. Messages should be handled as efficiently as possible, ideally not requiring any

global synchronization

4. There need to be some local measures to detect convergence in dynamic envi-

ronments

5. Start servicing tasks as soon as it's clear what the next best thing to do is, as

opposed to waiting for some measure of convergence.

These features were the key motivators for transitioning from CBBA to the asyn-

chronous consensus based bundle algorithm (ACBBA) presented in Chapter 4.

66

Chapter 4

The Asynchronous Consensus

Based Bundle Algorithm

Originally the consensus based bundle algorithm (CBBA), introduced in the previous

chapter, was designed as a decentralized task allocation algorithm. Unfortunately in

environments where communications were not ideal, the implicit synchronous assump-

tions impeded the the fluid execution and the algorithm didn't perform as expected.

The following key features were identified that would be necessary to transition CBBA

into an algorithm that could be used in decentralized environments:

1. Depart from all of the implicit "global" notions in algorithmic operations

2. Use available information as efficiently as possible.

3. Allow agent consensus and convergence to be determined independently and

locally.

4. Allow agents to enter and leave the network and allow tasks to be created and

deleted in real time.

In the spirit of fixing these problems while leveraging the decisions and insights that

were introduced in Chapter the Asynchronous Consensus Based Bundle Algorithm

(ACBBA) was created.

4.1 Asynchronous CBBA (ACBBA)

4.1.1 Algorithmic Discussion

ACBBA retains the 2 phase structure that was introduced with both the sequential

greedy algorithm and CBBA. The main differences come in the synchronization of

the phases, and the assumptions that need to be made in the consensus protocol. The

theme introduced with ACBBA was to enable the agents to operate independently of

all other agents in the fleet. In the spirit of the goals of Chapter , the agents would do

their best to come to a conflict free assignment on the assignment matrix x but the

algorithm would not fail when communication and global structures were not avail-

able. Because of this, each agent was allowed to build bundles and perform consensus

on their own schedule. This was made possible through a careful understanding un-

derstanding of how to communicate with other agents, and with what information

should be present in their communications. For completeness we will introduce a full

description of the algorithm. Much of it will be similar to CBBA but the differences

will be effective ways to address the goals that were identified at the beginning of this

chapter.

Overall Algorithmic Flow

In order to create a robust algorithmic flow, the information passing inside of ACBBA

had to be carefully controlled. The specific approach was implemented using two sep-

arate modules of the algorithm each running in parallel, a consensus module and a

bundle building module. The consensus module is where message receiving and infor-

mation deconfliction occurs. The bundle building module then takes this information,

builds a local bundle, and rebroadcasts the results. An example of the overall system

architecture is depicted in Figure 4-1.

The flow of information in ACBBA can be seen to start in the consensus phase

when information is received from other agents or supervising users. This is the

primary channel of receiving information about the outside world. All messages in-

cluding information about other agent's desired allocations, to information about the

lAgent Incoming
Buffer I

Receive | Messages -

Message 7 Listener {7,8,9) Bundle-
Builder

Message 8

Message 9 Incoming

Buffer 2 Messages

Messages {4,5,6}
{7,8,9}

Outgoing Outgoing
Buffer I Buffer 2

{4,5,6}

{b3} {b3)

-_ _ - - _ _ - _ _ - _ _ _ _ _ _ _ _ _ _ _ _-

*ISend

Messages
{4,5,6,b3)

Figure 4-1: Agent decision architecture: Each agent runs two main threads, Listener
and BundleBuilder; these two threads interface via the Incoming Buffers - there are
two buffers to avoid unexpected message overriding; outgoing buffers manage rebroad-
casting of information, triggered by the completion of the BundleBuilder thread.

creation or completion of other tasks enters through this channel. When information

enters the consensus module that is relevant to algorithmic execution it is copied and

sent to two locations: 1) the bundle building buffer, and 2) the rebroadcast buffer.

The reason for the complexity added with these buffers is that managing the state

inside the algorithm is very important to ensuring proper execution of the algorithm.

This consensus module is run continuously so the algorithm is able to immediately

assess the relevance of incoming information. To recap, relevant information enters

through the consensus module, then is sent to both a bundle building buffer and a

rebroadcast buffer.

We will discuss what happens to the information in the bundle building buffer

first. This part of the algorithm is where we retain our notion of an "iteration."

Since computing new bundles is only worthwhile when enough relevant information

is available, the execution of this module is throttled. This throttling is a local

decision that can take the form of a timed iteration, or a closed loop process based

on messages arriving in the bundle building buffer. In practice, a combination of the

two is implemented. The bundle building process is spawned on an iteration time

but with the caveat that it doesn't run unless new information is available. When

the bundle building module is scheduled to run, the module attempts to build its

bundle identically to CBBA. It reads in bids on tasks that the listener has said that

it was outbid on, then repopulates its bundle with new tasks if necessary. A reminder

of exactly what this process entails will be added in the next sections below. The

result of this process will be a final bundle of tasks for this agent. Any changes to this

agent's bundle are noted and sent to the same rebroadcast buffer that was holding the

information that the agent just acted upon. At this point the rebroadcast function

is called, all all relevant information is broadcast out to the agent's neighbors. In

this rebroadcast buffer, there is usually a mixture of data from the consensus module

and from the bundle building module. The information in the rebroadcast buffer

that was sent from the consensus module is exactly the same information that the

bundle building module received before it built its most recent bundle. Packing

the rebroadcast information in this way allows updates made in the bundle building

module to prune outdated information in the outgoing queue. This guarantees that

the outgoing messages accurately represent the state of the current bundle build,

saving computation resources and message bandwidth at the expense of a longer

rebroadcast period. By carefully controlling the information exchange inside of the

ACBBA algorithm we are able to make assumptions about the state of information

that is propagated and can utilize these assumptions in the consensus module of the

algorithm. The next 2 subsections will outline exactly what is occurring in each of

the main modules of this algorithm.

Module 1: Bundle Construction

The main form of this module is when it is triggered to run, it takes all of new

information from the bundle building buffer and updates its local bundle. After each

agent receives this information, the agent can determine if it has been outbid for

any task in its bundle. Since the bundle building process, described in the previous

section, depends at each iteration upon the tasks in the bundle up to that point, if an

agent is outbid for a task, it must release it and all subsequent tasks from its bundle. If

the subsequent tasks are not released, then the current best scores computed for those

tasks would be overly conservative, possibly leading to a degradation in performance.

It is better, therefore, to release all tasks after the outbid task and redo the bundle

building recursion process to re-add these tasks with more accurate bids (or possibly

better ones) back into the bundle. Each agent will attempt to rebuild its own bundle

in a greedy fashion until it is incapable of adding any more tasks (either due to lack

of doable tasks or reaching the bundle limit Li). The algorithm progresses by looking

through the set of available tasks (an available task is a task that is not completed

and is not already in the agent's bundle), computes a score for each task then checks

this score against a list of the the current winning bids. The bid is kept as a candidate

next best bid if it is greater than the current best bid for that task. After this process

has been completed for all of the available tasks, the agent selects the bid with the

highest score and inserts that bid to the end of its bundle and its appropriate location

in the path.This process then repeats until either the bundle is full or no bids can

beat the current best bid proposed by other agents. A more formal description of

computing the actual bids is outlined below.

Computing the score for a task is a complex process which is dependent on the

tasks already in the agent's path (and/or bundle). Selecting the best score for task j

can be performed using the following two steps. First, task j is "inserted" in the path

at some location ny (the new path becomes (pion,, j), where D, signifies inserting

the task at location n)1. The score for each task cis(t) is dependent on the time at

'The notion of inserting task j into the path at location nj involves shifting all path elements from
nj onwards by one and changing path element at location n to be task j (i.e pi(n+1) = Pin,VU > ?lj

which it is executed, motivating the second step, which consists of finding the optimal

execution time given the new path, 1r*(pi o@, j). This can be found by solving the

following optimization problem:

,*(pi e@, j) = argmax cj (rij)
Tri, E [0,oo)

subject to: rF*T(pi ED, j) = T*(pz), Vk E pj. (4.1)

The constraints state that the insertion of the new task j into path pi cannot impact

the current times (and corresponding scores) for the tasks already in the path [51].

Note that this is a continuous time optimization, which, for the general case, involves

a significant amount of computation. The optimal score associated with inserting the

task at location nj is then given by cj (r,*T (pi ej j)). This process is repeated for all

n by inserting task j at every possible location in the path. The optimal location is

then given by,

ny =argmax cj (r*j(pi eDj j)) (4.2)
ni

and the final score for task j is cij(Pi) = Cj(T*j(Pi enj* j)).
Once the scores for all possible tasks are computed (cij(pi) for all j V pi)), the

scores need to be checked against the winning bid list, yi, to see if any other agent

has a higher bid for the task. We define the variable h]I(cij(pi) > yij), where I[(-)

denotes the indicator function that equals unity if the argument is true and zero if it

is false, so that cij(pi)hij will be non-zero only for viable bids. The final step is to

select the highest scoring task to add to the bundle:

= argmaxcij(pi)hij (4.3)
j~pi

At this point the bundle, path, winning agents and winning bids vectors are then

and pinj = j)

updated to include the new task:

bi <-(bi send j)

pi +- (p% e* j*)

Ti 4-(ri eDn,- Ti**(Pi Es,- j*)) (4.4)

zU= 2

Yij = cij*(Pi)

In addition to this, the current time is sampled and recorded as the bid time for

this bid. This bid time is important during the consensus phase.

The bundle building recursion continues until either the bundle is full (the limit Lt

is reached), or no tasks can be added for which the agent is not outbid by some other

agent (hij = 0 for all j V pi). Notice that with Equation (4.4), a path is uniquely

defined for a given bundle, while multiple bundles might result in the same path.

Phase 2: Consensus

Once agents created their bundles, they need to communicate with all of the other

tasks in order to resolve conflicting assignments amongst the team. This module is

responsible for interpreting the information arriving form the agents team members.

Recall that during CBBA consensus local variables on each agent. These variables

for each agent i were the winning agent list zi and the winning bid list yi. Previously

there was a variable for decision timestamps si that specified the time in which 2

agents communicated with each other. This worked fine in synchronized settings but

as we moved into more asynchronous settings we needed to be clearer about what

the time stamp represented. With ACBBA we created a similar variable t, that

represents the time that the bid was relevant. This was necessary because what is

really important about this time is not how recently you heard the information but

how relevant the information is. Changing this time variable allows us to create a

much more intelligent task consensus protocol that directly targets the sources of

conflicted information.

Another useful result of clarifying our understanding of the propagation of the

information state, is that we are able to empower the consensus algorithm to control

when information should be propagated. In the terminology of this protocol, we call

this information propagation a rebroadcast. What this rebroadcast decision ensures is

that each agent then only broadcasts new or relevant information, effectively reducing

the overall bandwidth requirements of a decentralized system. In order to to create

a robust task consensus protocol, ACBBA always assumes worst case networking

scenarios. This robustness is what is able to handle dynamic network topologies

naturally, allowing agents to enter and leave the network as well as links to drop

and reappear. This new protocol ends up working well in decentralized environments

because the task consensus process is run using only local information, therefore even

in worst case network scenarios, informed decisions can be made. Below is an outline

of the message consensus rules. They are fairly complicated, but exhaustive to capture

all possible scenarios and enable convergence.

The above table describes what actions agent i should take after receiving a mes-

sage from agent k. The term zkj refers to agent k's belief of who won task j and Ykj

represents the associated winning bid. The new term t kj refers to the timestamp of

when this winning bid was made.

4.1.2 Local Deconfliction Rules of ACBBA

1. Update & Rebroadcast: The receiver i updates its winning agent zij, winning

bid yij, and winning time tij with the received information from the sender k.

It then propagates this new information.

2. Leave & Rebroadcast: The receiver does not change its information state,

but rebroadcasts its local copy of the winning agent's information because either

it believes its information is more correct than the sender's, or the agent is

unsure and it's looking for confirmation from another agent.

3. Leave & No-Rebroadcast: The receiver neither changes its information

state nor rebroadcasts it. This action is applied when the information is either

Table 4.1: ACBBA decision rules for agent i based on communication with agent

k regarding task j (zug: winning agent for task j from agent u's perspective; yuj:

winning bid on task j from agent u's perspective; to3 : timestamp of the message

agent u received associated with the current zuj and yuj)

Agent k (sender) Agent i (receiver) Receiver's Action
thinks Zkj is thinks zij is (default: leave & rebroadcast)

1 if Ykj > yij -+ updatet & rebroadcast
2 if Ykj = yij and Zkj < zi -4 update & rebroadcast

3 if Ykj < Yij -+updatef & rebroadcast
4 kif tkj > tij -*update & rebroadcast

5 k ~~It - tjI< et --+ leave & no-broadcast
6 if tkj < ti -4 leave & no-rebroadcast
7 if Ykj > yij and tkj tj~ update & rebroadcast

8 if Ykj < yij and tkj tij- leave & rebroadcast
9 m V {i, k} if Ykj = -+j leave & rebroadcast

10 if Ykj < yi and tkj > ti3 - update & rebroadcast
11 if Ykj > Yij and tkj < tij - update & rebroadcast

12 none update & rebroadcast
13 if Itkj - tjI < ct -+ leavef & no-rebroadcast
14 k reset & rebroadcast*
15 m V {i, k} leavel & rebroadcast
16 none leave & rebroadcast*

17 if Yk1 > yij --+ updatet & rebroadcast

18 if Ykj =yij and Zkj < zij --+ update & rebroadcast

19 if Ykj < yi -+ updatet & rebroadcast
20 k update & rebroadcast
21 MV ji k if tkj > tij -4 update & rebroadcast

22 Itkj - tjI <cEt -4 leave & no-rebroadcast

23 if tk3 < tij -4 leave & rebroadcast
24 if Ykj > Yij and tkj > tij --+ update & rebroadcast

25 if Ykj < Yij and tkj 5 ti -+ leave & rebroadcast

26 n V {i, k, m} if Ykj < yij and tkj > t i update & rebroadcast
27 ____________if Ykj > Yij and tkj < tij- leave & rebroadcast

28 none update & rebroadcast

29 i leavet & rebroadcast
30 noek leavet & rebroadcast
31 noneVm{i, k} if tkj > tij -+ update & rebroadcast
32 none leave & no-rebroadcast

NOTE: rebroadcast* empty bid with current time

not new or is outdated and should have been corrected already.

4. Reset & Rebroadcast: The receiver resets its information state: zij = 0 and

yij = 0, and rebroadcasts the original received message so that the confusion

can be resolved by other agents.

5. Update Time & Rebroadcast: This case happens when the receiver is the

task winner and observes a possibly confusing message. The receiver updates

the timestamp on his bid to reflect the current time, confirming that the bid is

still active at the current time.

Remarks on Key Decision Rules

e Both Sender and Receiver think they win (Lines 1-3): When this case

arises we choose the highest of the two bids and call it the winner. To help with

the propagation of this information throughout the network we make sure that the

winning bid has a later time than the losing bid, if it does we do not change the time,

if it does not, we update the time to be E greater than the losing time. This if the

winning agent is updating the time, it is confirming that at that particular time, it

is still winning the task. If the receiving agent is updating the time, it is confirming

that it in fact as been outbid on the task after than the time of its last bid. If the

two agents have the exact same score, the tie breaker we use is the lowest agent ID.

Given the continuous nature of our cost function, this tie case is very unlikely in any

real situation.

* Both Sender and Receiver think the sender won (Lines(4-6)) This is one

of the convergent states because both agents agree on the winner. There is a small

update made to propagate the most recent time so that both agents are always using

the most recent time. If the times also match then this is a sink state where no extra

messages are sent out.

* Sender thinks that he won, while receiver thinks that some other agent

not a sender or receiver has won (7-11) This is one of the main confusion

resolving states with several rules. The easiest rule is that if the score and time are

both greater for the sender then trust this information. Likewise, if the score and the

time are less than the receiver then trust the receivers information. In the degenerate

case when the scores are the same we also trust the lowest score. If there is confusion

where the winning score and the times do not define a clear winner then we enter

an unstable state where the agent always trusts the later timestamp. This case, the

agent knows this will not be the final information state for this information, but it

propagates the most recent time information to ask for clarification. If the agent with

a lower score with a later time is the actual winner then it will always hold on to this

information, if the agent with a higher score but an earlier time is the actual winner

then the agent will receive this bid again with an updated time when the appropriate

agent hears the message.

. Sender thinks he won, Receiver has no bid knowledge (12) In this case the

agent is receiving a new bid so it trusts this information.

* Both Sender and Receiver think Receiver is the winner (13) If the two

agents have the same information then this is a sink state. If the receiver has old

information, then update. If the sender has an earlier time (then this is an old message

that has been lost) ignore it, and rebroadcast the newer time.

* Sender thinks receiver is the winner, Receiver thinks Sender is winner

(14) This state is a confused state and only occurs when there has been lots of recent

changes to the agents bundles for this particular task. This is another unstable state

where both agents broadcast an empty bid with the current time to say that neither

agent thinks it is currently winning the task.

. Sender thinks Receiver w/o and Receiver thinks someone other than

the 2 has won (15) In this case we just leave and rebroadcast the current Receiver

state. The idea behind this is that we are hoping that the message we just received

is old information and it will sort itself out.

. Sender thinks Receiver has won when the receiver has no winner (16))

This is a case of old information entering the network. The receiver just broadcasts

the empty bid, insuring that the time its broadcasting for, is later than the one posted

by the sender.

* Sender thinks someone else won, Receiver thinks receiver won (17-19)

In this case the receiver looks at the score of the bid, if the receiver is outbid he

accepts the senders bid and updates the time to be later than his if necessary. In the

degenerate case if both the agents are tied, take the lowest Id. If the receivers bid

is higher than the other, then rebroadcast the senders bid with an updated time if

its necessary to make it later, otherwise leave the time unchanged. We can do this

because the receiver can guarantee the bid that he himself made, even at an earlier

time, so this is a robust consensus decision.

* Sender thinks someone else, receiver thinks sender (20) In this case the

receiver will always trust the sender if the sender's time is greater than the message

time. If the receivers time is greater than we know that the message sent was an

old message and its safe to ignore, we rebroadcast our current information to clarify

other agents or allow the sender to actually update the time.

* Sender and Receiver agree on winner but its neither of them (21-23) Un-

der this situation if a newer time is received from the sender then the local information

is updated, otherwise this state is a sink state.

* Neither Sender or Receiver have won task, but they disagree on who

has (24-27) The straightforward rules are if the score is more and the time is later

then trust the information, and it if the score is less and the time is earlier then

discard information and rebroadcast the local copy. The other 2 conditions handle

the unstable states. These are states where the local information the receiver has

will most likely change, so the rule to use is to just trust the most recent information

(later time), and allow the rest of the protocol to sort out the problem.

* Sender is propagating a bid to an empty Receiver (28) In this case we have

the receiver trust the later of the two timesteps. This is because it is easy for the bids

of dropped tasks to be floating around in the network. the only way to pull them out

is to trust that timestamps will be updated efficiently and newer times will prevail.

* Sender thinks none and Receiver thinks it won (29) In this case we just

rebroadcast our own bid while updating the time if necessary to propagate the infor-

mation that the sender thinks that it has won.

9 Sender thinks no one, receiver thinks Sender (30) This is the propagation

step for a dropped bid. This is important to start the propagation of dropped bids.

o Sender thinks none, receiver thinks someone else (31) Since its difficult

to tell who has most accurate information, best we can do is trust later time and

propagate that information.

o Both think none If both messages have the same time, then this is a sink state,

if they have different times, trust the later time and rebroadcast.

Scoring Functions

For brevity here we will refer you to the scoring discussion in the previous chapter

because it is identical to the one used with ACBBA.

4.1.3 Algorithmic Convergence

As a feature of the algorithm, ACBBA runs the Bundle Building and Consensus

Phases simultaneously and continuously in separate threads. This added flexibility

changes the way that we must think of convergence. In this continuously running

system there is never a point in which CBBA ceases to execute. This means that

other criteria need to be constructed to recognize that the system has entered a

stable, conflict-free assignment. Furthermore, this criterion is also required to be a

local measure, such that each agent can decide individually.

In a static environment ACBBA is guaranteed to converge. The convergence

problem shown in Figure 4-2 illustrates how we think about full network convergence

in the ACBBA algorithm. The scenario in this figure is for 8 agents, with a maximum

U) 8000 Total Number of Messages. 956
c)

Q) 6000

4000

20

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Time (s)

Figure 4-2: Message profile for a convergence iteration where all the tasks are released
at the start of the program

bundle size of 5, bidding on 35 tasks. As we see in the figure, there is a large spike

within the first 10 ms of the tasks being released. This heavy message passing regime

continues for about 0.1 s, then, after some clean up messages, settles down to 0

messages being sent. Once the network goes quiet in this configuration we say that the

network has converged. For the rest of the results in this paper, we define 1 message

being sent as an agent broadcasting some piece of information to every vehicle that

can hear it, no matter how many vehicles hear this one message being broadcast, we

count it as 1 message. Also, for reference, throughout this entire process 956 messages

were sent.

The case shown in Figure 4-2 is interesting, but it ignores one of the big regimes

in which ACBBA was designed to operate. In Figure 4-3 we show an example of

what the network looks like under the presence of pop-up tasks. The parameters for

this test are identical the above scenario, except, instead of releasing all 35 tasks at

once, an initial allocation of 10 tasks starts off the ACBBA convergence, then every

0.2 seconds after, a single pop-up task is added. In this scenario we can see that

the initial convergence takes a similar form to what was shown in Figure 4-2. At

0.2 seconds we see that the first pop-up task is released. The algorithm has a small

9000 9000 I i 1 li: T t-- Message Rate -- Message Rate
0- Task Release Time . .ask Release Time

7000 7000

6000 5000

5000 25000

'A 4000'A4D

1000 1000

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time (s) Time (s)

(a) Early Convergence (b) Steady State Behavior

Figure 4-3: Message profile for a convergence sequence when 10 tasks seed the envi-
ronment and pop-up tasks are released every 0.2s after

spike of messages (about 50) for a little less that 0.1 seconds. These few messages

are used to assign the pop-up task to an agent quickly, then the global message state

returns to idle. Part a) of Figure 4-3 shows a close up of the convergence for the

first second of the demonstration, while part b) shows the general trend of the steady

state behavior. For reference, the number of messages sent in the timespan shown in

a) of Figure 4-3 was 620.

Given the results in Figure 4-3, we recognize that there may be a problem with

defining agent convergence in terms of the global convergence if tasks are arriving

at a rate faster than the algorithm requires to converge to a 0-message state. This

case is shown in Figure 4-4, and is identical to the one outlined in Figure 4-3, except

that tasks come every 50ms instead of 0.2s. This means that on the global scale,

the network may never converge. This is an unavoidable side effect of allowing the

network to handle pop-up tasks. As can be seen in part a) of Figure 4-4, only briefly

does the global network ever converge. This can be seen even more compellingly

in part b) of this figure: - there are never large gaps, where the network has become

completely quiet.

This shows that in general, it does not make sense to define the idea of global

convergence for ACBBA. Despite this we can say that given pop-up tasks, the network

(0

2000 3000

- 200 1!I!IiII 11

1000 1000

0 0.05 0.1 0.15 02 0.25 0.3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s) Time (s)

(a) Early Convergence (b) Steady State Behavior

Figure 4-4: Message profile for a convergence sequence when 10 tasks seed the envi-
ronment and pop-up tasks are released every 0.05s after

does not diverge. We can see the 10 tasks that are released at the beginning add a

large number of messages to the network, but this spike is quickly handled and the

message load stabilizes to the load of handling 1 new task at a time.

The above example highlights that in certain dynamic environments ACBBA con-

vergence can only be thought of in terms of local convergence. This requires that each

agent decide when their own bundles are conflict-free and ready for execution. Given

the decentralized nature of ACBBA, the agents are free to make this decision inde-

pendently of one another. In the example in Figure 4-4, the messages in the network

during the steady-state phase are only due to a couple of agents deciding who wins

the pop-up task. In general, 9 of the other 10 agents will not change their bundles

based on the presence of this task, so when it is clear that they will not win it, they

can decide that they have reached self convergence, even though there is no global

convergence. In this way, certain agents can be in a converged state even though

others are still actively engaging in a consensus phase.

The parameter that ACBBA uses to define the notion of local convergence is called

separation time. This number refers to the maximum amount of time in between the

arrival of any two instances of relevant information. By relevant information, we mean

any information that affects the local agents' ACBBA state. This means that any time

gap longer than a predefined upper bound that an agent hasn't received any relevant

information, the agent can assume with high probability that it has reached local

consensus. This separation time is computed in CBBA every time it checks to see if

new information is available to update its bundle. A property of this parameter that

can be seen in Figure 4-5 is that it is nearly independent of other relevant parameters.

To explore this further we see a plot in part a) of Figure 4-5 of the number of messages

versus number of tasks for a 10 agent simulation. Comparing part a) with part b), we

can see that there is almost a direct mapping between convergence time and number

of messages. However, for our convergence problem, the value for separation time is

virtually independent to changes in number of messages, convergence time, or number

of tasks in the network. In part c) of this figure we can see that it is also independent

of the number of agents in the network. This value may not always be the same

value given different communication constraints. However, since we observe it to be

relatively independent of other parameters during CBBA operation, we can learn the

value of this parameter and use it as a reliable measure of when each individual agent

has converged.

4.2 Asynchronous Replan

Another key feature that is enabled through ACCBA is the ability to execute what we

call an asynchronous replan. Due to the nature of ACBBA's bundle building process,

tasks in an agents' bundle can only be dropped if another agent outbids him for a

task, or if a replan is called. A desired feature for a decentralized algorithm is for an

agent to be able to react quickly to large changes in personal situational awareness.

With the introduction of an asynchronous replan, an individual agent can decide to

drop its entire bundle and rebuild it from scratch, so that it can re-optimize for these

new local changes in situational awareness.

The notion of an asynchronous replan is especially attractive when the change to

a decentralized agent's situational awareness will change that agent's bundle severely,

but keep all the other agents' bundles unchanged. This is a typical scenario that might

20 30 40 50 60 0 10 20 30 40 50 60
Number of Tasks Number of Tasks

(a) Number of messages (b) Convergence time varying number of tasks

--- Conergence Tim
-SeparWn onme

0.12

0.1-

0.0

E
I- 0.06-

3 4 5 6 7 8 9 10 11 12
Number of Agents

(c) Convergence time varying number of agents

Figure 4-5: Monte Carlo simulation results showing comparisons
messages, and convergence times

between number of

happen if a pop-up task is discovered near a remote agent. In some circumstances

that agent will want to drop everything it is doing to service this task, but within the

old CBBA framework, this would require a full global replan. In this situation, as well

as many other possible situations in decentralized operations, events happen locally

and only a few agents in a potentially large fleet care about. This asynchronous re-

planning infrastructure gives these agents the flexibility to react dynamically, without

tying the entire network down in a costly computational replan. These asynchronous

replans utilize the same type of properties of ACBBA's convergence that normal

convergence utilizes, such as the independence of separation time and the stability of

V1___

the global network to consensus disturbances.

4.3 The future of ACBBA

What ACBBA is able to effectively do is depart from the implicit global notions that

the previous algorithmic operations suffered from. We are able to produce conflict free

plans in very decentralized environments and the agents are able to execute missions

with a real time executable task allocation algorithm. The algorithm looks closely

at the information that is propagating through the network and is able to separate

out the relevant information so only needed information is propagated through the

network.

There are a few limitations to ACBBA that are being explored in current research.

The first of these is the constraint on cost functions known as diminishing marginal

gains. The set of cost functions that obey this property is unfortunately limiting

and many approximations are needed to be made to create meaningful cost functions

within this environment. Recent work that will be soon published has shown that

cost functions can be used that break this diminishing marginal gains property as

long as external bids follow DMG.

The second concern was introduced in chapter 3, and is the observation that

it might make sense to combine implicit coordination with task consensus tools to

come up with faster task allocations in highly constrained environments. Appendix A

addresses this problem. The main idea is to utilize all available information to predict

what other agents might want to do. This allows agents to predict task conflicts ahead

of time and it increases the convergence rates of the CBBA and ACBBA algorithms.

Taking this idea to the extreme is what the authors have started calling Hybrid

Information and Planning Consensus (HIPC). The purpose of this work is to capture

all available information in order to come to consensus much faster even in environ-

ments with many inter-task constraints and inter-agent constraints. The three main

focuses of this effort are :

1. Agent Connectivity: Communication environments can be sparse and unreli-

able. Planners that operate in these environments need to be utilizing all of the

information that is available to create good cooperative plans under potentially

poor communication. This includes creating maps of the likely local network

conditions so that more complex consensus tools can be used.

2. Decentralized Operations: Truly decentralized operations rely on mostly

local decision making. This usually involves dropping synchronization tools as

well as giving up on much of the global behavior guarantees. The main push

is to be able to internalize most of the decisions that each agent makes, while

allowing for some localized cooperation through messaging. ACBBA has been

a great start at this overall goal. Utilizing some of the advantages from focuses

1 and 3 can help augment ACBBA to make even more powerful decisions.

3. Group Planning: In a fleet of networked agents, if there is communication

between agents, there is the possibility for more than just the task consensus

information to be propagated. The past behaviors and decisions of other agents

give clues to its location and priorities. With this extra information (along

with other possible more direct information), agents can predict other agents

behaviors in order to create overall more efficient algorithms.

Appendix A

Improving the convergence speed

of the CBBA algorithm.

Through tests with a synchronized implementation of CBBA we have seen that there

are significant communication delays when the algorithm is run in the field. This is

due to many things (including but not limited to: poor network connections, incon-

sistent thread scheduling, heterogeneous computation platforms, etc.) but the main

result is that each algorithmic iteration ends up taking a significant amount of time

to synchronize. This "synchronization penalty" as it is often called in the litera-

ture is then multiplied by the number of iterations the algorithm takes to converge

and becomes quite large even for medium sized problems. A potential solution was

proposed that we call bootstrapping. The solution involves utilizing the fleet wide

situational awareness already present on each of the agents to initialize the CBBA

algorithm to a much better position than could typically be obtained with out this

extra information. The goal is to add extra computation to the initial bids so that

we can reduce the number of iterations throughout the rest of the algorithm and thus

reduce the convergence time. This idea can be applied identically to ACBBA and it

should be able to reduce the number of asynchronous iterations.

A.1 Implementation Details

CBBA with bootstrapping requires additional information called "situational aware-

ness" in order to produce the convergence speed benefits. In many cases this ad-

ditional situational awareness may only pertain to a subset of agents that are in

local communication with each other. This situational awareness takes the form of

positional estimates, health updates, capability constraints and other relevant state

information about as many other agents as possible. At the start of a replan iteration,

all of this information is acquired, and each agent then runs a centralized version on

CBBA on board themselves. This centralized CBBA incorporates all of the infor-

mation that it knows about other agents and creates predicted bids for all of the

other agents that it has information about. While making these predicted bids for all

of the other known agents, the centralized CBBA is able to anticipate conflicts and

resolve them, without have to waste communication resources and introduce extra

iterations. This is especially powerful when solving for coupled-constraints because

it its possible to predict partners in cooperative endeavours, or predict if there will

likely be no possible partnership. After complete bundles are produced, the agents

then broadcast only the tasks that they have assigned to themselves. From this point

onward, the algorithm proceeds exactly as nominal CBBA (or ACBBA), until a final

assignment is reached. One of the primary reasons this approach was introduced was

because it has relatively little effect on the rest of the machinery of CBBA but is able

to make a noticeable improvement in the number of algorithmic iterations. Since this

initialization is wrapped around the nominal CBBA, the algorithm retains all of its

previous guaranteed convergence properties and performance compared to optimality.

A.2 Results and what they mean for performance

Tests were conducted with the bootstrapping algorithm to assess its ability to reduce

the number of conflicts during the nominal algorithmic operation. Each of the plots

shown below were conducted on 100 Monte Carlo runs. The blue lines above and

below the black ones are maximum and minimum bounds for the 100 test cases and

the black line is the mean of all runs. For these results we choose a fairly dense

environment of 100 tasks and 30 agents. The fuel cost and mission scores were

such that every agent in the fleet had a non-zero incentive to service every task in

the environment. This meant that there were a large number of conflicts and the

planning problem was actually pretty hard.

Figure A-1 shows a plot of the number of total conflicts as a function of the fleet

planned for. The vertical axis is scaled to 1 in an attempt to non-dimensionalize

the test case. This plot will be broken up into its components below but one of

the main intuitive results that it shows is roughly monotonic behavior when a higher

percentage of the fleet is planned for. As you can see the environment was set up that

on average, you must plan for every single agent in the fleet to guarantee a conflict

free assignment. This is a very difficult assignment environment and is likely much

more pessimistic environment than typical task allocation scenarios.

1 -

0.9-
C,,

. 0.8-

o 0.7-

0.6-

(D
0.5-

0
a) 0.4-
0Y)
(U
" 0.3-
aJ)

3 0.2-

0.1-

01
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Percentage of Fleet Planned for

Figure A-1: This Plot shows the number of total conflicts as a function of the per-
centage of the fleet planned for.

The second figure (Figure A-2) shows a plot of the normalized number of initial

conflicts as a function of the percentage of the fleet planned for. This translates to:

how many conflicts do we see after the first iteration (or the bootstrapping consensus

phase.) The furthest left data point on the plot corresponds to nominal CBBA and

all other points moving the right are an increasing number of other agents planned for

in the bootstrapping phase. This plot explicitly shows how difficult the fleet is to plan

for because we don't see a large decay in the number of conflicts until we are planning

for roughly 70% of the fleet. From here the plot decays quickly to 0. Figure A-3 shows

0.5-

0.45-

. 0.4-
c

C

0.25-

0
a 0.2-

0.1CU

C.

0.05

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Percentage of Fleet Planned for

Figure A-2: This Plot shows the number of total conflicts as a function
centage of the fleet planned for.

1

of the per-

the total number of conflicts that seen throughout the rest of the CBBA convergence

process. This is the important figure because it is the graph that illustrates the

reduction in the number of iterations because of the use of bootstrapping. (We don't

explicitly plot iterations because this is a function of the network structure, be in fully

connected networks the number of conflicts is roughly proportional to the number of

iterations it takes for the algorithm to converge.) Again in the plot, the furthest left

data point is the nominal CBBA solution and every point to the right is increasing the

number of other agents planned for. In the environment we worked in, after planning

for 20% of the fleet initially, we see 50% less conflicts over the rest of the algorithm.

And again, this environment is a very difficult planning environment, because of this

a typical planning environment will likely be closer to the lower blue line where after

30% of the fleet is planned for, the number of conflicts is reduced by 90%. The main

takeaway from this plot is that during the bootstrapping step, even though there

may be quite a few conflicts in the first iteration, the algorithm is "learning" a lot

about what tasks should be bid on. And after using this bootstrapping information,

the rest of the convergence process is much faster. Bootstrapping is a quick and easy

0.7

CO) U.0
40

C
o 0.5

0.4

0 0.3
D.o: 0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Percentage of Fleet Planned for

Figure A-3: This Plot shows the number of final conflicts as a function
centage of the fleet planned for.

of the per-

incremental improvement that will decrease the convergence time for little extra work

on the part of the planner.

92

Bibliography

[1] "Unmanned aircraft systems roadmap: 2007-2032," tech. rep., Office of the Sec-

retary of Defense, 2007.

[2] United States Air Force Scientific Advisory Board, "Air force operations in urban

environments - volume 1: Executive summary and annotated brief," Tech. Rep.

SAB-TR-05-01, United States Air Force Scientific Advisory Board, http: //www.

au. af .mil/au/awc/awcgate/sab/af _urban-ops._2005. pdf, August 2005.

[3] U. S. A. F. Headquarters, "United States Air Force Unmanned Aircraft Sys-

tems Flight Plan 2009-2047," tech. rep., USAF, Washington DC, http: //www.

govexec.com/pdfs/072309kp1.pdf, 2009.

[4] M. L. Cummings, S. Bruni, S. Mercier, and P. J. Mitchell, "Automation architec-

ture for single operator-multiple UAV command and control," The International

Command and Control Journal, vol. 1, pp. 1-24, 2007.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Nu-

merical Methods. Prentice-Hall, 1989.

[6] J. Bellingham, M. Tillerson, A. Richards, and J. P. How, "Multi-task alloca-

tion and path planning for cooperating UAVs," in Cooperative Control: Models,

Applications and Algorithms at the Conference on Coordination, Control and

Optimization, pp. 1-19, November 2001.

[7] C. Schumacher, P. Chandler, and S. Rasmussen, "Task allocation for wide area

search munitions," in American Control Conference (A CC), vol. 3, pp. 1917-

1922, 2002.

[8] A. Casal, Reconfiguration Planning for Modular Self-Reconfigurable Robots. PhD

thesis, Stanford University, Stanford, CA, 2002.

[9] Y. Jin, A. Minai, and M. Polycarpou, "Cooperative Real-Time Search and Task

Allocation in UAV Teams," in IEEE Conference on Decision and Control (CDC),
vol. 1, pp. 7-12, 2003.

[10] L. Xu and U. Ozguner, "Battle management for unmanned aerial vehicles," in

IEEE Conference on Decision and Control (CDC), vol. 4, pp. 3585-3590, 9-12

Dec. 2003.

[11] D. Turra, L. Pollini, and M. Innocenti, "Fast unmanned vehicles task allocation

with moving targets," in IEEE Conference on Decision and Control (CDC),
vol. 4, pp. 4280-4285, Dec 2004.

[12] M. Alighanbari, "Task assignment algorithms for teams of UAVs in dynamic

environments," Master's thesis, Department of Aeronautics and Astronautics,

Massachusetts Institute of Technology, 2004.

[13] T. M. McLain and R. W. Beard, "Coordination variables, coordination functions,

and cooperative timing missions," AIAA Journal on Guidance, Control, and

Dynamics, vol. 28, no. 1, 2005.

[14] D. A. Castanon and C. Wu, "Distributed algorithms for dynamic reassignment,"

in IEEE Conference on Decision and Control (CDC), vol. 1, pp. 13-18, 9-12 Dec.

2003.

[15] J. Curtis and R. Murphey, "Simultaneous area search and task assignment for a

team of cooperative agents," in AIAA Guidance, Navigation, and Control Con-

ference (GNC), 2003 (AIAA-2003-5584).

[16] T. Shima, S. J. Rasmussen, and P. Chandler, "UAV team decision and control

using efficient collaborative estimation," in American Control Conference (A CC),
vol. 6, pp. 4107-4112, 8-10 June 2005.

[17] W. Ren, R. W. Beard, and D. B. Kingston, "Multi-agent Kalman consensus with

relative uncertainty," in American Control Conference (A CC), vol. 3, pp. 1865-

1870, 8-10 June 2005.

[18] W. Ren and R. Beard, "Consensus seeking in multiagent systems under dynami-

cally changing interaction topologies," IEEE Transactions on Automatic Control,
vol. 50, pp. 655-661, May 2005.

[19] R. Olfati-Saber and R. M. Murray, "Consensus problems in networks of agents

with switching topology and time-delays," IEEE Transactions on Automatic

Control, vol. 49(9), pp. 1520-1533, 2004.

[20] M. Alighanbari, L. Bertuccelli, and J. How, "A Robust Approach to the

UAV Task Assignment Problem," in IEEE Conference on Decision and Con-

trol (CDC), pp. 5935-5940, 13-15 Dec. 2006.

[21] C. C. Moallemi and B. V. Roy, "Consensus propagation," IEEE Transactions on

Information Theory, vol. 52(11), pp. 4753-4766, 2006.

[22] A. Olshevsky and J. N. Tsitsiklis, "Convergence speed in distributed consensus

and averaging," in IEEE Conference on Decision and Control (CDC), pp. 3387-

3392, 2006.

[23] W. Ren, R. W. Beard, and E. M. Atkins, "Information consensus in multivehicle

control," IEEE Control Systems Magazine, vol. 27(2), pp. 71-82, 2007.

[24] Y. Hatano and M. Mesbahi, "Agreement over random networks," IEEE Trans-

actions on Automatic Control, vol. 50, pp. 1867-1872, Nov 2005.

[25] C. W. Wu, "Synchronization and convergence of linear dynamics in random

directed networks," IEEE Transactions on Automatic Control, vol. 51, no. 7,
pp. 1207-1210, 2006.

[26] A. Tahbaz-Salehi and A. Jadbabaie, "On consensus over random networks," in

44th Annual Allerton Conference, 2006.

[27] M. Alighanbari and J. How, "Decentralized task assignment for unmanned aerial

vehicles," in IEEE Conference on Decision and Control (CDC), pp. 5668-5673,
12-15 Dec. 2005.

[28] S. Sariel and T. Balch, "Real time auction based allocation of tasks for multi-

robot exploration problem in dynamic environments," in Proceedings of the AIAA

Workshop on Integrating Planning Into Scheduling, 2005.

[29] A. Ahmed, A. Patel, T. Brown, M. Ham, M. Jang, and G. Agha, "Task assign-

ment for a physical agent team via a dynamic forward/reverse auction mecha-

nism," in International Conference on Integration of Knowledge Intensive Multi-

Agent Systems, 2005.

[30] M. L. Atkinson, "Results analysis of using free market auctions to distribute con-

trol of UAVs," in AJAA 3rd Unmanned Unlimited Technical Conference, Work-

shop and Exhibit, 2004.

[31] T. Lemaire, R. Alami, and S. Lacroix, "A Distributed Task Allocation Scheme

in Multi-UAV Context," in IEEE International Conference on Robotics and Au-

tomation (ICRA), vol. 4, pp. 3622-3627, 2004.

[32] H.-L. Choi, L. Brunet, and J. P. How, "Consensus-based decentralized auctions

for robust task allocation," IEEE Transactions on Robotics, vol. 25, pp. 912-926,
August 2009.

[33] L. Brunet, "Consensus-based auctions for decentralized task assignments," Mas-

ter's thesis, Department of Aeronautics and Astronautics, Massachusetts Insti-

tute of Technology, 2008.

[34] L. Brunet, H.-L. Choi, and J. P. How, "Consensus-based auction approaches

for decentralized task assignment," in AIAA Guidance, Navigation, and Control

Conference (GNC), (Honolulu, HI), August 2008 (AIAA-2008-6839).

[35] L. Bertuccelli, H. Choi, P. Cho, and J. How, "Real-time Multi-UAV Task Assign-

ment in Dynamic and Uncertain Environments," in AIAA Guidance, Navigation,

and Control Conference, (AIAA 2009-5776) 2009.

[36] L. Fang, P. J. Antsaklis, and A. Tzimas, "Asynchronous consensus protocols:

Preliminary results, simulations and open questions," in Proceedings of the IEEE

Conference on Decision and Control, 2005.

[37] R. Olfati-Saber, A. Fax, and R. M. Murray, "Consensus and cooperation in net-

worked multi-agent systems," IEEE Transactions on Automatic Control, vol. 95,
pp. 215-233, January 2007.

[38] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis, "Convergence

in multiagent coordination, consensus, and flocking," in Proceedings of the IEEE

Conference on Decision and Control, 2005.

[39] A. Bemporad, M. Heemels, and M. Johansson, Networked Control Systems.

Springer-Verlag Berlin Heidelberg, 2010.

[40] G. Mathews, H. Durrant-Whyte, and M. Prokopenko, "Asynchronous gradient-

based optimisation for team decision making," in Proceedings of the IEEE Con-

ference on Decision and Control, 2007.

[41] M. Cao, A. S. Morse, and B. D., "Agreeing asynchronously," IEEE Transactions

on Automatic Control, vol. AC-53, pp. 1826-1838, September 2008.

[42] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Murray, "Dis-

tributed averaging on asynchronous communication networks," in Proceedings of

the IEEE Conference on Decision and Control, 2005.

[43] M. M. Zavlanos and G. L. Pappas, "Dynamic assignment in distributed mo-

tion planning with local coordination," IEEE Transactions on Robotics, vol. 24,

pp. 232-242, February 2008.

[44] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas, "A distributed auction algo-

rithm for the assignment problem," in Proceedings of the IEEE Conference on

Decision and Control, 2008.

[45] L. B. Johnson, S. Ponda, H.-L. Choi, and J. P. How, "Improving the efficiency of

a decentralized tasking algorithm for UAV teams with asynchronous communica-

tions," in AIAA Guidance, Navigation, and Control Conference (GNC), August

2010 (AIAA-2010-8421).

[46] A. K. Whitten, "Decentralized planning for autonomous agents cooperating in

complex missions," Master's thesis, Massachusetts Institute of Technology, De-

partment of Aeronautics and Astronautics, Cambridge MA, September 2010.

[47] D. C. Parkes and L. H. Ungar, "Iterative combinatorial auctions:theory and prac-

tice," in Proceedings of the 17th National Conference on Artificial Intelligence,

2000.

[48] A. Andersson, M. Tenhunen, and F. Ygge, "Integer programming for combina-

torial auction winner determination," in Proceedings of the Fourth International

Conference on MultiAgent Systems, 2000.

[49] S. de Vries and R. Vohra, "Combinatorial auctions: A survey," INFORMS Jour-

nal of Computing, vol. 15(3), pp. 284-309, 2003.

[50] S. Ponda, J. Redding, H.-L. Choi, J. P. How, M. A. Vavrina, and J. Vian, "Dis-

tributed change-constrained task allocation," in American Control Conference

(ACC), June 2012.

[51] S. Ponda, J. Redding, H.-L. Choi, J. P. How, M. A. Vavrina, and J. Vian, "De-

centralized planning for complex missions with dynamic communication con-

straints," in American Control Conference (A CC), (Baltimore, MD), July 2010.

[52] J. Bellingham, M. Tillerson, A. Richards, and J. How, "Multi-Task Allocation

and Path Planning for Cooperating UAVs," in Proceedings of Conference of Co-

operative Control and Optimization, Nov. 2001.

[53] M. Alighanbari and J. P. How, "Decentralized task assignment for unmanned

aerial vehicles," in IEEE Conference on Decision and Control and European

Control Conference (CDC-ECC '05), 2005.

