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Abstract

This thesis is motivated by the problem of fixed-wing flight through obstacles using
only on-board sensing. To that end, we propose novel algorithms in trajectory gener-
ation for fixed-wing vehicles, state estimation in unstructured 3D environments, and
planning under uncertainty.

Aggressive flight through obstacles using on-board sensing involves nontrivial dy-
namics, spatially varying measuremnent properties, and obstacle constraints. To make
the planning problem tractable, we restrict the motion plan to a nominal trajectory
stabilized with an approximately linear estimator and controller. This restriction
allows us to predict distributions over future states given a candidate nominal tra-
jectory. Using these distributions to ensure a bounded probability of collision, the
algorithm incrementally constructs a graph of trajectories through state space, while
efficiently searching over candidate paths through the graph at each iteration. This
process results in a search tree in belief space that provably converges to the opti-
mal path. We analyze the algorithm theoretically and also provide simulation results
demonstrating its utility for balancing information gathering to reduce uncertainty
and finding low cost paths.

Our state estimation method is driven by an inertial measurement unit (IMU)
and a planar laser range finder and is suitable for use in real-time on a fixed-wing
micro air vehicle (MAV). The algorithm is capable of maintaining accurate state
estimates during aggressive flight in unstructured 3D environments without the use of
an external positioning system. The localization algorithm is based on an extension
of the Gaussian Particle Filter. We partition the state according to measurement
independence relationships and then calculate a pseudo-linear update which allows
us to use 25x fewer particles than a naive implementation to achieve similar accuracy
in the state estimate. Using a multi-step forward fitting method we are able to identify
the noise parameters of the IMU leading to high quality predictions of the uncertainty
associated with the process model. Our process and measurement models integrate
naturally with an exponential coordinates representation of the attitude uncertainty.
We demonstrate our algorithms experimentally on a fixed-wing vehicle flying in a



challenging indoor environment.
The algorithm for generating the trajectories used in the planning process com-

putes a transverse polynomial offset from a nominal Dubins path. The polynomial
offset allows us to explicitly specify transverse derivatives in terms of linear equality
constraints on the coefficients of the polynomial, and minimize transverse derivatives
by using a Quadratic Program (QP) on the polynomial coefficients. This results in
a computationally cheap method for generating paths with continuous heading, roll
angle, and roll rate for the fixed-wing vehicle, which is fast enough to run in the inner
loop of the RRBT.

Thesis Supervisor: Nicholas Roy
Title: Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Advances in system identification, control, and planning algorithms increasingly make

it possible for autonomous flying vehicles to utilize the full scope of their natural dy-

namics. Quad-rotors capable of agile flight through tight obstacles, helicopters that

perform extended aerobatic sequences, and fixed-wing vehicles that mimic the perch-

ing behavior of birds, have all been reported in the literature [14, 16, 42]. Sinulta-

neously, advances in LIDAR and computer vision algorithms have made autonomous

flight through obstacle-rich environments possible without the use of an external sen-

sor system [4, 3]. Currently, there is growing interest in extending the highly dynamic

maneuvers that have been demonstrated when accurate state information is always

available to autonomous vehicles that operate in unstructured environments using

only on-board sensors.

The central problem that motivates the work in this thesis is the autonomous flight

of a small, unmanned, fixed-wing vehicle through an obstacle rich environment using

only on-board sensors. This technology would represent a substantial step forward

in the state of the art for autonomous systems and be a useful enhancement for the

capabilities of existing micro air vehicles (MAVs) which are increasingly deployed in

military, search and rescue, and security roles around the world. As we will see, the

problem presents unique challenges from a control, state estimation, and planning

perspective.

A key differentiator between this problem, and the closely related problem of



Figure 1-1: Fixed wing experimental platform flying indoors localizing using an on
board laser range scanner and inertial measurement unit.

quad-rotor flight through obstacles using on-board sensors is the non-trivial vehicle

dynamics. Because helicopters are capable of hovering in place, many of the same

algorithms that have advanced the capabilities of ground robots in the last twenty

years can be adapted for use in the hover regime [4]. Such is not the case for fixed-wing

vehicles. While they share the payload and computation constraints with quad-rotors,

a fixed-wing vehicle must maintain a forward velocity to lift the payload, and that

velocity scales with the payload. Thus the more computation and sensing power

on board an airplane, the faster it must fly for a fixed wing size. This constraint

on the minimum velocity places a substantial design burden on anything that must

run in real-time on the vehicle: namely the state estimation and feedback control



algorithms. Further, most of the work with quad-rotors using laser range scanners

(LIDARs) makes strong 2.5D assumptions about the environment. These assumptions

are reasonable on a quad-rotor since the vehicles does not depart from the hover

regime where the sensor is close to level in the x-y plane. For a fixed-wing vehicle,

maneuvering requires departing the plane - at least in roll, and the tighter and more

aggressive the maneuvering, the larger the magnitude of the departure.' True 3D

localization using only a planar LIDAR is thus a primary challenge for our vehicle.

One could argue that state estimation is the most significant, direct challenge faced

by a fixed-wing vehicle flying through obstacles using only on-board sensing. However,

difficult state estimation translates directly into challenges in planning. When using

on-board sensors, the ability of the vehicle to estimate its position depends on both

the position itself and its velocity as obstacles and environmental features come in and

out of view of the planar LIDAR. An aggressive bank angle may make localization in

the horizontal dimensions difficult or impossible altogether, but allow the vehicle to

get accurate height information as LIDAR beams hit the ground. Motion blur and

other speed effects cause similar state-dependent localization problems for camera-

based sensing if the vehicle executes maneuvers with high velocity or angular rates.

Failure to reason intelligently about the state-dependent uncertainty during planning

could lead to an unacceptable probability of crashing. A successful planner must

have knowledge of what future state estimates may occur, in terms of both mean

and uncertainty - the "belief space" of the vehicle. It must make plans that are

appropriately cautious when the vehicle will be uncertain about its position while

executing trajectories and maneuvers that allow the vehicle to gather information

and improve its state estimate when advantageous in terms of overall path cost. By

seeking low-cost or optimal paths, information gathering and caution around obstacles

become tightly coupled problems. Much previous work in planning under uncertainty

focuses solely on finding maximum information or minimum uncertainty paths [24].

In contrast, we are interested in gathering information and reducing uncertainty only

12.5D means the environment is represented as an extrusion in three dimensions of a two-
dimensional plan



if it allows the vehicle to reach the goal more efficiently: if the vehicle can fly a shorter

trajectory by temporarily being very uncertain of its location, but an accurate state

estimate will be recovered before flying close to an obstacle, that is desirable behavior.

To solve the planning problem we propose an asymptotically optimal sampling-

based approach based on recent advances in sampling based motion planning [29].

Sampling-based approaches - most commonly variants of the Rapidly-exploring Ran-

dom Tree (R.RT) or Probabalistic Road Mal) (PRM)- are widely used in robotics:

they are easy to implement, computationally efficient, and are often probabilistically

complete in the sense that if a solution exists it will be found with probability 1 given

enough samples. The algorithm we propose in this thesis, the Rapidly-exploring

Random Belief Tree (RRBT) works by incrementally constructing a graph of feasible

trajectories through state space and then "propagates" uncertainty along the edges

of the graph by simulating state estimation and control along the paths. While pow-

erful, this framework introduces additional constraints on the state estimation and

control algorithms.

To efficiently propagate uncertainty, we use a Gaussian representation of the state

distribution, such that state estimates are fully characterized by a mean and covari-

ance matrix. Unfortunately, laser range measurements in three dimensions are gener-

ally far from Gaussian in their noise properties. However, the state estimation algo-

rithm we propose extends a technique called the Gaussian Particle Filtering (GPF)

to use particles (weighted samples in the state space) to capture the non-Gaussian,

non-linear laser measurements as Gaussians. This not only makes for a computation-

ally efficient state estimator, but also allows these pseudo-Gaussian measurements to

be used efficiently during planning.

Sampling-based approaches work by samnpling states and connecting them with

feasible trajectories. The approach we use, an extension of the RRT* algorithm (a

recent version of the RRT which asymptotically converges to the optimal solution)

requires that these connections to sampled states be made exactly. Exact connections

ensure that if a lower cost path is discovered to some point in state space, the lower

cost alternative trajectory can be substituted in without disturbing the subsequent



trajectory. However, generating exact connections is itself an algorithmic challenge.

For our planning algorithm to be successful we must have a method of generating

kinodynamically feasible trajectories between two arbitrary states, and this method

must be computationally efficient since it will be used each time a state is sampled.

We introduce a technique for generating paths based on a differentially flat model

of coordinated-flight vehicle dynamics. Differential flatness implies system inputs

and states are fully determined by a set of outputs and output derivatives. For the

coordinated flight model, the output is the spatial trajectory. This model allows us to

generate trajectories using transverse polynomial offsets from a nominal path which

minimize the control effort required to follow that path.

Finally, since stochasticity factors prominently into the vehicle dynamics and sens-

ing, we must use a feedback control law to stabilize the planned trajectory. In planning

we propagate Gaussian uncertainty. To maintain a Gaussian, the dynamics along the

path must be linear which is generally not the case for fixed-wing vehicles. However,

the differentially flat vehicle model allows us to achieve approximately linear error dy-

namics, meaning the uncertainty prediction used in planning can more closely match

what can be expected during path execution, as the RR.BT planning algorithm uses

closed-loop predictions of the state uncertainty.

Thus the central problem of fixed-wing flight through obstacles motivates algo-

rithmic development in state estimation, planning, trajectory generation, and control.

Furthermore, we can see that choices and design constraints in one algorithm can in-

troduce choices and design constraints in the others. This thesis introduces algorithms

for each of these pieces, which while all independently useful and potentially broadly

applicable, are specifically motivated and designed to work as a unified system.

1.1 Contributions

This thesis makes contributions in trajectory generation (chapter 3), state estimation

(chapter 4), and planning under uncertainty (chapter 5). We outline the contributions

below.



1.1.1 Belief Space Planning for Dynamic Systems

The central and unifying contribution of this thesis is a novel algorithm that extends

a class of recently proposed incremental sampling-based algorithms to handle state-

dependent stochasticity in both dynamics and measurements [29]. The key idea is

in leveraging the fact that the incremental sampling approach allows us to enumer-

ate all possible paths through an environment to find paths that optimally trade off

information gathering, avoiding obstacles, and quickly reaching the goal. To ensure

the plan is suitable for systems with nontrivial dynamics, we evaluate paths with a

probabilistic distribution over all possible trajectories that may be realized while fol-

lowing a path with a closed-loop controller. The algorithm proceeds by incrementally

constructing a graph of feedback stabilized trajectories through state space, while ef-

ficiently searching over candidate paths through the graph as new samples are added.

We provide a pruning technique that exploits specific properties of uncertainty prop-

agation for eliminating possible paths and terminating search after each sample is

added. In the limit, this process results in a tree in belief space (the space of proba-

bility distributions over states) that contains the optimal path in terms of minimum

cost with a bounded probability of collision or "chance-constraint".

Both sampling-based algorithms and linear control and estimation schemes have

been shown to scale well with dimensionality. Additionally, the algorithm has the

powerful property offered by incremental sampling algorithms of quickly exploring

the space and then provably converging to the optimal solution. This is particularly

desirable for stochastic planning problems since they are computationally demanding

and in a real-time setting the computational time available could vary widely.

1.1.2 State Estimation

The wide disparity between what is possible in terms of agile flight with an external

positioning system and what has been (demonstrated with onboard sensing suggests

that state estimation from on board sensors is indeed a significant challenge in ex-

tending the capabilities of MAVs in real world environments. In addition to providing



accurate estimates, the state estimation system must also accurately identify its un-

certainty in order to enable planning with applicable partially observable motion

planning algorithms.

This thesis presents a state estimation method that is suitable for use in real-time

on a fixed wing MAV maneuvering through a cluttered environment. Our system

leverages an inertial measurement unit (gyros and accelerometers) and a planar laser

range finder in a filtering framework that provides the accuracy, robustness, and

computational efficiency required to localize a MAV within a known 3D occupancy

grid map.

Our process model is a based on an exponential-coordinates extended Kalman

filter that is driven by inertial measurements. Unlike conventional system identi-

fication techniques that estimate model parameters from sensor data labeled with

ground truth states, the model parameters of the IMU process model are estimated

using an algorithm that does not require access to ground truth data. In order to

efficiently project the nonlinear laser measurement update of the vehicle position

back through the state estimate, we integrate the laser range-finder measurement as

a pseudo measurement computed from a Gaussian Particle Filter state update in a

lower dimensional measurement space. The use of the lower dimensional space drasti-

cally reduces the number of particles required, thereby enabling realtime performance

in the face of the computational limitations of the flight computer. We demonstrate

the effectiveness of our approach experimentally on a fixed wing vehicle being piloted

in a challenging GPS-denied environment.

1.1.3 Trajectory Generation

The RRBT planning algorithm requires that we be able to make exact connections

between sampled states. We develop an algorithm based on parameterizing a trans-

verse polynomial offset from a nominal path which allows us to explicitly optimize

and specify the transverse derivatives of that path at intermediate points along the

trajectory and at specified start and end locations. For fixed-wing vehicles, these

transverse derivatives map directly to heading (first derivative) roll angle (second



derivative or curvature), roll rate (third derivative or derivative of curvature), and

roll acceleration (fourth derivative, second derivative of curvature). Our method al-

lows us to generate paths that are smooth up to the derivative of curvature (roll rate)

and could be extended to higher derivatives if desired.

By explicitly specifying the transverse derivatives at points along a path, we can

"correct" for discontinuities in the underlying path. The ability to match derivatives

between segments allows us to use Dubins curves which are continuous only up to

heading, but can be generated very quickly using simple geometric calculations, as

the nominal paths. 2 We optimize the transverse offset to minimize quadratic cost on

the offset and its derivatives which translates into approximate minimization of the

control effort - namely roll rate and roll acceleration - necessary to follow the paths,

Furthermore, since the transverse offset is represented as a polynomial, the quadratic

minimization takes the form of a Quadratic Program (QP) with approximately linear

constraints.

We present a solution method based on an initial joint optimization of polynomials

for all the segments (lines and arcs) composing a Dubins path with linear constraints

between the segments and at the start and end of the path. We then use correction

expressions that capture the nonlinearaties in the transverse derivatives induced by

the offset, to setup a second optimization for each segment individually to ensure the

derivative smoothness of the final path. Both optimization steps take the form of a QP

with linear constraints which can be solved in a single step using variable elimination.

Thus kinodynamically feasible paths for the fixed wing vehicle representing exact

connections in state space are achieved using single-step matrix inversions on matrices

with dimension of the order to the polynomial. This computational efficiency makes

the trajectory generation suitable for use in the RRBT algorithm.

2While we demonstrate the technique with Dubins curves, transverse polynomial paths could be
used for any nominal path including concatenated line segments.



1.2 Thesis Overview

In chapter 2 we survey the literature and give an overview of the prior work that

has been done in each of the areas we address algorithmically. Chapter 3 presents

the trajectory generation and accompanying control algorithm used for planning. In

chapter 4 we describe the state estimation algorithm and present results obtained

from hand-flown flight experiments in a challenging indoor environment. Chapter 5

develops the RRBT algorithm, including theoretical proofs for the completeness and

asymptotically optimal behavior of the algorithm under reasonable technical assumnp-

tions. We demonstrate the algorithm on example problems with single integrator and

Dubins dynamics with polygonal obstacles, and we also provide simulation results for

plans generated with transverse-polynomial paths and GPF measurements computed

in a real three dimensional map of an urban environment. Finally, in 6 we conclude

and discuss future work.
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Chapter 2

Related Work

In this chapter we survey the literature relevant to the problems addressed in this

thesis. The literature survey is organized in much the same way as the thesis itself.

We begin by looking at work with similar high level goals: autonomous flight through

obstacles. We then analyze related work in each of the algorithmic areas this thesis

addresses: trajectory generation, state estimation, and finally motion planning, and

specifically motion planning under uncertainty.

2.1 Flight Through Obstacles

The potential benefits of MAVs that can operate safely and reliable in and around

obstacles has attracted considerable attention in the research community. The bulk

of the work has been done with helicopters, either conventional variable pitch con-

figurations or quad-rotor configurations, but more recently some work has been done

with fixed-wing vehicles.

Bachrach, He, Prentice, and Roy present one example of a completely autonomous

quad-rotor capable of operating in unknown and unstructured environments without

the use of GPS [4]. Many of the design decisions in the algorithms presented in

this thesis are motivated by this system. The core enabling technology is a high

frequency scan matcher that uses successive laser scans from the Hokuyo LIDAR to

estimate planar velocity which can be integrated over impressively long time scales



to position. In conjunction with the on-board IMU, the scan matcher forms the

backbone of the quad's state estimator, which can then be integrated with higher level

full simultaneous localization and mapping (SLAM) solutions [54]. Other quad-rotor

systems for flying in GPS-denied environments use very similar system architecture

[52, 18].

While this framework is powerful and has resulted in impressive experimental

demonstrations, it is based on flying close to the hover regime where motion plan-

ning can be done kinematically (motion plans are essentially constructed as simple

line segments) and both estimation and planning are strongly dependent on 2.5D

world assumptions. In contrast, our work is aimed at eliminating these assumptions

with fully 3D state estimation and trajectory generation and planning that explicitly

account for and utilize non-trivial fixed-wing dynamics.

Scherer et al. developed a helicopter system capable of flying at high speeds

(10 m/s) around obtacles based on high accuracy differential GPS combined with

a suite of on-board sensors and collision avoidance algorithms [50]. In contrast, we

are interested in enabling this kind of behavior without the use of an external system

such as GPS, and with a sensor payload more constrained by the physics of fixed-wing

flight.

Much of the experimental work done with fixed-wing vehicles flying in close prox-

imity to obstacles using oi-board sensing is based on optical flow from visual sensors

[9, 59]. Much of this work is inspired by the systems insects use to navigate [15].

The essentially idea is a direct mapping from sensory input to control actions. Opti-

cal flow is calculated by estimating pixel motion between camera frames, creating a

vector field in image space. Areas of the image where the flow is large in magnitude

represent potential close proximity to obstacles, and thus obstacle avoidance can be

accomplished by steering away from areas of high optical flow. Such systems have

been shown to be stable flying through corridor type environments.

While impressive in many respects, this kind of system is inherently limited. Be-

cause sensing is mapped directly to control output, no internal state estimate of the

vehicle is maintained. This is highly comnputationally efficient for MAVs as small as



10 grams [59], however, the absence of an internal state estimate makes global, higher

level reasoning difficult. For example it would be difficult to give such a system a

command such as "go from point A to point B as quickly as possible while avoiding

too high a probability of collision" and have certainty that it could accomplish this

task. Furthermore, optical flow has a singularity directly in front of the vehicle -

no matter how fast you fly directly at an obstacle, its position in the image frame

does not change, which presents an obvious problem for many situations when flying

around obstacles since the system is essentially blind to what is directly in front of it.

When highly accurate, off-board sensing systems are used for positioning, some

extremely impressive, agile flight has been demonstrated. In particular Mellinger et

al. designed a system capable of aggressively flying quad-rotors through narrow slits

[43]. The system is based on a detailed vehicle dynamics model and the controller and

trajectories are hand-tuned and iteratively refined through experiments. All of the

work is done in a VICON motion capture system which provides real-time, millimeter-

level-accuracy position and orientation of the vehicle at rates over 100Hz. In the

fixed-wing regime, Cory et al. designed a system capable of mimicking the perching

behavior of birds with small foam gliders [16]. Multiple control methodologies were

shown to be successful in achieving perching behavior, but once again all of the work

relied on a VICON motion capture system. Both of these systems serve as inspiration

for our work in terms of what MAVs are dynamically capable of, but the reliance on

on-board sensing necessarily differentiates the algorithms in this thesis.

2.2 Trajectory Generation

The general problem of "steering" a dynamics system from one state to another is

the subject of a great deal of work in optimal control. For very simple linear systems

the solution can be obtained as the solution of a linear system of equations [8]. In

contrast, in the most general case for nonlinear systems, solutions can be computed

via shooting methods or direcy collocation [57]. While powerful, these methods rely

on decomposing a trajectory into a discrete "control tape" of actions which are played



back to execute the trajectory, and the entire control tape is then optimized to satisfy

the boundary conditions and minimize an objective function. In general, this results

in a non-convex, nonlinear optimization problem with dimension equal to the number

of control steps which can be enormous depending on the resolution required by the

system. Tedrake uses similar techniques to drive a sampling-based motion planning

system, but that work is specifically designed to maintain a sparse tree with feedback

control laws, such that the number of trajectories that need to be computed is small

(since they are coinputationally expensive). In controls, the asymptotically optimal

properties of our planner rely on a dense population of state space with samples and

trajectories. Thus, a more efficient means of computing trajectories is required.

The simplest technique in use for fixed-wing vehicle motion planning is Dubins

curves [38]. While powerful, and extremely fast to compute, Dubins curves are only

continuous in heading and have discontinuities in curvature, which corresponds to dis-

continuities in roll angle. For vehicles flying high above obstacles with a conservative

radius used in Dubins arcs, this is not a problem as the controller can stabilize the

vehicle back onto the path [33]. However, if we wish to use the full dynamic envelope,

a different technique is required.

Spline curves - piecewise, independent polynomials in each dimension - are a

potentially appealing choice. Mellinger et al. use "minimum-snap" spline curves for

their quad-rotor vehicles flying in and around obstacles [41]. However, this technique

is not directly applicable to planning for a fixed-wing vehicle.

Most importantly, splines do not respect curvature constraints and do not have

constant velocity norm along a path. Pythagorean hodographs overcome these is-

sues by maintaining a "perfect square" property of polynomials along a path such

that c(t) = N/a(t)2 + b(t)2 where a, b, and c are all polynomials [19]. While these

curves may be arbitrarily smooth, the transverse derivatives, which are what we care

about for control effort to follow the paths, are not explicitly specified in the path

formulation.

Another alternative is to use clothoid-are segments which stitch together Dubins

curve segments (arcs and lines) with segments of continuously varying curvature [55].



While better than Dubins curves, this would result in paths where the vehicle either

has zero roll rate or rolls at some pre-specified maximum roll rate corresponding to

the derivative of curvature.

Our approach leverages the advantages of splines presented by Mellinger et al.,

but extends this functionality by defining a transverse offset from a nominal path

that captures the basic shape of the desired trajectory, allowing for explicit control

(both specification and optimization of) the transverse derivatives.

2.3 State Estimation

State estimation using Kalman filtering techniques has been extensively studied for

vehicles flying outdoors where GPS is available. A relevant example of such a state

estimation scheme developed by Kingston et al. [32] involves two Kalman filters where

roll and pitch is determined by a filter driven by gyro measurements as inputs and

where the accelerometer measurements are treated as a measurement of the gravity

vector, assuming unaccelerated flight. A separate filter estimates position and yaw

using GPS measurements.

This approach is representative of many IMU based estimators that assume zero

acceleration and thus use the accelerometer reading as a direct measurement of at-

titude (many commercially available IMUs implement similar techniques on-board

using a complementary filter). While this approach has practical appeal and has

been successfully used on a number of MAVs, the zero acceleration assumption does

not hold for general flight maneuvering and thus the accuracy of the state estimate

degrades quickly during aggressive flight.

Van der Merwe et al. use a sigmna-point unscented Kalman filter (UKF) for state

estimation on an autonomous helicopter [56]. The filter utilizes another typical ap-

proach whereby the accelerometer and gyro measurements are directly integrated to

obtain position and orientation and are thus treated as noise perturbed inputs to the

filter. Our filter utilizes this scheme in our process model, however we use an EKF

with exponential coordinates based attitude representation instead of the quaternions



used by Van der Merwe et al.

Techniques to identify the noise parameters relevant for the Kalman filter emerged

not long after the original filter, however the most powerful analytical techniques

assume steady state behavior of a linear time invariant system and are thus unsuitable

for the time varying system that results from linearizing a nonlinear system [40]. More

recent work optimizes the likelihood of a ground-truth projection of the state over

the noise parameters but thus requires the system be fitted with a sensor capable of

providing ground-truth for training. [2]. Our algorithm does not require the use of

additional sensors, or external ground truth.

Laser range finders combined with particle filter based localization is widely used

in ground robotic systems [53]. While planar LIDARs are commonly used to estimate

motion in the 2D plane, they have also proved useful for localization in 3D environ-

ments. Prior work in our group [5], as well as others [51, 22] leveraged a 2D laser

rangefinder to perform SLAM from a quadrotor in GPS-denied environments. The

systems employ 2D scan-matching algorithms to estimate the position and heading,

and redirect a few of the beams in a laser scan to estimate the height. While the

systems have demonstrated very good performance in a number of realistic environ-

ments, they must make relatively strong assumptions about the motion of the vehicle,

and the shape of the environment. Namely, they require walls that are least locally

vertical, and a mostly flat floor for height estimation. As a result, the algorithms

do not extend to the aggressive flight regime targeted in this paper. Scherer et al.

use laser rangefinders to build occupancy maps, and avoid obstacles while flying fast

through obstacles [49], however they rely on accurate GPS measurements for state

estimation, and do not focus oi state estimation.

In addition to the laser based systems for GPS-denied flight, there has been a

significant amount of research on vision based control of air vehicles. This includes

both fixed wing vehicles [31], as well as larger scale helicopters [12, 30, 27]. While

vision based approaches warrant further study, the authors do not address the chal-

lenge of agile flight. This is likely to be particularly challenging for vision sensors due

to the induced motion blur, combined with the computational complexity of vision



algorithms.

Recently, Hesch et al. [26] developed a system that is similar in spirit to ours

to localize a laser scanner and INS for localizing people walking around in indoor

environments. They make a number of simplifying assumptions such as zero velocity

updates, that are not possible for a fixed-wing vehicle. Furthermore, they model the

environment as a set of planar structures, which limits the types of environments

in which their approach is applicable. Our system uses a general occupancy grid

representation which provides much greater flexibility of environments.

2.4 Motion Planning Under Uncertainty

The general motion planning problem of trying to find a collision-free path from

some starting state to some goal region has been extensively studied. In particular,

sampling-based techniques have received much attention over the last 15 years. The

Rapidly-exploring Random Tree (RRT) operates by growing a tree in state space,

iteratively sampling new states and then "steering" the existing node in the tree that

is closest to each new sample towards that sample. The RRT has many useful prop-

erties including probabilistic completeness and exponential decay of the probability

of failure with the number of samples [37].

The Rapidly-exploring Random Graph (RRG) proposed by Karaman and Frazzoli

is an extension of the RRT algorithm [29]. In addition to the "nearest" connection,

new samples are also connected to every node within some ball. The result is a

connected graph that not only rapidly explores the state space, but also is locally

refined with each added sample. This continuing refinement ensures that in the limit

of infinite samples, the RRG contains all possible paths through the environment

that can be generated by the steering function used to connect samples. The RRT*

algorithm exploits this property to converge to the optimal path by only keeping the

edges in the graph that result in lower cost at the vertices with in the ball. While these

algorithms have many powerful properties, they assume fully deterministic dynamics

and are thus unsuitable for stochastic problems in their proposed form.



Partial observability issues pose severe challenges from a planning and control

perspective. Computing globally optimal policies for partially observable systems is

possible only for very narrow classes of systems. In the case of discrete states, actions,

and observations, exact Partially Observable Markov Decision Process (POMDP)

algorithms exist, but are computationally intractable for realistic problems [28]. Many

approximate techniques have been proposed to adapt the discrete POMDP framework

to motion planning, but they still scale poorly with the number of states, and the

prospect of discretizing high-dimensional continuous dynamics is not promising [48].

For systems with linear dynamics, quadratic cost, and Gaussian noise properties

(LQG), the optimal policy is obtained in terms of a Kalman filter to maintain a

Gaussian state estimate, and a linear control law that operates on the mean of the

state estimate [8]. While global LQG assumptions are not justified for the problems we

are interested in, many UAVs operate with locally linear control laws about nominal

trajectories, and the Kalman filter with various linearization schemes has proven

successful for autonomous systems that localize using on-board sensors [4].

The Belief Road Map (BRM) [47] explicitly addresses observability issues by simu-

lating measurements along candidate paths and then choosing the path with minimal

uncertainty at the goal. However, the BRM assumes the mean of the system is fully

controllable at each time step, meaning that while the path is being executed, the

controller is always capable of driving the state estimate back to the desired path.

This assumption is valid only for a vehicle flying slowly and conservatively such that

dynamic constraints can be ignored. Platt et al. [46] assume maximum likelihood

observations to facilitate trajectory optimization techniques and then replan when

the actual path deviates past a threshold.

The notion of chance-constrained motion planning is not new. A method of allo-

cating risk for fully observable systems is discussed by Ono et al. [44]. Evaluating a

performance metric over a predicted closed-loop distribution for partially observable

systems was described by van den Berg et al. [6] and also derived independently by

the authors [10], while He et al. [25] use a similar technique with open-loop action

sequences. The algorithm proposed by van den Berg et al., termed LQG-MP, picks



the best trajectory in terms of minimum cost with a bounded probability of colli-

sion from an RRT. However, Karaman and Frazzoli show that the RRT in essence

enumerates a finite number of paths, even in the limit of infinite samples [29]. Thus

there is no guarantee that a "good" path will be found either in terms of cost or un-

certainty properties. In fact, we provide an example problem where an RRT fails to

find a solution that satisfies chance-constraints, even though one exists. In contrast,

by searching over an underlying graph our approach is both complete and optimal as

the graph is refined in the limit.

Search repair after the underlying graph changes is discussed by Koenig et al. [34],

however that algorithm is used for deterministic queries, and our search techniques

make direct use of covariance propagation properties. Censi et al. [13] and Gonzalez

and Stentz [21] use search with a similar pruning technique, however both algorithms

operate on static graphs and do not consider dynamic constraints. We extend the

pruning strategy for dynamic systems (i.e., a non deterministic mean) and also use

the pruning strategy in the context of an incremental algorithm to terminate search.
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Chapter 3

Trajectory Generation and Control

In this chapter we develop the transverse-polynomial trajectory generation technique.

It takes as input a start and end configuration generated by sampling in our planning

algorithm and returns a dynamically feasible path between the configurations while

optimizing for the control effort (prinmarily in roll) necessary to follow that path. The

algorithm "steers" the vehicle between two points in state space by optimizing the

coefficients of polynomials offset from a nominal path.

3.1 Coordinate Frames and Nomenclature

In this thesis we will primarily concern ourselves with only two coordinate frames. A

static global frame, denoted by subscript, g, is a static east-north-pp (xyz) coordinate

frame anchored at some origin. A body frame has its origin at the center of mass

of the vehicle and is oriented x forward, y left, and z up (FLU). The transformation

between the two frames is given by a vector, A, between the origins expressed in the

global frame and an orientation given by R. The xyz components of any 3-vector

quantity will be subscripted numerically as 1 for x, 2 for y, and 3 for z. This is

depicted in figure 3-1.1

'The use of the ENU-FLU coordinate frame runs counter to conventional aeronautical analysis,
however, it is in-line with more recent work done with quad-rotors operating indoors (which likely
inherit z-up coordinate frames from ground robots) and the choice was made to make easier use of
existing software libraries for mapping and visualization.



Figure 3-1: The velocity, body, and global frames depicted with XYZ axes in red,
green, and blue respectively. The global frame ENU global frame is fixed to the
ground with x pointing east). The body frame is fixed to the vehicle with x pointing
out the nose. The velocity frame, assuming coordinated flight, shares the y-axis with
the body frame and has the x-axis aligned with velocity. With positive angle of attack
as shown in this picture, the x-axis points down relative to the body.

We will primarily represent acceleration, angular velocity, and linear velocity in

body coordinates. However, in this chapter exceptions apply. For our coordinated

flight model it is sometimes convenient to discuss velocity and acceleration in the

global frame. In these cases we will refer to derivatives of position for clarity (i.e.,

z/). Additionally, in this chapter we will use a velocity frame which shares the origin

with the body frame, but has its x axis aligned with the body velocity, while the y

and z axes still point left and up respectively as depicted in figure 3-1.

b3

v1

Gv2, b2



3.2 Coordinated Flight Model

The planning and control algorithms for the fixed wing vehicle are based on a coordi-

nated flight model [23). Coordinated flight is defined as a flight condition where the

body velocity of the vehicle is contained within the longitudinal plane, Vb2 = ov2 = 0

and hence iby = 0. The equations of motion for the coordinated flight model are

expressed in the velocity frame which differs from the body frame by the angle of

attack of the vehicle (assuming the vehicle is in a state of coordinated flight). The

orientation of the velocity frame is given by the rotation matrix Rv in Forward-Left-

Up (FLU) to East-North-Up (ENU) coordinates. The unit vector of the first column

aligns with the velocity, v,2 = vos = 0, the unit vector of the second column points

out the left wing, and the unit vector of the third column points up. We also have

A Rovv and A g+Rva,,. To maintain coordinated flight, the y and z components

of velocity are constrained as:

Lv2 = -(av 3 + go3 )/V (3.1)

-v3 = ge2/1, (3.2)

where gv = Reg and V =|11v, = v, 1 =||AI.

A system is differentially flat if the inputs and states can be written as functions

of the outputs and their derivatives. The coordinated flight model is flat with inputs

(wv0 i,l , avs), states (A, A, R1, av1, av3), and output A, with the flat relationship

expressed:

1Vi -W02a0 3  1 0 0
Wvi I W3av1/av3 + 0 -1/av3 0 RS. (3.3)
ava Jv2avi 0 0 1 (

Equation 3.3 is remarkably powerful. It tells us the necessary inputs for the

simplified coordinated flight model to achieve an arbitrary third derivative on the

trajectory of the airplane. To get intuition about how the differentially flat model,



consider straight and level steady state flight with the world and velocity frames

aligned for which we have,

aWi -iWi -J2/g ] (3.4)

yielding that the roll rate is proportional to the lateral (y direction) "jerk" of the

path, the derivative of tangential acceleration is the forward "jerk" of the path, and

the derivative of normal acceleration is the upward "jerk" of the path. Thus for a

trajectory to have a continuous roll rate it must be smooth up to the 3rd derivative.

3.3 Trajectory Generation

Excepting takeoff and landing maneuvers, we restrict the motion of the vehicle to be

in the plane at a constant altitude and fixed speed. For planning purposes we wish

to be able to generate trajectories from an initial position, (Ai, A 2 ), yaw angle, ',

roll angle, 0, and roll rate # to a final configuration.

Trajectory generation in the plane must primarily be concerned with roll dynamics

as the pitch is effectively constrained to stay in the plane, rudder is constrained to

maintain coordinated flight, and throttle is constrained to maintain constant speed.

For the case of constant speed planar motion,

V2K
# =tan 1 , (.3.5)

is a special case of equation 3.3, where , is the curvature of the path (inverse radius,

positive turning to the left or counter clockwise (CCW)).

The most commonly used approach for planar path planning for fixed wing vehicles

is to use Dubins curves [38]. Dubins curves represent the optimal (shortest distance)

path between two position and orientation, (Ai, A2 ,@), configurations respecting a

minimum turning radius. The path between any two configurations will be made



up three path segments consisting of either arcs (of the minimum turning radius) or

straight lines, belonging to six possible "words", LSL, RSR, RSL, LSR, RLR, LRL,

where L is a left turning arc, R. is a right turning are, and S is a straight line. The

parameters of the segments (center, entry and exit angles for an arc, and start and end

point for a line) can be directly determined from the geometry of the start and end

configurations for each feasible word for a given configuration and then the shortest

word selected. It is also possible to analytically determine which word will be shortest

based on an algebraic partitioning of SE2, but for implementation simplicity we use

the former method.

Since Dubins curves are composed of tangent lines and arcs, the curves are smooth

in the sense that a vehicle following the path will have continuous yaw angle, but the

curvature is discontinuous. We can see from equation 3.5 that discontinuity in cur-

vature will translate to discontinuity in roll angle. This is clearly kinodynamically

infeasible for a fixed wing vehicle. However, if the radius is chosen conservatively

relative to the roll dynamics of the vehicle and the vehicle is not in close proximity

to obstacles, Dubins curves provide a good approximation to kinodynamically feasi-

ble paths and a stabilizing controller can achieve reasonable tracking performance.

Unfortunately, these conditions do not apply for the system we are interested in as

we seek to make use of the full dynamic range of the vehicle while flying close to

obstacles.

Differentiating equation 3.5, the roll rate is given by:

V3k

g = (v .__ 
(3.6)

The roll angle is a 2nd order system on aileron input [45]. For a truly kinodynamically

feasible path we must have continuity up to the derivative of curvature. Clothoid

are paths are an extension of Dubins paths with clothoid are segments stitching

the lines and arc segments together to maintain continuous curvature (roll angle)

[38). However, the paths would still be discontinuous in roll rate. Further, this

would require the selection of a roll rate (rate of change of curvature) at which all



maneuvering would take place. As with the turning radius, this could be chosen

conservatively at the expense of utilizing the full dynamic envelope. In addition, this

kind of bang-bang control runs counter to how systems naturally behave. Minimum-

snap trajectories, that is trajectories optimized to minimize quadratic cost on the

4th derivative and higher, have been shown to be successful for aggressive flight with

quadrotors in highly constrained environments [41].

The roll angle and derivatives can be loosely approximated as,

v26# ~(3.7)
g

- ~(3.8)
9

.. V4 k
(3.9)

9

While this is clearly an approximation as in general roll angles can be greater than

450, it gives the necessary intuition that minimizing the first and second derivatives

of curvature for a path will translate to minimizing the roll rate and roll acceleration.

A quadrotor is capable of "rolling" about any axis in the body's horizontal plane

and thus minimizing the snap or 4th derivative of independent splines in three di-

mensions (with a 4th spline for heading) will minimize the control effort to follow

the path. This is exactly the method used by Mellinger et al. [41]. For a fixed wing

vehicle, however, the picture is substantially more complicated. The axis along which

roll acts rotates with the heading of the vehicle and the vehicle must turn with a

finite radius, all while traveling at a constant or close to constant speed. This makes

the independent axes spline method inapplicable.

The key idea of our approach is in paramncterizing a lateral offset from a nominal

path, and using this offset to optimize (minimize) the lateral dynamics quantities we

care about.



3.3.1 Quadratic Optimization on the Derivatives of Polyno-

mials

Let p, denote the coefficients of a polynomial P of degree N such that

(3.10)

(3.11)
n=p0

We are interested in optimizing the coefficients of P to minimize cost functions of the

form

j = coP(t)2+ c1P'(t)2 + c2P"(t)2 + ... + cN p(N) (t)2dt,

which can be written in quadratic form as,

J = pTQp

where E 'N+1 is the vector of polynomial coefficients and Q = yN crQr.

Cost Matrix and Constraints

The square of a polynomial, p 2, can be written using a convolution sum

N

(p2 )n = [pipig.
j=0

The rth derivative is given by

N r-1

P(')(t) = ( H
n=r f=0

(n - m)) p.t" r

(3.12)

(3.13)

(3.14)

(3.15)



Using equations 3.14 and 3.15 we can write the rth component of the cost as a

quadratic function of the polynomial coefficients:

- m))

(j - in) ) Ptj-

(j- m)( p-J' -

(2N N (r-1 M)(
n=0 j=0 'm=0

2N N r -1l

n=0 j=0 mn=0

- m)) PjPn

2 dt

p,_,jtn-j-rdti (n - j - m)
(m=0

M) ) pj pn-- jin-2r dt

T
n~i-2r+1

(n - 2r + 1)
0

n--2r+1
m) pjn - 2r 1)

Jr= p(r) (t)2dt

f 2N N

nE
n=O j=O

7 2N N

n=0 j=0

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

= r, N (r-1
SE H n
n=r m=0



We find Qr by taking the Hessian of this expression:

&, 4 2 N N

n=O j=0

2N N

n=o j=O
2N N

n=O j=O

2N N

n=O j=O

n-2r+1

P nj(n - 2r + 1)
(j - m)(n -

(r -1

,m=0

- in) (rn-

M))

in))

r-1i

((j - m)(n -j - ma)

m=0

(3.22)

(3.23)
PJPn-j Tn -2r+1

p (n - 2r + 1)

(&P8 Pn-j + pi P .
r n-2r+1

(n- 2r + 1)

(3.24)
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Similarly, constraints on the value of P and its derivatives can be written as linear

functions of the coefficients:

Ap - b = 0. (3.31)

The value of the rth derivative at T is given by:

N

P(r)() =
n=r

(n - m) pr .
\m=0/

n-2r+1

(n - 2r + 1)

a~pia9pI

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.32)



For a polynomial segment spanning from 0 to r satisfying derivative constraints on

both ends of the interval, A and b are constructed as:

A = ,o b = (3.33)
A47 bT

Ao, = IM, 0(r m i) :r =n (3..34)
0 : r fn

bo, = pC') (0) (3..35)

AT. = (HX' (n - * r-: n>r (3.36)
0: n<r

b7, = p(r)() (3.37)

Quadratic Program Formulation and Solution

We now have a quadratic program (QP) of the form:

min XTQX
x

s.t. Ax- b= 0

where the decision variables are the polynomial coefficients, x = Since the con-

straints are linear we can solve for x directly using the elimination approach [7]. The

decision variables are partitioned (and rearranged if necessary) such that the first In

(number of constraints) columns of A are linearly independent:

A= B R (3.38)

X [= ]. (3.39)
XR



This allows us to write XB in terms of XR using invertible B:

XB= B-'(b - RxR). (3.40)

Partitioning Q and plugging in:

J _ [ XT QBB QBR XB

QRB QRR XR

= QBBXB + xBQBRXR + x4QRBXB + X 'JQRRXR (-2

= (b - RxR)T B-IQBBB-'(b - RxR) + 2(b - RXR)T B-T QBRXR ()

+ XIQRRXR

= bT B-T QBBB-lb - 2b BT QBBB-RxR

+ xT RT B~T QBBB 'RXR + 2bTB~IQBRXR (3.44)

- 2xRT BTQBRxR + X RQRRXR

= bTB-T QBBB-b

+ 2b TB-T (QBR - QBBB-'R)XR (3.45)

+ x7R(QRR + RT B~T QBBB-1R - 2RT B~T QBR)XR

The bTB-TQBBB-lb = J, term is the "penalty" in cost for satisfying the constraints

and it does not factor into the location of the optimal solution x*. Substituting

Q'RR = QRR+RTB-T QBBB-R-2RTB-QBR and fk = 2bTB-T (QBR-QBBB-R)

we can rewrite as:

J =Je + fxR + XRQRRXR (3.46)

=fR+2Q'RxR (3.47)
DXR

x* =1 (3.48)

X B-1(b - Rx*). (3.49)

With p indexed as in equation 3.11, the first m columns of A will correspond to the



low-order polynomial coefficients. The construction of A (equations 3.34 and 3.36)

assures the linear independence of these columns. We restrict ourselves to considering

problems where derivative constraints are only present sequentially starting with the

value of the polynomial (i.e., we don't specify the r+1th derivative if the rth derivative

is not specified). We can see from equation 3.48 that QRR must also be invertible (in

fact positive-definite) for a unique solution to exist. By equation 3.30 this requires

that their exists at least one non zero ci for 0 < i < m meaning that we must

have non zero cost on at least one derivative of lower or equal order to m to assure

the convexity of the problem. We also note that m will be equal to the number

of derivatives (including the Oth) specified at the beginning of the interval plus the

number specified at the end.

We now have all the tools necessary to optimize for single polynomials according

to quadratic cost on the derivatives and satisfying boundary constraints. Figure 3-2

shows the behavior of the optimization for different parameters.

3.3.2 Piecewise Polynomial Joint Optimization

Since we wish to "correct" for derivative discontinuities in Dubins curves it is neces-

sary to jointly optimize multiple polynomial segments with specified derivative offsets

between them. A piecewise polynomial path can be constructed as:

Po(t): t < TO

T() 1 P1 (t -7r) : ro < t < 'ri + ro (.0To~t)T=+<o(3.50)

P2(t - (To + Ti)) : o+ T1t 72 + r 1 + rO

where we define Tk = E -r to write

T(t) = Pk(t - Fk-1): Fk1 < t K Fk. (3.51)
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Figure 3-2: This figure shows polynomials with quadratic cost on the value of the
polynomial for 0 constraints on the 0th and first derivatives at t=O and 1 and 0
constraints at t= 1 respectively. We can see that increasing the order of the polynomial
better satisfies the cost function but also increases "ringing" in the solution.

We wish to enforce derivative continuity up to degree D. We allow the underlying

path to have intrinsic transverse derivative discontinuities a = S(r) - S(r)k /d-I k

We can formulate an optimization over the polynomial coefficients by forming a

vector

X = [ P ... PK ] (3.52)

The cost matrix is constructed as block diagonal on Qk. The constraint matrix has



the form:

AO 0 0 0 ... 0 0

-A0 A 0 0 ... 0 0

o -A A' 0 ... 0 0

A= 0 0 ,42 Ao ... 0 0 (3.53)

0 0 0 0 ... -AK-1 A K

0 0 0 0 ... 0 A K

T d(0)

0

91

b= U2 (3.54)

9K-2

T(FK)

where T'(0) is a specified vector of derivative constraints at the beginning of the

piecewise polynomial, and T'(FK) is a specified vector of derivative constraints at

the end. We have |Td(0)| = Do, IT"(FK)I = DrK, and in general Do # DrK $ D.

The total number of constraints n D + DrK + (K - 1)D. To form the partition for

elimination solving B must be full rank. To accomplish this we reindex and form B as

the concatenation of the first [rm/KJ columns of each block of columns corresponding

to section k. The remaining m - K [rn/K] columns are taken as the next higher order

column from arbitrary column blocks. The joint optimization can then be performed

as above using the elimination approach.

For the purpose if achieving derivative continuity between Dubins curve segments

all the elements of a are set to 0 except for the second derivative which is set to

the curvature difference between the preceding and following segments. Td(FK) and

T'(0) may be set arbitrarily, keeping in mind that the actual 2nd derivative will in-



elude the intrinsic curvature of the path segment, but practically the Dubins curve is

constructed to a point (0th derivative) and heading (1st derivative) so there should

only be a need to specify 2nd and higher order derivatives in the polynomial opti-

mization (e.g. to match roll angle and rate boundary conditions). After the joint

optimization is performed, the path is formed by offsetting (positive to the left) the

polynomial from the original Dubins path, however, as we will see in the next section,

a second step is necessary to obtain a smooth path.

3.3.3 Polar Coordinates Corrections

The polynomial offset from an arc in a Dubins curve is effectively a polynomial in

polar coordinates, R(O) = Ro ±P(O) (with the plus or minus depending on if the are is

CCW (-) or CW (+). To analyze the true polar coordinate derivatives we use the arc

path p in the f direction (radial to the are center) parameterized by 0 which sweeps

positive in the 0 direction. Note that the 0 may be CCW or CW positive depending

on the intrinsic arc direction in contrast to conventional CCW only use. When used

in a standard coordinate system m (0) = cos 62 + sin 0y and 0(0) - sin 02 + cos By

for a CCW arc and 0(0) = sin 06 - cos 0y for a CW arc.

Using the identities '(0) = 0(0) and 0'(0) = -(0) we obtain

p(O) = R(0)(0) (3.55)

p'(0) = P'(O)f () + R(O)0(0) (3.56)

p"(0) = (P"(0) - R(0)) (0) + 2P'(0)0(0) (3.57)

p"'(O) = (P"'(0) - 3P'())(0) + (3P"(0) - R())(), (3.58)

for the first three derivatives.

To generate smooth paths we would like to parameterize in terms of the metric

distance along the path as opposed to the angle swept out by the arc. To accomplish

this we write 0 as a function of the distance s to get the are as p(0(s)) and take the



derivatives with respect to the distance.

dp(O(s))
d~s

d 2p((S)) p((s))'(s)
dS

2

d s3 p(O(S)) p"' (O(s))0'(s)3 + 3p"(O(s))O"(s)O'(s) + p'(O(s))0"'(s).
dS3

To enforce that s is the distance along the path we use the constraint:

|p'( (s))|| = 1 ='(s) ,V/P'(0(s))2 + (R(O(s))) 2 ,

which yields the relationship:

~/P'(O(s))2 + (R(O(s))) 2 ,

which can then be differentiated for use in the full path derivative expressions:

1
' = I0

0"

0/I

P'(P" + R)

L2(P"(P" + R) + P'(P"' + P')) - 4P/2 (P" + R)2

For convenience we define L = vP'2 + R 2 and omit the argument 0 for compactness

in the expressions. Equations 3.56 - 3.58 and 3.64-3.66 can then be plugged into

3.59-3.61 to obtain expressions for the true path derivatives in the r direction:

rTdp(O(s)) - (3.67)ds VPI2+ R2
Td2p(O)

ds2

d'p(O(s))
ds

3

- 1"

R P'2R
L2 Li

P' - 3P' P'(P" -R)2

LP LP

P 12 + P"R+P'P'"l+ p12 4p/2 (P"f+R)2 ,

L5 LT 7

(3.68)

(3.69)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

p/2

L A )



and similar expressions can be obtained in the 0 direction (or the numerical values

substituted directly). To complete the optimization we also need the expressions

solved for the first three polynomial derivatives:

P' d s (3.70)
( T d (6()) 2

Tr d
2p(Q) R P

2 R

r 2 + (3.71)

pd83s L2  L

1 P,2

L2  L4

,da p(0(s) ) P '( P" - R)
F" ~ r ds3  L23(3 72)

(P"2 + P"R + P'P"' + P'2  4F'2 (P" + R )2 - (372

3.3.4 Line Segment Corrections

For the line segments in a Dubins path similar analysis applies. Using the same p

notation with perpendicular to the left of the line segment and 6 aligned with the

line segment, and 0 the linear distance along the segment, we have:

p(O) = P(0)? + 06 (3.73)

p'(6) = P'() + 0 (3.74)

p"() = P"(6) (3.75)

p"'(0) = P'(0) . (3.76)

Following the same procedure as for arc segments we obtain:

Sdp (0 (s)) _ P' (3.77)
ds y/P'241

,,TdP(O) F"l pF2P"d2 p 2p(3.78)
ds2  L2 L

Td3p(0(s)) P" P'P"2  L2(p 2 + p'pin') - 4p 2 P"2

d T S = -P (3.79)



and solved for the polynomial derivatives:

jT d p(O(s))

P ds (3.80)

(T L (d(9s)

P/= L2 d2 p(O) + f2JY, (3.81)
ds2 L-2-

, rd 3p(O(s)) P'P"2  ,L2(p12 + pp P 4p/2p/2
P = L dS3  +.3 + P4 (3.82)

3.3.5 Dubins-Polynomial Paths

The procedure for computing Dubins-Polynomial paths is depicted in algorithm 1. It

is important to note that the polynomials used in equations 3.70-3.70 and 3.67-3.69

are in terms of the arc angle 0 and thus the polynomials obtained must be rescaled

by the arc radius as appropriate to be consistent in cost units between arc and line

segments. Example curves for various configurations and cost settings are shown in

figure 3-3. Figure 3-4 shows numerically integrated derivatives compared to the actual

path confirming that the method returns paths with continuous 3rd derivatives and

that our expressions for the derivatives are correct.

Algorithm 1 Dubins-Polynomial Path Generation
1: Input: (x, y, 0. r, k, k)O, (x, y, 0, , , k) 1
2: Find Dubins curve for (x, y, 6)o, (x, y, 0)1
3: Perform piecewise polynomial optimization over Dubins curve with appropriate

boundary conditions for (K, k, R)o, (K, k, R)1
4: Compute "true" transverse (i) derivatives at each junction by averaging the pre-

ceeding and following segments transverse derivatives as computed using equa-
tions 3.67-3.69 (or 3.77-3.79 for a line)

5: Invert the transverse derivatives using equations 3.70-3.70 (3.80-3.80) to obtain
polynomial boundary conditions for each segment

6: Optimize each segment individually single polynomial optimization

3.3.6 Path Limitations

To the extent that P' is small in the case of line segments and P' and P are small in

the case of arc segments (since change in P changes the radius and thus introduces



Coriolis and other higher order polar effects), the polynomial optimization directly

optimizes the curvature derivative (3rd polynomial derivative), and second curvature

derivative (4th polynomial derivative). However, we can see from the correction

equations in sections 3.3.3 and 3.3.4 that the approximation breaks down for P' and

P far from 0. If the nominal path from which the offset is specified is chosen sensibly,

this problem can be mitigated. The optimization also allows for cost on P' and P to

penalize too much deviation from the nominal path and thus maintain the fidelity of

the higher order derivatives. Further, even if the optimization is an approximation,

the correction step ensures derivative continuity at segment junctions.

If the cost on curvature derivatives is high and the radius used in the Dubins paths

too small, the optimization may occasionally yield are segments with negative radius.

When this occurs, the path must either be discarded or the cost on P increased until

a positive radius is achieved. Potential locations of radius violations may be obtained

using polynomial root finding algorithms.

3.4 Control

We now have the ability to produce paths with continuous roll rate optimized to

minimize roll rate and roll acceleration. The 3rd derivative of the paths is immediately

available through the same expressions used in the optimization. Thus, the open

loop roll rate and change in normal acceleration necessary to follow the paths can

be easily determined from equation 3.3. However, two key challenges remain. The

first is in stabilizing the vehicle along a planned path and the second is in converting

the differentially flat inputs, namely roll and change in normal acceleration, to the

inputs available on the vehicle, aileron, elevator and rudder. The reader should note

that the following section on trajectory stabilization does not contain novel research.

We restate results from Hauser et al. [23] for clarity and to provide a thorough

understanding of how the control system works.



3.4.1 Trajectory Stabilization

Differential flatness provides a direct method for stabilizing a desired path. Since

the model allows us to command the third spatial derivative of the vehicle we can

simply write the desired third derivative as the open loop derivative of the path plus

feedback on deviation from the path and deviation derivatives (equation (8), [23]):

A(3 = p (3) + k2s + kie + k0e, (3.83)

where p is the path to be followed -- a Dubins-Polynomial path in our case - and

e = p - A. The disadvantage of this approach is that it will use the tangential

acceleration to correct axial errors along the path (i.e. the vehicle gets ahead or

behind). Since we know the trajectory is collision-free, errors along the trajectory are

not a concern, and changing speed to correct errors in the worst case could take the

airplane out of an acceptable maneuvering envelope.

Following equation 11, [23] we have:

s(3) av3Wv2 + el

3 -I (3.84)av3 JaUv
- RT (3p"(s)ss + p'"(s)&3 + k 2e + k1 e + koe)

where,

:0 0

M =[ RTp'(s) a,3  0 (3.85)
:0 -1

The key idea is replacing the change in tangential acceleration with the third

derivative of the path parameter, s, while A and s, now become states in the controller.

In our formulation s is the metric distance along the path so a can be initialized

as the flight speed entering the path. The only restriction on this control law is

that M be invertible which requires the fist column of Rv oc A can't be orthogonal



to p'. Intuitively this makes sense since if the plane is flying perpendicular to the

desired path, no control authority on the error dynamics is available through 'W. The

singularity in M is also not of practical concern so long as the controller is initialized

from reasonable conditions.

3.4.2 Differentially Flat Control Input Conversion

The trajectory stabilization algorithm provides us with w and at and the remaining

challenge is to translate these quantities into aileron, elevator, throttle, and rudder

inputs such that coordinated flight is achieved at the desired settings.

Using traditional linear analysis for aircraft dynamics, roll rate can be shown to

be a stable first order system with aileron input, and normal acceleration (effectively

angle of attack or normal velocity) a stable second order system with elevator as

input [45]. Thus one possibility would be to differentiate equation 3.3 to get flat

inputs at the same system order as elevator and aileron. However, feedback for such

an approach would require the third derivative of the actual system motion which is

not directly available (derivative of acceleration). Further, the dynamics in pitch from

elevator to normal acceleration and aileron to roll are fast relative to the derivatives

of the path, and we can use the polynomial optimization to ensure this is always the

case.

The approach we use for control is to integrate 4, and maintain a, as controller

state. Desired roll rate and normal acceleration are then translated algebraically into

elevator, aileron, and rudder commands.

At steady state the sum of the pitching moments will be 0. Making typical aero-

dynamic assumptions, the pitching moment coefficient is given by

Cm = Co + Crna(a - ao) + Cmnq +± Cm e, (3.86)

where a is the angle of attack, q is the pitching rate and 6, is the elevator deflection.

Using the relationship between angle of attack and normal acceleration and the normal



acceleration due to pitch rate we get:

C = Cmo + Caa+Ca + C"LO ± ( + CmaC, + +C±Ome, (3.87)

where p is the air density (not the path variable), and CLO is the coefficient of lift at

ao. Setting equal to 0 and rearranging we have:

CO = a , + ci, (3.88)

where ci and co are constants. Using a similar approach for the rolling and yawing

moments we have:

6, = c2 - + c3 - (3.89)
V V

6r = c4 - + c5 - (3.90)
V V

where p is the steady state roll rate, r is the steady state yaw rate, o" is the aileron

deflection, and o, is the rudder deflection.

Equations 3.88, 3.89, and 3.90 give us the relationships we need. Coefficients co-c 5

can be empiracally fit from flight or simulation data and then used to map the desired

normal acceleration to actualy control inputs.

3.5 Simulation Results

To validate our trajectory generation and control methodologies we used the physics

engine from the open source CRRCsim flight simulator (1]. The simulator takes as

input aerodynamic derivatives computed with AVL, an open source extended vortex

lattice aerodynamic analysis program [17]. We constructed an AVL model of our

fixed wing vehicle seen in figure 3-5.

We sampled 1000 random configurations and used them to generate Dubins paths,

transverse polynomial paths enforcing 3rd order continuity, and transverse polynomial

paths enforcing 4th order continuity. The nominal paths were then simulated with the



full nonlinear model. The planning radius used in the Dubins curves was R = 8m with

a desired flight velocity of 7m/s which places the vehicle close to it's dynamic limit.

Polynomials of order N = 10 were used with cost of the zeroth-fourth derivatives,

c 0.3 1 0 50 1 , and all other cost terms set to 0. The paths were sampled

in a 40m square so they usually involve sequential turns without extended straight

sequences. The samples were used to plan: Dubins paths, transverse polynomial paths

up to 3rd order continuity, and transverse polynomial paths up to 4th order continuity.

For computation time comparison we also include the full simulated model. Using a

full model-based method to compute feasible trajectories would have computational

cost on this order, as the full dynamics are simulated forward. The closed-loop RRT

used on the Darpa Urban Challenge vehicle used this technique [36].

If the simulated vehicle deviated by more than 10in from the planned path, the

case was marked as a failure and discarded. These samples were used to generate

the results shown in table 3.1. We can see that for these conditions the pure Dubins

curves fail more than 19% of the time. Additionally the average normed tracking

error is more than double what it is for both of the transverse polynomial paths.

Interestingly, fourth order continuity paths have slightly higher normed error with

slightly lower failure rate. The failure cases of the transverse polynomial paths are

likely due to rare cases of poor geometries leading to infeasible trajectories in the

optimization which could be discarded with dynamic constraint checking. The higher

normed error for the fourth order paths probably indicates that within the fidelity

of our fit control mappings, the continuity in roll rate is not important. However,

the optimization still minimizes roll acceleration effort, which clearly increases the

feasibility of the paths compared to the fully discontinuous Dubins case.

The computation time of the transverse polynomial paths is dominated by the

matrix inversion of the piecewise polynomial QP. While it is substantially slower than

the Dubins calculation alone, it is still more than 20x faster than a single simulation of

the full model, and to get an exact solution, multiple simulations would be required,

as in the shooting method [57].

Figures 3-6 and 3-7 give some intuition for why the optimized paths are supe-



Path Type Error Norm (m) Fraction Failed Average Computation Time (microseconds)
Dubins 1.60 0.194 20.0

3rd Order 0.67 0.006 495.7
4th Order 0.75 0.003 516.6
Full Model - - 10609.3

Table 3.1: This table shows path following error, fraction of simulations diverged, and
computation time for a path for Dubins curves, transvers-polynomial curves enforcing
continuity up to 3rd and 4th order, and a full simulation of the nonlinear model.

rior for tracking. Each depicts example tracking performance with the coordinated

flight model for both Dubins curves and the same Dubins curve with an optimized

polynomial offset. As we would expect, the coordinated flight model exhibits perfect

tracking behavior on these paths.

Since the coordinated flight model tracks the paths exactly, the deviation must

be introduced by errors in the control mappings from the coordinated flight model

to the full nonlinear model (equations 3.88, 3.89, and 3.90). This is not surprising

since we approximated the mapping using simple linear fitting, treating the nonlinear

model as a black box. However, to get the best performance on an actual vehicle

this is where it would make sense to spend the most effort. Ideally the fitting would

take place on flight data exhibiting coordinated flight, so one possibility would be

to iteratively fit and collect data under closed loop control until some threshold of

tracking error is attained. We leave this polishing step as future work on the actual

vehicle.
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Figure 3-3: This figure shows Dubins-Polynomial paths for various configurations.
The blue line in the transverse polynomial path and the black line is the Dubins
path from which it is offset. For each of these examples, the curvature is constrained
to be 0 at the start (0, 0, and facing left) and end of the path. We can see that
generally the optimization yields paths that distribute the shifts in curvature around
the Dubins segment junctions (denoted with black stars on the paths). Deviation
from the nominal path is only lightly penalized, so we can see in (c) for example, the
optimized path maintains deviation through the straight segment, and thus reducing
the need for "sharpness" entering the second left turn. Conversely in (a) the opti-
mization yields a path that smooths the slope between the initial left turn and the
following right turn, thus reducing the roll action required. It is important to note
that the optimization does not respect a hard turning radius constraint which we can
see clearly in (b) where the entry and exit left turns are smoothed out at the expense
of a sharpening of the right turn.
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Figure 3-4: This figure shows convergence as the third path derivative, A, is integrated
numerically for finer step sizes ds as fraction of total path length L. Two things are
important to note. If the third derivative expression was not incorrect, we would not
be able to obtain the actual path by integrating it, and secondly, if the path were not
continuous up to the third derivative, integration would not converge to the actual
path.



Figure 3-5: The AVL model used for aerodynamic analysis. The purple lines along
the lifting surfaces show the vortex lattice discretization, while the orthogonal green
lines show the lift distribution, and the dotted black lines show the shed trailing
vortices. In this figure the vehicle is rolling to the right and pitching up which is why
the right wing and tail are more heavily loaded.
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Figure 3-6: This figure shows tracking performance for the coordinated flight model

for a Dubins curve (a) and a transverse polynomial path (b). We can see the actual
and desired paths match for the transverse polynomial path as the optimization "an-
ticipates" the discontinuity and symmetrically distributes the roll angle change into
each arc segment. In contrast, when tracking the Dubins curve, the vehicle can not
roll instantaneously and thus deviates from the path before stabilizing back onto it.
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Figure 3-7: This figure shows another example with the pure Dubins curve (a) and

the transverse polynomial path (b). We can see the optimization smoothly distributes
curvature over the path, leading to perfect tracking performance, whereas with a pure

Dubins curve the tracking deviates at the segment junction.

Tracking



Chapter 4

State Estimation

To close the loop around the trajectory we must know the state of the vehicle. Since

we're operating without the use of GPS, the state must be inferred by sensor readings

and knowledge of the rigid-body dynamics. The state estimation algorithm is respon-

sible for taking as input sensor readings from the IMU and laser range scanner and

estimating the position and velocity of the vehicle to stabilize nominal trajectories.

Our approach a Gaussian Particle Filter (GPF) based update step together with an

EKF process model on the IMU to efficiently and compactly filter the sensor inputs.

We also provide a method for estimating the noise parameters of the IMU without

using ground truth data.

4.1 State Estimation Problem Statement

Assuming the MAV to be a rigid body and neglecting higher order effects such as

propeller speed and time-varying airflow over the vehicle, the state of a MAV is given

by its position and orientation and the associated linear and angular velocities. For

control purposes it is convenient to represent the velocities in body coordinates. 1 Thus
-T

the goal of the filter is to estimate the quantities [ Tf vT R AT where Wb -

Wb1 Wb2 Wb3 is the angular velocity in body coordinates, vb - Vi Vb2 Vb3 ]T

'As discussed in chapter 3 the control is actually computed in the velocity frame which differs

from the body frame by the angle of attack.



is the linear velocity in body coordinates, R is the rigid body orientation rotation

matrix, and A [ A1 A 2 A3 T is the translation vector from the origin in global

coordinates to the origin of the body frame, expressed in global coordinates.

We assume a set of IMU measurements consisting of 3-axis acceleration, 3-axis

angular rate measurements, and planar laser range scans. Further, we assume we

have access to a 3D map of the environment represented as an occupancy grid. In

addition, for planning purposes, we require a covariance over the estimated quantities

vehicle such that Evehicle ' Zactual where Eactual is the true covariance.

4.2 IMU Process Model

Our state estimation algorithm uses an Extended Kalman Filter (EKF) to propagate

a Gaussian distribution over predicted states. The EKF process model is based on a

discrete time, nonlinear discrete transition function:

xt+1 = f (xt, Ut, Wt) (4.1)

where xt is the system state vector, ut is the input vector to the system, and wt is

a random disturbance drawn from a normal distribution N(O, Q). The EKF tracks

the state at time t as a Gaussian distribution with mean pt and covariance Et. These

first two moments are propagated forward according to:

At+1 = f (, ut, 0) (4.2)

Et+1 = AtEt A + W TQW (4.3)

where p and E denote predicted quantities before a measurement update has occurred,

and At and Wt are the appropriate partial derivatives f.



4.2.1 Exponential Coordinates Attitude Uncertainty

We track orientation uncertainty in perturbation rotations in the body frame. If the

true orientation is given by the rotation matrix R, we can write R = RR(x) where R

is the estimated orientation and R(x) = eXA is the error rotation matrix. x E R3 is

the perturbation rotation about the body axes. We use the A notation to denote the

skew symmetric matrix formed as:

0 -X3 X2x X3 0 -xi (4.4)
-X2 X1 0

Taking the exponential of a skew symmetric matrix returns a rotation matrix corre-

sponding to a rotation of lxJ about the axis defined by x where x is referred to as the

exponential coordinates of rotation.

In our expression for the true orientation, R(x) post multiplies R which puts

the perturbations in the body frame. Since the error is parameterized by x and the

covariance can be tracked in a 3 x 3 matrix EX,. The covariance can be thought of as

cones of uncertainty surrounding the body frame axes defined by the columns of R.

A sketch of this uncertainty is shown in figure 4-1 for the covariance (in degrees):

32 0 0

EX 0 52 0 (4.5)
0 0 152

This choice of coordinates for the filter error is desirable since fundamentally rigid

body orientation, denoted mathematically as the special orthogonal group (S03), has

three degrees of freedom. While any three element representation is provably singu-

lar for some orientation, more commonly used parameterizations (i.e., quaternions or

rotation matrices) will have constraints between the elements of the representation.

Thus a linearized filter covariance over the paramleters will not be full rank. Numer-

ical errors would pose the constant threat of creating negative eigenvalues, and thus



blowing up the estimator. Furthermore, an efficient linearized measurement update

as is commonly used in Gaussian filters does not respect the constraints and thus

does not map onto S03. A renormalization scheme could be used after every update,

but at any given time the representation can be arbitrarily poor [56].

As we will see, the attitude uncertainty representation is agnostic to the actual

underlying orientation integration and tracking. Quaternions and rotation matrices

are easy to update based on using x in the estimator state vector /p.

Figure 4-1: This figure shows the uncertainty representation in body axes. We see
that high variance on the z axis perturbation maps into large motions for the x and
y bases, all in the body frame.



4.3 Process Equations

The equations of motion for a rigid body are given by:

CWb = J-1(-wb X JW + r)

i'b = -wbx vb+ R g + a

A =Rob

(4.6)

(4.7)

(4.8)

(4.9)

where Tb is the torque applied to the body and ab is the acceleration in body co-

ordinates. Since the IMU returns noisy measurements of Wb and ab, we follow the

commonly used technique of omitting wb from the state, neglecting equation 4.6, and

treating the IMU measurements as inputs to the filter.

For the quantities used in equation 4.2 we have

x = b vX A

U =Ugyro Uacce ]
W Wgyro Waccel

(4.10)

(4.11)

(4.12)

(4.13)

Combining this state representation with equations 4.7-4.9.

fc(xt, utwt) = [ t

-- Wbo x vb+ R + guaccel

=b RUgyro

Rvb

(4.14)

(4.15)



Taking the appropriate partial derivatives we get:

ax -b

8X r
(RTg)A

A o]
aA
ax

for a continuous dynamics linearization of:

A- Wb

A4c - af C
SC

and for the input vector we have:

=9) I
(9U

aA _ 10

W- -

(4.19)

(R Tg)^ 0

-WA^ 0

-RVA 0j

gI]

0]

0]

OLi)u

While more sophisticated approximations could be used, we construct the discrete

quantities for the filter f, At, and We using Euler integration:

f (xt, ut, 0) = xt + fc(xt, ut, 0)dt

At= I + Adt

Vt = Wedt.

(4.24)

(4.25)

(4.26)

0 ]

0 ]

(4.16)

(4.17)

(4.18)

(4.20)

(4.21)

(4.22)

(4.23)1

--Rov A



We integrate the attitude separately as

Rt+ = RtR(u yro) (4.27)

4.4 Identifying the Process Noise Parameters

The process noise covariance Q is a diagonal matrix populated as

[ qgyroI3 0 (4.28)
0 qacce1 3

and qaccel and qgyro are the parameters we wish to identify. Two issues lead to dif-

ficulties with the conventional approach to system identification techniques, where

the vehicle trajectory is tracked using an external measurement system, and random

deviations from the reference trajectory are modeled as process noise parameters.

First, the way the noise projects onto the state changes with the time varying Wt

matrix such that the Q matrix cannot be recovered in closed form simply by squaring

the deviations. More importantly we cannot depend on the availability of ground

truth measurements of the vehicle's deviation from a reference trajectory since it is

generally very difficult to obtain realistic flight data for MAVs with labeled ground

truth as size and weight restrictions prevent the use of highly accurate GPS systems,

and only the smallest and lightest fixed wing vehicles (which are incapable of carrying

a meaningful sensor payload) can fly in motion capture systems.

Nonetheless it is critical that the model parameters, and especially the process

noise parameters, be accurate. For planning purposes we must be able to predict

distributions over future states to guarantee safe trajectories. Within the context

of state estimation and Monte-Carlo localization, as we describe in section 4.4.2,

it is critical that an accurate covariance of the state estimate be maintained when

sensor data is sparse or absent, such that the state estimate can be can be properly

distributed to obtain measurements when they become available.

While we do not have access to ground truth with which to estimate the noise



parameters, we can post-process data using a Kalinan sioothing algorithm to obtain

a state history X = I i.. . jl with the error associated with each smoothed

state estimate given by

Ft = E ((- - xt )T] (4.29)

The key idea in our approach is in projecting the process noise forward over multiple

time steps such that the process noise dominates the error in the smoothed estimate,

thus allowing us to treat the smoothed estimate as ground truth. Additionally, by

projecting the noise forward over multiple steps, the parameters we identify will be

suitable for use in planning algorithms that require open-loop type predictions [11] and

the parameters will work with intermittent measurement functions. It is important

to note that while the Kalman smoothing algorithm returns a covariance history as

well as a state history, it may be arbitrarily far from the actual error Ft since the

system is nonlinear and the smoother is run with the wrong noise parameters since

the true parameters are unknown. However, as long as the system is observable over

the smoothing window the error will be bounded.

Using the linearized dynamics from the EKF we can project the filter covariance

forward N steps by repeatedly applying equations 4.3 4.3. Neglecting the error on

the smoothed estimate, we obtain the expression:

E [(Xt+N - St)(<t+N ))T] t,N (4.30)
N-1

Z Gt+i,NQGf'iN (4.31)
i=0

where GtN AW. This is an important quantity for our noise identification

algorithm because as it maps the noise at each time step onto the state vector at time

t + N. For identifying characteristics of the process noise, At must be neutrally stable

and W1 must have full column rank. If At is highly unstable, the Et,N will be overly

sensitive to the noise values wi for small i, whereas if At is highly stable, Et,N will be

dominated by larger values of i and thus the forward projection offers little benefit.

However, many robotic systems, including our IMU dynamics, exhibit approximately



neutrally stable behavior.

For neutrally stable systems, as N gets large we expect Et >> Ft. We can then

divide up the data set X to get M = T/N samples from prediction distributions

obtained by subtracting the state at time tend = iN + N - 1 from the state at time

tbegin = iN for i E [0, Al - 1). This gives us M samples yj = Xtend - Xtbegin drawn from

distributions N(0, Etbegin,N) P(Xtena dXtbegin). We have a joint likelihood function for

our data given the parameters of Q as:

M-1

P(YIxo,Q) = 11 P(xiN+N-1 XiN,Q). (4.32)
i=0

We would like to maximize this probability for which we use the log-likelihood func-

tion,

M1

l(Yxoe, Q) = log I EiI + yTEzy,. (4.33)
i=O

From an intuitive standpoint we are optimizing for the q parameters that would

produce the observed drift away from the smoothed estimate given by the samples yi.

We setup and solve the optimization using standard nonlinear programming tech-

niques. Specifically we use the interior point method implemented in Matlab to solve

for the maximum likelihood values of qgyro and qaccei.

4.4.1 Partioned GPF Measurement Update

While the EKF is effective for propagating the first two moments of the nonlinear

dynamics through our IMU equations of motion, it is not well suited to integrating

laser measurements from unstructured 3D environments. In contrast Monte-Carlo

techniques are widely used in laser-based localization algorithms [53). We use the

Gaussian Particle Filter (GPF) to perform laser-based measurement updates [35].

In its standard form the GPF maintains a Gaussian distribution over the state

space given a measurement history given by P(xt Izo:t) = N(xt; p-t, Et). However, at

each iteration of the filter, particles are used to incorporate nonlinear process and



measurement models. To compute P(xt_1|zo:t) a set of samples {i)}j 1 is drawn

from N(pt, Et) and the samples are then propagated through the process model

f (xt, ut, wt). To perform the measurement update the samples are weighted according

to the measurement model wt4= P(zt4 ). The updated Gaussian at the end of

an iteration of the filter is then obtained as the weighted mean and covariance of the

samples

t+= (4.34)

t+l =t .tI X (4.35)
(j))

wt

Assuming the underlying system is linear-Gaussian, the filter is shown to approximate

the true distribution arbitrarily well with a large number of samples.

A straightforward implementation of the GPF for state estimation using a laser

on a MAV is impractical and inefficient for two reasons:

1. IMU dynamics are well approximated by linearization as evidenced by the

widespread use of EKFs in GPS-IMU state estimation, and thus using a parti-

cle process model adds significant computational burden while also introducing

error through sampling.

2. The IMU filter maintains additional states to track velocity and IMU biases,

however the laser measurements are only a function of the position and ori-

entation, parameterized by A and X in our formulation. In fact, most of the

orientation information in the measurement exists in the plane of the laser con-

tained in Xz.

To address the first issue we only use the GPF to perform the measurement up-

date, and instead of propagating samples through the measurement function, we

sample directly from the prior distribution returned by the EKF after the process

step, N(ft, E). To address the second issue above we explicitly partition the state

according to independence relationships in the measurement function. We perform a



standard GPF measurement update on the partitioned state and use this to compute

a pseudo measurement which is then used to update the full state.

The state is partitioned as,

Xt xr X , (4.36)

where X'n E R) is the part of the state that affects the measurement, and x4 E Rn-k

is independent from the measurement. More formally we assume our measurement

function has the form

zt = h(x", vt), (4.37)

permitting the independence factorization

P(ztI Xx ") = P(zXm ). (4.38)

We can similarly partition the covariance

To perform the measutement update we draw samples {x,"W}4 from N(p[", Z7").

The samples are weighted with the measurement function in equation 4.38. From

these weighted samples we can compute an update for P(x;"lzo : zt) using the con-

ventional GPF weighted mean and covariance as in equations 4.34 and 4.35. The key

idea is to then use the GPF update on the state variables that affect the measurement

to propagate a Kalman update to the rest of the state.

To perform a Kalman measurement update we need to know the measurement

value zt, the covariance of the measurement R, and the observation matrix C. Firstly,

we set C as a selector matrix for the measurement part of the state

C = [ k n _ . (4.40)



A measurement update on x" would proceed as:

K'" = I(Cr")T(Cmi (C'")T + R)-1 (4.41)

Pt = P" + K* (ztCIPAnf) (4.42)

Em" = (I - K "nC')i' (4.43)

Plugging in the identity matrix for C", the above equations can be solved for Rt

E" = i" - "(C )T (Cm t(Cm)T + Rt)- 1 2" (4.44)

Rt = (Et - I2" E 1)-i - I" (4.45)

= (E' - II ) (4.46)

where we make use of the matrix inversion lemma between equations 4.45 and 4.46.

Using Rt we can now solve for the Kalman gain that would have produced the

same change between our prior and posterior covariance using equation 4.41 and then

recover the actual measurement that would have produced the same change in the

mean of prior vs. posterior distributions:

z- = K I - V) + P"I. (4.47)

A Kalman gain for the entire state can then be computed using Rt and zt, and a

standard Kalman measurement update performed.

The posterior distribution quantities p'n' and E "' are readily available from

the GPF measurement update on the measurement part of the state vector. Naively

one might use the Gaussian prior from which the samples were drawn to evaluate

equations 4.46 and 4.47. However, the quantities we care about Rt and zt are obviously

sensitive to the difference between the prior and posterior mean and covariance. With

a finite number of samples there will be some error between the distribution described

by the sample set {x" }JLi and the Gaussian prior. This error will carry over

to the weighted sample set which approximates the posterior. We can compensate



by using the mean and covariance of the prior sample distribution instead of our

analytic expressions for fi"l and E'n. In practice, this substitution makes an enormous

difference, particularly with low numbers of particles (which is highly desirable in a

real-time application).

Finally, we note that the solutions for Rt and zt hinge on the invertibility of C"

which is a proxy for the invertibility of our measurement function h in equation 4.37

with respect to x". It can be difficult to know a priori if the measurement is well

conditioned or invertible. If it is not (i.e., if the measurement doesn't actually contain

information about some piece of x") then our R, value may not be positive definite,

leading to a filter divergence. Thus it is necessary in practice to perform an eigenvalue

decomposition on Rt and set any negative eigenvalues to a large constant (implying

no information gain along the corresponding eigenvector) and then reconstruct the

matrix. This step also protects the algorithm from negative eigenvalues entering

through sampling related errors.

4.4.2 Laser Localization

We generate 3D voxel maps of environments using orthogonal Hokuyo lidars mounted

on a rolling tripod. A scan matching algorithm developed in prior work [5] runs using

the horizontally mounted lidar while the vertical lidar sweeps out a 3D point cloud

of the environment. The point cloud is then projected into a 3D occupancy map

computed using OctoMap [58].

The likelihood evaluation proceeds according to standard techniques used in 2D

localization. We blur the map using a Gaussian kernel around occupied cells. To

perform particle measurement updates we project the scan from that time-step into

the map and sum the log-likelihood of the reached cells before exponentiating to

obtain a probability with which to weight the particles.

The exponential coordinates framework of the filter provides an easy framework

for particle generation. To sample in orientation we sample {x," }> from N(O, E"))

and then exponentiate and post multiply our predicted orientation quaternion q,'" =

q q(x,"(j). An interesting question is the appropriate partitioning of the state vector



for the updates described in section 4.4.1.

(a) (b)

Figure 4-2: A picture of the indoor space (a) where we flew our fixed wing vehicle.
The space is roughly 12 meters by 20 meters and our vehicle flies between 6 and 10
m/s, thus aggressive maneuvering and tight turning is required to stay airborn. The
trajectory flown by the vehicle is shown by the red, green, and blue axes in (b). The
quality of the state estimates is evident in the (height colored) point cloud rendered
using the state estimates of our algorithm. The floor and ceiling were cropped for
visual clarity.

The use of planar LIDARs to localize in the plane is ubiquitous, suggesting that

when working in 3D, laser range scans should at least contain information about the

xy plane and Xz (orientation about the yaw axis of the vehicle). However, in general,

a planar slice of a 3D environment may contain some information about the full ori-

entation, but populating the 6D pose space parameterized by x and A with particles

may produce limited extra information relative to the computational cost incurred,

especially because the direct formulation for our filter based on exponential coordi-

nates, is capable of inferring attitude from accurate position (xyz) measurements.

We investigate different choices for xm in our experiments.

4.5 Experimental Results

Our experimental platform consists of a custom built fixed-wing vehicle carrying a

payload of a Hokuyo UTM-30LX laser rangefinder, a Microstrain 3DM-GX3-25 IMU,

and a 1.6GHz Intel Atom base flight computer. To identify the noise parameters of



Optimal IMU Noise Parameters vs. Look Ahead Time

0.05 - 0.005

0 5 10 15 20 25 30 35 40
time (seconds)

Figure 4-3: This figure shows values for qgyro and qaccei obtained by optimizing equa-
tion 4.33 for different look ahead values of N. For small N the optimal noise param-
eters are dominated by the error in the smoothed estimates, [I, but we see for large
N consistent values are reached. It is interesting to note that as N increases fewer
"samples" are available from a data set of fixed size, and thus more variance appears
in the computed noise values, implying some optimal lookahead window to identify
the parameters.

the IMU during realistic flying, we flew the vehicle outdoors with a low cost uBlox

GPS unit. Optimized noise parameters as a function of the lookahead window N are

depicted in figure 4-3. For small N the correlation and error in the smoothed estimate

corrupts the optimized noise parameters, but as expected for larger N we can recover

the true values. This is reflected in the convergence of the optimal values as N is

increased. Using these optimized values to predict the uncertainty we obtain the

results in figure 4-4 which shows predicted and empirical normed error as a function

of look ahead. We get excellent agreement between the predicted values obtained

from our model's covariance and the empirical values computed from lookahead in

the data.

We conducted a number of flight tests in the indoor environment shown in Fig-
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Figure 4-4: This figure shows the predicted normed error and the actual normed
deviation from the smoothed estimates as a function of lookahead N. With the opti-
mized values we can accurately predict uncertainty for both estimation and planning
purposes.

ure 4-2(a). While we did not have access to any sort of ground truth state estimates,

we were able to test our algorithms on real flight data. The accuracy of our state

estimates were then validated qualitatively by looking at the accurate reconstruction

of the 3D environment by reprojecting the laser points using our state estimates. One

such 3D point cloud is shown in Figure 4-2(b). The fact that the point cloud matches

the structure of the environment with the reprojected scans falling in close alignment

on the structure (qualitatively) highlights the accuracy of our algorithm.

To quantify the error of the state estimator, we aggressively maneuvered the sens-

ing payload in a high accuracy VICON motion capture studio. These ground truth

state estimates allow us to evaluate the properties of our state estimation algorithm.

Results for different number of particles and different state partitioning are summa-

rized in figure 4-5. We can see that by not partitioning the state and performing
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Figure 4-5: This figure shows the mean velocity error verses the number of particles
used in the GPF for different state partitions in the measurement. As expected, the
more states we use in the measurement function the more particles are required to
obtain satisfactory estimates. In a naive implementation where the full state is used
in the measurement and thus a standard GPF update performed, we require 2500
particles to get similar performance to a measurement update in A using only 100
particles. Thus our algorithm yields an effective 25x speedup.

standard GPF updates we incur significant computational cost in terms of number of

particles to achieve the same level of accuracy. This makes sense given that we are

using particles to capture the same correlations that are well captured analytically

by the pseudo Kalman measurement update.

The experiments demonstrate the ability of our algorithm to maintain accurate

state estimates in the face of fast motion. While a naive implementation of the GPF

measurement update correctly estimates the state of the vehicle with a sufficient

number of particles, the required number of particles is dramatically larger than for

the partitioned state version. The naive GPF implementation would not be able to

run in real time onboard the vehicle given the computation power available.



Fraction Diverged

Figure 4-6: This figure shows the percentage of trials where the filter diverged as a
function of the number of particles for different state partitions. Generally, the more
of the state included in the measurement, the more particles are required to prevent
divergence.



Chapter 5

Rapidly-exploring Random Belief

Trees

We have seen in the previous chapter that it is possible to accurately estimate the

vehicle state in a 3D environment. However, the quality of the localization solution

can vary with the environment geometry. To ensure good performance for an au-

tonomous system using these state estimates it is necessary to reason explicitly about

uncertainty in the planning phase. In this chapter we introduce an algorithm for

this purpose. We present the algorithm generally and then apply it to the fixed-wing

planning problem in simulation.

5.1 Problem Formulation

The systems we are interested in are generally nonlinear and partially observable.

The robot is given a discrete time description of its dynamics and sensors,

X = f (xti, ut1, w), '~ N(0, Q') (5.1)

z = h(xt, v'), v'~ N(0, R'), (5.2)

where Xt E X is the state vector, ut E- U is the input vector, w' is an random process

disturbance, zt is the measurement vector, and v' is a random component in the



sensor readings. The state space X can be decomposed into X'ree and Xobs where

Xobs represents the states where the robot is in collision with obstacles.

Our approach to planning is built on an underlying method for finding dynamically

feasible solutions and for stabilizing the system. Thus, we assume the availability of

a CONNECT() function for finding a nominal trajectory and stabilizing controller

between two states xa and x such that,

(X4b Uab, Ka,) =CONNECT(Xa b) (5.3)

Aa, = (, .... Tab) (5.4)

#4ab = (nto, ft1, t2, . . . ,b s (5.5)

zo = X", X' f (Ta ftr , b 1 0) (5.6)

t = f (xtI, At_1, 0) Vt E [1, T,b], (5.7)

where the trajectory can be stabilized with an on-line state estimate se as in

kab = (Ko, K1, K2 ,... , KTb ), (5.8)

xt = f (xt, ne-1 - Kt (t - it ),wt ). (5.9)

The problem of computing such trajectories and controllers for various robotic

vehicles has received an enormous amount of research attention and is beyond the

scope of this paper. For general nonlinear systems, techniques such as shooting meth-

ods, or direct collocation [57] may be used. For flying vehicles, maneuver primitive

approaches are appealing due to their relative computational efficiency [20]. For "Du-

bins" vehicle dynamics, the optimal trajectory is easily compute in closed form [38].

Stabilizing controllers may be designed, for example, using classical control theory or

LQR design, depending on what the system dynamics demand.

The planning problem is specified with some uncertain knowledge of the robot's



initial state given by the probability distribution

zo ~ N(zo, 0E), (5.10)

and a goal region in the environment xgoal c Xfr** to which the robot wishes to travel.

The optimal path planning problem is then to minimize in expectation a stage

cost function,
~T

argmin E [J(xt)], (5.11)

subject to

zo = io, P(xT ( Xgoai) < 3. (5.12)

P(xt E Xobs) < 6, Vt E [0, T], (5.13)

where 6 < .5 is a user specified threshold for how much risk to tolerate that defines

the chance-constraint and J : x 4 R+ is the cost function. The expectation is

with respect to the process and sensor noise wt and vt, and minimization is over

concatenated paths returned by the CONNECT() function:

(X, U, K) = (CONNECT(X 0 X), CONNECT( 1 , 2),. CONNECT(X' 1 , X))

This formulation decouples the control design from the path planning optimiza-

tion. Practically this makes sense for robots where the stabilizing controller is de-

signed with dynamic considerations rather than the specific configuration of an oper-

ating environment.

5.2 Uncertainty Prediction

In order to evaluate a cost function and check the chance-constraint, we need a

distribution over states that may be realized if we execute a given nominal trajectory.

Taking appropriate partial derivatives of equations 5.1 and 5.2 we obtain the following



time-varying linear system

ze = z_ Bnt _1 + wt, wt ~ N(0, Qt) (5.14)

it = t Cez + vt, vt ~ N(0, Re), (5.15)

where Jt, , it are now error quantities, representing the deviation from the nominal

path such that xt = t + zt, ut = ft + 6it, and Zt = zt +it .

During execution xt will not be available to compute the control input. Instead

we must use an estimate of xt which we denote as st. The covariance associated

with the state estimate is given by Et. To the extent that f and h are locally linear

functions, the Kalman filter is the optimal estimator in the sense of minimum expected

estimation error. The filter maintains a Gaussian state estimate, xt ~ N(Jt, Et) and

operates recursively.' A process step first predicts the next state and associated

covariance,

ze = Atz-1 + Btiit_1 (5.16)

Et = At Et-_l, + Qt, (5.17)

and a measurement update then adjusts the prediction and incorporates the new

information into the covariance,

C izLCI + Rt (5.18)

L c = tCTS-1 (5.19)

zt = ze + L,(t - C1z.) (5.20)

Et = Et - LtCt E. (5.21)

where Lt is the Kalman gain. While Et captures the uncertainty that will be present

on-line during path execution, it does not represent the full uncertainty from a plan-

ning perspective since the mean of the state estimate, se, will not lie on the nominal

'We can easily convert between estimates of ze and ~t, by subtracting or adding the deterministic
nominal value of it appropriately.
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Figure 5-1: In this example a vehicle with Dubins dynamics (see section 5.5) is trying
to traverse past the obstacles. The green areas show the regions where the vehicle
can obtain range and bearing measurements from the corners of obstacles. (a) shows
predicted covariance ellipses using only the Kalman filter which collapse as soon as
measurements are received and then appear to pass safely past the obstacles. How-
ever, in (b) we see an ensemble of closed-loop trajectories for this system in blue that
clearly do not match the expected Kalman filter distribution after measurements are
rdceived since it takes time for the controller to pull the robot back onto the nomi-
nal path. In (c) the solid ellipses show the closed-loop distribution which correctly
predicts the collision.

trajectory as assumed in [47], [46], [13], [21] and others. Figure 5-1 illustrates visually

why this is important for closed loop systems with nontrivial dynamics.

From a planning perspective we need to consider all possible st that could be

realized during path execution. To do this we can use the Kalman filter equations, but

treat the observations as random variables (since they have yet to be observed). We

will track the distribution over possible state estimates as P(z) ~ N(p, A). Taking the

appropriate expectations through the prediction step of the Kalman filter (equation



5.17) for the first moment of the distribution follows as:

t [jt|= E[At ft_1 + Btt-j (5.22)

= E[Att_1 - BtKt. _1] (5.23)

=( At - Bt Ki~t,)-t (5.24)

For the update step (equations 5.20, 5.21) we have

pt = E(xt) = E(St + Lt(it -Ct t)) = Pt (5.25)

pt = (At - BtKi)pt- (5.26)

However, in general zo = po = 0 because the planning problem is specified with

an initial state estimate from which the noise free trajectory is built. From equation

5.26 it is obvious that if po = 0 then pt = 0 Vt. Exploiting the fact that pt = 0 and

substituting AK for At - BtKt, the expectations for the second moment follow as

At = E[(AKtl)(AK-1)TJ (5.27)

= 4K At-,K (5.28)

with the update step as

At.= E[(x t) (5.29)

= E[(Et + Lt - Ct t)) (t + Lt(it - Ctt))7 ] (5.30)

= At + LSt Lt (5.31)

= At + LtCttE (5.32)

= (At - BtKt,)At, (At - BtKi)T + LtCtt. (5.33)

Equation 5.33 gives an expression for propagating the distribution of possible state

estimates that will be realized during execution. The (At - BtK,)At, (At - BtKt)T

term is contractive if K is a stabilizing controller for our system. The additive second



term is equivalent to the uncertainty that is subtracted from the Kalman filter covari-

ance during the measurement update. Intuitively, the uncertainty subtracted from

the on-line state estimate when measurements are received, is added to uncertainty

of the expected mean of the state estimate.

The distribution returned by the Kalman filter, P(xtlzo, zi,..., zt) = N(s t, Et)

can be viewed as P(xli) since it encodes the information from the measurements.

Equation 5.33 gives an expression for updating a distribution P(st) = N(it, At). This

provides a natural way to represent the joint belief as P(x, ±) P(xjs)P(z). Using

common Gaussian manipulations we get

P(xt , it ) = N ,t .t+EtA (5.34)

The primary significance of this distribution is the marginal, P(xt) = N(2, At +

Et). For planning purposes this is what we care about. It describes the distribu-

tion over trajectories as the sum of the on-line state estimation error, Et, and the

uncertainty that arises from not having yet taken observations, At. This distribution

is used to check the chance-constraint (5.13) and evaluate cost (5.11) for candidate

paths.

5.3 Rapidly-exploring Random Belief Tree

The Rapidly-exploring Random Belief Tree (RRBT) interleaves graph construction

and search over the graph to project a tree into belief space. The algorithm operates

on a set of vertices, V, and edges, E, that define a graph in state space. Each

vertex v E V has a state, v.x, and a set of associated beliefs nodes v.N. Each

belief node n E v.N has a state estimate covariance n.E, a distribution over state

estimates n.A, a cost n.c, and a parent belief n.parent. Belief nodes correspond to a

unique path through the graph that could be followed to reach the vertex v, and the

member variables of belief nodes (n.E, n.A, and n.c) are the properties that result

from following that path. Each edge c E E contains the trajectory and control law to
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Figure 5-2: This figure shows two different paths that reach an intermediate point
with different covariance. In (a) the red path dips down and gets measurements and
thus has lower uncertainty at the intermediate point. This lower uncertainty gives it
a lower cost to go, shown by the dotted line, since it can traverse closer to obstacles.
Thus, at the intermediate point, neither the red or blue paths can be pruned. In
contrast, in (b) the blue path receives measurements and thus has lower cost and
uncertainty at the intermediate point. In this scenario it dominates the red path, and
the red path would be pruned.

traverse between the associated vertices and is defined by the CONNECT() function.

A search queue, Q, of belief nodes keeps track of paths that need updating at each

iteration of the algorithm.

The covariance prediction (equations 5.21, 5.33), cost expectation evaluation (equa-

tion 5.11), and chance-constraint checking (equation 5.13) are implemented by a

PROPAGATE(e, nstart) function that takes as arguments an edge and a belief node

at the starting vertex for that edge, and returns a belief node at the ending vertex

for that edge. If the chance-constraint is violated by the uncertainty obtained in

propagating the covariances the function returns no belief.

Additionally, we require the following functions: SAMPLE() returns i.i.d. uniform

samples from Xfree, NEAREST(V, vnew) takes the current set of vertices as an argument

and returns Vnearest, the vertex in V that minimizes some distance function to Vnew, and

NEAR(V, Vnew) returns every vertex within some ball centered at Vnew of radius p oc

(log(n)/n)(/d) where n is the number of state vertices and d is the state dimension.

For a thorough discussion on the importance of the ball size see [29].



5.3.1 Comparing Partial Paths

At this point we observe that any graph of nominal trajectories through state space

implies an infinite set of possible paths through that graph. Search algorithms like

Dijkstra's algorithm and A* impose a total ordering on paths to each vertex in the

graph based on cost, thus finding a single optimal path to each node. This total

ordering is also the property that the RRT* algorithm exploits to "rewire" and main-

tain a tree in the state space. This works because the optimal cost to the goal from

any vertex is not a function of the path taken to that vertex. However, as illustrated

in figure 5-2, for our chance-constrained framework, this is generally not the case. As

we demonstrate in section 5.4, we can impose a partial ordering of the form:

na < nb (na.E < nbE) A (na.A < nb.A) A (n.c < nb.C) (5.35)

where na and nb represent different partial paths to the same vertex, while being

guaranteed not to prune an optimal path.

However, we still have a problem in that infinite loops in the graph may exist

within this partial ordering. The covariance update equations make it possible for

uncertainty to monotonically decrease while cost must monotonically increase. Phys-

ically, this may correspond to a robot circling in an information-rich part of the

environment to improve the state estimate. We can rule out this infinite looping by

introducing a parameter, c, into the comparison which allows na to dominate nb if the

covariances associated with n, are larger than those associated with nb by a tolerance

factor:

na < nb - (na.E < (nb.E + (1)) A (na.A < (nb.A + el)) A (na.C < nb.C). (5.36)

In practice e can be set quite small, and provides a remarkably simple and efficient

method for pruning useless paths.

The partially ordered sets of nodes at each vertex are maintained by an APPENDBELIEF(V,

nnew) function that takes as arguments a state vertex, and a new belief node. This



function first checks to see if the new belief is dominated by any existing beliefs at v

using equation 5.36. If it is dominated, the function returns failure. If it is not, the

function then appends the new node and checks to see if it dominates any existing

nodes using equation 5.35, pruning when necessary.

Algorithm 2 RRBT Algorithm
1: n.E : Eo; n.A := 0; n. ; 0 n.parent:= NULL;
2: v-X := init; v.N := {n};
3: V := {v}; E := {}
4: while i < M do
5: Xrand ::=SAMPLE()

6: Vnearest := NEAREST(V, Xrand)
7: enearest =CONNECT (nearest -X Xrand)
8: if lVnearest.n :PROPAGATE(Cnearest, n) then
9: V V U v(Xrand)

10: E E U enearest

11: E E U CONNECT(Xrand, Vnearest-X)
12: Q Q U onearest.N
13: Vnear := NEAR(V, Vrand)
14: for all Vnear E Vnear do
15: E : E U CONNECT(Vnear -XX rand)
16: E E U CONNECT(Xrand, Vnear-X)
17: Q:= Q U vnear.N

18: end for
19: while Q f 0 do
20: n :=POP(Q)
21: for all Vneighbor of v(n) do
22: anew :=PROPAGATE (Cneighbor, a)
23: if APPENDBELIEF(Vneighbor, nnew) then

24: Q:= Q U anew
25: end if
26: end for
27: end while
28: end if
29: i := i + 1
30: end while

5.3.2 Algorithm Description

Algorithm 2 depicts the RRBT algorithm. The graph is initialized with a single vertex

and single belief corresponding to the initial state estimate as specified in equation



5.10 on lines 1-3. This belief will form the root of the belief tree.

At each iteration of the main loop, the state graph is updated by sampling a

new state and then adding edges to the nearest and near vertices as in the RRG

algorithm. Whenever an existing vertex has an outgoing edge added, all the belief

nodes at that vertex are added to the queue. It should be noted that the new vertex

is only added to the graph (along with the appropriate edges) if the chance-constraint

can be satisfied by propagating an existing belief at the nearest vertex to the new

sampled vertex as shown by the check on line 8. This is analogous to "collision-free"

checks in a standard RRT.

After all the edges have been added, the queue is exhaustively searched using

uniform cost search from lines 19-27, using the the pruning criteria discussed above

and implemented by APPENDBELIEFO. The choice of uniform cost search is impor-

tant because it guarantees that within an iteration of the algorithm (adding a new

sample), no new belief will be appended at a state vertex and then pruned. This

is a direct consequence of the partial ordering in equation 5.35 including cost, and

the fact that with uniform cost search and a positive cost function, the cost of nodes

being examined must monotonically increase.

5.4 Convergence Analysis

In this section we show, given sonie reasonable assumptions about the environment

and the system dynamics, that the RRBT algorithm converges to the optimal path

in the limit of infinite samples. We begin by stating necessary assumptions.

Assumption 1. Let ei = CONNECT (Xa, Xc), C2 = CONNECTaXb), ande 3 =CONNECT Xc).

If xb E e1 , then the concatenation [e2 , e3] must be equal to e1 and as a consequence

have equal expected cost for any initial belief.

This assumption states that the CONNECT( function must be consistent for in-

termediate points and that the cost function must also be consistent. It further

states that our CONNECT( function must correctly and consistently interpolate the



LQG properties. This is necessary since our algorithm relies on refining through

infinite sampling which implies that samples will be infinitely close together. Since

for most robots the discrete dynamics equations will be derived from a continuous

system description, this implies that we must be able to compute a "partial" step by

rediscretizing the continuous system with the appropriate time step.

Assumption 2. There exists a ball of radius -y E R+ at every point x C X such that

(i) for all x' E X", fx P(x')dx' < 6, where P(x') is a reachable belief at x', and (ii)

x C X?

This assumption is a stochastic-chance-constrained parallel to assumption 14 in

[29]. It states that the obstacles in the environment are spaced such that it is possible

to move the mean of a distribution within some ball and not violate the chance-

constraint. This is necessary to give the graph a finite sample volume to converge

in.

Assumption 3. The structure of Xobs and is such that if xa ~ N(, a), x,

N(s, Eb), and Ea < EZ then P(xa C Xob*) < P(xb E XobS) for all & C Xfree

This assumption simply states that decreasing the covariance can't increase the

probability of collision at a given state estimate. This may be violated for very

sparse environments with small obstacles and large uncertainty, but is practically

very reasonable.

Assumption 4. The cost function is convex in the sense that if xa N(, Ea),

xb ~~ N(', E), and Ya < Eb then E [J(xa)] < E [J(x)] for all x E Xfree.

While this is a restrictive assumption, we note that it includes a uniform cost

function over the state, resulting in shortest path behavior. Additionally, the envi-

ronmental obstacles need not be convex since the cost function is decoupled from the

obstacle constraints. Further, even if the actual cost function is not globally convex,

it may still be locally convex along the optimal path and the above assumption can

still be met for Ea and Eb below a certain threshold.



Assumption 5. The partial derivatives that lead to equations 5.14 and 5.15 are exact.

This is the most restrictive assumption. It states that our system must be perfectly

locally linear and further, that the LQG properties (R, Q, A, B, and C) must be

the same during the planning phase and execution phase. While this is certainly not

generally true, for many systems this is a reasonable approximation, and it is justified

since we are using a feedback control law to stay close to the nominal trajectory. This

is also more realistic than assuming maximum likelihood observations. Instead we are

assuming that we can predict the properties of the measurements, without assuming

we know the actual values of the measurements.

Lemma 1. Let Pc' denote the set of all finite length paths through X such that for

every Xt E p for every p E P,' P(xt E Xbs) < 6. Let PtfE denote a similar set

contained in the graph of the RRBT algorithm at iteration i. limioo PF = Pee.

Proof. (Sketch) This follows from assumptions 1 and 2 along with results presented

in [29]. The idea is that if the obstacles in the environment are spaced such that

there is some reachable belief that will permit a distribution to be shifted within a

ball, then in the limit of infinite samples, there will be an infinitely dense connected

graph in the ball. Since this property is assumed to hold for all x, the environment

will be covered by an infinitely dense connected graph.

Lemma 1 states that in the limit of infinite samples, the underlying graph built

by the RRBT algorithm contains all finite length paths that respect the chance-

constraint. We must therefore show that the search tree of beliefs that we maintain

on top of this graph contains all possible paths in the graph that could be opti-

mal. Our pruning strategy exploits the fact that LQG belief propagation is invariant

with respect to inequality in initial beliefs. To demonstrate this, we use the general

Binomial Matrix Inversion Lemma,

(A + B)-=A-' - A-'B(B + BA-'B)-BA-'. (5.37)



We make use of the general Lemma as it relates to positive definite covariance ma-

nipulations with the following Lemma.

Lemma 2. For two covariance matrices A and B, there exists another symmetric

positive depfnite matrix C such that A 1 (A + B)- 1 + C.

Proof. This follows immediately from equation 5.37 and the observation that if A

and B are symmetric-positive-definite, then the quantity A- 'B(B+ BA-'B) 'BA-'

must also be symmetric positive-definite.

This property extends to the covariance of the Kalman filter with the following

Theorem.

Theorem 1. For two covariance matrices, E' and E2, where there exists some

positive-defnite matrix Do such that Zl + Do = E, there will always be another

positive definite matrix D such that Z', + Di = E [0, oo).

Proof. We begin by noting that the Kalman filter relies upon a two step recursion.

Thus if the property holds through each step of the recursion it holds for all t < 00.

For the process step we have

E2 2 + 7 ~Q =A(-1 ,±)T±Q
Et = A -, A+Q sA -I + D)A +

= AE' _ATADAT+Q

- t AA"+ Q

r 2 - El = ADAT D.

For the measurement update we turn to the information form of the Kalman update,

ER1 ( +R)-1 = (( + D')-l + R1)-1.

by Lemna 2 we can write

E:2 = (E - D"±+ R)-1,



and again

( -1 + R1)-1 + D"'.

Thus we have E = El + D"' where D.' is positive-definite. l

The following Theorem states that a similar property holds for the mean uncer-

tainty.

Theorem 2. For two state covariance matrices, El and Z0, where there exists some

positive-definite matrix Do such that El + Do = , and two corresponding mean

covariance matrices, A' and A2, with the same property A' + E0 = A', there will be

some positive-definite matrix Et such that A' + Et = A' always holds.

The proof follows in a similar manner to Theorem 1, by plugging into the belief

propagation equations and applying Lemma 2.

Theorem 3. For two beliefs na and nb at the same state, let Pa and P be the nominal

trajectories to the beliefs, and let p, and p9 be the optimal nominal trajectories from na

and nb to the goal. If na < nb then E [ a J(x)] ) na.c < E J ~x) +nb.c+c6 ,

and lim,,a c, = 0.

Proof. This result follows directly from assumptions 3 and 4 combined with Theorems

1 and 2. If na < nb, then the optimal cost to go for na must be within some constant

factor of that for nb. Since the limit yields na < nb the constant factor has to approach

0. The accumulated cost is strictly less than that of nb and thus the total cost is also

strictly less than that for nb.

Theorems 1 through 3 prove that the pruning strategy is conservative in that it

only removes suboptimal paths; since by Theorem 1 the original graph contains all

paths achievable with the CONNECT() function, in the limit of infinite samples and

e -+ 0, the belief tree will contain the optimal path.
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Figure 5-3: In this environment the robot can only receive measurements in the
bottom green region. Ignoring uncertainty and moving straight to the orange goal
region (a) results in a high probability of collision, while growing an RRT while
checking the chance-constraint (b) will not find a solution. The purple lines in (b)
depict nominal paths through the environment none of which reach the upper region
since any sample drawn from the that region will be connected to a path that hasn't
visited the green region, and thus cannot safely pass the obstacles.

5.5 Experimental Results

We first implemented the algorithm on a 2D system with dynamics:

Xt = Xt_1 + Ut_1 + w),

z = Xe + V,

wt ~ N(0, 0.01I)

vt ~ N(0, R),

where R = ocI or R = 0.011 depending on the location in the environment. Figure

5-3 shows a specific configuration of an environment that forces trade-offs between

information gathering and finding short paths, where the robot can only receive mea-

surements in a small region away from the goal. In this scenario, moving straight to

the goal will not satisfy the chance-constraint.

To evaluate the probability of collision on each step, we used the conservative

(5.38)

(5.39)



(a) (b) (c)

Figure 5-4: (a) shows the RRBT algorithm after 100 iterations, (b) after 500 itera-
tions, and (c) after 10000 iterations. The algorithm quickly finds a feasible solution
that goes down to the information region to localize and then pass safely between the
obstacles. As more samples are added, this path is refined. Note that the solution is
slightly conservative in that the path goes far enough into the green region to ensure
the probability mass within the chance-constraint actually receives measurements.

approximation of checking the ellipse defined by the covariance matrix and a desired

chance bound for collisions with obstacles. This is computationally faster than in-

tegrating the distribution over Xobs, and since the problem formulation states that

the specification is an upper bound, this is a reasonable approximation to make. For

more aggressive (but still conservative) approaches see [44].

For the example in figure 5-3, simply growing an RRT and checking the chance-

constraint along the paths, as proposed in [6], fails to find a feasible solution since

the Voronoi-bias will prevent expansion of the paths that have passed through the

measurement region. In contrast, the RRBT algorithm, not only find a feasible path,

it refines towards the optimal path as shown in figure 5-4. The cost and runtime

statistics averaged over 20 runs in this environment are shown in figure 5-5. As our

theoretical predict, we can see the cost converging as a function of the number of

samples. Additionally, the computational complexity per iteration is sub-linear.

It is important to note that the algorithm is dependent on being able to predict

the properties of the measurements that will be received. Since, for the problems we
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Figure 5-5: This figure shows the cost of the best path in the tree (a), the run time
(b - top), and the run time per iteration (b - bottom) as a function of the number of
samples for the environment in figure 5-4, averaged over 20 runs.

are interested in, the measurements are a function of state, the actual measurement

properties may vary from the predicted covariance. In our implementation we handle

this by only predicting a measurement if only probability mass below the chance-

constrained level is outside of a measurement region. This can be seen in figure 5-4

where the solution goes far enough into the measurement region to ensure that every

state element inside the covariance ellipse receives measurements.

In addition to the 2D system we also tested the algorithm in a domain with Dubins

vehicle dynamics and range and bearing beacon measurements from the corners of

obstacles which serves as an approximate model for a fixed-wing vehicle that uses a

corner detector with a LIDAR. The continuous Dubins vehicle dynamics are described

by: [V cos(O)

2 V sin( ) , (5.40)

where,

X = 2 ,U= (5.41)
0



Figure 5-6: This figure shows the algorithm running in a more complicated environ-
ment with Dubins dynamics and beacon measurements. We see that the algorithm
finds a path that turns parallel to the obstacles so as to localize and stabilize onto
the nominal trajectory before going past the obstacles to the goal.

We refer the reader to [54) for details on discretizing and implementing this model,

and for the specifies of the measurement model. A path returned by the RRBT algo-

rithm for a sample environment is shown in figure 6. This is a challenging environ-

ment where uncertainty accumulates as the vehicle heads towards obstacles. When

the vehicle reaches the obstacles it receives measurements and uncertainty collapses.

However, as shown in figure 5-1, proceeding directly past the obstacles is not possi-

ble since it takes time for the actual path to stabilize down onto the nominal path.

Instead, the algorithm returns a solution that turns parallel to the obstacles, gets

measurements, stabilizes onto the nominal path, and then safely goes to the goal.

5.5.1 Fixed-wing Vehicle Simulation

We also tested the R.RBT algorithm in simulation using the trajectory generation

methodology described in chapter 3 as the CONNECT() function and the state esti-



mation approach described in chapter 4 together with the closed loop dynamics in

the PROPAGATE() function. In this section we provide the technical details necessary

to apply the RRBT to the fixed-wing system.

While the polynomial optimization minimizes roll input, it does not directly guar-

antee satisfying roll rate constraints. This guarantee could be obtained by introducing

control points along the path and enforcing inequality constraints, however, satisfying

such constraints would require an iterative QP solution instead of the direct matrix

inversion approach for equality constraints. Instead we simply discard trajectories

that violate input constraints as if a collision had occurred.

WNe assume coordinated flight along paths which exist in the XY plane. This

leaves a state space x E R5 comprised of XY position, heading, roll, and roll rate:

x [ Ai A2 @ d ]. While the transverse-polynomial paths would allow us to

sample in this space and then make exact connections, such a strategy would be inef-

ficient, as we would sample states with opposing roll, roll rate, and heading such that

the connected path had either immediately infeasible or awkward approaches. Instead

we sample in the reduced space of planar position and heading, SE2, represented as

R', and leave the end boundary condition floating in the polynomial optimization.

This sampling strategy results in smoother paths and fewer discarded samples.

To query collisions we use the same octomap used in GPF localization [58]. In

the CONNECT( function this is done by querying cells the trajectory passes through.

In the PROPAGATE() function this is done (conservatively) by ray-tracing from the

mean of the distribution to the corners of an XYZ aligned box defined by the diagonal

elements of the covariance matrix scaled by the desired risk factor - typically 2-.

The propagate function must implement equations 5.33 along with 5.17. However,

we have a slight difficulty in that the states and inputs used in the filter and controller

are different. The control law presented in chapter 3 has position, A, velocity in the

global frame, A, normal acceleration in the body frame, a,,, and the path parameter

derivatives s, A, , as states, with the derivative of tangential acceleration, a&,, roll rate,

#, and the third derivative of the path parameter 's, as inputs. The state estimator

has velocity in the body frame Vb, position, A, and orientation, R, as states. One



possibility would be to augment the state for planning purposes by taking the union

of the state variables for each, and augment both the estimator dynamics and the

mean (A) dynamics equations with the appropriate jacobians.

However, the differentially flat control law has the powerful property that the error

dynamics are third-order on position, and linear. Thus we can express the A dynamics

in terms of a triple integrator while using the EKF and GPF equations exactly as

described in chapter 4. One possibility for computing the GPF measurement updates

in the propagate function would be to simulate laser measurements and then run

them through the GPF pipeline just as is done on-line. However, while the GPF is

efficient, simulating laser measurements and then sampling and weighting particles

is not fast enough to run in the planning inner loop. Instead, we discretize the state

space in roll, heading, x and y, and compute a measurement function map of position

covariance matrices using the GPF in an off-line step, which is then used during

planning.

Using this framework we computed motion plans in an octomap built with data

from the MIT Darpa Urban Challenge vehicle driving through Cambridge around the

Stata Center on MIT's campus [39]. The octomap and associated motion plans for

both the R.RBT and LQG-MP algorithms are shown in figure 5-7 and 5-9 respectively.

We can see that all the paths are appropriately cautious based on the uncertainty

around obstacles. Additionally, we can see that the family of paths that passes most

directly to the goal (of which the optimal path is a member) is highly constrained

by both the dynamic turning radius and the uncertainty. In multiple trials, the

RRBT does not always find this path within 50000 iterations, however, the LQG-MP

algorithm shown in figure 5-9 rarely finds it.

Each algorithm was run in the same environment at the same start and end

locations for 50000 iterations in 20 different trials. Plots showing the fraction of

feasible paths obtained as a function of both the iteration number and run time

are shown in figure 5-10. In figure 5-11 we show the cost and number of partial

paths (belief nodes) as a function of iteration number and number of state vertices

respectively. As we would expect, the RRBT outperforms the RRT in terms of cost.



The reason for this is that the RRT (LQG-MP) algoritlun can't optimize for either

cost or uncertainty. Once a path to a given sample is established, it will never be

replaced. By contrast, the RRBT algorithm continuously replaces paths through

search and thus can reduce cost and uncertainty to all points in state space as more

samples are added. In this environment, that translates to finding the most direct,

but also more aggressive, path to the goal more often.

For the RRT the number of state vertices is equivalent to the number of belief

nodes since the underlying structure is a tree. The variance in the RRT across runs

comes from the number of successful samples. The more interesting feature is the

fact that the number of partial paths for the RRBT scales linearly with the number

of vertices, even for the very intricate empirical belief space caused by the laser mea-

surement function as compared to simpler measurement functions shown in previous

examples. This would support the hypothesis that the set of dominance relationships

setup in the belief space remains constant even as the space is more densely popu-

lated. Exploring this property analytically is a potentially interesting piece of future

work.



Figure 5-7: Example motion plans through the urban canyon computed using the
RRBT. The octomap is overlaid on aerial imagery in black. The planning takes place
at 3 meters in height, and the map is cropped between 2 and 4 meters for clarity in
visualization. The vehicle starts in upper left corner with uncertainty given by the
blue circle. In this run the RRBT converges to the path shown in maroon (a). In (b)
we see the family of partial paths generated by the algorithm.



Figure 5-8: A 3D view of the environment with the octomap colored according to
height. We can see the winding path the vehicle takes through the urban canyon.
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Figure 5-9: Example motion plans through the urban canyon computed using the
RRT while propagating uncertainty (LQG-MP). The path the algorithm finds passes
through a wide tunnel rather than the more aggressive winding directly to the goal.
The reason for this is the RRT gets "blocked" by an initial solution that takes the
longer route and can't rewire when it eventually does discover the alternative shorter
path.
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Figure 5-10: Feasible solutions vs. iteration number for RRBT and LQG-MP algo-
rithms with different laser max ranges. This plot shows the fraction of feasible paths
obtained (out of 20 runs) versus iteration number. The LQG-MP algorithm with 30
meter laser range generally finds paths the fastest, but LQG-MP with only 5 meter
laser range finds paths the slowest. This makes sense since as the observability prop-
erties of the problem get harder, information gathering and information use become
more important. By contrast, the RRBT algorithm displays fairly even performance
between the two cases, except for a single trial taking a large number of iterations in
the 30 meter case.
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Cost vs. Iterations
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Figure 5-11: In (a) we see cost vs. iteration number for both laser ranges and both
algorithms. The dotted lines are 1 standard-error over 20 runs, and the statistics are
computed ignoring runs with infeasible solutions, but only after 90% of the runs have
a feasible solution. RRBT outperforms RRT, however, there is still large variance
in the solution cost up to this number of iterations due to the difficulty of finding
the shortest path winding through the obstacles. In (b) we see the number of partial
paths (belief nodes) for each algorithm versus the number of state nodes.
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Chapter 6

Future Work and Conclusions

The autonomous flight of a fixed-wing vehicle through obstacles using only on-board

sensing is a challenging algorithmic problem. In this thesis we have introduced al-

gorithms to address the specific problems of trajectory generation, state estimation,

and planning under uncertainty. The state estimation algorithm was validated and

tested on real flight data, obtained from the vehicle platform, while the trajectory

generation and planning algorithms were validated in simulation.

The primary piece of remaining work is the experimental demonstration of the

physical system operating in a real environment. Most of the work to make this

possible lies in the details of hardware implementation and testing and tuning the

parameters of the trajectory generation and control system based on closed-loop flight

tests.

Each of the individual algorithmic pieces also present interesting opportunities

for future work. Our trajectory generation algorithm for transverse-polynomial paths

could be extended to truly 3D flight by offsetting a polynomial, not only in the

horizontal transverse direction, but also in the vertical transverse direction. This

would allow 3D segments with 2-axis discontinuity at their junctions to be stitched

together smoothly, while still minimizing the control effort follow the paths. The

method could be further refined and validated with flights in a motion capture system

(similar to the systems that have allowed leaps forward in helicopter flight [14), [41]),

however precise motion capture systems with large enough flight volumes for fixed-
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wing vehicles performing extended maneuvers are not readily available.

In chapter 4 we presented the state estimation which is based on an IMU and laser

range scanner. Our algorithm uses a novel extension of the Gaussian particle filter and

an exponential coordinates linearization of the IMU dynamics equations. We have

demonstrated the performance of our algorithms on two challenging datasets. The

quantitative analysis in motion capture clearly shows the advantages of our extensions

to the Gaussian particle filter algorithm, while the accurate map generated during

the flight tests demonstrate the absolute accuracy of our algorithms.

In addition to the planning and control extensions, investigation of other sensing

modalities such as vision are of great interest. We believe that the filtering framework

developed for the laser range finder will extend to incorporate additional measurement

types, thereby further improving the capabilities of our system.

From a planning perspective, robots with continuous dynamics that operate in

partially observable, stochastic domains, motion planning presents significant chal-

lenges. In this thesis we present an algorithm, the Rapidly-exploring Random Belief

Tree, that leverages a local LQG control solution to predict a distribution over tra-

jectories for candidate nominal paths, and then uses incremental sampling refinement

to optimize over the space of nominal trajectories. While we have demonstrated the

utility of the algorithm for simulation examples, future work remains.

Further theoretical work is necessary in investigating the computational complex-

ity. Our experimental results suggest that the complexity is sub-linear per iteration,

but more analysis is necessary to confirm this. A key question is how the number of

belief nodes scales relative to the number of state vertices.

While our simulations show that plans for the actual vehicle can be computed in

reasonable time periods, more work remains to make the algorithm truly real-time.

An A* heuristic could be used in the search to focus towards the goal. Once the

goal is found, the same heuristic could be used to bound the tree and graph growth

and eliminate suboptimal regions. Further, by introducing an "expected value of

information" it would be possible to reduce the number of belief nodes that must

be maintained at each state vertex, by narrowing in on the multi-objective front of
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uncertainty and cost to the most useful regions.

Perhaps most interestingly, the RRBT algorithm could be generalized to include

other systems that obey the basic dominance property with the conjunction of in-

equalities of path statistics. This could potentially include planning with more so-

phisticated motion constraints, such as homotopy constraints, or specific adaptations

of the algorithm for systems with stochastic dynamics that are fully observable or

partially observable systems with fully actuated dynamics.
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